Vol. 11, No. 5, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 5, 723–899
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-4184 (online)
ISSN 1944-4176 (print)
 
Author index
To appear
 
Other MSP journals
On generalized MacDonald codes

Padmapani Seneviratne and Lauren Melcher

Vol. 11 (2018), No. 5, 885–892
Abstract

We show that the generalized q-ary MacDonald codes Cn,u,t(q) with parameters [t[n 1 ] [u 1 ],n,tqn1 qu1] are two-weight codes with nonzero weights w1 = tqn1 , w2 = tqn1 qu1 and determine the complete weight enumerator of these codes. This leads to a family of strongly regular graphs with parameters qn ,qn qnu ,qn 2qnu ,qn qnu. Further, we show that the codes Cn,u,t(q) satisfy the Griesmer bound and are self-orthogonal for q = 2.

Keywords
two-weight codes, strongly regular graphs, generalized MacDonald codes, Griesmer bound
Mathematical Subject Classification 2010
Primary: 05C90, 94B05
Milestones
Received: 23 August 2017
Revised: 8 December 2017
Accepted: 14 December 2017
Published: 2 April 2018

Communicated by Joshua Cooper
Authors
Padmapani Seneviratne
Department of Mathematics
Texas A&M University–Commerce
Commerce, TX
United States
Lauren Melcher
Department of Mathematics
Texas A&M University–Commerce
Commerce, TX
United States