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The map x 7→ x x modulo p is related to a variation of the ElGamal digital
signature scheme in a similar way as the discrete exponentiation map, but it has
received much less study. We explore the number of fixed points of this map by a
statistical analysis of experimental data. In particular, the number of fixed points
can in many cases be modeled by a binomial distribution. We discuss the many
cases where this has been successful, and also the cases where a good model may
not yet have been found.

1. Introduction and motivation

The security of the ElGamal digital signature scheme against selective forgery relies
on the difficulty of solving the congruence gH(m)

≡ yrr s (mod p) for r and s, given
m, g, y, and p but not knowing the discrete logarithm of y modulo p to the base g.
(We assume for the moment the security of the hash function H(m).) Similarly, the
security of a certain variation of this scheme given in, e.g., [Menezes et al. 1997,
Note 11.71] relies on the difficulty of solving

gH(m)
≡ ysr r (mod p). (1)

It is generally expected that the best way to solve either of these congruences is to
calculate the discrete logarithm of y, but this is not known to be true. In particular,
another possible option would be to choose s arbitrarily and solve the relevant
equation for r . In the case of (1), this boils down to solving equations of the form
x x
≡ c (mod p). We will refer to these equations as “self-power equations”, and

we will call the map x 7→ x x modulo p the “self-power map”. This map has been
studied in various forms in [Anghel 2013; 2016; Balog et al. 2011; Cilleruelo and
Garaev 2016a; 2016b; Crocker 1966; 1969; Somer 1981; Holden 2002a; 2002b;
Holden and Moree 2006; Friedrichsen et al. 2010; Holden and Robinson 2012;

MSC2010: primary 11Y99; secondary 11-04, 11T71, 94A60, 11A07, 11D99.
Keywords: self-power map, exponential equation, ElGamal digital signatures, fixed point, random

map, number theory.

63

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-1
http://dx.doi.org/10.2140/involve.2019.12.63


64 MATTHEW FRIEDRICHSEN AND JOSHUA HOLDEN

Kurlberg et al. 2015]. In this work we will investigate experimentally the number
of fixed points of the map, i.e., solutions to

x x
≡ x (mod p) (2)

between 1 and p− 1. In particular, we would like to know whether the distribution
across various primes behaves as we would expect if the self-power map were
a “random map”. We do this by creating a model in which values of a map are
assumed to occur uniformly randomly except as forced by the structure of the
self-power map. We can then predict the distribution of the number of fixed points
of this random map and compare it statistically to the actual self-power map. If
there is “nonrandom” structure in the self-power map, it may be possible to exploit
that structure to break the signature scheme mentioned above or others like it.

In this paper, we will give a general heuristic (based on Heuristic 1 below) for
the number of fixed points of the self-power map and show that for most cases it
appears to accurately predict the behavior of the map. The outlying cases mostly
appear to involve elements with order d that are relatively small or large compared
to p. We will first show that the number of fixed points for elements with orders
1, 2, p− 1, and (p− 1)/2 can be predicted exactly. For other small orders which
largely don’t follow the general heuristic, we specifically look at the orders 3, 4,
and 6 and give a separate model for them. For large orders, we make predictions
for the orders (p− 1)/3 and (p− 1)/4.

Some theoretical work has also been done on bounding the possible number of
fixed points of the self-power map. If we denote the number of solutions to (2)
which fall between 1 and p− 1 by F(p), then we have:

Theorem 1.1 [Cilleruelo and Garaev 2016b, Corollary 2]. For some absolute con-
stant c > 0,

F(p)≤ p1/3−c+o(1)

as p→∞.

Remark 1. The corollary in [Cilleruelo and Garaev 2016b] is more general and
puts a bound on the number of solutions for x f (x)

≡ 1 (mod p) for any nonconstant
polynomial in Z[x] without multiple roots in C.

Remark 2. In the related case of solutions to x x
≡ 1 (mod p), [Cilleruelo and

Garaev 2016a] shows that the exponent can be taken to be 27
82 + o(1) and that is

likely also the case here.

As far as a lower bound, every p has at least x = 1 as a solution to (2), and at
least some primes have only this solution. However, while [Kurlberg et al. 2015;
Felix and Kurlberg 2017] give good reason to believe that there are infinitely many
such primes, they also prove that these primes are fairly rare:
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Theorem 1.2 [Felix and Kurlberg 2017, Corollary 1.2]. Let π(N ) be the number
of primes less than or equal to N as usual. Let A(N ) denote the set of primes less
than or equal to N such that F(p)= 1. Then

#A(N )≤
π(N )

(ln ln ln N )1−1/e+o(1)

as N →∞.

2. Models and experimental results

Heuristics and normality. Theorem 1.1 gives us a range in which the number of
fixed points F(p) can lie, but does not say anything about the distribution of the
values within that range. As described above, our goal is to create a random model
for the self-power map much like was done for the discrete exponential map in
[Holden 2002a; 2002b; Holden and Moree 2006]. Our first attempt assumed that
F(p) was normally distributed around the predicted value

∑
d | (p−1) φ(d)/d . (The

normality assumption had been successfully used for the discrete exponential map in,
e.g., [Cloutier and Holden 2010]; see also [Holden and Lindle 2008]. Furthermore,
it appeared to be justified by the central limit theorem, given the number of primes
we were intending to test.)

In order to calculate the variance of F(p), we use the following heuristic, which
is related to those in [Holden and Moree 2006, Section 6], and can also be derived
from the assumptions in [Kurlberg et al. 2015, Section 4.1].

Heuristic 1. The map x 7→ x x mod p is a random map in the sense that for all p,
if x, y are chosen uniformly at random from {1, . . . , p− 1} with ordpx = d , then

Pr[x x
≡ y (mod p)] ≈

{
1/d if ordp y | d,
0 otherwise.

As some justification, one can use the methods of [Holden and Robinson 2012,
Corollary 6.2] to prove the following lemma. This shows that the heuristic holds
exactly over the range 1≤ x ≤ (p− 1)p rather than 1≤ x ≤ p− 1:

Lemma 2.1. For all p, given fixed d | (p−1) and fixed y ∈ {1, . . . , (p−1)p}, p - y,
such that ordp y | d , we have

#
{

x ∈ {1, . . . , (p− 1)p} : p -x, x x
≡ y (mod p), ordpx = d

}
= (p− 1)

φ(d)
d
.

Similar methods are used in [Holden et al. 2016] to prove the following theorem:

Theorem 2.2 [Holden et al. 2016, Corollary 4]. Let G(p) be the number of solutions
to (2) with 1≤ x ≤ (p− 1)p and p -x. Then

G(p)= (p− 1)
∑

n | (p−1)

φ(n)
n
.
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For more on the self-power map over the range 1≤ x ≤ (p− 1)p, see [Somer
1981, Theorem 1; Holden and Robinson 2012, Sections 6 and 7; Holden et al. 2016].

As far as using Heuristic 1, note that it implies that the “experiment” of testing
whether x is a fixed point behaves as a Bernoulli trial. Let Fd(p) be the number of
solutions to (2) with 1≤ x ≤ p− 1 and ordpx = d . Assuming independence of the
Bernoulli trials (which is not completely accurate, as we shall see), Fd(p) is dis-
tributed as a binomial random variable with φ(d) trials and success probability 1/d .
(We denote by φ(d) the Euler φ function and it occurs here because it gives the
number of elements with order d when d | (p− 1).)

This distribution has mean φ(d)/d, as expected, and variance φ(d)(d − 1)/d2.
Summing over d | (p− 1) gives the predicted mean and variance of F(p).

We tested the hypothesis that F(p) was normal with this mean and variance by
collecting data for 16,405 primes from 100,003 to 299,993 and 10,314 primes from
1,000,003 to 1,142,971. The number of fixed points for each prime was determined
using C code originally written by Cloutier [Cloutier and Holden 2010] and modified
by Lindle [2008], Hoffman [2009], and Friedrichsen, Larson, and McDowell in
[Friedrichsen et al. 2010]. Postprocessing was done using a Python script written
by the first author. This data set combined a preliminary set of data from code
run on servers maintained by the Rose-Hulman Computer Science & Software
Engineering and Mathematics Departments and data from code run on the Tufts High
Performance Computing Cluster. The code took a few hours of computational time,
with about a day postprocessing work to fully put together the data sets. The postpro-
cessing was the limiting factor in the number of primes we could feasibly work with.

Once the values of F(p) were collected, they were normalized to a z-statistic by
subtracting the predicted mean and dividing by the predicted standard deviation
(square root of the variance). The z-statistics were grouped separately for the
six-digit and seven-digit primes and tested to see if they conformed to the expected
standard normal distribution. As you can see in Figures 1 and 2, the distributions
appear to be roughly normal to the naked eye, and the standard deviations are close
to 1 as expected. The means are a little higher than the expected 0, and there are
a few bars which seem significantly off, but these features could be attributed to
certain known properties which appear below in Theorem 2.3.

More troubling is the lack of normality revealed by probability plots in Figures 3
and 4. Perfectly normal distributions would lie along the diagonal lines in these
figures, and Ryan–Joiner tests confirm that it is very unlikely that F(p) is obeying
a normal distribution for these primes. In fact there appear to be more primes in
the “tails” than expected, that is, a larger than expected number of primes with
significantly more or fewer fixed points than expected. Felix and Kurlberg [2017,
Section 1.2] studied the same phenomena with two data sets comprised of seven-
digit and ten-digit primes, respectively. They also broke up each data set into
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Figure 1. Histogram of z-statistics for six-digit primes.
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Figure 2. Histogram of z-statistics for seven-digit primes.

different subgroups based on the number of unique prime divisors of p− 1. Their
analysis matches ours, including a deviation from the binomial model at the tails.

Binomial distribution and goodness of fit. Some modification of the code by the
first author allowed us to collect the values of Fd(p) for the same primes as above,
in order to see if particular orders were behaving less “randomly” than others. We
excluded certain orders where Fd(p) is known to behave predictably:

Theorem 2.3. (1) F1(p)= 1 for all p.

(2) F2(p)= 0 for all p.

(3) Fp−1(p)= 0 for all p.

(4) F(p−1)/2(p)=


0 if p ≡ 3 or 5 (mod 8),

or if p ≡ 1 or 7 (mod 8) and ordp2 6= (p− 1)/2;
1 if p ≡ 1 or 7 (mod 8) and ordp2= (p− 1)/2.
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Figure 3. Probability plot of z-statistics for six-digit primes.
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Figure 4. Probability plot of z-statistics for seven-digit primes.

To prove this we use the following lemmas:

Lemma 2.4 [Friedrichsen et al. 2010, Proposition 7]. Let p be prime. The number
x is a solution to (2) if and only if x ≡ 1 (mod ordpx).

Corollary 2.5. Let d | (p − 1). The solutions to (2) of order d are exactly the
elements of P = {1, d + 1, 2d + 1, . . . , p− d} which have order d.

Proof of Theorem 2.3. Parts (1) and (2) are clear from the definition. Part (3)
is Proposition 6 of [Friedrichsen et al. 2010]. If x is a fixed point such that
ordpx = (p− 1)/2, then Corollary 2.5 implies x = (p+ 1)/2. Then Proposition 2
of [Friedrichsen et al. 2010] tells us x is a fixed point if and only if 2 is a quadratic
residue modulo p, which is if and only if p ≡ 1 or 7 (mod 8). Combining this with
the fact that ordp(p+ 1)/2= ordp2 gives part (4). �

Remark 3. Note that the behavior of fixed points in safe primes, that is, primes
where (p−1)/2 is also prime, is completely explained by Theorem 2.3. Safe primes
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are important for discrete logarithm-based algorithms because the group (Z/pZ)×

will have a subgroup with large prime order. Specifically, it will have a subgroup
with order (p− 1)/2.

We collected values of Fd(p) for each prime and each value of d | (p− 1) other
than d = 1, 2, p− 1, and (p− 1)/2. We then attempted to normalize this data, but
the resulting z-statistics turned out to be too highly clustered and did not resemble
normal data. We therefore decided to do a chi-squared goodness-of-fit test on the
data. We used the formula for the mass function of a binomial distribution to predict:

Prediction 1. Pr[Fd(p)= k] =
(
φ(d)

k

)(1
d

)k(d−1
d

)φ(d)−k
.

We chose to use the categories k = 0, k = 1, k = 2, and k > 2 for our test in
order to make sure the categories with large k did not get too small. We summed
the predictions over p and d for each of the categories and compared them with the
observed numbers of p and d which fell into each category. An initial test using
only the primes between 100,003 and 102,677 gave a chi-squared statistic of 4.66
and a statistical p-value of 0.198.1 Using the common cutoff of 0.05 for statistical
significance of p-values, we do not see statistical evidence that our predictions are
incorrect. However, using the full set of primes between 100,003 and 299,993 gave
a much larger chi-squared statistic of 491.14 and a p-value of less than 10−100.

We hypothesized that not all values of p and d fit the predictions equally well. We
tested this by sorting in various ways the values of Fd(p) collected for p between
100,003 and 102,667, and d | (p− 1) other than d = 1, 2, p− 1, and (p− 1)/2.
After each sort, we calculated the chi-squared statistics and p-values for a sliding
window of 100 values, with predictions and observations calculated as above. (The
size of the window was chosen in order to make sure there were enough data points
in the window for the chi-squared test to be valid.)

The strongest evidence of a pattern was seen when the data was sorted by value
of d . This was confirmed for the full range of primes between 100,003 and 299,993,
as can be seen in Figure 5. For data randomly generated according to the relevant
binomial distributions, p-values should be evenly distributed between 0 and 1.
When p-values are biased towards 0 it indicates statistically significant divergence
from the predicted distributions. In other words, dots on the same (approximate)
horizontal line should be evenly distributed between the left- and right-hand sides
of the graph. (Note that the value of d used to place the dot on the plot is the largest
value of d in the window of 100 pairs, so some dots would more accurately “belong”
to more than one line.) Horizontal lines where the dots are clustered towards the
left-hand side indicate statistically significant divergence.

1We will use the term “p-value” in this paper when referring to the statistical concept in order to
distinguish it from use of p to indicate a prime.
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Figure 5. Logarithmic plot showing p-values of the sliding-window
goodness-of-fit test, data sorted by order, for six-digit primes.

As you can see, the strongest divergence from the predictions occurs with partic-
ularly small and particularly large values of d . (Since the value of d used to place
the dot on the plot is the largest value in the window, the effect for small d is even
larger than it appears in the plot.) We therefore looked for theoretical explanations
of these effects. We observed two significant properties that affected whether or
not a given order d followed the formula in Prediction 1. The first is the size of
φ(d) and the second is the size of the set P = {1, d + 1, 2d + 1, . . . , p− d}. On
the smaller end of the spectrum, the size of φ(d) is the most influential. On the
larger end, the size of the set P is the most influential. In the next section, we will
discuss specific examples of both small and large orders.

3. Small and large orders

Small orders. For d = 3 we observed that while F3(p)= 2 should occur roughly
one-ninth of the time according to Prediction 1, it never occurred at all in our
data. A similar but less striking effect was observed for d = 4, while for d = 6 it
was F6(p) = 1 which was never observed, despite Prediction 1 saying it should
happen over one-quarter of the time. It turns out that there is a significant lack of
independence in the fixed points for these orders, as we were able to show.

Theorem 3.1. (1) F3(p)= 0 or F3(p)= 1 for all p such that 3 | (p− 1).

(2) F4(p)= 0 or F4(p)= 1 for all p such that 4 | (p− 1).

(3) F6(p)= 0 or F6(p)= 2 for all p such that 6 | (p− 1).
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Proof. If 3 | (p− 1), then by Lemma 2.4 the fixed points of order 3 are exactly the
elements congruent to 1 modulo 3. In this case there are two elements of order 3, and
a direct computation shows that if x is one of them, then p−1−x is the other. Thus
the elements of order 3 add up to p−1≡ 0 (mod 3). So at most one of the elements
of order 3 can be a fixed point, proving part (1). Part (2) is similar except that the
elements of order 4 add up to p≡ 1 (mod 4). In part (3) the elements of order 6 add
up to p+ 1≡ 2 (mod 6) so if one is a fixed point then the other must be also. �

The following lemma says that the elements of a given order f are approximately
uniformly distributed across the residue classes modulo any given r .

Lemma 3.2. Let a, r , and f be positive integers such that 0≤ a < r ≤ p− 1 and
f | (p− 1). Let

Q=
{

a, r + a, 2r + a, . . . ,
⌊

p− 1− a
r

⌋
r + a

}
.

Let Q′ = {x ∈Q : ordp(x)= f }. Then∣∣∣∣#Q′− φ( f )
r

∣∣∣∣≤ 1+ τ( f )
√

p(1+ ln p),

where τ( f ) is the number of divisors of f .

Proof. The proof is the same as the proof of equation (7) from [Cobeli and Zaharescu
1999] with the order equal to f instead of p− 1. �

In particular, we would expect the elements of order d to be equally likely to be
of any residue class modulo d. Since Theorem 3.1 shows that the fixed points of
orders d = 3 and d = 4 are entirely determined by their residue classes modulo d,
this leads us to predict:

Prediction 2. (1) Pr[F3(p)= 0] = 1
3 and Pr[F3(p)= 1] = 2

3 .

(2) Pr[F4(p)= 0] = 1
2 and Pr[F4(p)= 1] = 1

2 .

(3) Pr[F6(p)= 0] = 5
6 and Pr[F6(p)= 2] = 1

6 .

This is in fact what we observe in the data, as shown in Figure 6. This figure
shows the number of primes such that d | (p−1) for d = 3, 4, and 6, the number of
primes for each d with Fd(p)= 0, 1, and 2, and the p-value given by a chi-squared
test against the distribution predicted above. We do not see statistical evidence that
our predictions are incorrect.

Remark 4. Not all small orders seem to exhibit this lack of independence in a
statistically significant way. For example, d = 5 fits the distribution of the original
model with p = 0.90 and d = 7 fits with p = 0.48. However, d = 8, d = 12,
and d = 18 do not appear to fit the original model. For d = 8 and d = 12 the
four elements of order d come in pairs which each have a dependence similar to
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Figure 6. Predicted (P) and observed (O) numbers of primes for
fixed points of orders 3, 4, and 6 in six-digit primes.

that for order 4, but we have not worked out the exact model. Other values of d
which are multiples of 4 also have dependent pairs but the effect is apparently not
large enough to be detected in our data. For d = 9 and d = 18 the six elements of
order d come in two sets of three which each add up to 0 modulo p, producing a
dependence pattern related to the ones for orders 3 and 6. We have not worked out
the exact model, and it is not clear why the results are statistically significant for
d = 18 but not d = 9. It may be due to chance.

Large orders. We also observed significant deviation from our predictions in the
case of large orders. Recall that part (4) of Theorem 2.3 used Proposition 2
of [Friedrichsen et al. 2010] to prove that there was at most one fixed point of
order (p−1)/2. In fact, that proposition also showed that the fixed point exists if and
only if 2 is a quadratic residue modulo p. Similarly, if 3 | (p−1) then Corollary 2.5
shows that there are at most two fixed points of order (p− 1)/3, namely (p+ 2)/3
and (2p+1)/3. Using methods similar to the above we can show that these residue
classes will be fixed points when they are cubic residues modulo p.

Proposition 3.3. Let p be a prime number equivalent to 1 modulo 3. The residue
class (p+ 2)/3 is a fixed point if and only if it is a cubic residue modulo p, and
similarly for (2p+ 1)/3.

Proof. Note that since 1≤ x ≤ p− 1, (2) is equivalent to

x x−1
≡ 1 (mod p). (3)

Then (p+ 2)/3 is a fixed point if and only(
p+ 2

3

)(p−1)/3

≡ 1 (mod p),

which by Euler’s criterion is equivalent to (p+ 2)/3 being a cubic residue.
Similarly, if (2p+ 1)/3 is a fixed point then(

2p+ 1
3

)(2p−2)/3

≡ 1 (mod p).
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But then (
2p+ 1

3

)(p−1)/3

≡

(
2p+ 1

3

)(4p−4)/3

≡ 1 (mod p)

also, where the first equivalence is just Fermat’s little theorem. So Euler’s criterion
is satisfied again. Conversely, if(

2p+ 1
3

)(p−1)/3

≡ 1 (mod p)

then certainly (
2p+ 1

3

)(2p−2)/3

≡ 1 (mod p)

so (2p+ 1)/3 is a fixed point. �

More simplifications show that (2p + 1)/3 ≡ 3−1 (mod p) and (p + 2)/3 ≡
2(3−1) (mod p) so (2p+1)/3 will be a cubic residue whenever 3 is a cubic residue,
and both (p+ 2)/3 and (2p+ 1)/3 will be cubic residues when both 2 and 3 are
cubic residues. These same methods can be used to show that all numbers of the
form (m(p− 1)/k)+1 where 1≤m < k will be fixed points in the self-power map
when the number is a k-th residue.

This is not quite enough to investigate F(p−1)/3(p) since not all cubic residues
have order equal to (p−1)/3. We thus estimate the probability that a given element
of {(p+2)/3, (2p+1)/3} has order equal to exactly (p−1)/3. Lemma 3.2 suggests
that elements of order d occur in P in approximately the same proportion that they
occur in the whole range 1 ≤ x ≤ p− 1, namely φ(d)/(p− 1). (A more precise
statement on the frequency of p such that kd + 1 has order d would appear to
require some variation on Artin’s primitive root conjecture.)

We again use a binomial distribution to predict:

Prediction 3. (1) Pr[F(p−1)/3(p)= 0] =
(

1−
φ((p− 1)/3)

p− 1

)2

.

(2) Pr[F(p−1)/3(p)= 1] = 2
(
φ((p− 1)/3)

p− 1

)(
1−

φ((p− 1)/3)
p− 1

)
.

(3) Pr[F(p−1)/3(p)= 2] =
(
φ((p− 1)/3)

p− 1

)2

.

If 4 | (p− 1), Corollary 2.5 shows that there are at most three fixed points of
order (p− 1)/4, namely (p+ 3)/4, (p+ 1)/2, and (3p+ 1)/4. However, it turns
out that they cannot all be fixed points at the same time.

Theorem 3.4. Let p be a prime number equivalent to 1 modulo 4:

(1) If p ≡ 1 (mod 8) and p ≡ 1 (mod 3), then F(p−1)/4(p)≤ 2.
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(2) If p ≡ 1 (mod 8) and p ≡ 2 (mod 3), then F(p−1)/4(p)≤ 1.

(3) If p ≡ 5 (mod 8) and p ≡ 1 (mod 3), then F(p−1)/4(p)≤ 1.

(4) If p ≡ 5 (mod 8) and p ≡ 2 (mod 3), then F(p−1)/4(p)= 0.

Proof. Suppose p ≡ 1 (mod 8). Since (p+ 1)/2≡ 2−1 (mod p) and (3p+ 1)/4≡
4−1 (mod p), these two can only be both fixed points of order (p−1)/4 if ordp2=
ordp4= (p−1)/4. But we know 8 | (p−1), so if ordp2= (p−1)/4 then ordp4=
(p− 1)/8. On the other hand, if p ≡ 5 (mod 8), then we know ordp2 -(p− 1)/2
so neither ordp2 nor ordp4 can be (p − 1)/4. Now, suppose p ≡ 2 (mod 3).
Then (p + 3)/4 can only be a fixed point if it is a quartic residue. We know
(p+ 3)/4= 3(4−1) and 4−1 is a quadratic residue, but 3 is not a quadratic residue.
So, (p+ 3)/4 cannot be quartic since it is not quadratic. �

To make predictions on the probabilities of each number of fixed points, we
again use a binomial distribution. If p ≡ 1 (mod 8), we keep in mind that the
orders of (p+ 1)/2 and (3p+ 1)/4 are dependent so we can treat them together.
If p ≡ 1 (mod 3) also, we know that (p+ 3)/4 might be a fixed point, which is
independent of the behavior of (p+ 1)/2 and (3p+ 1)/4:

Prediction 4. Assume p ≡ 1 (mod 8) and p ≡ 1 (mod 3); i.e., p ≡ 1 (mod 24):

(1) Pr[F(p−1)/4(p)= 0] =
(

1−
2φ((p− 1)/4)

p− 1

)(
1−

3φ((p− 1)/4)
(p− 1)/2

)
.

(2) Pr[F(p−1)/4(p)= 1] =(
2φ((p−1)/4)

p−1

)(
1−

3φ((p−1)/4)
(p−1)/2

)
+

(
1−

2φ((p−1)/4)
p−1

)(
3φ((p−1)/4)
(p−1)/2

)
.

(3) Pr[F(p−1)/4(p)= 2] =
(

2φ((p− 1)/4)
p− 1

)(
3φ((p− 1)/4)
(p− 1)/2

)
.

Assume p ≡ 1 (mod 8) and p ≡ 2 (mod 3); i.e., p ≡ 17 (mod 24):

(1) Pr[F(p−1)/4(p)= 0] =
(

1−
3φ((p− 1)/4)
(p− 1)/2

)
.

(2) Pr[F(p−1)/4(p)= 1] =
(

3φ((p− 1)/4)
(p− 1)/2

)
.

If p ≡ 5 (mod 8), then we simply have:

Prediction 5. Assume p ≡ 5 (mod 8) and p ≡ 1 (mod 3); i.e, p ≡ 13 (mod 24):

(1) Pr[F(p−1)/4(p)= 0] =
(

1−
2φ((p− 1)/4)

p− 1

)
.

(2) Pr[F(p−1)/4(p)= 1] =
(

2φ((p− 1)/4)
p− 1

)
.
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Figure 7. Predicted (P) and observed (O) numbers of primes for
fixed points of order (p− 1)/3 in six-digit primes.
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Figure 8. Predicted (P) and observed (O) numbers of primes for
fixed points of order (p− 1)/4 in six-digit primes.

Assume p ≡ 5 (mod 8) and p ≡ 2 (mod 3); i.e., p ≡ 5 (mod 24):

(1) Pr[F(p−1)/4(p)= 0] = 1.

Chi-squared tests on the observed data from six-digit primes against the distribu-
tions predicted for orders (p−1)/3 and (p−1)/4 do not show significant deviation,
as shown in Figures 7 and 8.

4. Conclusion and future work

In practice, it would certainly be possible for a user of the variant ElGamal digital
signature scheme to simply make sure p is a safe prime, or alternatively arrange
for r to always be a primitive root. In this way one could avoid the issue of fixed
points altogether. However, we feel that it is very likely that a better understanding
of the self-power map will help us better understand the security of this and other
similar schemes.

We have given some bounds on the number of fixed points of the self-power map
and attempted to predict the distribution of the fixed points using a binomial model
whose mean is related to these proven bounds. When the order of x is moderate, this
binomial model is a good predictor according to the data we collected. When the
order of x is small, in particular when it is 3, 4, or 6, the independence assumption
of the binomial model is violated in a significant way. However, we were able to
find another model which appears to successfully predict the distribution.
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Figure 9. Logarithmic plot showing p-values of the sliding-window
goodness-of-fit test, data sorted by co-order, for six-digit primes.

When the order of x is (p− 1)/3 or (p− 1)/4, we once again have a significant
deviation from our first binomial model. However, a closer look at the set of
possible fixed points in each case leads to another binomial model which appears
to be successful. Some orders in the range (p − 1)/5 to (p − 1)/9 also appear
to be showing significant deviation from the original model, as can be seen more
clearly in Figure 9. In addition, the sliding-window chi-squared test shows evidence
of likely divergence from the predictions in the neighborhood of (p− 1)/16 and
possibly other orders between (p−1)/20 and (p−1)/50. It is not clear yet whether
all of these are true problems with the model, or just “random” consequences of
the particular primes that we picked. Further investigation of these orders would
appear to be the first item to be considered in future work.

Another very important item of future work would be to consider two-cycles,
namely solutions to the equations

hh
≡ a (mod p) and aa

≡ h (mod p), (4)

or more generally k-cycles. Some data has been collected for these larger cy-
cles but the binomial distribution has not yet been calculated or checked. The
paper [Friedrichsen et al. 2010] also examined other graph-theoretic statistics of
the functional graphs created by the self-power map, especially the number of
components. This was also found to obey a nonnormal distribution and one could
explore how that distribution is related to the one found here for fixed points.
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