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A one-dimensional nonlinear heat conduction equation of steady-state Joule
heating in the presence of an electric field in a metal with temperature-dependent
conductivities is considered. A technique developed by Young (1986) is adapted
and used to derive an analytical solution for the problem with a Robin boundary
condition.

1. Introduction

A thermal resistor, or thermistor, is a type of resistor with a highly temperature-
dependent electrical conductivity. Thermistors are used as temperature-control
elements in a range of equipment, such as spacecraft and air conditioning units,
and have applications in the medical field, meteorology, and the chemical industry
[Ng 1995; Macklen 1979]. The thermistor problem has been a source of significant
mathematical interest and research but, due to the nonlinear nature of the problem,
this research has been largely concerned with numerical solutions or existence
proofs for a solution [Antontsev and Chipot 1994; Fowler et al. 1992; Howison
et al. 1993; Shi et al. 1993; Sidi Ammi and Torres 2008; Xu 2004a; 2004b; Zhou
and Westbrook 1997], rather than analytical solutions. In this paper, the thermistor
problem is modeled as a nonlinear heat conduction equation of steady-state Joule
heating in the presence of an electric field in a metal with temperature-dependent
electrical and thermal conductivities. This paper extends the solution found in
[Young 1986] to a more general case by introducing a Robin boundary condition
on the temperature at an endpoint of the thermistor. This establishes the existing
solution in [Young 1986] as a special case.
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2. Formulation of the problem

Assuming that the electrical conductivity σ(T ) and the thermal conductivity κ(T )
are smooth functions, the heat conduction in an electrical conductor in the presence
of Joule heating due to current can be shown [Young 1986] to satisfy the following
two equations, one for the potential 8 and one for the temperature T :

∇
28=−

1
σ
∇σ · ∇8 in �, (1)

d2T
d82 +

(
1
κ

dκ
dT
−

1
σ

dσ
dT

)(
dT
d8

)2

=−
σ

κ
in �, (2)

with some appropriate boundary conditions. Throughout this section and Section 3
we assume that the given domain � lies in Rn. Equations (1) and (2) respectively
describe conservation of charge and the steady diffusion of heat in the presence of
Joule heating due to electric current (see [Young 1986] for more details).

3. Derivation of the solution in the general case

For the sake of convenience, we recreate the technique developed in [Young 1986]
for obtaining a solution to (1) and (2). Equation (2) can be simplified by introducing
a new variable

σ(T )
κ(T )

= e−ξ(T ). (3)

Differentiating both sides of (3), and after some manipulations, (2) can be written as

d2T
d82 +

dξ
dT

(
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)2

=−e−ξ . (4)

Next, setting
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, (5)

(4) becomes

θ
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Observing
1
2 e−2ξ d
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dθ
dT
+

dξ
dT

θ2

allows us to rewrite (6) as

1
2 e−2ξ d

dT
(e2ξθ2)=−e−ξ . (7)

Integrating (7), we get

e2ξ(T )θ2
= C − 2

∫
eξ(T ) dT , (8)
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where C is a constant of integration. Solving for θ2 in (8) and taking into account (5),
we have (

dT
d8

)2

=
C − 2

∫
eξ(T ) dT

e2ξ(T ) .

Finally, the following equation for 8 is obtained:

8=

∫
(κ(T )/σ (T )) dT√

C − 2
∫
(κ(s)/σ (s)) ds

+C ′, (9)

where the integration constant of the integral under the square root is absorbed
into C . It turns out that for many metals, the ratio of conductivities is proportional to
the absolute temperature of the metal. This relationship is known as the Wiedemann–
Franz–Lorenz (WFL) law [Berman 1976; Meaden 1965],

κ(T )
σ (T )

= αT, (10)

where α is the Lorenz number for a given metal and may have slightly different
valuesfor different metals. Once the ratio of conductivities is specified using
the WFL law, (9) can be integrated to obtain the temperature in terms of the
potential, T (8),

T (8)=
1
√
α
[C − (8−C ′)2]1/2. (11)

For (11) to be of any help, we must determine 8 that solves (1). This issue can be
dealt with by introducing an auxiliary potential 9 that satisfies Laplace’s equation
[Young 1986; Flynn 1969]. Namely, define this auxiliary potential 9 as

σ0∇9 ≡ σ [T (8)]∇8,

where σ0 is the electrical conductivity at some conveniently chosen reference
temperature. Then clearly 9 satisfies Laplace’s equation ∇29 = 0, and it is easily
seen, by isolating ∇9 and integrating, that

9 =
1
σ0

∫
σ [T (8)] d8. (12)

Knowing how σ depends on T and using (11) will enable us to perform integration
in (12). This will give us 9 in terms of 8, and therefore finding the inverse of
this function will result in an expression for 8 in terms of a function that satisfies
Laplace’s equation. In the next section, we will also solve for the constants C and
C ′ in the expression. This ends the derivation of a solution to (1) and (2) when
conductivities obey the WFL law.
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4. Solution in one dimension with Robin boundary condition

In this section we adapt the technique described in Section 3 for a one-dimensional
problem with a Robin boundary condition at one endpoint. Namely, consider
a thin rod of length L , where the potential and temperature satisfy (1) and (2),
respectively. In addition, the endpoints at z = 0 and z = L are held at potentials V0

and 0, respectively. The boundary condition for T at the right endpoint of the rod
z = L is given by a Robin boundary condition, whereas the left endpoint is held
at the constant temperature T = T0. Note that it is reasonable to consider a Robin
boundary condition for at least one end of the rod, as it models the cooling effect of
that end of the thermistor through Newton’s law of cooling [Howison 2005]. The
boundary conditions are summarized below:

T = T0, 8= V0 at z = 0, (13)

dT
dz
+β(T − T0)= 0, 8= 0 at z = L . (14)

Observe that when β approaches infinity, the boundary condition for T at z = L
reduces to T = T0 at z = L , which corresponds to that in [Young 1986]. Recall that

T (8)=
1
√
α
[C − (8−C ′)2]1/2.

Now we use the boundary conditions (13) and (14) to determine the constants C
and C ′. From (13), it is immediate that

C −C ′2 = αT 2
0 + V 2

0 − 2V0C ′. (15)

First, we find

dT
dz
+β(T − T0)

=
C ′−8
√
α

1
[C − (8−C ′)2]1/2

d8
dz
+β

(
1
√
α
[C − (8−C ′)2]1/2− T0

)
(16)

and using (14) to evaluate (16) at z = L gives us

C ′
√
α

80

[C −C ′2]1/2
+β

(
1
√
α
[C −C ′2]1/2− T0

)
= 0, (17)

where we defined 80 :=8
′(L). Note that a new parameter 80 has been introduced

into the problem. We will address this issue later. Rewriting (17) as

C ′

β

80

[C −C ′2]1/2
+ [C −C ′2]1/2 =

√
αT0 (18)
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and squaring both sides of (18), we get(
C ′80

β

)2

+
280C ′

β
(C −C ′2)+ (C −C ′2)2 = αT 2

0 (C −C ′2).

Now using (15) and grouping the result by C ′2, we obtain the following quadratic
equation for C ′:

C ′2
[(
80

β

)2

−
4V080

β
+ 4V 2

0

]
+C ′

[
280

β
(αT 2

0 + V 2
0 )− 4V 3

0 − 2αV0T 2
0

]
+αT 2

0 V 2
0 + V 4

0 = 0.

Defining

A =
(
80

β

)2

−
4V080

β
+ 4V 2

0 ,

B =
280

β
(αT 2

0 + V 2
0 )− 4V 3

0 − 2αV0T 2
0 ,

D = αT 2
0 V 2

0 + V 4
0 ,

the solution for C ′ is given by

C ′ =
−B±

√
B2−4AD

2A
, (19)

where
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=

480(αT 2
0+V 2

0 )
2
−480β(αT 2

0+V 2
0 )(4V 3

0+2αV0T 3
0 )+β

2(4V 3
0+2αV0T 2

0 )
2

β2 ,
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482

0(αT 2
0+V 2

0 )V
2
0−1680βV0(αT 2

0+V 2
0 )V

2
0+β

216V 2
0 (αT 2

0 V0+V 3
0 )V0

β2 ,

so that

B2
−4AD =

482
0αT 2

0 (αT 2
0 + V 2

0 )− 880βαV0T 2
0 (αT 2

0 + V 2
0 )+ 4β2α2V 2

0 T 4
0

β2

=
482

0αT 2
0 (αT 2

0 + V 2
0 )

β2 −
880αV0T 2

0 (αT 2
0 + V 2

0 )

β
+ 4α2V 2

0 T 4
0 .

Now it can be verified that this solution to the quadratic equation will match that in
[Young 1986] when β→∞. In this case, the first two terms above disappear and
we have

lim
β→∞

A = 4V 2
0 , lim

β→∞
B =−4V 3

0 − 2αV0T 2
0 , lim

β→∞
[B2
−4AD] = 4α2V 2

0 T 4
0 .
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We are thus left with

lim
β→∞

C ′ = lim
β→∞

[
−B±

√
B2−4AD

2A

]
=

4V 3
0 + 2αV0T 2

0 ±
√

4α2V 2
0 T 4

0

8V 2
0

.

Taking the negative square root, we get C ′= 1
2 V0, as in [Young 1986]. The constants

C and C ′ in terms of β are as follows:

C ′ =
−B− 2T0

√
α
√
(80−βV0)

2(αT 2
0 + V 2

0 )−β
2V 4

0
2A

,

C = αT 2
0 + V 2

0 − 2V0C ′+C ′2,

(20)

where A and B are defined above. We take the negative root in the quadratic formula
for C ′ because this is the root that reduces to Young’s solution when β→∞. Now
we use the auxiliary potential 9, given in (12),

9 =
1
σ0

∫
σ [T (8)] d8.

First, we note that it is an experimentally verified fact that the thermal conductivity κ
varies very little with temperature for many metals; see [Young 1986]. Therefore, it
is physically reasonable to assume that κ(T ) = κ0, where κ0 is a constant. Now,
taking σ [T (8)] to obey the WFL law (10), we have

σ [T (8)] =
κ[T (8)]
αT (8)

=
κ0

αT (8)
. (21)

Substituting (21) into (12), we get

9 =
κ0

ασ0

∫
d8

T (8)
=
κ0

ασ0

∫
d8

(1/
√
α)[C − (8−C ′)2]1/2

=
κ0

ασ0
sin−1

(
8−C ′
√

C

)
.

Since ∇29 = 0, it follows that 9 is a linear function of z. We set 9(z)= a+ bz
and absorb the constant κ0/(ασ0), as well as the integration constant of 9(z), into
the coefficients of the linear function. Hence,

sin−1
(
8−C ′
√

C

)
= a+ bz.

Using the boundary conditions for 8 to determine a and b,

8(z=0)=
√

C sin(a)+C ′ = V0,

8(z=L)=
√

C sin(a+ bL)+C ′ = 0,

we obtain the expression for the general solution 8(z),

8(z)=
√

C sin(a+ bz)+C ′, (22)
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fluid 1 transmission surface fluid 2 β 80

air cast iron air 5.7 −0.03864
air mild steel air 7.9 −0.03834

steam cast iron air 11.3 −0.03809
steam mild steel air 14.2 −0.03796
steam copper air 17 −0.03788

Table 1. 80 for realistic values of β.

where

a = sin−1
(

V0−C ′
√

C

)
, b =

1
L

[
sin−1

(
−C ′
√

C

)
− a

]
,

with C and C ′ given by (20), and where 80 is determined numerically from the
equation

80 =8
′(L)= b

√
C cos(a+ bL). (23)

Equation (23) was obtained by differentiating (22) with respect to z and then
evaluating the derivative at z = L . Note that since the right-hand side of (23) also
contains 80, we view (23) as an equation where the unknown is 80. Even though
(23) cannot be solved analytically for 80, as it enters the right-hand side of (23)
in a complicated way, we can still solve (23) numerically by choosing physically
realistic values for the parameters of the problem. Table 1 gives values of 80 for
realistic values of β, provided in [Engineering ToolBox 2003] for transmission
surfaces between various combinations of fluids. The units of β are W/(m2K) and
the units of 80 are V/m.

To complete the general solution, we substitute (22) back into (11) to obtain T (z):

T (z)=
1
√
α

√
C cos(a+ bz). (24)

Finally, as is expected, 8(z) in (22) tends to the one found in [Young 1986] as
β→∞. Indeed, we have

lim
β→∞

C ′ = 1
2 V0,

lim
β→∞

C = αT 2
0 +

1
4 V 2

0 ,

lim
β→∞

a = sin−1

(
1
2 V0√

αT 2
0 +

1
4 V 2

0

)
=�,

lim
β→∞

b = 1
L

[
sin−1

(
−

1
2 V0√

αT 2
0 +

1
4 V 2

0

)
−�

]
=

1
L
[−�−�] = −

2�
L
,
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Figure 1. B2
−4AD as a function of β for T0 = 273 K, α =

2.445 · 10−8 (V/K)2, V0 = 40 mV.
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−4AD as a function of V0 for T0 = 273 K, α =

2.445 · 10−8 (V/K)2, β = 17 W/(m2K).

so that
lim
β→∞

8(z)= 1
2 V0+

√
αT 2

0 +
1
4 V 2

0 sin
[
�
(

1− 2 z
L

)]
,

which coincides with the expression derived in [Young 1986]. Similarly, it can be
shown that (24) tends to the expression for T (z) found in [Young 1986] as β→∞.

Figures 1 and 2 show the graphs of B2
−4AD as a function of β and V0, respec-

tively.
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These figures show that the expression B2
−4AD under the square root in (19)

is always greater than zero for a physically meaningful range of parameters β > 0
and V0 > 0. This, in turn, guarantees that there is no “nonexistence” of solution to
the given problem.

We can also derive a solution for the case β = 0 and verify that the general
solution (22) reduces to this solution as β→ 0. Indeed, when β = 0, the boundary
conditions (13) and (14) are reduced to the boundary conditions

T = T0, 8= V0 at z = 0,
dT
dz
= 0, 8= 0 at z = L .

With the same steps as before, the following expressions for 8(z) and T (z) can be
derived:

8(z)=
√
αT 2

0 + V 2
0 sin

[
�̃
(

1− z
L

)]
, (25)

T (z)= 1
√
α

√
αT 2

0 + V 2
0 cos

[
�̃
(

1− z
L

)]
, (26)

where

�̃ := sin−1
(

V0√
αT 2

0 + V 2
0

)
.

It can be easily verified that (22) and (24) approach (25) and (26), respectively, as
β→ 0.
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