

On the covering number of S_{14} Ryan Oppenheim and Eric Swartz

On the covering number of S_{14}

Ryan Oppenheim and Eric Swartz (Communicated by Kenneth S. Berenhaut)

If all elements of a group *G* are contained in the set-theoretic union of proper subgroups H_1, \ldots, H_n , then we define this collection to be a cover of *G*. When such a cover exists, the cardinality of the smallest possible cover is called the covering number of *G*, denoted by $\sigma(G)$. Maróti determined $\sigma(S_n)$ for odd $n \neq 9$ and provided an estimate for even *n*. The second author later determined $\sigma(S_n)$ for $n \equiv 0 \pmod{6}$ when $n \ge 18$, while joint work of the second author with Kappe and Nikolova-Popova also verified that Maróti's rule holds for n = 9 and established the covering numbers of S_n for various other small *n*. Currently, n = 14 is the smallest value for which $\sigma(S_n)$ is unknown. In this paper, we prove the covering number of S_{14} is 3096.

1. Introduction

For a group *G*, a set \mathcal{H} of proper subgroups of *G* is a *cover* of *G* if and only if $\bigcup_{A \in \mathcal{H}} A = G$. Further, supposing a cover for *G* exists, define the *covering number* of *G*, denoted by $\sigma(G)$, to be the cardinality of the smallest possible cover of *G*; that is, $\sigma(G)$ is the size of a minimal cover of *G*.

Based on the work of Neumann [1954], who showed that a group has a finite cover if and only if it has a finite noncyclic homomorphic image, it suffices to consider covers of finite groups. Covers have enjoyed some degree of attention in recent years, particularly given the property that $\sigma(G)$ serves as an upper bound for $\omega(G)$, defined as the largest integer *m* such that some subset *S* of *G* exists where |S| = mand any two distinct elements of *S* generate *G*. This and other related problems have garnered much of the current interest in covering numbers; see [Blackburn 2006; Holmes and Maróti 2010], and, for a general survey of such problems, [Serena 2003].

Tomkinson [1997] determined the covering number for a given solvable group and suggested that it would be of interest to investigate minimal covers of nonsolvable groups. The symmetric and alternating groups have naturally attracted special attention, and there has been significant work to derive formulae for the covering numbers of A_n and S_n . Regarding alternating groups, Maróti [2005] established

MSC2010: 20-04, 20D60.

Keywords: symmetric groups, finite union of proper subgroups, subgroup covering.

that $\sigma(A_n) \ge 2^{n-2}$, where $n \ne 7, 9$ (and $\sigma(A_n) = 2^{n-2}$ if and only if $n \equiv 2 \pmod{4}$). Turning our attention to the symmetric groups, Maróti also showed in the same paper that $\sigma(S_n) = 2^{n-1}$ for odd $n \ne 9$. Later, Kappe, Nikolova-Popova, and the second author [Kappe et al. 2016] showed that this rule holds when n = 9 as well, and ascertained the covering numbers of S_8 , S_{10} , and S_{12} . The second author also demonstrated in [Swartz 2016] that $\sigma(S_{18}) = 36773$, and that

$$\sigma(S_n) = \frac{1}{2} \binom{n}{n/2} + \sum_{i=0}^{n/3-1} \binom{n}{i}$$

when $n \equiv 0 \pmod{6}$ and $n \ge 24$; given that $\sigma(S_6)$ and $\sigma(S_{12})$ were already known, this accounts for all multiples of 6. In pursuit of formulae for all yet-unknown $\sigma(S_n)$, this paper is intended to begin the process of finding the general covering number when $n \equiv 2 \pmod{6}$. In determining $\sigma(S_{14})$, or indeed any group whose covering number is unknown, we must establish both the existence of a certain cover of S_{14} and show that no smaller set of proper subgroups could contain among them every element of S_{14} . When considering those groups for which a cover exists (i.e., noncyclic groups), it trivially suffices to consider only maximal subgroups.

The following notation will be used throughout this paper in the discussion of the elements of symmetric groups. We say that $g \in S_n$ has cycle structure (n_1, \ldots, n_k) if g can be written as the product of disjoint cycles g_1, \ldots, g_k , where the length of each cycle g_i is n_i and $n_1 \leq n_2 \leq \cdots \leq n_k$. For example, the element $g = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)(8 \ 9 \ 10 \ 11 \ 12 \ 13) \in S_{14}$ has cycle structure (1, 6, 7).

In Section 2, we demonstrate a cover of S_{14} containing 3096 subgroups and prove that $\sigma(S_{14}) = 3096$ by showing that this cover is in fact minimal. The GAP code used in the proof can be found in the online supplement.

2. Covering S₁₄

Let C_{14} be the set of those maximal subgroups of S_{14} isomorphic to one of A_{14} , $S_7 \text{ wr } S_2$ (here wr denotes the wreath product), S_{13} , $S_3 \times S_{11}$, or $S_4 \times S_{10}$.

Lemma 2.1. The set C_{14} is a cover of S_{14} .

Proof. Any 14-cycle is contained in some subgroup isomorphic to $S_7 \text{ wr } S_2$, and any element of S_{14} that fixes some element of $\{1, \ldots, 14\}$ is contained in a subgroup isomorphic to S_{13} . Furthermore, any element without a fixed point that is the product of two cycles is covered by A_{14} , meaning that some element $g \in S_{14}$ could only fail to be covered if it consists of three or more cycles and fixes no points. If the length of one of these cycles is 3 or 4, then g is covered by $S_3 \times S_{11}$ or $S_4 \times S_{10}$, respectively; similarly, if there are two cycles of length 2, then g is covered by $S_4 \times S_{10}$. Furthermore, any element of cycle structure (2, 6, 6) or

isomorphism type	class size
A_{14}	1
$S_7 \operatorname{wr} S_2$	1716
$S_2 \operatorname{wr} S_7$	135135
$S_1 \times S_{13}$	14
$S_2 \times S_{12}$	91
$S_3 \times S_{11}$	364
$S_4 imes S_{10}$	1001
$S_5 imes S_9$	2002
$S_6 \times S_8$	3003
PGL ₂ (13)	39916800

Table 1. Conjugacy classes of maximal subgroups of S_{14} .

(2, 5, 7) stabilizes a decomposition of $\{1, ..., 14\}$ into two subsets of cardinality 7 and thus is contained in a subgroup isomorphic to $S_7 \text{ wr } S_2$. Since any element of S_{14} which is the product of three or more disjoint cycles must contain a cycle of length 4 or smaller, and we have covered all such elements, we have shown that C_{14} is indeed a cover.

We note that C_{14} contains 3096 subgroups (see Table 1). We will show that C_{14} is in fact a minimal cover.

Lemma 2.2. Any minimal cover of S_{14} contains all subgroups isomorphic to one of A_{14} or S_{13} .

Proof. We note that $\sigma(A_{14}) = \sigma(S_{13}) = 2^{12} > 3096$, where 3096 is our established upper bound for $\sigma(S_{14})$. Lemma 1 of [Garonzi 2013] states that a maximal subgroup *H* of a group *G* with $\sigma(H) > \sigma(G)$ is included in any minimal cover of *G* containing only maximal subgroups. Thus every minimal cover of the elements of S_{14} must contain every subgroup isomorphic to either A_{14} or S_{13} .

Lemma 2.2 shows that we can restrict ourselves to finding a minimal cover of the elements not contained in a subgroup isomorphic to either A_{14} or S_{13} . Let Π denote the set of all $g \in S_{14}$ with cycle structure (14), (3, 5, 6), or (4, 5, 5). We will divide the elements of Π as follows: Π_0 will be the set of 14-cycles, Π_3 the set of cycles with structure (3, 5, 6), and Π_4 the set of cycles with structure (4, 5, 5). The distribution of these elements among maximal subgroups of S_{14} is shown in Table 2. In Table 2, if the entry in the row indexed by maximal subgroup M_i and column indexed by cycle structure (j) is " n_m ", then a subgroup isomorphic to M_i contains *n* elements with cycle structure (j), and each element with cycle structure (j) is contained in *m* maximal subgroups isomorphic to M_i . If the entry in the row indexed by cycle is used by cycle

isomorphism type	(14)	(3, 5, 6)	(4, 5, 5)
A ₁₄	0	0	0
$S_7 \operatorname{wr} S_2$	3628800, P	0	0
$S_2 \operatorname{wr} S_7$	46080, P	0	0
$S_1 \times S_{13}$	0	0	0
$S_2 \times S_{12}$	0	0	0
$S_3 \times S_{11}$	0	2661120, P	0
$S_4 imes S_{10}$	0	0	435456, P
$S_5 imes S_9$	0	483840, P	4354562
$S_6 imes S_8$	0	322560, P	0
PGL ₂ (13)	4683	0	0

Table 2. Elements of a given cycle structure in S_{14} in each maximal subgroup of a given isomorphism type.

structure (j) is "*n*, *P*", then a subgroup isomorphic to M_i contains *n* elements with cycle structure (j), and the elements with cycle structure (j) are partitioned among the maximal subgroups isomorphic to M_i .

Let C'_{14} be the set of all subgroups isomorphic to one of $S_7 \text{ wr } S_2$, $S_3 \times S_{11}$, or $S_4 \times S_{10}$. By showing that the set C'_{14} is a minimal cover of the elements of Π , we will show that C_{14} is also a minimal cover of S_{14} .

Lemma 2.3. Any minimal cover of Π contains all subgroups isomorphic to $S_7 \operatorname{wr} S_2$.

Proof. Let \mathcal{B} be a minimal cover of S_{14} . Any cover of S_{14} must contain some mix of subgroups conjugate to $S_7 \text{ wr } S_2$, $S_2 \text{ wr } S_7$, or PGL₂(13) to cover the elements of Π_0 . Examining Table 2, if M is a maximal subgroup of S_{14} and $M \cap \Pi_0 \neq \emptyset$, then $M \cap \Pi = M \cap \Pi_0$. Hence any minimal cover of the elements of Π must contain a minimal cover of the elements of Π_0 , which is precisely all subgroups isomorphic to $S_7 \text{ wr } S_2$.

Lemmas 2.2 and 2.3 show that it suffices to restrict our attention to subgroups isomorphic to one of $S_3 \times S_{11}$, $S_4 \times S_{10}$, $S_5 \times S_9$, or $S_6 \times S_8$ covering elements of $\Pi_3 \cup \Pi_4$ when determining a minimal cover of the permutations in Π . We define $H_1 := \text{Sym}(\{1, 2, 3\}) \times \text{Sym}(\{4, ..., 14\})$ and will use this notation henceforth.

Lemma 2.4. If a minimal cover \mathcal{B} of the elements of Π does not contain a subgroup isomorphic to $S_3 \times S_{11}$, then there are at least 11 subgroups isomorphic to $S_3 \times S_{11}$ not contained in \mathcal{B} .

Proof. Let \mathcal{B} be a minimal cover of the elements of Π . Since we know that \mathcal{C}_{14} is a cover of Π , we can compare \mathcal{B} to \mathcal{C}_{14} . Define $\mathcal{B}' := \mathcal{B} \setminus \mathcal{C}_{14}$ and $\mathcal{C}' := \mathcal{C}_{14} \setminus \mathcal{B}$. This

implies

$$\mathcal{B} = (\mathcal{B} \cap \mathcal{C}_{14}) \cup \mathcal{B}',$$
$$\mathcal{C}_{14} = (\mathcal{B} \cap \mathcal{C}_{14}) \cup \mathcal{C}'.$$

Since \mathcal{B} is a minimal cover of the elements of Π , we have $|\mathcal{B}'| \leq |\mathcal{C}'|$. By Lemmas 2.2 and 2.3, \mathcal{B}' consists only of subgroups isomorphic to either $S_5 \times S_9$ or $S_6 \times S_8$, and \mathcal{C}' consists only of subgroups isomorphic to either $S_3 \times S_{11}$ or $S_4 \times S_{10}$. Moreover, we will assume that \mathcal{C}' consists of c_3 subgroups isomorphic to $S_3 \times S_{11}$ and c_4 subgroups isomorphic to $S_4 \times S_{10}$. This means that

$$|\mathcal{B}'| \leqslant |\mathcal{C}'| = c_3 + c_4,$$

and we want to show that if $c_3 \ge 1$, then $c_3 \ge 11$.

Since we are assuming that \mathcal{B} does not contain a subgroup isomorphic to $S_3 \times S_{11}$, without loss of generality we may assume that $H_1 := \text{Sym}(\{1, 2, 3\}) \times \text{Sym}(\{4, ..., 14\}) \notin \mathcal{B}$. This means that the subgroups in \mathcal{B}' must cover every element with cycle structure (3, 5, 6) in H_1 . Let $\{4, ..., 14\} = A \cup A^c$, where |A| = 5. If \mathcal{B} is a cover of Π , then, for each such set A, either $\text{Sym}(A) \times \text{Sym}(A^c \cup \{1, 2, 3\})$ or $\text{Sym}(A^c) \times \text{Sym}(A \cup \{1, 2, 3\})$ is contained in \mathcal{B}' . Hence at least $\binom{11}{5} = 462$ subgroups are contained in \mathcal{B}' . Let $\mathcal{B}' = \mathcal{D}_1 \cup \mathcal{D}_2$, where \mathcal{D}_1 consists of the 462 subgroups needed to cover $\Pi_3 \cap H_1$.

We will now bound from above c_4 , the number of groups isomorphic to $S_4 \times S_{10}$ that are in C_{14} but not in \mathcal{B} . From Table 2, we see that, if M_i is a maximal subgroup isomorphic to $S_i \times S_{14-i}$, then $\Pi_4 \cap M_6 = \emptyset$ and

$$|\Pi_4 \cap M_4| = |\Pi_4 \cap M_5| = 435456.$$

Furthermore, the elements of Π_4 are partitioned among the maximal subgroups isomorphic to $S_4 \times S_{10}$. This means that, if there are n_4 total elements with cycle structure (4, 5, 5) contained in the subgroups of \mathcal{B}' , then \mathcal{B}' can cover the elements from at most $n_4/435456$ subgroups isomorphic to $S_4 \times S_{10}$; in other words,

$$c_4 \leqslant \frac{n_4}{435456}.$$

To bound n_4 from above, we first observe that \mathcal{D}_2 contains at most $435456 \cdot |\mathcal{D}_2|$ distinct elements with cycle structure (4, 5, 5) (in the case when every subgroup of \mathcal{D}_2 is isomorphic to $S_5 \times S_9$). Consider now \mathcal{D}_1 . The subgroups from \mathcal{D}_1 cover the most elements with cycle structure (4, 5, 5) when each subgroup is isomorphic to $S_5 \times S_9$, so we will assume that each subgroup of \mathcal{D}_1 is isomorphic to $S_5 \times S_9$ to attain an upper bound. Each element with cycle structure (4, 5, 5) is contained in exactly two subgroups isomorphic to $S_5 \times S_9$, and two subgroups $Sym(A) \times Sym(\{1, \ldots, 14\} \setminus A)$ and $Sym(B) \times Sym(\{1, \ldots, 14\} \setminus B)$ isomorphic to $S_5 \times S_9$ in \mathcal{D}_1 overlap in these elements precisely when $A \cap B = \emptyset$. Since both *A* and *B* are subsets of $\{4, \ldots, 14\}$, and we are assuming that \mathcal{D}_1 contains $Sym(A) \times Sym(\{1, \ldots, 14\} \setminus A)$ for every subset *A* of $\{4, \ldots, 14\}$ of size 5, each subgroup in \mathcal{D}_1 intersects exactly $\binom{11-5}{5} = 6$ other subgroups of \mathcal{D}_1 in elements of Π_4 . Since each element of Π_4 is contained in exactly two subgroups isomorphic to $S_5 \times S_9$, there are exactly

$$\frac{1}{2} \binom{11}{5} \binom{6}{5} \cdot 3! \cdot 4! \cdot 4! = 4790016$$

elements of Π_4 that are contained in two subgroups of \mathcal{D}_1 . Hence \mathcal{D}_1 contains at most $435456 \cdot |\mathcal{D}_1| - 4790016$ elements with cycle structure (4, 5, 5), which implies

$$c_4 \leqslant \frac{n_4}{435456} \leqslant \frac{435456 \cdot |\mathcal{D}_2| + 435456 \cdot |\mathcal{D}_1| - 4790016}{435456} = |\mathcal{D}_2| + |\mathcal{D}_1| - 11 = |\mathcal{B}'| - 11.$$

Therefore,

$$c_3 + c_4 = |\mathcal{C}'| \ge |\mathcal{B}'| \ge 11 + c_4,$$

and so $c_3 \ge 11$, as desired.

We now further characterize a hypothetical minimal cover \mathcal{B} of the elements of Π .

Lemma 2.5. Assume that $H_1 \notin \mathcal{B}$, and let the subgroup $H_2 \cong S_3 \times S_{11}$ of S_{14} stabilize the decomposition $B_2 \cup (\{1, \ldots, 14\} \setminus B_2)$, where $|B_2| = 3$. If $H_2 \notin \mathcal{B}$, then $\{1, 2, 3\} \cap B_2 \neq \emptyset$.

Proof. Let B_2 indeed be such a set without overlap with $\{1, 2, 3\}$ — without loss of generality, say it is $\{4, 5, 6\}$. The output of PossibleExtensions([[1, 2, 3], [4, 5, 6]]) in GAP (see Function 7 in the online supplement) shows that, up to an automorphism, $\{1, 2, 4\}$ is the only possibility for B_3 , where $H_3 \cong S_3 \times S_{11}$ stabilizes the decomposition of $\{1, \ldots, 14\}$ into B_3 and $\{1, \ldots, 14\}\setminus B_3$ and $H_3 \notin \mathcal{B}$. The output of PossibleExtensions([[1, 2, 3], [4, 5, 6], [1, 2, 4]]) reveals that no set of four subgroups not in \mathcal{B} can contain two subgroups whose corresponding 3-sets are disjoint. By Lemma 2.4, there are at least 11 subgroups isomorphic to $S_3 \times S_{11}$ not in \mathcal{B} , and so, without loss of generality, $\{1, 2, 3\} \cap B_2 \neq \emptyset$.

We may now use the program PossibleExtensions_2 (see Function 8 in the online supplement), on the presumption that corresponding fixed 3-sets representing groups isomorphic to $S_3 \times S_{11}$ removed from \mathcal{B} must intersect.

Lemma 2.6. If a collection H_1, \ldots, H_k is not in \mathcal{B} , where H_i stabilizes a decomposition of the set $\{1, \ldots, 14\}$ into $B_i \cup \{1, \ldots, 14\} \setminus B_i$, $|B_i| = 3$, and $B_1 = \{1, 2, 3\}$, then we may assume $1 \in \bigcap_{i=1}^k B_i$.

Proof. We observe at the outset that, by Lemma 2.4, $H_1 \notin B$ implies that $k \ge 11$. Again without loss of generality, we let B_2 be one of $\{1, 2, 4\}$ or $\{1, 4, 5\}$, since $|B_1 \cap B_2| \in \{1, 2\}$. We will first examine the case where $B_2 = \{1, 4, 5\}$. The output of PossibleExtensions_2([[1, 2, 3], [1, 4, 5]]) shows that,

without loss of generality, the only possibilities for B_3 , when $1 \notin B_3$, are $\{2, 3, 4\}$ and $\{2, 4, 6\}$. The output of PossibleExtensions_2([[1, 2, 3], [1, 4, 5], [2, 3, 4]])) then shows that if $B_3 = \{2, 3, 4\}$, the only possibility for B_4 is $\{1, 2, 4\}$, and the output of PossibleExtensions_2([[1, 2, 3], [1, 4, 5], [2, 3, 4], [1, 2, 4]]) shows there is no possibility for B_5 . Meanwhile, if $B_3 = \{2, 4, 6\}$, the output of PossibleExtensions_2([[1, 2, 3], [1, 4, 5], [2, 4, 6]]) shows that there is no possible B_4 in this case. Therefore, if $|B_1 \cap B_2| = 1$, then we may assume that $1 \in B_i$ for any $i, 1 \leq i \leq k$.

Now let $B_2 = \{1, 2, 4\}$; i.e., let $B_1 \cap B_2 = \{1, 2\}$. Then up to symmetry, $1 \in B_3$ is equivalent to $2 \in B_3$; thus, assuming $B_3 \cap \{1, 2\} = \emptyset$, without a loss of generality $\{3, 4\} \subseteq B_3$ and $B_3 = \{3, 4, 5\}$. The output of PossibleExtensions_2([[1, 2, 3], [1, 2, 4], [3, 4, 5]]) then shows that $B_4 = \{1, 3, 4\}$. Finally, we see that the output of PossibleExtensions_2([[1, 2, 3], [1, 2, 4], [3, 4, 5], [1, 3, 4]]) shows that there is no possible B_5 . Thus, if $B_1 \cap B_2 = \{1, 2\}$, then $B_i \cap \{1, 2\} \neq \emptyset$ for any $i, 1 \le i \le k$. Note that this shows that $B_i \cap B_j \cap B_\ell \neq \emptyset$ for any $i, j, \ell \in \{1, \ldots, k\}$.

Moreover, if $B_1 \cap B_2 = \{1, 2\}$ and $B_1 \cap B_2 \cap B_3 \cap B_4 = \emptyset$, then without loss of generality we may let $B_3 \cap \{1, 2\} = \{1\}$ and $B_4 \cap \{1, 2\} = \{2\}$. Note that if $B_3 \cap B_1 = \{1\}$, we are done, as in the first case above, as well as if $B_3 \cap B_2 = \{2\}$. Therefore, to continue, we must assume that $B_3 = \{1, 3, 4\}$, and similarly that $B_4 = \{2, 3, 4\}$. However, under these assumptions, PossibleExtensions_2([[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]) shows that it is impossible to extend the list to a B_5 . Therefore, all the B_i have nonempty intersection, and without loss of generality, $1 \in \bigcap_{i=1}^k B_i$.

Lemma 2.7. B contains all subgroups isomorphic to $S_3 \times S_{11}$.

Proof. We again observe at the outset that, by Lemma 2.4, $H_1 \notin \mathcal{B}$ implies $k \ge 11$. Lemma 2.6 implies that we may assume each B_i is of the form $\{1, x, y\}$, where $x, y \in \{2, ..., 14\}$. Hence there are at most $\binom{13}{2} = 78$ subgroups isomorphic to $S_3 \times S_{11}$ omitted from \mathcal{B} , meaning that for any potential list, we have that the output of the GAP function 455Shortage([list]) is at most 78 (see Function 5 in the online supplement). However, we also have 455Shortage([[1,2,3],[1,4,5]]) = $\frac{286}{3} > 78$, implying that any two subgroups H_i and H_j not in \mathcal{B} must have $|B_i \cap B_j| = 2$. Without loss of generality we may let $B_1 = \{1, 2, 3\}$ and $B_2 = \{1, 2, 4\}$, and assume that $2 \notin B_3$. Then since $|B_1 \cap B_3| = |B_2 \cap B_3| = 2$, necessarily $B_3 = \{1, 3, 4\}$. However, 455Shortage([[1,2,3],[1,2,4],[1,3,4]]) = 106 > 78, so without loss of generality all B_i contain $\{1, 2\}$, meaning that for all i, there exists some x such that $B_i = \{1, 2, x\}$. Since there are only 12 such x possible and 455Shortage([[1,2,3],[1,2,4]]) = 46 > 12, we have a contradiction. Thus, all 364 subgroups isomorphic to $S_3 \times S_{11}$ are in any minimal cover \mathcal{B} of S_{14} .

Theorem 2.8. C_{14} is a minimal cover of Π (and therefore of S_{14}), and $\sigma(S_{14}) = 3096$.

Proof. Since subgroups isomorphic to either $S_4 \times S_{10}$ or $S_5 \times S_9$ contain the same number of Π_4 elements (those with (4, 5, 5) cycle structure) — 435456 — the bestcase scenario for covering those elements is the number of such elements divided by 435456, namely $\binom{14}{4} \frac{1}{2} \binom{10}{5} \cdot 3! \cdot 4! \cdot 4! / 435456 = 1001$. By Lemmas 2.3 and 2.7, we have already established that every other class of subgroups contained in C'_{14} is shared by \mathcal{B} . Therefore, any minimal cover of $\Pi_3 \cup \Pi_4$ must contain at least 364 + 1001 = 1365 subgroups, and so any minimal cover of Π (and hence any minimal cover of S_{14}) contains at least 1 + 14 + 1716 + 1365 = 3096 subgroups. Combined with Lemma 2.1, we have $\sigma(S_{14}) = 3096$.

Acknowledgements

The authors would like to thank Luise-Charlotte Kappe for comments on an early version of this paper and the referees for suggestions that greatly improved the final version of this paper.

References

- [Blackburn 2006] S. R. Blackburn, "Sets of permutations that generate the symmetric group pairwise", *J. Combin. Theory Ser. A* **113**:7 (2006), 1572–1581. MR Zbl
- [Garonzi 2013] M. Garonzi, "Finite groups that are the union of at most 25 proper subgroups", *J. Algebra Appl.* **12**:4 (2013), art. id. 1350002. MR Zbl
- [Holmes and Maróti 2010] P. E. Holmes and A. Maróti, "Pairwise generating and covering sporadic simple groups", *J. Algebra* **324**:1 (2010), 25–35. MR Zbl

[Kappe et al. 2016] L.-C. Kappe, D. Nikolova-Popova, and E. Swartz, "On the covering number of small symmetric groups and some sporadic simple groups", *Groups Complex. Cryptol.* **8**:2 (2016), 135–154. MR Zbl

[Maróti 2005] A. Maróti, "Covering the symmetric groups with proper subgroups", *J. Combin. Theory* Ser. A 110:1 (2005), 97–111. MR Zbl

[Neumann 1954] B. H. Neumann, "Groups covered by permutable subsets", J. London Math. Soc. 29 (1954), 236–248. MR Zbl

[Serena 2003] L. Serena, "On finite covers of groups by subgroups", pp. 173–190 in *Advances in group theory 2002*, edited by F. de Giovanni and M. L. Newell, Aracne, Rome, 2003. MR Zbl

[Swartz 2016] E. Swartz, "On the covering number of symmetric groups having degree divisible by six", *Discrete Math.* **339**:11 (2016), 2593–2604. MR Zbl

[Tomkinson 1997] M. J. Tomkinson, "Groups as the union of proper subgroups", *Math. Scand.* 81:2 (1997), 191–198. MR Zbl

Received: 2017-07-09	evised: 2017-11-28 Accepted: 2017-12-30
raoppenheim@email.wm.ed	Department of Mathematics, College of William and Mary, Williamsburg, VA, United States
easwartz@wm.edu	Department of Mathematics, College of William and Mary, Williamsburg, VA, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, *Involve* provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	YF. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US \$/year for the electronic version, and \$/year (+\$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2019 Mathematical Sciences Publishers

2019 vol. 12 no. 1

Optimal transportation with constant constraint	1
WYATT BOYER, BRYAN BROWN, ALYSSA LOVING AND SARAH TAMMEN	
Fair choice sequences	13
WILLIAM J. KEITH AND SEAN GRINDATTI	
Intersecting geodesics and centrality in graphs	31
Emily Carter, Bryan Ek, Danielle Gonzalez, Rigoberto Flórez and Darren A. Narayan	
The length spectrum of the sub-Riemannian three-sphere	45
DAVID KLAPHECK AND MICHAEL VANVALKENBURGH	
Statistics for fixed points of the self-power map	63
MATTHEW FRIEDRICHSEN AND JOSHUA HOLDEN	
Analytical solution of a one-dimensional thermistor problem with Robin boundary	79
condition	
VOLODYMYR HRYNKIV AND ALICE TURCHANINOVA	
On the covering number of S_{14}	89
RYAN OPPENHEIM AND ERIC SWARTZ	
Upper and lower bounds on the speed of a one-dimensional excited random walk	97
Erin Madden, Brian Kidd, Owen Levin, Jonathon Peterson,	
JACOB SMITH AND KEVIN M. STANGL	
Classifying linear operators over the octonions	117
Alex Putnam and Tevian Dray	
Spectrum of the Kohn Laplacian on the Rossi sphere	125
Tawfik Abbas, Madelyne M. Brown, Ravikumar Ramasami and Yunus E. Zeytuncu	
On the complexity of detecting positive eigenvectors of nonlinear cone maps	141
BAS LEMMENS AND LEWIS WHITE	
Antiderivatives and linear differential equations using matrices	151
YOTSANAN MEEMARK AND SONGPON SRIWONGSA	
Patterns in colored circular permutations	157
DANIEL GRAY, CHARLES LANNING AND HUA WANG	
Solutions of boundary value problems at resonance with periodic and antiperiodic boundary conditions	171
ADO E. CAROLA AND JEEEDEV T. NEUCERAUER	

ALDO E. GARCIA AND JEFFREY T. NEUGEBAUER

