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We classify linear operators over the octonions and relate them to linear equations
with octonionic coefficients and octonionic variables. Along the way, we also
classify linear operators over the quaternions, and show how to relate quaternionic
and octonionic operators to real matrices. In each case, we construct an explicit
basis of linear operators that maps to the canonical (real) matrix basis; in contrast
to the complex case, these maps are surjective. Since higher-order polynomials
can be reduced to compositions of linear operators, our construction implies that
the ring of polynomials in one variable over the octonions is isomorphic to the
product of eight copies of the ring of real polynomials in eight variables.

1. Introduction

The simplest equations are linear and homogeneous; think y = mx . However, even
linear equations of this form become complicated over number systems other than
the reals. What would happen if mx 6= xm, or m(nx) 6= (mn)x? To address such
questions, we analyze here multiplicative operators like mx over the four division
algebras, namely the familiar real (R) and complex (C) numbers, and the less
familiar quaternions (H), which are not commutative, and octonions (O), which are
neither commutative nor associative.

In the real and complex cases, it is straightforward to rewrite such operators as
real matrices. As explained in Section 2, we can generate all such matrices over
the reals, but not over the complexes. However, it is initially somewhat surprising
to discover that in the remaining cases we can again generate all such matrices, as
discussed in Sections 2 and 3. Finally, we discuss some consequences of our work
in Section 4, including the immediate generalization to higher-order polynomials.

So far as we are aware, there has not been much previous investigation of
octonionic polynomials, linear or otherwise. Serôdio [2007; 2010] considered
polynomials with coefficients in O, but only for real variables. Rodríguez-Ordónez
[2010] classified products of linear equations over O, and Datta and Nag [1987]
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Figure 1. Octonionic multiplication in the Fano plane. Each of the
seven oriented lines represents a quaternionic subalgebra; products
of two elements on such a line yield ± the third element, with the
sign determined by the arrows.

analyzed the topology of the roots of (some) polynomials over O. In this work, we
provide a classification of all linear equations over O, and discuss its consequences
for polynomials.

Complex numbers can be thought of as a pair of real numbers, the real and
imaginary parts; thus, C=R⊕R i , so that C∼=R2 as a vector space. In addition, C

admits a product, defined by i2
=−1. Similarly, the quaternions satisfy H=C⊕C j ,

with multiplication defined by

i2
= j2
=−1, j i =−i j, (1)

from which it follows by associativity that k = i j also satisfies k2
=−1. Multipli-

cation of imaginary quaternions is much like the cross product, and in fact predates
it historically. Finally, the octonions (see, e.g., [Dray and Manogue 2015]) satisfy
O=H+H `, where `2

=−1; the complete multiplication table can be represented
via the oriented Fano plane, as shown in Figure 1. It is easy to check that the
octonions are not associative; for instance, (i j)`= k`=−i( j`).

Each of the number systems K=R,C,H,O is a composition algebra, admitting
the operation of conjugation,

x̄ = 2 Re(x)− x (2)
and an inner product

|x |2 = x x̄ (3)
satisfying

|xy| = |x ||y|. (4)

Each K is also a division algebra, that is, a vector space on which a compatible
multiplication is defined, and in which all nonzero elements are invertible. Explicitly,
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the multiplicative inverse of 0 6= x ∈ K is given by

x−1
=

x̄
|x |2

. (5)

The Hurwitz theorem [1922] asserts that these four algebras are the only (positive-
definite) composition algebras over the reals.

2. Real, complex and quaternionic linear operators

We now explore certain linear operators over each division algebra K=R,C,H,O.
Let L(K) be the set of all multiplicative linear operators from K to K, that is, all
real-linear operators from K to K that can be realized using multiplication (and
addition) within K. More precisely, L(K) is the group generated by the left and
right translations

mL : K→ K, m R : K→ K,

x 7→ mx, x 7→ xm
(6)

for m ∈K. These translations are linear over R by distributivity and the commuta-
tivity and associativity of elements of R in K. That is,

mL(x + r y)= mL(x)+ rmL(y) (7)

for x, y ∈ K and r ∈ R, and similarly for m R . Thus, L(K) must have a matrix
representation

πK : L(K)→ Mdim(K)(R), (8)

where Mk(R) denotes the set of k× k real matrices.
Since elements of R associate and commute, any linear operator over R can be

expressed in the form
x 7→ mx, (9)

where m, x ∈ R. For reasons that will become obvious as we lose commutativity
and associativity, we will refer to this linear operator as “mx”; that is, we use the
image of the operator acting on a “place-holder” variable, x , (also) as the name of
the operator. In this sense, mx ∈ L(R). Since elements of M1(R) are matrices of
the form M = (m), we have the natural definition

πR(mx)= (m). (10)

Thus, the set of linear operators on R is equivalent to the set of real 1× 1 matrices,
and πR is the trivial map.

Complex numbers also commute and associate, so linear operators over C can
again be expressed in the form (9), where now m, x ∈ C. Separating each complex
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number into real and imaginary parts, e.g., x = x1+ x2 i , and mapping C into R2 in
the natural way,

x1+ x2 i 7→
(

x1

x2

)
(11)

and noting that

(m1+m2 i)(x1+ x2 i)= m1x1−m2x2+ (m1x2+m2x1) i (12)

brings the linear operator to the form(
x1

x2

)
7→

(
m1x1−m2x2

m1x2+m2x1

)
(13)

so that

πC(mx)=
(

m1 −m2

m2 m1

)
. (14)

Thus, our set of linear operators over C has only two degrees of freedom, namely
the real and imaginary parts of the coefficient m. On the other hand, the set M2(R)

is a vector space with four (real) degrees of freedom. Therefore, there are real 2×2
matrices that cannot be expressed as a (complex-)linear operator over C. We have
therefore shown that πC : L(C)→ M2(R) cannot be a surjective map. Some simple
examples of real 2× 2 matrices that are not in the image of πC are projections and
complex conjugation.

If we look to the quaternions, we finally start to find more complicated linear
operators. Since the quaternions do not commute, all multiplicative linear operators
over H are sums of terms of the form

x 7→ pxq, (15)

where p, q ∈ H. Since we can expand each quaternion p, q, in terms of a basis
{1, i, j, k} and then distribute over the expanded coefficients, we see that every
linear operator over H can be expressed as a linear combination of terms of the
form

x 7→ em xen (16)

for distinct combinations em, en ∈ {1, i, j, k}. Therefore, we only need to consider
coefficients that are basis elements of H. Expanding each quaternion with respect
to our basis, e.g., x = x1+ x2 i + x3 j + x4 k, and mapping H into R4 by analogy
with (11) leads immediately to, for instance,

πH(px)=


p1 −p2 −p3 −p4

p2 p1 −p4 p3

p3 p4 p1 −p2

p4 −p3 p2 p1

 . (17)
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Although this particular operator has only four (real) degrees of freedom, it is now
easy to verify [Putnam 2017] that πH maps the set of all 16 operators {em xen} to a
basis of M4(R).1 Thus, πH must be a bijection between the linear operators over H

and M4(R).
An explicit pairing of each elementary matrix in M4(R)with a corresponding mul-

tiplicative linear operator over H is given in [Putnam 2017]. Intriguing examples are

x − i xi − j x j − kxk = 4 Re(x), (18)

x + i xi + j x j + kxk =−2x̄, (19)

each of which can be verified (or discovered!) by applying πH. Conjugation is a
linear map over H!

3. Octonionic linear operators

We are now ready to look at L(O), the multiplicative linear operators over O. If
we consider operators of the form (15) with p, q, x ∈ O, then, because O is not
associative, we are really considering two different operators, one of the form
x 7→ (px)q, and the other of the form x 7→ p(xq), unless p, q are in a complex
subalgebra of O (since the octonions are alternative). We can, however, continue
to nest more coefficients outside of these two terms. Just as before, because we
can distribute over the expanded form of x ∈O, we only need to consider linear
operators with basis elements as coefficients. Mapping O into R8 again gives a
natural definition of, for example,

πO(px)=



p1 −p2 −p3 −p4 −p5 −p6 −p7 −p8

p2 p1 −p4 p3 −p6 p5 p8 −p7

p3 p4 p1 −p2 p7 p8 −p5 −p6

p4 −p3 p2 p1 p8 −p7 p6 −p5

p5 p6 −p7 −p8 p1 −p2 p3 p4

p6 −p5 −p8 p7 p2 p1 −p4 p3

p7 −p8 p5 −p6 −p3 p4 p1 p2

p8 p7 p6 p5 −p4 −p3 −p2 p1


. (20)

Because we can nest the coefficients of x , we need to count how many nestings
we are likely to need to show whether πO is surjective. If we consider operators of

1Alternatively, one can verify by direct computation that the matrix πH

(∑
am,nem xen

)
is

a1,1−a2,2−a3,3−a4,4 −a1,2−a2,1+a3,4−a4,3 −a1,3−a2,4−a3,1+a4,2 −a1,4+a2,3−a3,2−a4,1
a1,2+a2,1+a3,4−a4,3 a1,1−a2,2+a3,3+a4,4 a1,4−a2,3−a3,2−a4,1 −a1,3−a2,4+a3,1−a4,2
a1,3−a2,4+a3,1+a4,2 −a1,4−a2,3−a3,2+a4,1 a1,1+a2,2−a3,3+a4,4 a1,2−a2,1−a3,4−a4,3
a1,4+a2,3−a3,2+a4,1 a1,3−a2,4−a3,1−a4,2 −a1,2+a2,1−a3,4−a4,3 a1,1+a2,2+a3,3−a4,4


and then check that the 16 degrees of freedom (the matrix coefficients of am,n) are independent.
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the form x 7→ pxq then at first sight we have 82
= 64 such operators. However, the

lack of associativity means that there are 2
(7

2

)
= 42 cases where we must count both

possible orders of multiplication, resulting in 64+ 42= 106 operators with distinct
orderings of coefficients. Since dim M8(R) = 64, these 106 operators cannot be
linearly independent, but it is not obvious whether they span L(O). Since right
multiplication can be expressed in terms of (nested) left multiplication [Conway and
Smith 2003], we will instead consider operators with coefficients only on the left.
We have the identity operator, x 7→ x , and seven operators of the form x 7→ enx
with en ∈ {i, j, k, i`, j`, k`, `}. If we consider one nested coefficient, then we have
the form x 7→ en(em x), again with en 6= 1 6= em and

(7
2

)
= 21 new operators. These

singly nested products were shown in [Manogue and Schray 1993] to generate the
orthogonal group SO(7).

Next, we consider two nestings, which yields
(7

3

)
=35 more operators. Amazingly,

this process gives us a total of 1+ 7+ 21+ 35 = 64 distinct (representations of)
operators in L(O)! It was shown in [Putnam 2017] that these 64 linear operators
are in fact linearly independent; an explicit pairing with the canonical basis of
M8(R) was also given. Thus, πO is surjective, and doubly nested representations
are precisely enough to express all elements L(O).

In the previous cases, we were only able to construct linear operators for dim(K)2

different combinations of coefficients of basis elements, because each underlying
space was associative. In O, we can construct the same linear operators with
different combinations of coefficients of basis elements. So, operators that appear
to be different may have the same image πO, and thus in fact correspond to different
representations of the same element of L(K).2 It is now straightforward to show that
L(O) forms a group under operator composition, and that the map πO : L(O)→
M8(R) is a bijection. In particular, it then follows that right multiplication can be
expressed in terms of left multiplication, thus verifying the result of [Conway and
Smith 2003], and this can be done explicitly by finding a linear combination of the
basis given in [Putnam 2017] that yields the same matrix.

Since πO is a surjective map, there must exist elements fn,m ∈ L(O) such that
fn,m(x) = xnem for 1 ≤ n ≤ 8 and em ∈ {1, i, j, k, i`, j`, k`, `}. Some other
intriguing elements of L(O) are given by x − i( j (kx)), which projects out the
quaternionic part of x , and x − i xi , which projects out the complex part of x . It
is a useful exercise to work out a representation of the latter operator in terms of
nested left multiplication! Again, these assertions can be verified or discovered by
applying πO.

2An alternative treatment, as in [Putnam 2017], would regard L(K) as being freely generated by
left and right translations, then define an equivalence relation L ∼ M on elements L ,M ∈ L(K) if
πO(L)= πO(M). The relation ∼ is clearly an equivalence relation, since it is defined by equality of
matrices, and what we here call L(O) would instead be the quotient L(O)/∼.
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4. Conclusion

We have shown that the lack of commutativity of the quaternions, and the lack of
associativity of the octonions, conspire to provide just enough degrees of freedom
that multiplicative linear operators do indeed generate all real-linear maps in those
cases — despite the fact that they do not do so in the complex case. In the quater-
nionic case, the extra degrees of freedom manifest themselves when considering
two-sided operators, whereas in the octonionic case it is the nested nature of iterated
multiplication that generates the necessary degrees of freedom. Along the way, we
have verified the assertion stated without proof in Section 3 that right multiplication
can be expressed in terms of nested left multiplication.

In the octonionic case, we have further shown that it takes precisely three iterated
products to generate all 64 independent real-linear maps, noting that

(7
0

)
+
(7

1

)
+(7

2

)
+
(7

3

)
= 64. This result has an intriguing application to the Clifford algebra

Cl(6), which can be represented precisely as the 64-dimensional matrix algebra
M8(R). As has been noted by Furey [2014], it is therefore possible to represent
Cl(6) entirely in terms of octonionic multiplication, with possible applications to
particle physics; see, e.g., [Dray and Manogue 2015].

Having classified multiplicative linear operators over O, we could consider
higher-degree terms, that is, octonionic polynomials. By the distributive law, and
because real numbers commute and associate with octonions, we can expand each
such term (both coefficients and variables) with respect to a basis. Just as there are
8 =

(8
1

)
(real-)independent components of x , and hence 8× 8 = 64 independent

linear operators on O, there are similarly
(8

2

)
+8= 36 quadratic “components” of x2,

where the last “8” counts coefficients that are squared. Thus, the most general
quadratic operator maps x to a linear combination of the 8×36= 288 terms xm xnep,
where 1≤m≤ n≤ 8 and 1≤ p≤ 8. Furthermore, we can realize each such operator
(in multiple ways) as a composition of the linear operators fm,n , and hence in
terms of octonionic multiplication. A similar process can be applied to higher-order
terms. It is obvious that any polynomial over O can be reinterpreted as eight real
polynomials in eight variables; our construction shows that the converse is also
true, so that O[x] ∼= (R[x1, . . . , x8])

8.
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