Vol. 11, No. 5, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 5, 723–899
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-4184 (online)
ISSN 1944-4176 (print)
 
Author index
To appear
 
Other MSP journals
The $k$-diameter component edge connectivity parameter

Nathan Shank and Adam Buzzard

Vol. 11 (2018), No. 5, 845–856
Abstract

We focus on a network reliability measure based on edge failures and considering a network operational if there exists a component with diameter k or larger. The k-diameter component edge connectivity parameter of a graph is the minimum number of edge failures needed so that no component has diameter k or larger. This implies each resulting vertex must not have a k-neighbor. We give results for specific graph classes including path graphs, complete graphs, complete bipartite graphs, and a surprising result for perfect r-ary trees.

Keywords
network reliability, connectivity, conditional connectivity, edge failure, graph theory
Mathematical Subject Classification 2010
Primary: 05C05, 05C12, 05C90, 94C15
Milestones
Received: 11 April 2017
Revised: 22 August 2017
Accepted: 22 August 2017
Published: 2 April 2018

Communicated by Joshua Cooper
Authors
Nathan Shank
Mathematics and Computer Science
Moravian College
Bethlehem, PA
United States
Adam Buzzard
Mathematics and Computer Science
Moravian College
Bethlehem, PA
United States