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We study the spectrum of the Kohn Laplacian �t
b on the Rossi example (S3,Lt ).

In particular we show that 0 is in the essential spectrum of �t
b, which yields

another proof of the global nonembeddability of the Rossi example.

1. Introduction

General setting. Let S3
= {(z1, z2) ∈ C2

: |z1|
2
+ |z2|

2
= 1} denote the 3-sphere

in C2. The space S3 is a real three-dimensional manifold and it can be viewed as
an abstract CR manifold when one chooses a specific complex vector field that
determines the complex tangent vectors. It is a general question whether an abstract
CR manifold can be realized as a manifold in CN, for some N, where the complex
tangent spaces coincide with the ones induced from the ambient space. One way
of addressing this question is studying a second-order differential operator, the
so-called Kohn Laplacian, that naturally arises on CR manifolds. Many geometric
properties of abstract CR manifolds can be studied by analyzing the properties of
this differential operator. In this note we address the embeddability question by
studying the spectrum of the Kohn Laplacian on a specific abstract CR manifold. In
particular we examine the essential spectrum of the Kohn Laplacian. The essential
spectrum of a bounded self-adjoint operator is the subset of the spectrum that
contains eigenvalues of infinite multiplicity and the limit points. We refer the
readers to [Boggess 1991; Chen and Shaw 2001] for the general theory of CR
manifolds and the Kohn Laplacian, and to [Davies 1995] for spectral theory.
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Main problem. Rossi [1965] showed that the CR-manifold (S3,Lt) is not CR-
embeddable, where

Lt = z̄1
∂

∂z2
− z̄2

∂

∂z1
+ t̄
(

z1
∂

∂ z̄2
− z2

∂

∂ z̄1

)
,

and |t |< 1. In the case of strictly pseudoconvex CR-manifolds Boutet de Monvel
[1975] proved that if the real dimension of the manifold is at least 5, then it can
always be globally CR-embedded into CN for some N. Later Burns [1979] ap-
proached this problem in the ∂̄ context and showed that if the tangential operator ∂̄b,t

has closed range and the Szegő projection is bounded, then the CR-manifold is CR-
embeddable into CN. Then Kohn [1985] showed that CR-embeddability is equivalent
to showing that the tangential Cauchy–Riemann operator ∂̄b,t has closed range.

In the setting of the Rossi example, as an application of the closed graph theorem,
∂̄b,t has closed range if and only if the Kohn Laplacian

�t
b =−Lt

1+ |t |2

(1− |t |2)2
Lt

has closed range; see [Burns and Epstein 1990, (0.5)]. Furthermore, the closed range
property is equivalent to the positivity of the essential spectrum of �t

b; see [Fu 2005]
for similar discussion. In this note we tackle the problem of embeddability, from
the perspective of spectral analysis. In particular, we show that 0 is in the essential
spectrum of �t

b, so the Rossi sphere is not globally CR-embeddable into CN. This
provides a different approach to the results in [Burns 1979; Kohn 1985].

We start our analysis with the spectrum of �t
b. We utilize spherical harmonics

to construct finite-dimensional subspaces of L2(S3) such that �t
b has tridiagonal

matrix representations on these subspaces. We then use these matrices to compute
eigenvalues of �t

b. We also present numerical results obtained by Mathematica
that motivate most of our theoretical results. We then present an upper bound for
small eigenvalues and we exploit this bound to find a sequence of eigenvalues that
converge to 0.

In addition to particular results in this note, our approach can be adopted to study
possible other perturbations of the standard CR-structure on the 3-sphere, such as in
[Burns and Epstein 1990]. Furthermore, our approach also leads some information
on the growth rate of the eigenvalues and possible connections to finite-type (in the
sense of commutators) results similar to the ones in [Fu 2008]. We plan to address
these issues in future papers.

2. Analysis of �b on H p,q(S
3)

Spherical harmonics. We start with a quick overview of spherical harmonics; we
refer to [Axler et al. 2001] for a detailed discussion. We will state the relevant
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theorems on C2 and S3
⊆ C2. A polynomial in C2 can be written as

p(z, z̄)=
∑
α,β

cα,βzα z̄β,

where z∈C2, each cα,β is in C, and α, β ∈N2 are multi-indices. That is, α= (α1, α2),
zα = zα1

1 zα2
2 , and |α| = α1+α2.

We denote the space of all homogeneous polynomials on C2 of degree m by
Pm(C

2), and we let Hm(C
2) denote the subspace of Pm(C

2) that consists of all
harmonic homogeneous polynomials on C2 of degree m. We use Pm(S

3) and
Hm(S

3) to denote the restriction of Pm(C
2) and Hm(C

2) onto S3. We denote the
space of complex homogeneous polynomials on C2 of bidegree p, q by Pp,q(C

2),
and those polynomials that are homogeneous and harmonic by Hp,q(C

2). As before,
we denote by Pp,q(S

3) and Hp,q(S
3) the polynomials of the previous spaces, but

restricted to S3. We recall that on C2, the Laplacian is defined as

1= 4
(

∂2

∂z1∂ z̄1
+

∂2

∂z2∂ z̄2

)
.

As an example, z1 z̄2 − 2z2 z̄1 ∈ P1,1(C
2), and z1 z̄2

2 ∈ H1,2(C
2). We take our first

step by stating the following decomposition result.

Proposition 2.1 [Axler et al. 2001, Theorem 5.12]. L2(S3)=
⊕
∞

m=0 Hm(S
3).

The spherical harmonics form an orthogonal basis on S3 similar to the Fourier
series on the unit circle S1. They are also the eigenfunctions of the Laplacian on S3.
The summation above is understood as the orthogonal direct sum of Hilbert spaces.
This statement is essential to the spectral analysis of �t

b on L2(S3) since it decom-
poses the infinite-dimensional space L2(S3) into finite-dimensional pieces, which is
necessary for obtaining the matrix representation of �t

b (a special case of the general
spectral theory of compact operators). In order to get such a matrix representation,
we need a method for obtaining a basis for Hk(S

3). Proposition 2.3 presents a
method to do so for Hm(C

2) and Proposition 2.5 presents a method for Hp,q(C
2).

The dimension of the matrix representation on a particular Hm(S
3) is the dimension

of the subspace Hm(S
3), which is given below and analogously given for Hp,q(C

2).

Proposition 2.2 [Axler et al. 2001, Proposition 5.8]. For k, p, q ≥ 2,

dimPp,q(C
2)= (p+ 1)(q + 1),

dimHp,q(C
2)= p+ q + 1

dimHk(C
2)= (k+ 1)2.

Now we present a method to obtain explicit bases of spaces of spherical harmonics.
These bases play an essential role in explicit calculations in the next section. Here,
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K denotes the Kelvin transform,

K [g](z)= |z|−2g
(

z
|z|2

)
.

For multi-indices α, β ∈ N2, we denote by Dα and Dβ the differential operators

Dα
=

∂ |α|

(∂α1 z1)(∂α2 z2)
and Dβ

=
∂ |β|

(∂β1 z̄1)(∂β2 z̄2)
.

Proposition 2.3 [Axler et al. 2001, Theorem 5.25]. The set{
K [Dα

|z|−2
] : |α| = m and α1 ≤ 1

}
is a vector space basis of Hm(C

2), and the set{
Dα
|z|−2

: |α| = m and α1 ≤ 1
}

is a vector space basis of Hm(S
3).

Homogeneous polynomials of degree k can be written as the sum of polynomials
of bidegree p, q such that p+ q = k.

Proposition 2.4. Pk(C
2)=

⊕
p+q=k Pp,q(C

2).

Analogous to the version in Proposition 2.3, we use the following method to
construct orthogonal bases for Hp,q(C

2) and Hp,q(S
3). The proof pretty much

follows the proof of [Axler et al. 2001, Theorem 5.25], with changes from single
index to double index.

Proposition 2.5. The set{
K [DαDβ

|z|−2
] : |α| = p, |β| = q, α1= 0 or β1= 0

}
is a basis for Hp,q(C

2), and the set{
DαDβ

|z|−2
: |α| = p, |β| = q, α1= 0 or β1= 0

}
is an orthogonal basis for Hp,q(S

3).

�b on H p,q(S
3). Before we study the operator �t

b, we first need some background
on a simpler operator we call �b. It arises from the CR-manifold (S3,L), and is
defined as

�b =−LL.

Here, L = L0 = z̄1(∂/∂z2)− z̄2(∂/∂z1), the standard (1, 0) vector field from the
ambient space. We note that this CR-structure is induced from C2 and this manifold
is naturally embedded. By the machinery above we can compute the eigenvalues
of �b; see also [Folland 1972] for a more general discussion.
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Theorem 2.6. Suppose f ∈Hp,q(S
3). Then

�b f = (pq + q) f.

Proof. Expanding the definition, we get

�b =−

(
z̄2
∂

∂z1
− z̄1

∂

∂z2

)(
z2
∂

∂ z̄1
− z1

∂

∂ z̄2

)
=−z̄2

∂

∂z1

(
z2
∂

∂ z̄1
− z1

∂

∂ z̄2

)
+ z̄1

∂

∂z2

(
z2
∂

∂ z̄1
− z1

∂

∂ z̄2

)
=−z2 z̄2

∂2

∂z1∂ z̄1
+ z̄2

∂

∂ z̄2
+ z1 z̄2

∂2

∂z1∂ z̄2
− z1 z̄1

∂2

∂z2∂ z̄2
+ z̄1

∂

∂ z̄1
+ z2 z̄1

∂2

∂z2∂ z̄1
.

Now, let f ∈Hp,q(S
3). Since f is harmonic, we know that

∂2

∂z1∂ z̄1
=−

∂2

∂z2∂ z̄2
.

Substituting, we get

�b = z2 z̄2
∂2

∂z2∂ z̄2
+ z̄2

∂

∂ z̄2
+ z1 z̄2

∂2

∂z1∂ z̄2
+ z1 z̄1

∂2

∂z1∂ z̄1
+ z̄1

∂

∂ z̄1
+ z2 z̄1

∂2

∂z2∂ z̄1
.

Since f is a polynomial and �b is linear, it suffices to show that if f = zα z̄β =
zα1

1 zα2
2 z̄β1

1 z̄β2
2 , where α1+α2 = p and β1+β2 = q , then the claim holds. Using the

expansion above, each derivative simply becomes a multiple of f , and we have

�b f = (α2β2+β2+α1β2+α1β1+β1+α2β1) f

= ((α1+α2)(β1+β2)+ (β1+β2)) f

= (pq + q) f. �

In a similar manner, we can show that −LL f = (pq+ p) f . For �b, we actually
have spec(�b)= {pq + q : p, q ∈ N}; therefore 0 /∈ essspec(�b) since it is not an
accumulation point of the set above.

3. Experimental results in Mathematica

Using the symbolic computation environment provided by Mathematica, we are
able to write a program to streamline our calculations1. We implement the algorithm
provided in Proposition 2.5 to construct the vector space basis of Hk(S

3) for a

1Our code for this and the other symbolic computations described below is available in the online
supplement.

http://msp.org/involve/2019/12-1/involve-v12-n1-x01-MathematicaCode.nb
http://msp.org/involve/2019/12-1/involve-v12-n1-x01-MathematicaCode.nb
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specified k. As an example, our code produces the following basis of H3(S
3):

{−6z̄3
2,−6z̄1 z̄2

2,−6z̄2
1 z̄2,−6z̄3

1,4z1 z̄1 z̄2−2z2 z̄2
2,2z1 z̄2

1−4z2 z̄1 z̄2,−6z2 z̄2
1,−6z1 z̄2

2,

4z1z2 z̄1−2z2
2 z̄2,−6z2

2 z̄1,2z2
1 z̄1−4z1z2 z̄2,−6z2

1 z̄2,−6z3
2,−6z1z2

2,−6z2
1z2,−6z3

1}.

Now, with the basis for Hk(S
3), the matrix representation of �t

b on Hk(S
3) can

be computed for each k. In particular, we use this program to construct the matrix
representations for 1≤ k ≤ 12. For a specific k, the code applies �t

b to each basis
element of Hk(S

3) obtained by the results in the previous sections. Then, using the
inner product defined by

〈 f, g〉 =
∫

S3
f ḡ dσ,

where σ is the standard surface-area measure, the software computes 〈�t
b fi , f j 〉,

where fi , f j are basis vectors for Hk(S
3). With these results, Mathematica yields

the matrix representation for the imputed value of k. For example, for k = 3 the
program produces the matrix representation

h



3 0 0 0 0 0 0 0 0 0 0 −6t̄ 0 0 0 0
0 3 0 0 0 0 0 0 0 0 6t̄ 0 0 0 0 0
0 0 3 0 0 0 0 0 −6t̄ 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 −6t̄ 0 0 0 0 0 0
0 0 0 0 A 0 0 0 0 0 0 0 0 0 −2t̄ 0
0 0 0 0 0 A 0 0 0 0 0 0 0 2t̄ 0 0
0 0 0 0 0 0 A 0 0 0 0 0 −2t̄ 0 0 0
0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 −2t̄
0 0 −2t 0 0 0 0 0 B 0 0 0 0 0 0 0
0 0 0 −2t 0 0 0 0 0 B 0 0 0 0 0 0
0 2t 0 0 0 0 0 0 0 0 B 0 0 0 0 0
−2t 0 0 0 0 0 0 0 0 0 0 B 0 0 0 0

0 0 0 0 0 0 −6t 0 0 0 0 0 3|t |2 0 0 0
0 0 0 0 0 6t 0 0 0 0 0 0 0 3|t |2 0 0
0 0 0 0 −6t 0 0 0 0 0 0 0 0 0 3|t |2 0
0 0 0 0 0 0 0 −6t 0 0 0 0 0 0 0 3|t |2



,

where A=4+3|t |2 and B=3+4|t |2. Since each entry has a common normalization
factor,

h =
1+ |t |2

(1− |t |2)2
,

this constant has been factored out.
With Mathematica’s Eigenvalue function, the eigenvalues are then calculated

for these matrix representations. Our numerical results suggest that the smallest
nonzero eigenvalue of �t

b on H2k−1(S
3) decreases as k increases. Conversely, the

smallest nonzero eigenvalue of �t
b on H2k(S

3) increases with k. The smallest
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Figure 1. Smallest nonzero eigenvalues for k = 1, 3, 5, 7, 9.

eigenvalue of H2k−1(S
3) is plotted for 1 ≤ k ≤ 5 and 0 < |t | < 1 in Figure 1. It

is apparent that λmin,1 ≤ λmin,3 ≤ λmin,5 ≤ λmin,7 ≤ λmin,9, where λmin,k denotes
the smallest nonzero eigenvalue of �t

b on Hk(S
3). These initial numerical results

suggest that limk→∞ λmin,2k−1= 0 for 0< |t |< 1, which agrees with our final result.

4. Invariant subspaces of H2k−1(S
3) under � t

b

In this section we fix k ≥ 1 and work on H2k−1(S
3). As we have seen, �t

b can be
expanded in the following way:

�t
b =−(L+ t̄L)

1+ |t |2

(1− |t |2)2
(L+ tL)

=−h(LL+ |t |2LL+ tL2
+ t̄L2). (1)

This is because of the linearity of L and L. Now, we need the following property.

Lemma 4.1. If 〈 fi , f j 〉 = 0 and fi , f j ∈H0,2k−1(S
3), then 〈Lσ fi ,Lσ f j 〉 = 0 for

0≤ σ ≤ 2k− 1.

Proof. Choose fi and f j in H0,2k−1(S
3) and 〈 fi , f j 〉 = 0. We show that Lσ fi and

Lσ f j are orthogonal for 0≤ σ ≤ 2k−1. To do this we use induction on σ . Suppose
〈Lσ−1 fi ,Lσ−1 f j 〉 = 0, and we show that 〈Lσ fi ,Lσ f j 〉 = 0. Note that, the adjoint
of L is −L and

〈Lσ fi ,Lσ f j 〉 = 〈Lσ−1 fi ,−LLσ f j 〉

= 〈Lσ−1 fi ,−(LL)Lσ−1 f j 〉

= 〈Lσ−1 fi ,−�bLσ−1 f j 〉.

However,2 since Lσ−1 f j ∈Hσ−1,2k−1−σ+1(S
3), we know that

�bLσ−1 f j = (σ )(2k− σ − 2)Lσ−1 f j .

2For f ∈Hi, j (S
3), by counting degrees, we notice L f ∈Hi−1, j+1(S

3).
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Therefore,

〈Lσ−1 fi ,−�bLσ−1 f j 〉 = 〈Lσ−1 fi ,−(σ )(2k− σ − 2)Lσ−1 f j 〉

= −(σ )(2k− σ − 2)〈Lσ−1 fi ,Lσ−1 f j 〉 = 0

by our induction hypothesis as desired. �

With this, we note that if { f0, . . . , f2k−1} is an orthogonal basis for H0,2k−1(S
3),

then {Lσ f0, . . . ,Lσ f2k−1} is an orthogonal basis for Hσ,2k−1−σ (S
3). Now, we

define the following subspaces of H2k−1(S
3).

Definition 4.2. Suppose { f0, . . . , f2k−1} is an orthogonal basis for H0,2k−1(S
3).

Then we define

Vi = span{ fi ,L2 fi , . . . ,L2 j−2 fi , . . . ,L2k−2 fi },

Wi = span{L fi ,L3 fi , . . . ,L2 j−1 fi , . . . ,L2k−1 fi }.

Denote the basis elements for Vi by vi,1, . . . , vi,k and for Wi by wi,1, . . . , wi,k .
Since each bidegree space Hp,q(S

3) ⊆ H2k−1(S
3) has 2k elements, we have

2k Vi spaces and 2k Wi spaces. We now note the following fact.

Theorem 4.3.
⊕2k−1

i=0 Vi ⊕Wi =H2k−1(S
3).

Proof. By Proposition 2.4 and Lemma 4.1, we have

H2k−1(S
3)=

2k−1⊕
i=0

Hi,2k−1−i (S
3)=

2k−1⊕
i=0

Li f0⊕ · · ·⊕Li f2k−1.

Manipulating this, we have

H2k−1(S
3)=

2k−1⊕
i=0

fi ⊕L fi · · · ⊕L2k−1 fi

=

2k−1⊕
i=0

fi ⊕L2 fi ⊕ · · ·⊕L2k−2 fi ⊕L fi ⊕L3 fi ⊕ · · ·⊕L2k−1 fi

=

2k−1⊕
i=0

Vi ⊕Wi ,

which is our goal. �

The advantage of constructing these spaces in the first place is due to the following
fact.

Theorem 4.4. For 0≤ i ≤ 2k−1, the subspaces Vi and Wi are invariant under �t
b.



SPECTRUM OF THE KOHN LAPLACIAN ON THE ROSSI SPHERE 133

Proof. By (1), we have

�t
b =−h(LL+ |t |2LL+ tL2

+ t̄L2).

Since the fraction in front is a constant, we can ignore it and only consider the
expression in the parentheses. Let f ∈H0,2k−1(S

3), and define vσ = Lσ f to be a
basis element of either Vi or Wi , since they have the same form. We first note that
vσ ∈Hσ,2k−1−σ (S

3). Then by our expansion we have

�t
bvσ =−h(LLvσ + |t |2LLvσ + tL2vσ + t̄L2vσ ).

We already know LLvσ and LLvσ will simply be multiples of vσ , so we consider
L2vσ and L2vσ :

L2vσ = L2Lσ f = L[LL[Lσ−1 f ]]

= −(σ )(2k− σ)LL[Lσ−2 f ]

= (σ )(σ − 1)(2k+ 1− σ)(2k− σ)Lσ−2 f

= (σ )(σ − 1)(2k+ 1− σ)(2k− σ)vσ−2, (2a)

L2vσ = L2
[Lσ f ] = Lσ+2 f = vσ+2, (2b)

so we get multiples of vσ−2 and vσ+2. Relating this back to Vi and Wi , we see
that if σ = 2 j − 2, then L2vi, j is a multiple of vi, j−1, and L2vi, j is a multiple of
vi, j+1. If σ = 2 j − 1, we get a similar result for wi, j . So we indeed have that both
subspaces Vi and Wi are invariant under �t

b, and we are done. �

In light of this fact, we can consider �t
b not on the whole space L2(S3) or

H2k−1(S
3), but rather on these Vi and Wi spaces. In fact, we actually have a

representation of �t
b on these spaces with respect to the orthogonal bases for Vi

and Wi as in Definition 4.2.

Theorem 4.5. The matrix representation of �t
b on Vi and Wi is tridiagonal. That is,

m(�t
b)= h


d1 u1

−t̄ d2 u2

−t̄ d3
. . .

. . .
. . . uk−1

−t̄ dk

 ,
where on Vi

u j =−t · (2 j)(2 j − 1)(2k− 2 j)(2k− 1− 2 j),

d j = (2 j − 1)(2k+ 1− 2 j)+ |t |2 · (2 j − 2)(2k+ 2− 2 j),
and on Wi

u j =−t · (2 j + 1)(2 j)(2k− 2 j)(2k− 1− 2 j),

d j = (2 j)(2k− 2 j)+ |t |2 · (2 j − 1)(2k+ 1− 2 j).
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We note that the above definitions don’t depend on i ; in other words, each of
these matrices are the same on Vi and Wi , regardless of the choice of i .

Proof. Using (2a) and (2b), along with Theorem 2.6, we can entirely describe the
action of each piece of �t

b on a basis element vi, j or wi, j :

−LLvi, j = (2 j − 1)(2k+ 1− 2 j)vi, j ,

−LLwi, j = (2 j)(2k− 2 j)wi, j ,

−LLvi, j = (2 j − 2)(2k+ 2− 2 j)vi, j ,

−LLwi, j = (2 j − 1)(2k+ 1− 2 j)wi, j ,

−L2vi, j =−(2 j − 2)(2 j − 3)(2k+ 3− 2 j)(2k+ 2− 2 j)vi, j−1,

−L2wi, j =−(2 j − 1)(2 j − 2)(2k+ 2− 2 j)(2k+ 1− 2 j)wi, j−1,

−L2vi, j =−vi, j+1,

−L2wi, j =−wi, j+1.

By looking at it this way, we notice the tridiagonal structure. So with these obser-
vations, we can state that

�t
bvi, j = h

(
−t ·(2 j−2)(2 j−3)(2k+3−2 j)(2k+2−2 j)vi, j−1

+
(
(2 j−1)(2k+1−2 j)+|t |2 ·(2 j−2)(2k+2−2 j)

)
vi, j− t̄ ·vi, j+1

)
,

�t
bwi, j = h

(
−t ·(2 j−1)(2 j−2)(2k+2−2 j)(2k+1−2 j)wi, j−1

+
(
(2 j)(2k−2 j)+|t |2 ·(2 j−1)(2k−1−2 j)

)
wi, j− t̄ ·wi, j+1

)
.

Now that we have this formula, we can find m(�t
b) on Vi and Wi by computing

their effect on the basis vectors vi, j and wi, j : When we do this for Vi , we get

d j = (2 j − 1)(2k+ 1− 2 j)+ |t |2 · (2 j − 2)(2k+ 2− 2 j),

u j−1 =−t · (2 j − 2)(2 j − 3)(2k+ 3− 2 j)(2k+ 2− 2 j);
hence

u j =−t · (2 j)(2 j − 1)(2k− 2 j)(2k− 1− 2 j).

For Wi , we get

d j = (2 j)(2k− 2 j)+ |t |2 · (2 j − 1)(2k− 1− 2 j),

u j−1 =−t · (2 j − 1)(2 j − 2)(2k+ 2− 2 j)(2k+ 1− 2 j);
hence

u j =−t · (2 j + 1)(2 j)(2k− 2 j)(2k− 1− 2 j).

Finally, by factoring out h and simply substituting in each portion, we obtain the
matrix representations above. �
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An immediate consequence of this is that each Vi subspace contributes the same
set of eigenvalues to the spectrum of �t

b, and similarly for each Wi . Furthermore,
we note that the matrices are of rank k (by the tridiagonal structure it is at least of
rank k− 1 and by Proposition 5.6 the determinant is nonzero, hence rank k). Since
the choice of i does not change m(�t

b) on these spaces, we will fix an arbitrary i
and call the spaces V and W instead.

5. Bottom of the spectrum of � t
b

Now that we have a matrix representation for � t
b on these V and W spaces inside

H2k−1(S
3), we can begin to analyze their eigenvalues as k varies. First, we go over

some facts about tridiagonal matrices.

Proposition 5.1. Suppose A is a tridiagonal matrix,

A =


d1 u1

l1 d2 u2

l2 d3
. . .

. . .
. . . uk−1

lk−1 dk


and ui li > 0 for 1≤ i < k. Then A is similar to a symmetric tridiagonal matrix.

Proof. One can verify that if

S =


1
√

u1/l1
√

u1u2/(l1l2)
. . . √

u1 . . . uk−1/(l1 . . . lk−1)


then A = S−1 BS, where

B =


d1

√
u1l1

√
u1l1 d2

√
u2l2

√
u2l2 d3

. . .

. . .
. . .

√
uk−1lk−1

√
uk−1lk−1 dk

 .

Therefore, A is similar to a symmetric tridiagonal matrix. �

Another special property of tridiagonal matrices is the continuant.

Definition 5.2. Let A be a tridiagonal matrix, like the above. Then we define the
continuant of A to be a recursive sequence: f1= d1, and fi = di fi−1−ui−1li−1 fi−2,
where f0 = 1.
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The reason we define this is because det(A)= fk . In addition, if we define Ai

to mean the square submatrix of A formed by the first i rows and i columns, then
det(Ai )= fi .

With this background, we will now start analyzing � t
b on W.

To get bounds on the eigenvalues, we will invoke the Cauchy interlacing theorem;
see [Hwang 2004].

Theorem 5.3 (Cauchy interlacing theorem). Suppose E is an n × n Hermitian
matrix of rank n, and F is an (n−1)×(n−1) matrix minor of E. If the eigenvalues
of E are λ1 ≤ · · · ≤ λn and the eigenvalues of F are ν1 ≤ · · · ≤ νn−1, then the
eigenvalues of E and F interlace:

0< λ1 ≤ ν1 ≤ λ2 ≤ ν2 ≤ · · · ≤ λn−1 ≤ νn−1 ≤ λn.

Now, we can get an intermediate bound on the smallest eigenvalue.

Theorem 5.4. Suppose A is the Hermitian matrix of rank k, like the above, and
λ1 ≤ · · · ≤ λk are its eigenvalues. Then

λ1 ≤
det(A)

det(Ak−1)
,

where Ak−1 is A without the last row and column.

Proof. Since Ak−1 is a (k − 1)× (k − 1) matrix minor of A, we can apply the
Cauchy interlacing theorem. If the eigenvalues of Ak−1 are ν1 ≤ · · · ≤ νk−1, then

λ1 ≤ ν1 ≤ λ2 ≤ ν2 ≤ · · · ≤ λn−1 ≤ νn−1 ≤ λn.

Now, we claim that
λ1 det(Ak−1)≤ det(A).

To see why this is true, first observe that the determinant of a matrix is simply the
product of all its eigenvalues. In particular,

λ1 det(Ak−1)= λ1ν1 . . . νk−1.

But we can simply apply the Cauchy interlacing theorem: since ν1 ≤ λ2, ν2 ≤ λ3,
and so on, we get

λ1ν1 . . . νk−1 ≤ λ1λ2 . . . λk = det(A).

Now, dividing both sides by det Ak−1,

λ1 ≤
det(A)

det(Ak−1)
,

as desired. �
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Since m(�t
b) on W satisfies the conditions of Proposition 5.1, we find it is similar

to the Hermitian tridiagonal matrix

A=


a1+b1|t |2 c1|t |

c1|t | a2+b2|t |2 c2|t |
c2|t | a3+b3|t |2

. . .

. . .
. . . ck−1|t |

ck−1|t | ak+bk |t |2

 , (3)

where
ai = (2i)(2k− 2i),

bi = (2i − 1)(2k+ 1− 2i),

ci =
√
(2i + 1)(2i)(2k− 2i)(2k− 1− 2i).

(4)

Note that we are ignoring the constant h for now, which we will add back later. If
we can find det(Ai ), then by Theorem 5.4 we can get a closed form for the bound
on the smallest eigenvalue. With the following lemma, this is possible:

Lemma 5.5. ai bi+1 = c2
i .

Proof. This is easily verified using the formulas for ai , bi+1 and ci : ai= (2i)(2k−2i),
bi+1 = (2i + 1)(2k− 1− 2i), and c2

i = (2i + 1)(2i)(2k− 2i)(2k− 1− 2i). �

Proposition 5.6. The determinant of Ai is

det(Ai )= a1a2 . . . ai−1ai

+ b1a2 . . . ai−1ai |t |2

...

+ b1b2 . . . bi−1ai |t |2i−2

+ b1b2 . . . bi−1bi |t |2i .

In each row, we replace a particular a j with b j , and multiply by |t |2. Note that if
i = k, then ak = 0 and all terms but the last term are 0.

Proof. We will prove this using strong induction on i . We start with the base case
i = 1, where det(A1)= a1+ b1|t |2, which does indeed match up with our formula.
Next we consider the case i = 2, where det(A2)= (a1+b1|t |2)(a2+b2|t |2)−c2

1|t |
2.

By Lemma 5.5 we obtain the desired formula.
Now, assume the formula works for Ai−1 and Ai . We need to show that the

formula works for Ai+1. Using the formula for the continuant, we get

det(Ai+1)= (ai+1+ bi+1|t |2) det(Ai )− c2
i |t |

2 det(Ai−1).
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By Lemma 5.5,

det(Ai+1)= (ai+1+ bi+1|t |2) det(Ai )− ai bi+1|t |2 det(Ai−1).

Now, using our induction hypothesis,

det(Ai+1)

= (ai+1+bi+1|t |2)(a1a2 · · ·ai+b1a2 · · ·ai |t |2+·· ·+b1b2 · · ·bi |t |2i )

−ai bi+1|t |2(a1a2 · · ·ai−1+b1a2 · · ·ai−1|t |2+·· ·+b1b2 · · ·bi−1|t |2i−2)

= a1a2 · · ·ai+1+b1a2 · · ·ai+1|t |2+·· ·+b1b2 · · ·bi ai+1|t |2i
+a1a2 · · ·ai bi+1|t |2

+b1a2 · · ·ai bi+1|t |4+·· ·+b1b2 · · ·bi−1ai bi+1|t |2i+2
+b1b2 · · ·bi+1|t |2i+2

−a1a2 · · ·ai bi+1|t |2−b1a2 · · ·ai bi+1|t |4−·· ·−b1b2 · · ·bi−1ai bi+1|t |2i+2

= a1a2 · · ·ai+1+b1a2 · · ·ai+1|t |2+·· ·+b1b2 · · ·bi ai+1|t |2i
+b1b2 · · ·bi+1|t |2i+2,

which is the formula for Ai+1, and we are done. �

With this knowledge, we are finally able to prove our main result.

Theorem 5.7. 0 ∈ essspec(�t
b).

Proof. By Proposition 5.1, we have that on W in H2k−1(S
3) the matrix m(�t

b) is
similar to the matrix A given in (3)–(4). Now, by Theorem 5.4 we know

λmin ≤
det(A)

det(Ak−1)
.

Recall that Ak−1 denotes the submatrix formed by deleting the last row and col-
umn of the k × k matrix A. To show 0 ∈ essspec(�t

b), we want to show that
det(A)/ det(Ak−1)→ 0 as k→∞. For this purpose we find an upper bound for
det(A)/ det(Ak−1) and show that this converges to 0. Notice that Proposition 5.6
implies

det(A)
det(Ak−1)

= h
b1b2 · · ·bk−1bk |t |2k

a1a2 · · ·ak−1+b1a2 · · ·ak−1|t |2+b1b2 · · ·ak−1|t |4+· · ·+b1b2 · · ·bk−1|t |2k−2

≤ h
b1b2 · · ·bk−1bk |t |2k

a1a2 · · ·ak−1
, (5)

since, a j , b j , and |t |> 0. Now using the formulas for a j and b j , notice that (5) can
be written as

h(2k− 1)|t |2k
k−1∏
j=1

(2 j + 1)(2k− 2 j − 1)
(2 j)(2k− 2 j)

.
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However, we know that for all k and 1≤ j ≤ k− 1,
(2k− 2 j − 1)
(2k− 2 j)

< 1,

and so,

h(2k− 1)|t |2k
k−1∏
j=1

(2 j + 1)(2k− 2 j − 1)
(2 j)(2k− 2 j)

≤ h(2k− 1)|t |2k
k−1∏
j=1

(2 j + 1)
(2 j)

= h(2k− 1)|t |2k
k−1∏
j=1

1+
1

2 j
.

Furthermore, we have

h(2k− 1)|t |2k
k−1∏
j=1

1+
1

2 j
≤ h(2k− 1)|t |2k exp

( k−1∑
j=1

1
2 j

)
.

Note that
k−1∑
j=1

1
2 j
≤

1
2 ln k+ 1,

so our expression becomes
det(A)

det(Ak−1)
≤ h(2k− 1)|t |2k exp

(
1+ 1

2 ln k
)
= eh(2k− 1)

√
k |t |2k

and our problem reduces to showing that limk→∞ eh(2k− 1)
√

k|t |2k
= 0. We note

that h is a constant and |t |< 1; therefore, by L’Hospital’s rule the last expression
indeed goes to 0.

Finally, we have,

0≤ lim
k→∞

λmin ≤ lim
k→∞

det(A)
det(Ak−1)

≤ lim
k→∞

eh(2k− 1)
√

k |t |2k
= 0,

and so λmin→ 0. Hence 0 ∈ essspec(�t
b). �

We note that by the discussion in the introduction, this means that the CR-
manifold (Lt ,S3) is not embeddable into any CN.
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