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We determine the lengths of all closed sub-Riemannian geodesics on the three-
sphere S3. Our methods are elementary and allow us to avoid using explicit
formulas for the sub-Riemannian geodesics.

1. Introduction

In the case of a compact Riemannian manifold (M, g) there is a relationship between
closed geodesics, representing paths of free classical particles in periodic motion,
and eigenfunctions of the Laplacian 1, representing periodic free quantum “waves”
(up to a phase factor). For this reason, the set of lengths of closed geodesics is called
the length spectrum, in analogy to the spectrum of the Laplacian. There are in fact
precise formulas relating lengths to eigenvalues; see for example the announcement
[Guillemin and Weinstein 1976] for a readable discussion with references.

So far there is no such formula relating lengths and eigenvalues in the case of a
compact sub-Riemannian (sR) manifold. We recall that an sR manifold is a manifold
with a specified linear subbundle H (the “horizontal bundle”) of its tangent bundle,
along with a Riemannian metric on H. Distances between points are then measured
using curves that are constrained to have tangent vectors in H (“horizontal curves”).
In fact, when H is the span of a set of bracket-generating vector fields, then the
Chow–Rashevskii theorem says that any two points are connected by a horizontal
curve, a result that even experts find surprising [Burago et al. 2001, p. 178]; thus
given any two points there is a shortest horizontal curve connecting them; it is
called an sR geodesic.

Sub-Riemannian geometry is of practical interest; for example, the problem of
parallel parking a car, or, even worse, a car with a trailer, is a problem in sR geometry
[Burago et al. 2001; Nelson 1967]. And there are further surprises from the purely
mathematical point of view, one being Montgomery’s proof of existence of singular
sR geodesics, singular in the sense that they do not satisfy the geodesic equations
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(Hamilton’s equations) [Montgomery 1994; 2002]. This and other relatively recent
results in sR geometry inspired renewed interest in the sub-Laplacian: the operator
naturally associated with the given (sub-)Riemannian metric on H.

In this paper, with the goal of understanding a single example, we compute
the sR length spectrum of the three-dimensional sphere S3 with its standard sR
structure; this is to be compared with the spectrum of the sub-Laplacian on S3,
known by Taylor [1986] and generalized to other connected, semisimple Lie groups
by Domokos [2015]. We expect that a general theory relating the sR length spectrum
to the spectrum of the sub-Laplacian would be amenable to the tools of microlocal
analysis, as in the Riemannian setting; [Colin de Verdière et al. 2016] gives hope
that this will be accomplished.

We focus on S3 with its standard sR structure because it is perhaps the simplest
compact manifold with an sR structure, and there are no singular sR geodesics
on S3; that is, all sR geodesics arise as projections of solutions of Hamilton’s
equations [Montgomery 2002]. Moreover, we wish to compare the sR setting to
the Riemannian setting, in which the spheres Sn are of fundamental importance, as
examples of manifolds all of whose geodesics are closed and have the same length
T ; in general this is equivalent to most of the spectrum of

√
−1 being concentrated

near an arithmetic progression (2π/T )k + β, k = 1, 2, . . . , for some constant β
[Duistermaat and Guillemin 1975]. As we will see, in the case of S3 not all sR
geodesics are closed, and not all have the same length:

Theorem. The set of lengths of the closed sR geodesics on S3 is

{2π
√

n : n ∈ N}.

Others have studied the sR geodesics on S3 [Calin et al. 2009; Chang et al.
2009; Hurtado and Rosales 2008] (see also the survey article [D’Angelo and Tyson
2010]), but we compute their lengths and differ from the previous work in that we
consistently use Hopf coordinates on S3 and avoid using explicit formulas for the
sR geodesics; we believe it clarifies the presentation to not use explicit formulas.

We introduce the sR structure and geodesic equations in Section 2 using Hopf
coordinates, and in Section 3 we categorize the qualitatively different types of
sR geodesics. In Section 4 we determine which sR geodesics are closed, and in
Section 5 we compute their lengths, resulting in the theorem above. Finally, in
Section 6 we compare the sR length spectrum to the previously known spectrum of
the sub-Laplacian.

Remark. During peer review, it was pointed out that the above result is contained
in [Chang et al. 2011] (see their Theorem 2). However, our proof is entirely new
and has the advantage of being elementary after the introduction of Hamilton’s
equations (2) in our chosen coordinate system.
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2. S3 in Euclidean and Hopf coordinates

First we consider S3 as a subset of R4:

S3
= {(x1, y1, x2, y2) ∈ R4

: x2
1 + y2

1 + x2
2 + y2

2 = 1}.

On S3 we have the orthonormal vector fields

V := −y1
∂

∂x1
+ x1

∂

∂y1
− y2

∂

∂x2
+ x2

∂

∂y2
,

E1 := −x2
∂

∂x1
+ y2

∂

∂y1
+ x1

∂

∂x2
− y1

∂

∂y2
,

E2 := −y2
∂

∂x1
− x2

∂

∂y1
+ y1

∂

∂x2
+ x1

∂

∂y2
,

which satisfy the Lie bracket relations

[V, E1] = −2E2, [E2, V ] = −2E1, [E1, E2] = −2V .

Thus H(S3)= span{E1, E2} is a bracket-generating tangent subbundle, and by the
Chow–Rashevskii theorem any two points on S3 are connected by an sR geodesic.

The orbits of the flow generated by V are the circles of the Hopf fibration [Cannas
da Silva 2008], so we find it convenient to use Hopf coordinates, see [Wikipedia
2015], on S3:

x1 = cos θ1 sin θ0, y1 = sin θ1 sin θ0,

x2 = cos θ2 cos θ0, y2 = sin θ2 cos θ0

for 0 < θ0 <
π
2 and 0 < θj < 2π , j = 1, 2. We picture the (θ0, θ1, θ2)-space as

“the Hopf cube”
(
0, π2

)
× (0, 2π)× (0, 2π). When we have occasion to exit the

Hopf cube, we simply return to the definition of Hopf coordinates to make the
correct interpretation:

(i) For the θ1- and θ2-coordinates the values 0 and 2π are identified.

(ii) When a point crosses the θ0 = 0 plane we have that θ0 changes direction
(“bounces”) and (θ1, θ2) is identified with (θ1+π, θ2).

(iii) When a point crosses the θ0 =
π
2 -plane we have that θ0 changes direction and

(θ1, θ2) is identified with (θ1, θ2+π).

The (round) Riemannian metric in Hopf coordinates is

ds2
= dθ2

0 + sin2θ0 dθ2
1 + cos2θ0 dθ2

2 , (1)

and the Laplacian is

1=
1

sin(2θ0)

∂

∂θ0
◦ sin(2θ0)

∂

∂θ0
+ csc2θ0

∂2

∂θ2
1
+ sec2θ0

∂2

∂θ2
2
.
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We now write the sR structure in Hopf coordinates. We can introduce r > 0, to
give coordinates to R4, allowing us to write the ∂/∂x j , ∂/∂yj in terms of the ∂/∂θj ,
∂/∂r . Then restricting to functions on S3 we get

∂

∂x1
= cos θ1 cos θ0

∂

∂θ0
− sin θ1 csc θ0

∂

∂θ1
,

∂

∂y1
= sin θ1 cos θ0

∂

∂θ0
+ cos θ1 csc θ0

∂

∂θ1
,

∂

∂x2
=− cos θ2 sin θ0

∂

∂θ0
− sin θ2 sec θ0

∂

∂θ2
,

∂

∂y2
=− sin θ2 sin θ0

∂

∂θ0
+ cos θ2 sec θ0

∂

∂θ2
.

Our vector fields are then

V = ∂

∂θ1
+

∂

∂θ2
,

E1 =− cos(θ1+ θ2)
∂

∂θ0
+ sin(θ1+ θ2) cot θ0

∂

∂θ1
− sin(θ1+ θ2) tan θ0

∂

∂θ2
,

E2 =− sin(θ1+ θ2)
∂

∂θ0
− cos(θ1+ θ2) cot θ0

∂

∂θ1
+ cos(θ1+ θ2) tan θ0

∂

∂θ2
.

The commutation relations hold, the same as before, and the vector fields are still
orthonormal (of course, with respect to the Riemannian metric in Hopf coordinates).

The sR metric, written in Hopf coordinates, is

S =

1 0 0
0 cos2θ0 sin2θ0 − cos2θ0 sin2θ0

0 − cos2θ0 sin2θ0 cos2θ0 sin2θ0

 .
Indeed it is easy to check that E1 and E2 are orthonormal with respect to S, and V
is in the kernel of S. Written as a two-tensor,

S = dθ0⊗ dθ0+ cos2θ0 sin2θ0 (dθ1− dθ2)⊗ (dθ1− dθ2).

The sR Laplacian, written in Hopf coordinates, is

1sR = E2
1 + E2

2 =
1

sin(2θ0)

∂

∂θ0
◦ sin(2θ0)

∂

∂θ0
+

(
cot θ0

∂

∂θ1
− tan θ0

∂

∂θ2

)2
.

We can consider the sR metric as being the limit of certain penalty metrics,
where the V -direction is penalized by a factor λ > 1. After simple linear algebra
(multiplying the V -direction by λ, multiplying the other directions by 1, and then
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applying the Riemannian metric), the λ-penalty metric is given by the matrix

Pλ =

1 0 0
0 (λ2

−1) sin4θ0+sin2θ0 (λ2
−1) cos2θ0 sin2θ0

0 (λ2
−1) cos2θ0 sin2θ0 (λ2

−1) cos4θ0+cos2θ0

 .
Indeed, one can check that in fact V, E1, and E2 are orthogonal with respect to
this metric, that E1 and E2 have length 1, and that V has length λ. We can easily
compute

det Pλ = λ2 cos2θ0 sin2θ0

and

P−1
λ =

1 0 0
0 cot2θ0+λ

−2 λ−2
−1

0 λ−2
−1 tan2θ0+λ

−2

 .
From this we find that the λ-penalty Laplacian on S3 is

1λ =
∂2

∂θ2
0
+ 2 cot(2θ0)

∂

∂θ0
+

(
cot θ0

∂

∂θ1
− tan θ0

∂

∂θ2

)2
+ λ−2

(
∂

∂θ1
+

∂

∂θ2

)2
.

That is,
1λ = E2

1 + E2
2 + λ

−2V 2,

as might have been expected.
Montgomery discovered an example in which geodesics with respect to the

λ-penalty metric converge (as λ→∞) to sR geodesics that do not solve the sR
geodesic equations, in contrast to the Riemannian setting; that is, Montgomery
[1994] discovered so-called singular geodesics. For the case of S3 (and more
generally, in the contact case), singular geodesics do not exist, so it suffices to study
the geodesic equations, or, equivalently, Hamilton’s equations [Montgomery 2002].

We denote the dual variable to θj by ξj . The sR Hamiltonian is then

H(θ, ξ)= 1
2ξ

2
0 +

1
2(cot θ0 ξ1− tan θ0 ξ2)

2.

Hamilton’s equations, giving the sR geodesics, are then, for j = 0, 1, 2,

θ̇j =
∂H
∂ξj

, ξ̇j =−
∂H
∂θj

.

Explicitly,

θ̇0 = ξ0, ξ̇0 = cot θ0 csc2θ0 ξ
2
1 − tan θ0 sec2θ0 ξ

2
2 ,

θ̇1 = cot2θ0 ξ1− ξ2, ξ̇1 = 0,

θ̇2 = tan2θ0 ξ2− ξ1, ξ̇2 = 0.

(2)
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One obvious advantage of using Hopf coordinates is that ξ1 and ξ2 are constant
along the flow; in addition, as always H is constant along the flow, so we already
have three conserved quantities. Also, these equations have a clear symmetry; for
example,

cot
( 1

2π − θ0
)

csc2( 1
2π − θ0

)
= tan θ0 sec2θ0.

The penalty Hamiltonian is

Hλ(θ, ξ)= H + 1
2λ2 (ξ1+ ξ2)

2

=
1
2ξ

2
0 +

1
2(cot θ0 ξ1− tan θ0 ξ2)

2
+

1
2λ2 (ξ1+ ξ2)

2.

(3)

The corresponding penalty Hamiltonian equations, giving the penalty geodesics,
are then

θ̇0 = ξ0, ξ̇0 = cot θ0 csc2θ0 ξ
2
1 − tan θ0 sec2θ0 ξ

2
2 ,

θ̇1 = cot2θ0 ξ1− ξ2+ λ
−2(ξ1+ ξ2), ξ̇1 = 0,

θ̇2 = tan2θ0 ξ2− ξ1+ λ
−2(ξ1+ ξ2), ξ̇2 = 0.

(4)

For the case of the Riemannian metric on S3, that is, the case λ= 1, the equations
simplify, and we get

θ̇1 = csc2θ0 ξ1, θ̇2 = sec2θ0 ξ2.

When λ= 1, the solutions of Hamilton’s equations are great circles on S3.

3. Categorizing sR geodesics

Our categorization of sR geodesics is based on a reduced problem. In Hamilton’s
equations (2), since ξ1 and ξ2 are constant along the flow, we can isolate the
equations

θ̇0 = ξ0, ξ̇0 = cot θ0 csc2θ0 ξ
2
1 − tan θ0 sec2θ0 ξ

2
2 ,

which are Hamilton’s equations for the sR Hamiltonian H considered as a function
of two variables

H(θ0, ξ0)=
1
2ξ

2
0 +

1
2(cot θ0 ξ1− tan θ0 ξ2)

2. (5)

Equation (5) can be viewed as a one-dimensional energy equation: it is of the form

energy= kinetic energy+ potential energy,

with potential function

U = 1
2(cot θ0 ξ1− tan θ0 ξ2)

2.

We now list the various disjoint cases:



THE LENGTH SPECTRUM OF THE SUB-RIEMANNIAN THREE-SPHERE 51

0 π

4
π

2

θ0

0

π

2

π

3π

2

2π

θ1

0

π

2

π

3π

2

2π

θ2

0 π

4
π

2

θ0

0

π

2

π

3π

2

2π

θ1

0

π

2

π

3π

2

2π

θ2

Figure 1. Case 1b (left) and Case 2 (right).

(1) A fixed point in the (θ0, ξ0) phase plane. From our original choice of coordinates
we may assume that θ0 ≡

π
4 , and then ξ 2

1 = ξ
2
2 .

(a) ξ1 = ξ2. (This is precisely the case when H = 0.) Then from Hamilton’s
equations θ0, θ1, and θ2 are constant; this gives a degenerate sR geodesic of
length 0.

(b) ξ1 =−ξ2 6= 0. Hamilton’s equations then say that the speed on the Hopf cube
is
√

2 |ξ1− ξ2|, and the length of the (simple) closed curve on the Hopf cube
is
√

2 2π , so the period is 2π/|ξ1− ξ2|. On S3 the speed is |ξ1− ξ2|, so the
length of this closed sR geodesic is 2π . See Figure 1.

We categorize the remaining cases in terms of the potential function U.

(2) The “free” case U ≡ 0. This happens precisely when ξ1 = ξ2 = 0. (We have
already dispensed with the case when θ0 is constant.) By Hamilton’s equations,
θ̇1, θ̇2, and ξ̇0 are also identically zero, while θ̇0 = ξ0. That is, we have a point
with speed |ξ0| moving purely in the θ0-direction; the length of this (simple) closed
geodesic is 2π . (It is both a geodesic and an sR geodesic.) See Figure 1.

(3) ξ1 6= 0 and ξ2 6= 0. Then U is a potential well with a single nondegenerate
minimum occurring when tan4θ0 = ξ

2
1 /ξ

2
2 . Typical potential functions are shown

in Figure 2 for ξ1 and ξ2 with the same and opposite signs.
Since in this case θ0 is not constant, its period is

period(θ0)= 2
∫ b

a

dθ0
√

2(H −U )
= 2

∫ b

a

dθ0√
2H − (cot θ0 ξ1− tan θ0 ξ2)2

.

Here a and b are the “turning points,” where the kinetic energy is zero.
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Figure 2. Potential functions with ξ1 = 0.1, ξ2 = 0.2 (left) and
ξ1 = 0.1, ξ2 =−0.2 (right).

Fortunately it is possible to evaluate this integral using freshman calculus. Sub-
stituting

x = cos2θ0, 0< θ0 <
π
2 ,

we get

period(θ0)=

∫ cos2 a

cos2 b

dx√
[−2H − (ξ1+ ξ2)

2
]x2
+ 2(H + ξ1ξ2+ ξ

2
2 )x − ξ

2
2

.

The limits of integration are exactly the points where the denominator vanishes
(where the velocity is zero), and we recall that the Hamiltonian for Riemannian
geodesics is H1 = H + 1

2(ξ1+ ξ2)
2 (the case λ= 1), so we have

period(θ0)=
1
√

2H1

∫ cos2 a

cos2 b

dx√
(cos2a− x)(x − cos2b)

.

This is an integral known to be solvable by elementary functions. Following [Woods
1934, p. 366],1 we make the substitution defined by

z2
+ 1=

cos2a− cos2b
x − cos2b

and finally get the answer

period(θ0)=

√
2

H1

∫
∞

0

dz
z2+ 1

=
π
√

2H1
.

For future reference, we note that this is one-half the period of the (Riemannian)
geodesic flow; after all, the speed of the geodesic flow is

√
2H1, and we know the

length of each geodesic, a great circle on S3, to be 2π . (See Section 4.)
Examples are pictured in Figure 3, where ξ1 and ξ2 have the same and opposite

signs.

1This is the book mentioned in [Feynman 1985] as giving him valuable tricks for integration.
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Figure 3. Case 3 when ξ1 and ξ2 have the same sign (left) and
opposite signs (right).

(4) It remains to check the exceptional cases when {ξ1 = 0 and ξ2 6= 0} and when
{ξ1 6= 0 and ξ2 = 0}. For example, when ξ1 = 0 the potential function is

U = 1
2 tan2θ0 ξ

2
2 , 0< θ0 <

π
2 .

The force induced by this potential causes the point to exit the Hopf cube through
the θ0 = 0 plane; rather we interpret it as bouncing off the plane, returning to the
Hopf cube but with θ1 shifted by π . (See Section 2.) With reasoning as in the
previous case, we find that again period(θ0)= π/

√
2H1. The case when ξ1 6= 0 and

ξ2 = 0 follows by renaming the variables θ0↔
π
2 − θ0 and ξ1↔ ξ2. In Figure 4 we
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Figure 4. Case 4 with 0< ξ1� ξ2 (left) and 0< ξ2� ξ1 (right).
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have the cases when 0< ξ1� ξ2 and 0< ξ2� ξ1, which illustrate how exiting the
Hopf cube and re-entering after a π -shift appears as a limiting case.

Finally, we note that all sR geodesics are simple curves; that is, they do not self-
intersect except trivially for closed curves. In Cases 1 and 2 above it is obvious. In
Cases 3 and 4 we only need to wait until ξ0 is zero, corresponding to the θ0-particle
having zero kinetic energy in the potential well U. When (θ0, θ1, θ2) returns to that
value, clearly ξ0 is zero again, ξ1, ξ2 are the same as always, and the θ̇j and ξ̇j return
to their values; thus the curve only self-intersects in the case of a closed curve, at
the end of a period.

4. Determining which sR geodesics are closed

In this section we identify the closed sR geodesics on S3; we only need to consider
Cases 3 and 4, and we may assume that the initial value of ξ0 is zero. (See the
comment at the end of Section 3.) Hurtado and Rosales [2008] found a necessary
and sufficient condition in terms of geodesic curvature (see also [D’Angelo and
Tyson 2010]):

Theorem [Hurtado and Rosales 2008]. Let γ : R→ S3 be a complete sR geodesic
of curvature λ. Then γ is a closed curve diffeomorphic to a circle if and only if
λ/
√

1+ λ2 is a rational number. Otherwise γ is diffeomorphic to R and is dense in
some group translate of a Clifford torus.

Their proof relies on closed-form expressions of the sR geodesics. Here we give
a condition which does not rely on closed-form expressions.

From the λ-penalty Hamilton’s equations (4), we see that the sR Hamiltonian
vector field for the Hamiltonian H is the difference of the Hamiltonian vector
fields for the Hamiltonians H1 and HV =

1
2(ξ1+ ξ2)

2. Moreover, the vector fields
Lie-commute (it is easy to see that the Poisson bracket of H1 and HV is zero), so
the Hamiltonian flows for H1 and HV commute. We can thus consider the H -flow
as an H1-flow followed by an HV -flow.

The Hamiltonian for the Riemannian geodesics may be written as

H1(θ, ξ)=
1
2ξ

2
0 +

1
2(csc2θ0 ξ

2
1 + sec2θ0 ξ

2
2 ),

(the penalty Hamiltonian (3) with λ= 1), so the first of Hamilton’s equations, giving
the velocities, are then

θ̇0 = ξ0, θ̇1 = csc2θ0 ξ1, θ̇2 = sec2θ0 ξ2.

We see that the speed, measured using the Riemannian metric (1), is
√

2H1, which
is constant. Moreover, the length of the Riemannian geodesic is 2π , being a great
circle, so that the period of the closed orbit is 2π/

√
2H1 = 2× period(θ0).
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On the other hand, the Hamiltonian HV has Hamiltonian equations

θ̇1 = ξ1+ ξ2, θ̇2 = ξ1+ ξ2, ξ̇1 = ξ̇2 = 0.

Thus the speed (with respect to the Euclidean metric on the Hopf cube) is
√

2|ξ1+ξ2|.
The length of the orbit (a circle fiber of the Hopf fibration) is

√
2 ·2π , so the period

of the HV -flow is 2π/|ξ1+ ξ2|. (It might seem strange that we find the speed and
length with respect to the Euclidean metric on the Hopf cube, but the Euclidean
metric is sufficient to compute the period of the HV -flow.)

For a combination of an H1-flow and an HV -flow to result in a closed curve,
we need the H1-flow to return θ0 to its original value (since the HV -flow has
no ∂/∂θ0 component). Thus the time elapsed must be an integer multiple of
period(θ0) = π/

√
2H1. If the integer is odd, the H1-flow takes the point to its

antipodal point, and we would need a half-period of the HV -flow to return to the
starting point. If the integer is even, the H1-flow takes the point back to itself, and
we could only allow full periods of the HV -flow. To summarize, a necessary and
sufficient condition for a closed sR geodesic is

time elapsed= p×
π

|ξ1+ ξ2|
= q ×

π
√

2H1
,

where p, q ∈ {1, 2, 3, . . .} are either both odd or both even. In particular,

p
q
=
|ξ1+ ξ2|
√

2H1
=

√
1−

H
H1
∈Q∩ (0, 1), (6)

The quantity p/q is conserved along the flow and is positively homogeneous of
degree zero in the ξ -variables. The condition (6) is also sufficient to have a closed
sR geodesic. If it holds, then we have

H - period= p×
π

|ξ1+ ξ2|
= q ×

π
√

2H1

for the least such integers 0< p < q that are either both odd or both even.
When plotting sR geodesics in Cases 3 and 4, we can fix any r ∈Q∩ (0, 1) and

rewrite the closure condition (6) as

ξ 2
0 =

(ξ1+ ξ2)
2

r2 − csc2θ0 ξ
2
1 − sec2θ0 ξ

2
2 .

We can always find initial conditions satisfying this. Indeed, in Case 3 we can
take any nonzero ξ1 and ξ2 and then take θ0 to maximize the right-hand side:
tan2θ0 = |ξ1/ξ2|. If ξ1 and ξ2 have the same sign, the right-hand side is always
positive. If ξ1 and ξ2 have opposite signs, we need∣∣∣∣ξ1+ ξ2

ξ1− ξ2

∣∣∣∣> r,
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Figure 5. An example with r = 1
5 .

which is only valid for certain ξ1 and ξ2. Case 4 is similar. Then we can solve
for ξ0, use those numbers as the initial conditions in Hamilton’s equations, and then
plot the closed sR geodesic. Taking, for example, r = 1

5 , ξ1 = 0.6, and ξ2 = 0.7 we
get the sR geodesic in Figure 5.

5. The sR length spectrum

To calculate the lengths of the closed sR geodesics we again only need to consider
Cases 3 and 4 (the cases where θ0 oscillates). We found in the previous section
that an sR geodesic is closed when the period of the H1-flow and the period of the
HV -flow are commensurable. Then we have

period of H -flow= p×
π

|ξ1+ ξ2|
= q ×

π
√

2H1
(7)

for the least such integers 0< p < q where p, q are either both odd or both even.
Since we know the speed of the sR geodesic is a constant

√
2H , we have that the

length is

length= period×speed=
πq
√

2H1
×
√

2H = πq

√
H
H1
= π

√
q2
− p2 (8)

for the least integers 0 < p < q satisfying (7) where p, q are either both odd or
both even.

We have another formulation of length that explains the repeating patterns seen
in the figures. We know that the distance traveled in one θ0-period is

period(θ0)× speed= π

√
H
H1
.
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Figure 6. A Riemannian geodesic in Hopf coordinates.

Thus the length of a closed sR geodesic is

length= π × (number of θ0-oscillations)×

√
H
H1
.

Comparing with (8), we find that

number of θ0-oscillations= q.

Moreover, we see from Hamilton’s equations that the curve segments traced out
by θ0-oscillations are congruent to each other. A similar argument shows that Rie-
mannian geodesics in Hopf coordinates consist of two θ0-oscillations, as illustrated
in Figure 6.

To summarize, we have found that if an sR geodesic is closed then the initial
conditions must satisfy √

1−
H
H1
=
|ξ1+ ξ2|
√

2H1
∈Q∩ (0, 1)

and that the length of the closed sR geodesic is

length= π
√

q2− p2

for the least integers 0 < p < q satisfying (7) where p, q are either both odd or
both even.

In fact, every such number is attained as a length; we simply follow the procedure:

(i) Choose any p/q ∈Q∩ (0, 1), with gcd(p, q)= 1.

(ii) As seen at the end of Section 4, we can choose initial conditions so that

p
q
=

√
1−

H
H1
=
|ξ1+ ξ2|
√

2H1
.
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Thus
p×

π

|ξ1+ ξ2|
= q ×

π
√

2H1
.

(iii) If p and q are both odd, then the sR geodesic with those initial conditions has
length π

√
q2− p2. If one of {p, q} is odd and the other is even, the sR geodesic

with those initial conditions has length 2π
√

q2− p2.

Thus the length spectrum consists of 2π and the numbers

π
√

q2− p2,

where 0< p < q are odd integers with gcd(p, q)= 1, and

2π
√

q2− p2,

where 0< p < q are integers, one odd and the other even, with gcd(p, q)= 1.
We now give an alternative characterization of these numbers. It is simpler to

work with squares of lengths divided by π2. Then we wish to characterize the set S
of numbers consisting of 4 and

ε(q2
− p2),

where 0< p < q are integers with gcd(p, q)= 1 and

ε =

{
1 if p and q are both odd,
4 if one of p, q is odd and the other is even.

In the ε = 1 case we take the examples p= 2k−1 and q = 2k+1, k ∈N, to get

q2
− p2

= 4(2k), k ∈ N.

In the ε = 4 case, we take the examples p = k and q = k+ 1, k ∈ N, to get

4(q2
− p2)= 4(2k+ 1), k ∈ N.

This shows that 4N⊂ S. Now suppose that n ∈ S and 4 - n. Then clearly n can only
be in the ε = 1 case, so there would be odd integers 0< p < q with gcd(p, q)= 1
such that n = q2

− p2. This is easily seen to be impossible. Thus in fact 4N= S.
We note that if n ∈ S and 8 | n, then n cannot be in the ε = 4 case, and that if

n ∈ S and n = 4(2k+ 1), k ∈ N, then n cannot be in the ε = 1 case. Both of these
statements easily follow from parity arguments.

Converting back to the language of lengths, we find that the set of lengths of the
closed sR geodesics is

{2π
√

n : n ∈ N}.

By the previous paragraph, odd n correspond to “full periods” of the HV -flow and
geodesic flow (the ε = 4 case), and even n correspond to “half periods” of both the
HV -flow and geodesic flow (the ε = 1 case).
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6. The spectrum of the sub-Laplacian

The sub-Laplacian −1sR has a compact resolvent, and hence has a pure discrete
spectrum 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , with λn → +∞ as n → +∞, and a
complete orthonormal set of eigenfunctions. (See, for example, the recent paper
[Colin de Verdière et al. 2016].) In fact, in the case of S3, the eigenfunctions of
the sub-Laplacian are the same as the eigenfunctions of the Laplacian. We recall
that 1λ = E2

1 + E2
2 + λ

−2V 2 is the λ-penalty Laplacian, with λ = 1 giving the
Riemannian Laplacian on the sphere 1S3 , and λ=∞ giving the sub-Laplacian on
the sphere. In Hopf coordinates we have

1sR = E2
1 + E2

2 =
1

sin(2θ0)

∂

∂θ0
◦ sin(2θ0)

∂

∂θ0
+

(
cot θ0

∂

∂θ1
− tan θ0

∂

∂θ2

)2
.

It is easy to see that V = ∂/∂θ1+∂/∂θ2 commutes with 1sR; hence 1sR commutes
with 1S3 . Thus 1sR and 1S3 have a common complete orthonormal set of eigen-
functions [Dirac 1947; von Neumann 1955]; the eigenfunctions of 1sR are simply
the spherical harmonics.

Particularly noteworthy is (x1 + iy1)
k
= sinkθ0 eikθ1 . It is a “Gaussian beam”:

a family of eigenfunctions of both 1S3 and 1sR that concentrates along a great
circle. Zelditch [2016, pp. 185–186] singles out this example in the Riemannian
setting. It would be interesting to see if it is possible to construct, localized to each
sR geodesic, a quasimode or Gaussian beam in the spirit of [Ralston 1976; 1977].

Taylor [1986] used the Peter–Weyl theorem to find the eigenvalues of 1sR;
Domokos [2015] generalized, using subelliptic Peter–Weyl and Plancherel theorems
on compact, connected, semisimple Lie groups. To summarize, the eigenvalues of
−1S3 are m(m+2) for m ∈ {0, 1, 2, . . .}, and the eigenvalues of −1sR are (for the
same m; the operators have the same complete orthonormal set of eigenfunctions)

4mj − 4 j2
+ 2m, j ∈ {0, 1, 2, . . . ,m}.

For reference, the eigenvalues of the λ-penalty Laplacian

−1λ =−1sR− λ
−2V 2

are

(1− λ−2)4 j (m− j)+m(2+ λ−2m),

for m ∈ {0, 1, 2, . . .} and j ∈ {0, 1, 2, . . . ,m}.
At this point we will not conjecture a general formula relating the sR length spec-

trum of a bracket-generating compact sR manifold (which for S3 is {2π
√

n : n ∈N})
to the set of eigenvalues of the sub-Laplacian counted with or without multiplicities
(which for S3 is {2m : m = 0, 1, 2, . . .}).
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