
inv lve
a journal of mathematics

msp

Lights Out for graphs related to
one another by constructions

Laura E. Ballard, Erica L. Budge and Darin R. Stephenson

2019 vol. 12, no. 2





msp
INVOLVE 12:2 (2019)

dx.doi.org/10.2140/involve.2019.12.181

Lights Out for graphs related to
one another by constructions

Laura E. Ballard, Erica L. Budge and Darin R. Stephenson

(Communicated by Kenneth S. Berenhaut)

The Lights Out problem on graphs, in which each vertex of the graph is in one of
two states (“on” or “off”), has been investigated from a variety of perspectives
over the last several decades, including parity domination, cellular automata, and
harmonic functions on graphs. We consider a variant of the Lights Out problem
in which the possible states for each vertex are indexed by the integers modulo k.
We examine the space of “null patterns” (i.e., harmonic functions) on graphs, and
use this as a way to prove theorems about Lights Out on graphs that are related to
one another by two main constructions.

1. Introduction

In the classical version of the Lights Out puzzle, each vertex of a finite graph is
either “on” or “off”. By “pressing” a vertex, the player toggles the state of that
vertex and all adjacent vertices. The goal is to turn off the lights by pressing the
correct sequence of vertices. While the winnable configurations on any particular
graph can be characterized using ordinary linear algebra over Z2, see [Anderson
and Feil 1998], this puzzle has deep connections to various areas of combinatorics,
including parity domination [Amin and Slater 1996; Amin et al. 2002], cellular
automata [Sutner 1990], and harmonic functions on graphs [Zaidenberg 2008].

The generalized Lights Out puzzle can be described as follows. Throughout this
paper, the term graph will mean a finite graph without multiple edges or loops.
Let G = (V, E) be a graph with vertex set V and edge set E , and let k be a prime
number. A state on G is a function s : V → Zk . By fixing an ordering on V, we
may regard a state s as a column vector in Zn

k , where n = |V |. We will denote the
zero state by E0. For any vertex v ∈ V, we define the closed neighborhood of v as

X (v)= {v} ∪ {u ∈ V : (u, v) ∈ E}.
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Given v ∈ V, there is an associated state mv defined by

mv(u)=
{

1 u ∈ X (v),
0 u 6∈ X (v).

We think of the states mv as “moves” in the Lights Out puzzle. Adding state mv

to state s in Zn
k corresponds to the action of “pressing” vertex v. That is, pressing

vertex v increments the state of v and every vertex adjacent to v by 1 in Zk . The
goal in the puzzle is to convert an initial state s into the zero state by adding a
sequence of states of the form mv . For other recent work on this generalized Lights
Out problem, see [Edwards et al. 2010; Giffen and Parker 2013; Gravier et al. 2003;
Hunziker et al. 2004; Zaidenberg 2009].

It is immediately apparent that the ordering of the vertices in the solution sequence
is unimportant; we only need to keep track of the number of times each vertex is
pressed. Therefore, a pattern on G is a function p : V → Zk where we interpret
p(v) as the number of times vertex v is pressed. Let V = {v1, . . . , vn}. Given an
initial state s, we call p a winning pattern for s if

s+
n∑

i=1

p(vi )mvi =
E0.

One goal is to determine which initial states on G have associated winning patterns.
Much of our study involves rephrasing the Lights Out puzzle in terms of linear

algebra, which is introduced for the basic Z2 puzzle on grids in [Anderson and
Feil 1998]. Let A = A(G) be the adjacency matrix of G based on the ordering
V = {v1, . . . , vn}. The matrix N = N (G)= A(G)+ In is called the neighborhood
matrix of G. We use CSk(N ), RSk(N ), and NSk(N ) to denote the column space,
row space, and null space of N over Zk , respectively. The numbers rank(N ) and
null(N ) will always be computed over Zk , and null(N )+ rank(N )= n.

We note that, for any vertex vi ∈ V, the vector mvi is the same as the i-th column
of N. Therefore, for any pattern p on G, we have

n∑
i=1

p(vi )mvi = N p,

where p is considered as a column vector in Zn
k . Thus, p is a winning pattern for s

if and only if N p=−s, and s has a winning pattern if and only if s ∈ CSk(N ). A
state s on G will therefore be called winnable if and only if s ∈ CSk(N ). Applying
a pattern in NSk(N ) to any initial configuration leaves the configuration unchanged.
For this reason, we will refer to elements of NSk(N ) as null patterns on G. Since
N is a symmetric matrix, it follows that CSk(N ) can be identified with RSk(N ),
the orthogonal complement of NSk(N ). A graph G will be called always winnable
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over Zk if every initial configuration is winnable. A graph is always winnable over
Zk if and only if rank(N )= n, or, equivalently, det(N ) 6= 0 (mod k).

Our overall goal is to study winnable states by determining null patterns for
various families of graphs. To do this, we develop tools which tell us what happens
to these spaces when graphs are combined with one another. In Section 2, we define
two main operations on graphs, the vertex join and the edge join. Given graphs
G1, . . . ,Gm and a chosen vertex vi ∈ V (Gi ) for each i , the vertex join H is the
disjoint union of G1, . . . ,Gm with all of the vertices vi identified to a single vertex.
Theorem 2.14 shows how the space of null patterns on H is related to the spaces
of null patterns on G1, . . . ,Gm . Given graphs G1 and G2 with chosen vertices
v ∈ V (G1) and w ∈ V (G2) we can form the edge join L of G1 and G2 by simply
adding edge (v,w) to the disjoint union of G1 and G2. Theorem 2.18 shows how
the space of null patterns on L relates to the spaces of null patterns on G1 and G2.
Section 3 explores applications of these results.

2. Graph constructions and main results

We now introduce two main constructions, the vertex join and the edge join. Each
of these constructions gives a way of producing a new graph out of two or more
existing graphs. We will describe how the set of null patterns for the newly formed
graph is related to the sets of null patterns for the component graphs.

Both the vertex join construction and the edge join construction rely on choosing
a vertex v in each of the graphs G being joined as a location at which to join. The
characterization of null patterns on the joined graph is related not only to the space
of null patterns on G but also to the space of null patterns on the graph G − v, a
graph formed by removing vertex v and all incident edges from G. We introduce
the notion of null-difference to describe how the nullity of N (G) relates to the
nullity of N (G− v).

Definition 2.1. The null-difference at a vertex v in a graph G will be defined by

ndG(v)= null(N (G− v))− null(N (G)).

The null-difference at a vertex v may depend on the prime k. Indeed, we will show
in Section 3 that this is the case for cycles. Since k is considered to be a fixed prime,
we will use the notation ndG(v) without reference to k.

Proposition 2.2. Let G be a graph. For all v ∈ V (G), we have ndG(v)∈ {−1, 0, 1}.

Proof. Let n = |V (G)|. The matrix N (G − v) is formed by deleting the row
and column of N (G) corresponding to v. Let p = null(N (G)), which means that
rank(N (G)) = n − p. Let N1 be the matrix formed by deleting the column of
N (G) corresponding to v. Then either (a) rank(N1) = rank(N (G)) = n− p and
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null(N1)= p−1 or (b) rank(N1)= rank(N (G))−1= n− p−1 and null(N1)= p.
The matrix N (G−v) is obtained by deleting the row of N1 corresponding to v. This
will cause the nullity of N1 to stay the same or go up by 1. Since, as stated above,
null(N1) ∈ {p− 1, p}, this implies null(N (G − v)) ∈ {p− 1, p, p+ 1}. Because
ndG(v)= null(N (G− v))− p, this proves the result. �

The three possible values for ndG(v) each tell us something very specific about
Lights Out winnability and null patterns in relation to the vertex v. The next series
of results will look at the cases where ndG(v) equals −1, 0, and 1 separately and
explain what information is determined in each case.

In order to do this, we first establish some notation based on a graph G and a
chosen vertex v ∈ V (G). Let ev be the state on G such that ev(v)= 1 and ev(w)= 0
if w 6= v. Let fv be the Zk-linear transformation which extends a pattern on G−v to
a pattern on G that is zero at v. Let rv be the Zk-linear transformation that restricts
a pattern on G to a pattern on G − v. Because we are interested in determining
which null patterns on G− v extend to G, the following lemma will be useful.

Lemma 2.3. Let G be a graph, and let v ∈ V (G). Suppose p is a null pattern on
G− v. The pattern fv( p) is either a null pattern on G or a winning pattern on G
for the state λev for some λ ∈ Z∗k .

Proof. The facts that p is null on G−v and that fv( p)(v)=0 imply that N (G) fv( p)
is zero except possibly in the position corresponding to v. Thus, N (G) fv( p)=µev
for some µ ∈ Zk . If µ= 0, then fv( p) is a null pattern on G. If µ 6= 0, then fv( p)
is a winning pattern for λev, where λ=−µ (mod k). �

We first consider the case in which ndG(v)=−1.

Proposition 2.4. Let G be a graph, and let v ∈ V (G). The following are equivalent:

(1) ndG(v)=−1.

(2) The state ev is not winnable on G.

(3) There exists p ∈ NSk(N (G)) with p(v) 6= 0.

(4) The function fv restricts to an injective linear transformation from the space
NSk(N (G− v)) to NSk(N (G)), and the restriction of fv :NSk(N (G− v))→
NSk(N (G)) has 1-dimensional cokernel.

Proof. (1)⇒ (3): We prove the contrapositive. If p(v)= 0 for all p ∈NSk(N (G))
then every null pattern on G restricts to a null pattern on G− v. This would imply

null(N (G− v))≥ null(N (G)),

giving ndG(v) ∈ {0, 1}.
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(2)⇔ (3): This equivalence follows immediately from the facts that the winnable
states on G are precisely the elements of CSk(N (G)), that CSk(N (G)) is the
orthogonal complement of NSk(N (G)), and that p(v)= p · ev.
(2), (3)⇒ (4): Suppose that ev is not winnable on G. This implies that λev is not
winnable on G for all λ ∈ Z∗k . By Lemma 2.3, if p is a null pattern on G− v, then
fv( p) is a null pattern on G. This ensures that the restriction fv :NSk(N (G−v))→
NSk(N (G)) is well-defined. Clearly, fv is injective. Now by (3), there exists a
null pattern q on G such that q(v) 6= 0, so fv cannot be surjective. Hence, by
Proposition 2.2, the restriction of fv has 1-dimensional cokernel.

(4)⇒ (1): This is immediate from the definition of ndG(v). �

Corollary 2.5. Let G be a graph, and let v ∈ V (G). Then ndG(v) ∈ {0, 1} if and
only if p(v)= 0 for every p ∈ NSk(N (G)).

Proof. This follows directly from the equivalence of (1) and (3) in Proposition 2.4. �

Proposition 2.4 also gives the following characterization of always winnable
graphs.

Corollary 2.6. Let G be a graph. Then G is always winnable over Zk if and only if
ndG(v) ∈ {0, 1} for all v ∈ V (G).

Proof. If G is always winnable, we have null(N (G)) = 0. Therefore, for all
v ∈ V (G), we have null(N (G− v))≥ null(N (G)). This implies ndG(v) ∈ {0, 1}.

Conversely, if ndG(v) ∈ {0, 1} for all v ∈ V (G), then by Proposition 2.4, the
state ev is winnable on G for all v ∈ V (G). This implies G is always winnable. �

Because it will be useful later, we also include the following consequence of
Proposition 2.4.

Corollary 2.7. Let G be a graph, and let v ∈ V (G). If ndG(v) = −1, then there
exists q ∈ NSk(N (G)) such that q(v)= 1.

Proof. Since ndG(v)=−1, the equivalence of (1) and (3) in Proposition 2.4 gives a
null pattern p on G with p(v) 6= 0. Then q = p(v)−1 p is a null pattern on G with
q(v)= 1. �

Next, we consider the case in which v is a vertex in G with ndG(v)= 0.

Proposition 2.8. Let G be a graph and let v ∈ V (G). The following are equivalent:

(1) ndG(v)= 0.

(2) For all λ ∈ Z∗k , the state λev is winnable on G, and any winning pattern p for
λev satisfies p(v) 6= 0.

(3) The functions rv and fv restrict to give bijective linear transformations between
NSk(N (G)) and NSk(N (G − v)), and these restrictions are inverses of one
another.
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Proof. (1)⇒ (2): Suppose that ndG(v)= 0. By Corollary 2.5, q(v)= 0 for every
q ∈NSk(N (G)). This implies that λev ⊥ q for all q ∈NSk(N (G)). Since the space
of winnable states is the orthogonal complement of the space of null patterns, λev
is winnable for all λ ∈ Z∗k .

Now suppose that p is a winning pattern for λev for some λ∈Z∗k with p(v)=0. It
follows that rv( p) is null, but p is not null on G. For every q∈NSk(N (G)), q(v)=0
and thus rv(q) is always a null pattern on G−v. Notice that rv( p) must be distinct
from rv(q) for all q ∈ NSk(N (G)), since the outcome upon applying fv to these
patterns is different. This implies null(N (G− v)) > null(N (G)), contradicting (1).
Thus p(v) 6= 0.

(2)⇒ (3): Suppose (2) is true. Since a pattern q∈NSk(N (G))must be orthogonal to
every winnable pattern, q(v)= 0 in all null patterns q on G. If any q ∈NSk(N (G))
is restricted to G−v, the result is a null pattern on G−v, and therefore, rv restricts
to give a well-defined function from NSk(N (G)) to NSk(N (G− v)).

Clearly, rv is injective. Let r ∈ NSk(N (G− v)). Lemma 2.3 implies that fv(r)
is either a null pattern on G or a pattern that wins λev for some λ ∈ Z∗k . The latter
is impossible by (2), since fv(r)(v)= 0. Thus, fv(r) ∈ NSk(N (G)). This implies
that the restriction of rv is an isomorphism from NSk(N (G)) to NSk(N (G − v))
with inverse given by fv.

(3)⇒ (1): This is immediate from the definition of ndG(v). �

Finally, we consider the case in which v is a vertex in G with ndG(v)= 1. We
will make use of the following fact from linear algebra.

Remark 2.9. Let G be a graph, and let s be a state on G. If p is a winning pattern
for s, then the full set of winning patterns for s is precisely p+NSk(N (G)). Indeed,
since p is a solution to N (G)x = −s, the full solution set to N (G)x = −s is the
coset of NSk(N (G)) determined by p.

Proposition 2.10. Let G be a graph, and let v ∈ V (G). Then the following are
equivalent:

(1) ndG(v)= 1.

(2) For all λ ∈ Z∗k , the state λev is winnable on G, and any winning pattern p for
λev satisfies p(v)= 0.

(3) The function rv induces an injective linear transformation from NSk(N (G)) to
NSk(N (G − v)), and the restriction rv : NSk(N (G))→ NSk(N (G − v)) has
1-dimensional cokernel.

Proof. (1)⇒ (2): Suppose that ndG(v)= 1. By Corollary 2.5, every null pattern
on G is zero at v. Therefore, as in the first part of the proof of Proposition 2.8,
the state λev is winnable on G for all λ ∈ Z∗k . Suppose there exists µ ∈ Z∗k and a
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winning pattern p for µev with p(v) 6= 0. By Remark 2.9, the set of all winning
patterns for µev is p+NSk(N (G)). From this, we see that for any λ ∈ Z∗k , the set
of all winning patterns for λev is λµ−1 p+NSk(N (G)) The facts that p(v) 6= 0
and that every element of NSk(N (G)) is zero at v shows that every element of
λµ−1 p + NSk(N (G)) (i.e., every winning pattern for λev) is nonzero at v. By
Proposition 2.8, this would imply ndG(v) = 0, contradicting (1). Therefore, any
winning pattern p for µev satisfies p(v)= 0.

(2)⇒ (3): Assume (2) is true. Since a null pattern on G has to be perpendicular
to every winnable pattern, q(v)= 0 for all null patterns q on G. Therefore, a null
pattern on G restricted to G − v is still null. Thus, the restriction of rv gives a
well-defined linear transformation NSk(N (G))→ NSk(N (G− v)).

Clearly, the restriction of rv is injective. If the restriction of rv were also surjective,
then ndG(v)= 0, and this contradicts (2) by Proposition 2.8. The cokernel of the
restriction of rv to NSk(N (G)) is therefore 1-dimensional by Proposition 2.2.

(3)⇒ (1): This is immediate from the definition of ndG(v). �

Later in this section, we will formalize the notions of the vertex join of several
graphs and the edge join of two graphs mentioned in the Introduction. Our main
theorems explain how to determine the dimension of the space of null patterns for
the newly formed graph in terms of the dimensions of the spaces of null patterns for
all of the graphs being joined together. We do this by using the null-differences at
each vertex of the component graphs where the joining will take place to determine
the null-difference of the resulting vertex or vertices in the joined graph.

For vertices in the component graphs with null-difference 0, the null-difference
itself does not convey sufficient information to determine the behavior of the
resulting vertex in the joined graph. We therefore introduce an extension of the
null-difference for each vertex v such that ndG(v)= 0.

Definition 2.11. Let G be a graph and suppose v ∈ V (G) with ndG(v) = 0. By
Proposition 2.8, the state ev has a winning pattern q, and q(v) ∈ Z∗k . Let

λG(v)=−q(v)−1
∈ Z∗k .

Corollary 2.5 and Remark 2.9 combine to show that q(v) (and hence λG(v)) is
independent of the winning pattern q chosen. For vertices of null-difference 0, we
will write ndG(v)= 0(λ) to indicate that ndG(v)= 0 and λG(v)= λ.

We include the following as an alternate way to view the numbers λG(v), because
it will be helpful when we prove Theorem 2.14.

Lemma 2.12. Let G be a graph and suppose v ∈ V (G) with ndG(v) = 0. There
exists a pattern p on G such that p(v)= 1 and p wins µev for some µ ∈ Z∗k . For
any such p, we have µ=−λG(v).
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G1 G3

G2

v1 v3v2

H

v

Figure 1. The vertex join H of the graphs G1, G2, and G3 at the
vertices v1, v2 and v3.

Proof. By Proposition 2.8, there exists a pattern r on G such that r(v) 6= 0 and r
wins λev for some λ ∈ Z∗k . Then p= r(v)−1r satisfies p(v)= 1, and p wins µev
for µ= r(v)−1λ.

Since p wins µev, we conclude that q = µ−1 p wins ev. Then

λG(v)=−q(v)−1
=−((µ−1 p)(v))−1

=−µ p(v)−1
=−µ. �

In the remainder of this section, we define the operations of vertex join and edge
join, and give theorems that determine the dimensions of the null spaces of the result-
ing graphs if the null-differences on the vertices of the component graphs are known.

Definition 2.13 (vertex join). Let m ∈ Z with m ≥ 2. For 1 ≤ i ≤ m, let Gi be a
graph with vi ∈ V (Gi ). The graph H = VJ({Gi , vi }) is defined by starting with
the disjoint union

⋃
Gi and identifying {v1, v2, . . . , vm} to a single vertex v. The

graph H is called the vertex join of the graphs G1, . . . ,Gm at the chosen vertices vi ;
see Figure 1.

Theorem 2.14. Let Gi be graphs for 1 ≤ i ≤ m, and let vi ∈ V (Gi ). Let H =
VJ({Gi , vi }):

(1) ndH (v)= 1 if and only if ndGi (vi )= 1 for at least one i .

(2) ndH (v) ∈ {0,−1} if and only if ndGi (vi ) ∈ {0,−1} for all i . Moreover, in this
case, ndH (v)=−1 if and only if

∑
λGi (vi )= m− 1 (mod k), where the sum

is taken over all vertices vi such that ndGi (vi )= 0.

(3) In the case that ndH (v)= 0, we have

λH (v)= 1−m+
∑

λGi (vi ) (mod k),

where, again, the sum is taken over all vertices vi such that ndGi (vi )= 0.

Once ndH (v) is known, null(N (H)) can be computed as

null(N (H))=− ndH (v)+

m∑
i=1

(null(N (Gi ))+ ndGi (vi )).
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Proof. (1,⇒) Suppose that ndG j (vj )= 1 for some j . By Proposition 2.10, there is a
pattern p on G j that wins evj with p(vj )= 0. Extend p to H such that p(w)= 0 for
all vertices w ∈ V (H) not originally coming from G j . Then p is a winning pattern
on H for ev with p(v)= 0. It now follows from Proposition 2.4 that ndH (v) 6= −1,
and then Corollary 2.5 implies that every null pattern on H is zero at v. As in
the first paragraph of the proof of Proposition 2.10, Remark 2.9 now implies that,
for every µ ∈ Z∗k , the full set of winning patterns for a state of the form µev is
µ p+NSk(N (H)). Thus, for every µ ∈ Z∗k , every winning pattern q on H for µev
also satisfies q(v)= 0. By Proposition 2.10, we have ndH (v)= 1.

(1,⇐) Suppose that ndH (v)= 1. For the purposes of contradiction, suppose that
ndGi (vi ) ∈ {0,−1} for all i . Proposition 2.10 implies that ev is winnable on H, and
winning patterns p for ev on H satisfy p(v)= 0. If p is any such pattern, then for
each i , p restricts to a null pattern on Gi−vi . By Lemma 2.3, for each i , p restricts
to a pattern on Gi that is either null or wins µevi for some µ∈Z∗k . We claim that the
latter of these two possibilities cannot happen. If ndGi (vi )=−1, Proposition 2.4
implies that, for every µ∈Z∗k , the state µevi is not winnable on Gi . If ndGi (vi )= 0,
Proposition 2.8 implies that, for all µ ∈ Z∗k , the state µevi is not winnable on Gi

using a pattern with p(vi ) = 0. Thus, p restricts to a null pattern on Gi for all i .
However, this shows that p ∈NSk(N (H)), contradicting the fact that p was chosen
as a winning pattern for ev on H. This shows that ndGi (vi )= 1 for at least one i .

(2) The first biconditional statement in (2) follows immediately from (1) and
Proposition 2.2. We prove the second biconditional statement in (2).

(2, second statement⇒) Suppose that ndH (v)=−1. By Corollary 2.7, there exists
a null pattern p on H with p(v) = 1. Let pi be the pattern on Gi given by the
restriction of p.

For all i such that ndGi (vi )=−1, Proposition 2.4 implies that nonzero multiples
of evi are not winnable on Gi . Therefore, pi is a null pattern on Gi by Lemma 2.3.

For all i such that ndGi (vi )=0, Corollary 2.5 implies that every null pattern on Gi

is zero at vi . This shows that pi is not a null pattern on Gi . Lemma 2.3 now shows
that pi is a winning pattern for µevi for some µ∈Z∗k . Lemma 2.12 now implies µ=
−λGi (vi ). Thus, if ndGi (vi )= 0, then pi is a winning pattern on Gi for−λGi (vi )evi .

Since pi (vi )= 1 for all i , the contribution of p from all vertices in Gi − vi to
the state at vi must be equal to λGi (vi )− 1 if ndGi (vi ) = 0, and equal to −1 if
ndGi (vi )=−1. Because p ∈ NSk(N (H)), we must have

1+
∑

{i :ndGi (vi )=0}

[(λGi (vi )− 1)] +
∑

{i :ndGi (vi )=−1}

(−1)= 0 (mod k),

which implies ∑
{i :ndGi (vi )=0}

λGi (vi )= m− 1 (mod k).
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(2, second statement⇐) Suppose that
∑
{i :ndGi (vi )=0} λGi (vi )= m− 1 (mod k). To

show that ndH (v)=−1, we construct a null pattern p on H that has p(v)= 1.
For each i such that ndGi (vi )=−1, Corollary 2.7 implies that there exists a null

pattern pi on Gi with pi (vi )= 1. For each i such that ndGi (vi )= 0, Lemma 2.12
implies that there exists a pattern pi on Gi that is a winning pattern for −λGi (vi )evi

with pi (vi )= 1.
Since all of the patterns pi have pi (vi )= 1, they glue together to form a pattern p

on H, which we will show is null. By construction, p is a winning pattern for
µev on H for some µ ∈ Zk . We need to show that µ= 0. By adding up all of the
contributions from the different Gi , we see that

−µ=1+
∑

{i :ndGi (vi )=0}

[(λGi (vi )−1)]+
∑

{i :ndGi (vi )=−1}

(−1)=1+(m−1)−m=0 (mod k).

Thus, p ∈NSk(N (H)). Since p(v) 6= 0, we have ndH (v)=−1 by Proposition 2.4.

(3) Suppose that ndH (v)= 0. By (2), we must have ndGi (vi )∈ {0,−1} for all i and∑
{i :ndGi (vi )=0}

λGi (vi ) 6= m− 1 (mod k).

If ndGi (vi ) = −1, then Corollary 2.7 shows that there is a null pattern pi on Gi

with pi (vi )= 1. If ndGi (vi )= 0, then Lemma 2.12 implies that there is a pattern pi

on Gi such that pi (vi )= 1 and pi wins −λGi (vi )evi . Gluing these patterns together
gives a pattern p on H with p(v) = 1. Again by Lemma 2.12, p is a winning
pattern on H for −λH (v)ev . Adding up the contributions from all of the patterns pi

being glued together gives

λH (v)= 1+
∑

{i :ndGi (vi )=0}

[(λGi (vi )− 1)] +
∑

{i :ndGi (vi )=−1}

(−1)

= 1−m+
∑

{i :ndGi (vi )=0}

λGi (vi ). �

Corollary 2.15. Consider two always winnable graphs G1 and G2 over Zk , and let

H = VJ({G1, v2}, {G2, v2}).

Then H is always winnable if and only if ndH (v)= ndG1(v1)+ ndG2(v2). This can
happen in only the following two ways:

(1) One of the ndGi (vi ) is 1 and the other is 0, in which case ndH (v)= 1.

(2) ndG1(v1)= 0(λ) and ndG2(v2)= 0(µ) with λ+µ 6= 1 (mod k), in which case
ndH (v)= 0(λ+µ− 1).
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Proof. This is immediate from the m = 2 case of Theorem 2.14. �

One application of Theorem 2.14 is to determine the dimension of the space
of null patterns (and hence, the space of winnable patterns) when P2 is attached
to a graph by identifying one of the vertices of P2 with a chosen vertex of the
graph.

Corollary 2.16. Let G1 be a graph and let v ∈ V (G1). Let P2 be a path with two
vertices v′ and w′. Let

G ′1 = VJ({G1, v}, {P2, v
′
}).

Let d = null(N (G1)). Then null(N (G ′1)) is given by the following table:

ndG1(v) null(N (G ′1)) ndG ′1(v) ndG ′1(w
′)

1 d 1 0(1)
−1 d − 1 0(−1) 1

0(λ), λ 6= 1 d 0(λ− 1) 0(1− λ−1)

0(1) d + 1 −1 −1

Proof. For all k we have

ndP2(v
′)= ndP2(w

′)=−1.

In forming G ′1, there are three main cases to consider depending on whether ndG1(v)

is 1, 0(λ), or −1. For ease of notation, we will refer to the identified vertex v′ = v
of G ′1 as v.

In every case, the graph G ′1 − v is the disjoint union of G1 − v and a single
vertex w′. A null pattern p on G ′1− v must restrict to a null pattern on G1− v and
have p(w′)= 0. Therefore,

null(N (G ′1− v))= null(N (G1− v)).

Case 1: ndG1(v)= 1⇒ [ndG ′1(v)= 1 and ndG ′1(w
′)= 0(1)].

Suppose ndG1(v)= 1. Then by Theorem 2.14, ndG ′1(v)= 1, showing that

null(N (G ′1))= null(N (G ′1− v))− 1

= null(N (G1− v))− 1

= null(N (G1))= d.

Then ndG ′1(w
′) = 0. To win ew′ on G ′1, we press w′ exactly k − 1 times, re-

lying on the fact that the pattern (k − 1)ev can be won on G1 without press-
ing v (by Proposition 2.10). Therefore, λG ′1(w

′)=−(k− 1)−1
= 1, showing that

ndG ′1(w
′)= 0(1).
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Case 2: ndG1(v)=−1⇒ [ndG ′1(v)= 0(−1) and ndG ′1(w
′)= 1].

Suppose ndG1(v)=−1. Then by Theorem 2.14, ndG ′1(v)= 0(−1), showing that

null(N (G ′1))= null(N (G ′1− v))

= null(N (G1− v))

= null(N (G1))− 1= d − 1.

Then ndG ′1(w
′)= 1.

Case 3a: ndG1(v)= 0(λ), where (λ 6= 1)⇒ [ndG ′1(v)= 0(λ− 1) and ndG ′1(w
′)=

0(1− λ−1)].
Suppose ndG1(v)= 0(λ), where λ 6= 1. By Theorem 2.14, ndG ′1(v)= 0(λ− 1),

showing that
null(N (G ′1))= null(N (G ′1− v))

= null(N (G1− v))

= null(N (G1))= d.

Then ndG ′1(w
′)= 0. We know from Proposition 2.8 that ew′ is winnable on G ′1. Let

p be a pattern on G ′1 that wins ew′ , and suppose p(w′)= t . Then p, when restricted
to G1, gives a pattern on G1 that wins tev with p(v)=−t − 1. Since v is pressed
−λ−1 times in winning ev on G1, it follows that v is pressed−tλ−1 times in winning
tev on G1. Thus −tλ−1

=−t−1. Solving for t gives t = (λ−1
−1)−1. This implies

λG ′1(w
′)=−t−1

= 1− λ−1.

Thus ndG ′1(w
′)= 0(1− λ−1).

Case 3b: ndG1(v)= 0(1)⇒ [ndG ′1(v)=−1 and ndG ′1(w
′)=−1].

Suppose ndG1(v)= 0(1). Then by Theorem 2.14, ndG ′1(v)=−1, showing that

null(N (G ′1))= null(N (G ′1− v))+ 1

= null(N (G1− v))+ 1

= null(N (G1))+ 1= d + 1.

Then ndG ′1(w
′)=−1. �

As another application of these results, we determine the dimension of the space
of null patterns for joining two graphs via a new edge.

Definition 2.17 (edge join). Let G1 and G2 be graphs with v ∈ V (G1) and w ∈
V (G2). Let H = EJ({G1, v}, {G2, w}) be the graph with V (H)= V (G1)∪V (G2)

and E(H)= E(G1)∪ E(G2)∪ {(v,w)}. The graph H will be called the edge join
of G1 and G2 at v and w; see Figure 2.
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G2G1

v w

H

Figure 2. The edge join H of the graphs G1 and G2.

Theorem 2.18. Let G1 and G2 be graphs with v ∈ V (G1) and w ∈ V (G2). Let
di = null(N (Gi )), and let H = EJ({G1, v}, {G2, w}). Then null(N (H)) is given by
the following table:

ndG1(v) ndG2(w) null(N (H))

1 any d1+ d2

−1 any d1+ d2+ ndG2(w)− 1
0(λ) 0(µ) d1+ d2, µ 6= λ−1

0(λ) 0(µ) d1+ d2+ 1, µ= λ−1

Cases not covered above can be handled by symmetry.

Proof. Let P2 be a path with two vertices, v′ andw′. We construct H in two steps. Let

G ′1 = VJ({G1, v}, {P2, v
′
}) and H = VJ({G ′1, w

′
}, {G2, w}),

where G1, G2, and P2 are as in Figure 3.
We use Corollary 2.16 and then Theorem 2.14 to find null(N (H)). To ease

notation, we will refer to the identified vertex v= v′ in G ′1 as simply v, and similarly
we will refer to the vertices v = v′ and w = w′ of H as v and w, respectively.

Case 1: Suppose ndG1(v) = 1. Corollary 2.16 implies ndG ′1(w
′) = 0(1). If

ndG2(w)=1, Theorem 2.14 shows that ndH (w)=1. If ndG2(w)=−1, Theorem 2.14
shows that ndH (w)=−1. If ndG2(w)=0(λ), Theorem 2.14 shows that ndH (w)=0,

G2G1

v wv′ w′

P2

Figure 3. The graphs G1 and G2 and the path P2 used in the proof
of Theorem 2.18.
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since λ+ 1 6= 1. Therefore, since ndH (w)= lG2(w) in every case,

null(N (H))= null(N (H −w))− ndH (w)

= null(N (G1))+ null(N (G2−w))− ndH (w)

= null(N (G1))+ null(N (G2))+ ndG2(w)− ndH (w)

= d1+ d2.

Case 2: Suppose ndG1(v) = −1 and ndG2(w) ∈ {0,−1}. Corollary 2.16 implies
ndG ′1(w

′)= 1. Theorem 2.14 implies ndH (w)= 1. Therefore,

null(N (H))= null(N (H −w))− 1

= null(N (G1))+ null(N (G2−w))− 1

= null(N (G1))+ null(N (G2))+ ndG2(w)− 1

= d1+ d2+ ndG2(w)− 1.

Case 3: Suppose ndG1(v)= 0(λ) and ndG2(w)= 0(µ). Using Corollary 2.16, we
find that ndG ′1(w

′)=−1 if λ= 1 and ndG ′1(w
′)= 0(1− λ−1) if λ 6= 1. In the case

that λ= 1, Theorem 2.14 gives ndH (w)= 0 when µ 6= 1 and ndH (w)=−1 when
µ= 1. In the case that λ 6= 1, Theorem 2.14 gives ndH (w)= 0 when µ 6= λ−1 and
ndH (w)=−1 when µ= λ−1. In terms of computing dimensions, we then have two
possibilities: either µ= λ−1, in which case null(N (H))= d1+ d2+ 1, or µ 6= λ−1,
in which case null(N (H))= d1+ d2. �

Corollary 2.19. Consider two always winnable graphs G1 and G2 over Zk , and
let H = EJ({G1, v}, {G2, w}). Then H is always winnable if and only if one of the
following occurs:

(1) Either ndG1(v)= 1 or ndG2(w)= 1, or both.

(2) ndG1(v)= 0(λ) and ndG2(w)= 0(µ) with µ 6= λ−1 (mod k).

Proof. This is immediate from Theorem 2.18. We note that part (1) gives a different
proof of [Edwards et al. 2010, Corollary 2.11]. �

One useful application of Theorem 2.14 is the idea of graph reduction, i.e.,
removing a set of vertices, along with all incident edges, from a graph without
changing the dimension of the null space of the neighborhood matrix.

Corollary 2.20. (1) Let G1 and G2 be graphs with vi ∈ V (Gi ), and let H =
VJ({G1, v1}, {G2, v2}). Suppose G2 is always winnable and ndG2(v2) = 1.
Then

null(N (H))= null(N (G1− v1)).
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(2) Let H be a graph that has a degree-1 vertex x adjacent to a degree-2 vertex w.
Let v be the vertex of H other than x that is adjacent to w. Then

null(N (H))= null(N (H −{v,w, x})).

Proof. (1) Let v be the vertex of H corresponding to the identification v1 = v2. By
Theorem 2.14, ndH (v)= 1. Therefore,

null(N (H))= null(N (H − v))− ndH (v)

= null(N (G1− v1))+ null(N (G2− v2))− ndH (v)

= null(N (G1− v1))+ null(N (G2))+ ndG2(v2)− ndH (v)

= null(N (G1− v1)),

where the last equality is true since null(N (G2))= 0 and ndG2(v2)= ndH (v)= 1.

(2) This comes from part (1) applied to G1 = H −{w, x} and G2 = P3, a path with
three vertices {v′, w, x} where deg(w)= 2. For all k, P3 is always winnable, and
ndP3(v

′)= 1. �

Corollary 2.21. Let H be a graph and {v1, . . . , vk} ∈ V (H) such that deg(vi )= 1
for all i and each vi is adjacent to the same vertex x ∈ V (H). Then

null(N (H))= null(N (H −{vi : i = 1, . . . , k})).

Proof. We apply Theorem 2.14 to the graphs {G = H −{vi : i = 1, . . . , k}, x} and
{Ei = P2, x} for i = 1, . . . , k, where V (Ei )= {x, vi }. We have ndEi (x)=−1 for
all i . By Theorem 2.14, we have

ndH (x)=


1 if ndG(x)= 1,
−1 if ndG(x)=−1,

0 if ndG(x)= 0(λ),

where the last two equalities are true since there are m = k + 1 graphs involved.
Since ndH (x)= ndG(x) in every case and null(N (Ei −{x}))= 0 for all i , we have
null(N (H))= null(N (G)). �

We close this section with one further result on graphs whose spaces of null
patterns are isomorphic. The initial graph H in the following result has distinct
vertices v, p1, p2, and w in the following configuration:

v p1 p2 w

We show that the dimension of the space of null patterns does not change if vertices
p1 and p2 are removed, along with incident edges, and then v is identified with w.
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Proposition 2.22. Let H be a graph with distinct vertices v, p1, p2, w∈V (H) such
that deg(p1) = deg(p2) = 2, {(v, p1), (p1, p2), (p2, w)} ⊆ E(H), and (v,w) 6∈
E(H). Let H ′ be the graph defined by identifying the vertices v and w inside
H −{p1, p2}:

(1) For every p ∈ NSk(N (H)), we have p(v)= p(w).

(2) The induced mapping NSk(N (H))→ NSk(N (H ′)) is an isomorphism, and
therefore

null(N (H))= null(N (H ′)).

Proof. (1) Let p ∈ NSk(N (H)). Then

p(v)+ p(p1)+ p(p2)= 0 (mod k),

p(p1)+ p(p2)+ p(w)= 0 (mod k).

This shows that p(v)= p(w) as elements of Zk .

(2) Let p ∈ NSk(N (H)). Since p(v) = p(w), p naturally induces a pattern on
H ′ which we will denote by p′. We will now show that p′ ∈ NSk(N (H ′)). Let
t =

∑
u∈X (v)\{v,p1}

p(u) and s =
∑

u∈X (w)\{w,p2}
p(u).

Since p is null at v and w, we have

p(v)+ p(p1)+ t = 0 (mod k),

p(p2)+ p(w)+ s = 0 (mod k).

When combined with the equations in part (1), this implies

t = p(p2) (mod k),

s = p(p1) (mod k).

Clearly p′ is null on H ′ except possibly at v′, the vertex created by the identification
of v with w. We have∑

u∈X (v′)

p′(u)= p′(v′)+ s+ t = p(v)+ p(p1)+ p(p2)= 0 (mod k).

Hence, p′∈NSk(N (H ′)), and p 7→ p′ gives a linear transformation from NSk(N (H))
to NSk(N (H ′)). To see that this linear transformation is bijective, notice that any
null pattern q ′ on H ′ can be extended uniquely to a null pattern q on H as follows:

• q is identical to q ′ away from {v, p1, p2, w}.

• q(v)= q(w)= q ′(v′).
• q(p1)=−

∑
u∈X (v)\{p1}

q ′(u).
• q(p2)=−

∑
u∈X (w)\{p2}

q ′(u).
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The pattern q is null by construction on vertices of H not in {p1, p2}. To see that q
is null at p1, note that

q(v)+ q(p1)+ q(p2)= q ′(v′)−
∑

u∈X (v)\{p1}

q(u)−
∑

u∈X (w)\{p2}

q(u)

= q ′(v′)− q ′(v′)−
∑

u∈X (v′)

q ′(u)

= 0 (mod k),

where the last equality is true because q ′ is null on H ′. Now q is also null at p2

since q(v)= q(w). �

3. Some examples and applications

The following information for paths, cycles, complete graphs, and complete bipartite
graphs can be obtained directly, but also follows from [Giffen and Parker 2013,
Theorem 4.4], which gives the result in terms of winnable states.

Paths. For Pn , a path with n vertices, we have

null(N (Pn))=

{
0 if n 6= 2 (mod 3),
1 if n = 2 (mod 3).

This shows that the null-differences of the vertices of Pn follow the pattern below:

0(1) −1 −1 1 0(−1) 1 0(1) 1 1 0(1)

−1 −1 1 −1 −1 1 0(−1) 1 1 0(−1) 1

0(1) 1 1 0(1) 1 1 0(1)

When n = 2 (mod 3), a basis for NSk(N (Pn)) is given by a pattern of the form

(1,−1, 0, 1,−1, 0, . . . , 1,−1),

where the vertices are listed in the order that they are connected along the path.

Cycles. Let Cn be the n-cycle. Then

null(N (Cn))=


0 if 3 -n and k 6= 3,
1 if 3 -n and k = 3,
2 if 3 | n.
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If v ∈ V (Cn), then

ndCn (v)=


0(3) if n = 1 (mod 3) and k 6= 3,
0(−3) if n = 2 (mod 3) and k 6= 3,
−1 if 3 | n or k = 3.

If 3 is not a divisor of n and k = 3, a basis for NSk(N (Cn)) is given by the pattern p
such that p(v)= 1 for every vertex v ∈ V (Cn). If 3 | n, a basis for NSk(N (Cn)) is
given by

{(1,−1, 0, 1,−1, 0, . . . , 1,−1, 0), (0, 1,−1, 0, 1,−1, . . . , 0, 1,−1)},

where the vertices are listed in the order given by proceeding around the cycle.

Complete graphs. For the complete graph on n vertices Kn , we have null(N (Kn))=

n−1, and ndKn (v)=−1 for all v ∈ V (Kn). Choose a vertex v ∈ V (Kn). A basis of
NSk(N (Kn)) is given by the set of patterns of the form pw, where w ∈ V (Kn)\{v},
pw(v)= 1, pw(w)=−1, and pw(u)= 0 if u ∈ V (Kn) \ {v,w}.

Complete bipartite graphs. Let Km,n be the complete bipartite graph on m and n
vertices. We will refer to the set of m vertices as the “left-hand” vertices and the
set of n vertices as the “right-hand” vertices. We have

null(N (Km,n))=

{
0 if k -(mn− 1),
1 if k | (mn− 1).

When k | (mn− 1), a basis of NSk(N (Km,n)) is given by the pattern p which has
value n at all left-hand vertices and value −1 at all right-hand vertices.

If k | (mn − 1), then k can divide neither (m − 1)n − 1 nor m(n − 1)− 1, and
therefore, ndKm,n (v)=−1 for all v ∈ V (Km,n). If k -(mn− 1), then k may divide
neither, one, or both of (m−1)n−1 and m(n−1)−1. We summarize the possibilities
in Table 1.

k | (mn− 1) k | ((m− 1)n− 1) k | (m(n− 1)− 1) left nd right nd

yes no no −1 −1
no no no 0(λL) 0(λR)

no no yes 0(λL) 1
no yes no 1 0(λR)

no yes yes 1 1

Table 1. Summary of possibilities for complete bipartite graphs. Here
“left/right nd” means the null-difference on the left/right-hand vertices,
λL = (mn− 1)(mn− n− 1)−1 and λR = (mn− 1)(mn−m− 1)−1.



LIGHTS OUT FOR GRAPHS RELATED TO ONE ANOTHER BY CONSTRUCTIONS 199

Generalized star graphs. We give an application to generalized star graphs, called
“spider graphs” in [Edwards et al. 2010]. A generalized star is a connected graph of
the form G =VJ({Pni , vi }), where ni ≥ 2 are integers, Pni is a path with ni vertices,
and vi is a degree-1 vertex of Pni . The vertex v ∈ V (G) is called the center of G,
and G− v is a disjoint union of the paths Pni−1. To avoid trivial cases, we assume
deg(v) > 2. Every vertex of G other than v has degree 1 or 2.

The following result gives a more general version of [Edwards et al. 2010,
Theorem 3.4].

Proposition 3.1. Let G = VJ({Pni , vi }) be a generalized star as defined above,
where {n1, n2, . . . , nm} is a set of integers with ni ≥ 2 and m ≥ 3. For j ∈ {0, 1, 2},
let pj be the number of ni such that ni = j (mod 3). Then

ndG(v)=


−1 if p0 = 0 and k | (p2− 1),
0(1− p2) if p0 = 0 and k -(p2− 1),
1 if p0 6= 0.

This implies

null(N (G))=


1 if p0 = 0 and k | (p2− 1),
0 if p0 = 0 and k -(p2− 1),
p0− 1 if p0 6= 0.

In particular, G is always winnable over Zk if and only if either p0 = 1 or both
p0 = 0 and k -(p2− 1).

Proof. This follows immediately from Theorem 2.14 and the characterization of
paths given above. �

Star graphs. Let Sn be the star with n ≥ 3 edges. By Proposition 3.1 or the results
on complete bipartite graphs given above, we see that null(N (Sn))= 1 if k | (n−1)
and null(N (Sn))=0 otherwise. This implies that for v∈V (Sn) such that deg(v)=1,
we have

ndSn (v)=


−1 if k | (n− 1),

1 if k | (n− 2),
0((n− 1)(n− 2)−1) otherwise.

Proposition 3.2. Let G = VJ({Sni , vi }), where {n1, n2, . . . , nm} is a set of integers
with ni ≥ 2, m ≥ 2 and degSni

(vi ) = 1. Let v be the vertex of G created by
the identification of the vertices vi . Let p2 be the number of the ni such that
ni = 2 (mod k). Then

ndG(v)=


−1 if p2 = 0 and

∑m
i=1(ni − 1)(ni − 2)−1

= m− 1 (mod k),
0 if p2 = 0 and

∑m
i=1(ni − 1)(ni − 2)−1

6= m− 1 (mod k),
1 if p2 6= 0,
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which implies

null(N (G))=


1 if p2 = 0 and

∑m
i=1(ni−1)(ni−2)−1

= m−1 (mod k),
0 if p2 = 0 and

∑m
i=1(ni−1)(ni−2)−1

6= m−1 (mod k),
p2−1 if p2 6= 0.

In particular, G is always winnable over Zk if and only if either p2 = 1 or both
p2 = 0 and

m∑
i=1

(ni − 1)(ni − 2)−1
6= m− 1 (mod k).

Proof. This follows immediately from Theorem 2.14 using the properties of stars
given after Proposition 3.1 and the properties of P2 and P3 (to handle the case
where ni might be equal to 2 for some values of i). �

We have a similar result for cycles.

Proposition 3.3. Let G =VJ({Cni , vi }), where {n1, n2, . . . , nm} is a set of integers
with ni ≥ 3, m ≥ 2, and vi ∈ V (Cni ). Let v be the vertex of G created by the
identification of the vertices vi . For j ∈ {0, 1, 2}, let pj be the number of ni that
are congruent to j modulo 3. Then

ndG(v)=

{
−1 if 3(p1− p2)= m− 1 (mod k),

0 if 3(p1− p2) 6= m− 1 (mod k),

which implies

null(N (G))=
{

p0+ 1 if 3(p1− p2)= m− 1 (mod k),
p0 if 3(p1− p2) 6= m− 1 (mod k).

In particular, G is always winnable over Zk if and only if p0 = 0 and 3(p1− p2) 6=

m− 1 (mod k).

Proof. This follows from Theorem 2.14 and the characterization of cycles given
above. �
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