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If all elements of a group G are contained in the set-theoretic union of proper
subgroups H1, . . . , Hn , then we define this collection to be a cover of G. When
such a cover exists, the cardinality of the smallest possible cover is called the
covering number of G, denoted by σ(G). Maróti determined σ(Sn) for odd n 6= 9
and provided an estimate for even n. The second author later determined σ(Sn)

for n ≡ 0 (mod 6) when n > 18, while joint work of the second author with
Kappe and Nikolova-Popova also verified that Maróti’s rule holds for n = 9 and
established the covering numbers of Sn for various other small n. Currently,
n = 14 is the smallest value for which σ(Sn) is unknown. In this paper, we prove
the covering number of S14 is 3096.

1. Introduction

For a group G, a set H of proper subgroups of G is a cover of G if and only if⋃
A∈H A = G. Further, supposing a cover for G exists, define the covering number

of G, denoted by σ(G), to be the cardinality of the smallest possible cover of G;
that is, σ(G) is the size of a minimal cover of G.

Based on the work of Neumann [1954], who showed that a group has a finite cover
if and only if it has a finite noncyclic homomorphic image, it suffices to consider
covers of finite groups. Covers have enjoyed some degree of attention in recent
years, particularly given the property that σ(G) serves as an upper bound for ω(G),
defined as the largest integer m such that some subset S of G exists where |S| = m
and any two distinct elements of S generate G. This and other related problems have
garnered much of the current interest in covering numbers; see [Blackburn 2006;
Holmes and Maróti 2010], and, for a general survey of such problems, [Serena 2003].

Tomkinson [1997] determined the covering number for a given solvable group and
suggested that it would be of interest to investigate minimal covers of nonsolvable
groups. The symmetric and alternating groups have naturally attracted special
attention, and there has been significant work to derive formulae for the covering
numbers of An and Sn . Regarding alternating groups, Maróti [2005] established
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that σ(An)> 2n−2, where n 6= 7, 9 (and σ(An)= 2n−2 if and only if n≡ 2 (mod 4)).
Turning our attention to the symmetric groups, Maróti also showed in the same
paper that σ(Sn)= 2n−1 for odd n 6= 9. Later, Kappe, Nikolova-Popova, and the
second author [Kappe et al. 2016] showed that this rule holds when n = 9 as well,
and ascertained the covering numbers of S8, S10, and S12. The second author also
demonstrated in [Swartz 2016] that σ(S18)= 36773, and that

σ(Sn)=
1
2

( n
n/2

)
+

n/3−1∑
i=0

(n
i

)
when n ≡ 0 (mod 6) and n > 24; given that σ(S6) and σ(S12) were already known,
this accounts for all multiples of 6. In pursuit of formulae for all yet-unknown σ(Sn),
this paper is intended to begin the process of finding the general covering number
when n ≡ 2 (mod 6). In determining σ(S14), or indeed any group whose covering
number is unknown, we must establish both the existence of a certain cover of
S14 and show that no smaller set of proper subgroups could contain among them
every element of S14. When considering those groups for which a cover exists (i.e.,
noncyclic groups), it trivially suffices to consider only maximal subgroups.

The following notation will be used throughout this paper in the discussion
of the elements of symmetric groups. We say that g ∈ Sn has cycle structure
(n1, . . . , nk) if g can be written as the product of disjoint cycles g1, . . . , gk , where
the length of each cycle gi is ni and n1 6 n2 6 · · ·6 nk . For example, the element
g = (1 2 3 4 5 6 7)(8 9 10 11 12 13) ∈ S14 has cycle structure (1, 6, 7).

In Section 2, we demonstrate a cover of S14 containing 3096 subgroups and
prove that σ(S14)= 3096 by showing that this cover is in fact minimal. The GAP
code used in the proof can be found in the online supplement.

2. Covering S14

Let C14 be the set of those maximal subgroups of S14 isomorphic to one of A14,
S7 wr S2 (here wr denotes the wreath product), S13, S3× S11, or S4× S10.

Lemma 2.1. The set C14 is a cover of S14.

Proof. Any 14-cycle is contained in some subgroup isomorphic to S7 wr S2, and any
element of S14 that fixes some element of {1, . . . , 14} is contained in a subgroup
isomorphic to S13. Furthermore, any element without a fixed point that is the
product of two cycles is covered by A14, meaning that some element g ∈ S14

could only fail to be covered if it consists of three or more cycles and fixes no
points. If the length of one of these cycles is 3 or 4, then g is covered by S3× S11

or S4 × S10, respectively; similarly, if there are two cycles of length 2, then g
is covered by S4 × S10. Furthermore, any element of cycle structure (2, 6, 6) or
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isomorphism type class size

A14 1
S7 wr S2 1716
S2 wr S7 135135
S1× S13 14
S2× S12 91
S3× S11 364
S4× S10 1001
S5× S9 2002
S6× S8 3003

PGL2(13) 39916800

Table 1. Conjugacy classes of maximal subgroups of S14.

(2, 5, 7) stabilizes a decomposition of {1, . . . , 14} into two subsets of cardinality 7
and thus is contained in a subgroup isomorphic to S7 wr S2. Since any element of
S14 which is the product of three or more disjoint cycles must contain a cycle of
length 4 or smaller, and we have covered all such elements, we have shown that
C14 is indeed a cover. �

We note that C14 contains 3096 subgroups (see Table 1). We will show that C14

is in fact a minimal cover.

Lemma 2.2. Any minimal cover of S14 contains all subgroups isomorphic to one
of A14 or S13.

Proof. We note that σ(A14)= σ(S13)= 212 > 3096, where 3096 is our established
upper bound for σ(S14). Lemma 1 of [Garonzi 2013] states that a maximal subgroup
H of a group G with σ(H)>σ(G) is included in any minimal cover of G containing
only maximal subgroups. Thus every minimal cover of the elements of S14 must
contain every subgroup isomorphic to either A14 or S13. �

Lemma 2.2 shows that we can restrict ourselves to finding a minimal cover of
the elements not contained in a subgroup isomorphic to either A14 or S13. Let 5
denote the set of all g ∈ S14 with cycle structure (14), (3, 5, 6), or (4, 5, 5). We will
divide the elements of 5 as follows: 50 will be the set of 14-cycles, 53 the set
of cycles with structure (3, 5, 6), and 54 the set of cycles with structure (4, 5, 5).
The distribution of these elements among maximal subgroups of S14 is shown in
Table 2. In Table 2, if the entry in the row indexed by maximal subgroup Mi

and column indexed by cycle structure ( j) is “nm”, then a subgroup isomorphic
to Mi contains n elements with cycle structure ( j), and each element with cycle
structure ( j) is contained in m maximal subgroups isomorphic to Mi . If the entry
in the row indexed by maximal subgroup Mi and the column indexed by cycle
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isomorphism
(14) (3, 5, 6) (4, 5, 5)type

A14 0 0 0
S7 wr S2 3628800, P 0 0
S2 wr S7 46080, P 0 0
S1× S13 0 0 0
S2× S12 0 0 0
S3× S11 0 2661120, P 0
S4× S10 0 0 435456, P
S5× S9 0 483840, P 4354562

S6× S8 0 322560, P 0
PGL2(13) 4683 0 0

Table 2. Elements of a given cycle structure in S14 in each maximal
subgroup of a given isomorphism type.

structure ( j) is “n, P”, then a subgroup isomorphic to Mi contains n elements with
cycle structure ( j), and the elements with cycle structure ( j) are partitioned among
the maximal subgroups isomorphic to Mi .

Let C′14 be the set of all subgroups isomorphic to one of S7 wr S2, S3× S11, or
S4× S10. By showing that the set C′14 is a minimal cover of the elements of 5, we
will show that C14 is also a minimal cover of S14.

Lemma 2.3. Any minimal cover of 5 contains all subgroups isomorphic to S7wrS2.

Proof. Let B be a minimal cover of S14. Any cover of S14 must contain some mix of
subgroups conjugate to S7 wr S2, S2 wr S7, or PGL2(13) to cover the elements of 50.
Examining Table 2, if M is a maximal subgroup of S14 and M ∩50 6= ∅, then
M ∩5= M ∩50. Hence any minimal cover of the elements of 5 must contain a
minimal cover of the elements of 50, which is precisely all subgroups isomorphic
to S7 wr S2. �

Lemmas 2.2 and 2.3 show that it suffices to restrict our attention to subgroups
isomorphic to one of S3× S11, S4× S10, S5× S9, or S6× S8 covering elements of
53 ∪54 when determining a minimal cover of the permutations in 5. We define
H1 := Sym({1, 2, 3})×Sym({4, . . . , 14}) and will use this notation henceforth.

Lemma 2.4. If a minimal cover B of the elements of 5 does not contain a subgroup
isomorphic to S3× S11, then there are at least 11 subgroups isomorphic to S3× S11

not contained in B.

Proof. Let B be a minimal cover of the elements of 5. Since we know that C14 is a
cover of 5, we can compare B to C14. Define B′ := B\C14 and C′ := C14\B. This
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implies
B = (B∩ C14)∪B′,

C14 = (B∩ C14)∪ C′.

Since B is a minimal cover of the elements of5, we have |B′|6 |C′|. By Lemmas 2.2
and 2.3, B′ consists only of subgroups isomorphic to either S5× S9 or S6× S8, and
C′ consists only of subgroups isomorphic to either S3× S11 or S4× S10. Moreover,
we will assume that C′ consists of c3 subgroups isomorphic to S3 × S11 and c4

subgroups isomorphic to S4× S10. This means that

|B′|6 |C′| = c3+ c4,

and we want to show that if c3 > 1, then c3 > 11.
Since we are assuming that B does not contain a subgroup isomorphic to

S3× S11, without loss of generality we may assume that H1 := Sym({1, 2, 3})×
Sym({4, . . . , 14}) /∈ B. This means that the subgroups in B′ must cover every
element with cycle structure (3, 5, 6) in H1. Let {4, . . . , 14}= A∪Ac, where |A|=5.
If B is a cover of5, then, for each such set A, either Sym(A)×Sym(Ac

∪{1, 2, 3}) or
Sym(Ac)×Sym(A∪{1, 2, 3}) is contained in B′. Hence at least

(11
5

)
=462 subgroups

are contained in B′. Let B′ = D1 ∪D2, where D1 consists of the 462 subgroups
needed to cover 53 ∩ H1.

We will now bound from above c4, the number of groups isomorphic to S4× S10

that are in C14 but not in B. From Table 2, we see that, if Mi is a maximal subgroup
isomorphic to Si × S14−i , then 54 ∩M6 =∅ and

|54 ∩M4| = |54 ∩M5| = 435456.

Furthermore, the elements of 54 are partitioned among the maximal subgroups
isomorphic to S4× S10. This means that, if there are n4 total elements with cycle
structure (4, 5, 5) contained in the subgroups of B′, then B′ can cover the elements
from at most n4/435456 subgroups isomorphic to S4× S10; in other words,

c4 6
n4

435456
.

To bound n4 from above, we first observe that D2 contains at most 435456 · |D2|

distinct elements with cycle structure (4, 5, 5) (in the case when every subgroup
of D2 is isomorphic to S5 × S9). Consider now D1. The subgroups from D1

cover the most elements with cycle structure (4, 5, 5) when each subgroup is
isomorphic to S5× S9, so we will assume that each subgroup of D1 is isomorphic
to S5 × S9 to attain an upper bound. Each element with cycle structure (4, 5, 5)
is contained in exactly two subgroups isomorphic to S5× S9, and two subgroups
Sym(A)× Sym({1, . . . , 14}\A) and Sym(B)× Sym({1, . . . , 14}\B) isomorphic
to S5 × S9 in D1 overlap in these elements precisely when A ∩ B = ∅. Since
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both A and B are subsets of {4, . . . , 14}, and we are assuming that D1 contains
Sym(A)× Sym({1, . . . , 14}\A) for every subset A of {4, . . . , 14} of size 5, each
subgroup in D1 intersects exactly

(11−5
5

)
= 6 other subgroups of D1 in elements

of 54. Since each element of 54 is contained in exactly two subgroups isomorphic
to S5× S9, there are exactly

1
2

(11
5

)(6
5

)
· 3! · 4! · 4! = 4790016

elements of 54 that are contained in two subgroups of D1. Hence D1 contains at
most 435456 · |D1|−4790016 elements with cycle structure (4, 5, 5), which implies

c46
n4

435456
6

435456·|D2|+435456·|D1|−4790016
435456

=|D2|+|D1|−11=|B′|−11.

Therefore,
c3+ c4 = |C′|> |B′|> 11+ c4,

and so c3 > 11, as desired. �

We now further characterize a hypothetical minimal cover B of the elements of5.

Lemma 2.5. Assume that H1 /∈ B, and let the subgroup H2 ∼= S3 × S11 of S14

stabilize the decomposition B2∪ ({1, . . . , 14}\B2), where |B2| = 3. If H2 /∈ B, then
{1, 2, 3} ∩ B2 6=∅.

Proof. Let B2 indeed be such a set without overlap with {1, 2, 3}— without loss of
generality, say it is {4, 5, 6}. The output of PossibleExtensions([[1, 2, 3], [4, 5, 6]])
in GAP (see Function 7 in the online supplement) shows that, up to an automor-
phism, {1, 2, 4} is the only possibility for B3, where H3 ∼= S3 × S11 stabilizes
the decomposition of {1, . . . , 14} into B3 and {1, . . . , 14}\B3 and H3 /∈ B. The
output of PossibleExtensions([[1, 2, 3], [4, 5, 6], [1, 2, 4]]) reveals that no set of
four subgroups not in B can contain two subgroups whose corresponding 3-sets are
disjoint. By Lemma 2.4, there are at least 11 subgroups isomorphic to S3× S11 not
in B, and so, without loss of generality, {1, 2, 3} ∩ B2 6=∅. �

We may now use the program PossibleExtensions_2 (see Function 8 in the online
supplement), on the presumption that corresponding fixed 3-sets representing groups
isomorphic to S3× S11 removed from B must intersect.

Lemma 2.6. If a collection H1, . . . , Hk is not in B, where Hi stabilizes a decompo-
sition of the set {1, . . . , 14} into Bi ∪ {1, . . . , 14}\Bi , |Bi | = 3, and B1 = {1, 2, 3},
then we may assume 1 ∈

⋂k
i=1 Bi .

Proof. We observe at the outset that, by Lemma 2.4, H1 /∈ B implies that
k > 11. Again without loss of generality, we let B2 be one of {1, 2, 4} or
{1, 4, 5}, since |B1 ∩ B2| ∈ {1, 2}. We will first examine the case where B2 =

{1, 4, 5}. The output of PossibleExtensions_2([[1, 2, 3], [1, 4, 5]]) shows that,

http://msp.org/involve/2019/12-1/involve-v12-n1-x01-GapCode.pdf
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without loss of generality, the only possibilities for B3, when 1 /∈ B3, are {2, 3, 4}
and {2, 4, 6}. The output of PossibleExtensions_2([[1, 2, 3], [1, 4, 5], [2, 3, 4]])
then shows that if B3 = {2, 3, 4}, the only possibility for B4 is {1, 2, 4}, and
the output of PossibleExtensions_2([[1, 2, 3], [1, 4, 5], [2, 3, 4], [1, 2, 4]]) shows
there is no possibility for B5. Meanwhile, if B3 = {2, 4, 6}, the output of
PossibleExtensions_2([[1, 2, 3], [1, 4, 5], [2, 4, 6]]) shows that there is no possible
B4 in this case. Therefore, if |B1 ∩ B2| = 1, then we may assume that 1 ∈ Bi for
any i , 16 i 6 k.

Now let B2 = {1, 2, 4}; i.e., let B1∩ B2 = {1, 2}. Then up to symmetry, 1 ∈ B3 is
equivalent to 2 ∈ B3; thus, assuming B3 ∩ {1, 2} =∅, without a loss of generality
{3, 4} ⊆ B3 and B3 = {3, 4, 5}. The output of PossibleExtensions_2([[1, 2, 3],
[1, 2, 4], [3, 4, 5]]) then shows that B4 = {1, 3, 4}. Finally, we see that the output
of PossibleExtensions_2([[1, 2, 3], [1, 2, 4], [3, 4, 5], [1, 3, 4]]) shows that there is
no possible B5. Thus, if B1∩ B2 = {1, 2}, then Bi ∩{1, 2} 6=∅ for any i , 16 i 6 k.
Note that this shows that Bi ∩ B j ∩ B` 6=∅ for any i, j, ` ∈ {1, . . . , k}.

Moreover, if B1∩B2={1, 2} and B1∩B2∩B3∩B4=∅, then without loss of gener-
ality we may let B3∩{1, 2}={1} and B4∩{1, 2}={2}. Note that if B3∩B1={1}, we
are done, as in the first case above, as well as if B3∩B2={2}. Therefore, to continue,
we must assume that B3 = {1, 3, 4}, and similarly that B4 = {2, 3, 4}. However, un-
der these assumptions, PossibleExtensions_2([[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]])
shows that it is impossible to extend the list to a B5. Therefore, all the Bi have
nonempty intersection, and without loss of generality, 1 ∈

⋂k
i=1 Bi . �

Lemma 2.7. B contains all subgroups isomorphic to S3× S11.

Proof. We again observe at the outset that, by Lemma 2.4, H1 /∈ B implies k > 11.
Lemma 2.6 implies that we may assume each Bi is of the form {1, x, y}, where
x, y ∈ {2, . . . , 14}. Hence there are at most

(13
2

)
= 78 subgroups isomorphic to

S3× S11 omitted from B, meaning that for any potential list, we have that the output
of the GAP function 455Shortage([list]) is at most 78 (see Function 5 in the online
supplement). However, we also have 455Shortage([[1,2,3],[1,4,5]])= 286

3 > 78,
implying that any two subgroups Hi and H j not in B must have |Bi ∩ B j | = 2.
Without loss of generality we may let B1 = {1, 2, 3} and B2 = {1, 2, 4}, and assume
that 2 /∈ B3. Then since |B1∩B3|=|B2∩B3|=2, necessarily B3={1, 3, 4}. However,
455Shortage([[1,2,3],[1,2,4],[1,3,4]]) = 106> 78, so without loss of generality all
Bi contain {1, 2}, meaning that for all i , there exists some x such that Bi = {1, 2, x}.
Since there are only 12 such x possible and 455Shortage([[1,2,3],[1,2,4]])=46>12,
we have a contradiction. Thus, all 364 subgroups isomorphic to S3× S11 are in any
minimal cover B of S14. �

Theorem 2.8. C14 is a minimal cover of 5 (and therefore of S14), and σ(S14) =

3096.
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Proof. Since subgroups isomorphic to either S4× S10 or S5× S9 contain the same
number of 54 elements (those with (4, 5, 5) cycle structure) — 435456 — the best-
case scenario for covering those elements is the number of such elements divided
by 435456, namely

(14
4

) 1
2

(10
5

)
· 3! · 4! · 4!/435456= 1001. By Lemmas 2.3 and 2.7,

we have already established that every other class of subgroups contained in C′14
is shared by B. Therefore, any minimal cover of 53 ∪54 must contain at least
364+ 1001 = 1365 subgroups, and so any minimal cover of 5 (and hence any
minimal cover of S14) contains at least 1+ 14+ 1716+ 1365= 3096 subgroups.
Combined with Lemma 2.1, we have σ(S14)= 3096. �
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