
inv lve
a journal of mathematics

msp

A characterization of the sets of periods
within shifts of finite type

Madeline Doering and Ronnie Pavlov

2019 vol. 12, no. 2



msp
INVOLVE 12:2 (2019)

dx.doi.org/10.2140/involve.2019.12.203

A characterization of the sets of periods
within shifts of finite type
Madeline Doering and Ronnie Pavlov

(Communicated by Kenneth S. Berenhaut)

We characterize precisely the possible sets of periods and least periods for the
periodic points of a shift of finite type (SFT). We prove that a set is the set of
least periods of some mixing SFT if and only if it is either {1} or cofinite, and
the set of periods of some mixing SFT if and only if it is cofinite and closed
under multiplication by arbitrary natural numbers. We then use these results to
derive similar characterizations for the class of irreducible SFTs and the class
of all SFTs. Specifically, a set is the set of (least) periods for some irreducible
SFT if and only if it can be written as a natural number times the set of (least)
periods for some mixing SFT, and a set is the set of (least) periods for an SFT if
and only if it can be written as the finite union of the sets of (least) periods for
some irreducible SFTs. Finally, we prove that the possible sets of (least) periods
of mixing sofic shifts are exactly the same as for mixing SFTs, and that the same
is not true for the class of nonmixing sofic shifts.

1. Introduction

Modern dynamical systems theory has a relatively short history, though scientists
from many disciplines have begun to use nonlinear dynamics techniques to de-
scribe problems ranging from physics and chemistry to ecology and economics.
Fundamentally, a dynamical system is a set or space with structure, usually denoted
by X , partnered with a function or map, usually denoted by f , that preserves that
structure through repeated iterations. This function f can then be applied arbitrarily
many times to subsets or elements of X , which incites certain possible patterns.
One of the simplest is when a point returns to itself after some number (say n) of
iterations of f ; such a point is said to be periodic with period n. Different points of
the system can have different periods, and so a simple natural object of study is the
set of periods of points of a given dynamical system. The celebrated Sharkovsky’s
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theorem gives some surprising information about this set of periods for dynamical
systems given by continuous self-maps of intervals.

Sharkovsky’s theorem [1964]. For any interval I in R, if f : I → I is continuous
and has a point of least period k, then there exist points of all least periods less
than k in the Sharkovsky ordering, where the ordering is as follows:

3≺ 5≺ 7≺ 9≺ 11≺ · · · ≺ 2 · 3≺ 2 · 5≺ 2 · 7≺ 2 · 9≺ 2 · 11≺ · · ·

≺ 22
· 3≺ 22

· 5≺ 22
· 7≺ 22

· 9≺ 22
· 11≺ · · · ≺ 24

≺ 23
≺ 22
≺ 2≺ 1.

In particular, Sharkovsky’s theorem implies that for any such f , the set of natural
numbers which are least periods of periodic points for f is a downward closed set
with respect to the Sharkovsky ordering. In fact, examples are also constructed in
[Sharkovsky 1964] which, given any such (nonempty) downward closed set, yield
an f which realizes that set as the least periods of periodic points. This then yields
a complete characterization of which sets can appear as the sets of least periods
for such f . The goal of the present work is to obtain such a characterization for a
completely different class of dynamical systems, called the shifts of finite type. In
the process, we also prove some results about the more general class of so-called
sofic shifts.

Here we step into the realm of symbolic dynamics. For symbolic dynamical
systems, one begins with a finite set of symbols called the alphabet, denoted by A.
Elements of A are called letters and can be combined to form “words” or “blocks”.
A symbolic dynamical system, or shift space, is a subset of all possible biinfinite
sequences created with the alphabet A based on a collection of “forbidden blocks” F ,
essentially rules on what words or symbols can and cannot appear in these biinfinite
sequences. For shift spaces, the dynamics are always given by the shift map σ ,
which shifts a sequence in the space one unit to the left. A shift space described by a
finite set of forbidden blocks is called a shift of finite type (SFT). An example of an
SFT would be where X is the set of all binary sequences with no two 1s next to each
other, induced by F = {11}. This is known as the golden mean shift, because its
so-called topological entropy is equal to the logarithm of the golden mean. Because
they have a simple representation using a finite, directed graph (see Section 3),
SFTs are attractive to study, as questions about the SFT can typically be phrased
as questions about the graph which can be translated back to the original shift.

A periodic point of a shift space is just a biinfinite sequence made only of a
wordw of length p repeated biinfinitely with no additional words, which is then said
to have period p. In this work, we study periodic points in SFTs as, though they are
in some sense the “simplest” shifts, they play an important role in dynamical systems
by facilitating the study of more complex systems. We prove a characterization for
shifts of finite type analogous to Sharkovsky’s theorem, along with a corresponding
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characterization for the sets of (not necessarily least) periods for shifts of finite
type. Unlike the f : I → I case above, our characterizations do not come from any
ordering of N, but rather from structural properties of the sets. Our main results are
the following.

Theorem 1.1. A set S is closed under N-multiples and cofinite if and only if there
exists a topologically mixing SFT such that S is the set of periods of its periodic
points.

Theorem 1.2. A set R can be written as p · S, where p ∈ N and S is a cofinite set
which is closed under N-multiples, if and only if there exists an irreducible SFT
such that R is the set of periods of its periodic points.

Theorem 1.3. A set Q can be written as
⋃n

i=1 pi · Si for some pi ∈N and cofinite
sets Si which are closed under N-multiples if and only if there exists an SFT such
that Q is the set of periods of its periodic points.

Theorem 1.4. A set S is either {1} or cofinite if and only if there exists a topologi-
cally mixing SFT such that S is the set of least periods of its periodic points.

Theorem 1.5. A set R is either a singleton or can be written as p · S, where p ∈ N

and S is a cofinite set, if and only if there exists an irreducible SFT such that R is
the set of least periods of its periodic points.

Theorem 1.6. A set Q can be written as U ∪
⋃n

i=1 pi · Si for some finite set U,
pi ∈N, and cofinite sets Si , if and only if there exists an SFT such that Q is the set
of least periods of its periodic points.

In addition to the relation to Sharkovsky’s theorem already outlined, these results
also connect to other characterizations of various other important objects for SFTs,
most notably topological entropy [Lind 1983] and the Artin–Mazur zeta function
[Kim et al. 2000]. The latter is most relevant to our work, due to the connection
of the zeta function to periodic points. The zeta function is a formal power series
defined by

ζ(z)= exp
( ∞∑

n=1

pn
zn

n

)
,

where pn is the number of points of period n in the system. For SFTs, the zeta
function always has the form 1/p(z) for some polynomial p, see [Bowen and
Lanford 1970], and the classification from [Kim et al. 2000] is in terms of these
p(z), more specifically in terms of the sets of nonzero complex numbers (with
multiplicity) which can be realized as the roots of such p(z). Relevant for this
work is the fact that knowledge of the zeta function is theoretically equivalent
to knowledge of pn for all n, and the set of periods is the set of exponents with
positive coefficients. Therefore, theoretically speaking, the classification from [Kim
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et al. 2000] contains enough information to derive a classification of the sets of
periods for SFTs. However, practically speaking, it is not at all simple to turn
information about roots of p(z) into information about the set of exponents with
positive coefficients for the power series expansion of 1/p(z).

Finally, we note that the possible sets for a generalized notion of least periods for
multidimensional SFTs (which consist of Zd-indexed arrays of letters rather than
sequences) were recently characterized in [Jeandel and Vanier 2010]. As is often the
case for multidimensional SFTs, their characterization is in recursion-theoretic terms
and much more complicated than the ones we derive in one dimension. It is noted in
[Jeandel and Vanier 2010] that the set of least periods for a (one-dimensional) SFT
must be semilinear, i.e., a finite union of sets of the form

{
a0+

∑k
i=1 ni ai : ni ∈N

}
for fixed ai ∈N. However, as our results show, not all semilinear sets are realizable
in this way; for instance, the set of positive odd integers is semilinear and yet is not
the set of least periods of any (one-dimensional) SFT. It is strange that the much
more complicated and difficult results of [Jeandel and Vanier 2010] appeared even
though the one-dimensional characterization does not seem to be present anywhere
in the literature; we hope that our results fill this gap.

In addition to the previous theorems, our results yield a characterization of the sets
of (least) periods for mixing sofic shifts. Sofic shifts are the shift spaces which are
so-called factors of SFTs, i.e., images (of SFTs) under continuous shift-commuting
maps, and are a significantly larger class. They can be alternatively defined using
labeled graphs; see Definitions 24 and 25.

Theorem 1.7. A set S is closed under N-multiples and cofinite if and only if there
exists a topologically mixing sofic shift such that S is the set of periods of its periodic
points.

Theorem 1.8. A set S is either {1} or cofinite if and only if there exists a topo-
logically mixing sofic shift such that S is the set of least periods of its periodic
points.

The problem of finding similar characterizations for irreducible and general sofic
shifts is quite interesting, but seems to be more difficult; in particular, it is not true
that the same characterizations as in Theorems 1.2, 1.3, 1.5, and 1.6 hold. We
comment further on this in Section 6.

2. Definitions

Definition 1. A topological dynamical system is a pair (X, T )where X is a compact
metric space and T : X→ X is a continuous map.

Definition 2. For any finite set of symbols A (which we call an alphabet), the full
A-shift is the collection AZ

= {x = (xi )i∈Z : xi ∈ A for all i ∈ Z} of all biinfinite
sequences of symbols from A.
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Definition 3. A word on the alphabet A is a finite sequence of elements of A.

Definition 4. The shift map σ on the full shift AZ maps a point x to the point
y = σ(x) whose i-th coordinate yi is xi+1, the (i+1)-th coordinate of x .

Definition 5. A point x is periodic for σ if σ n(x)= x for some n ≥ 1. The point x
is then said to have period n under σ .

Definition 6. For a point x that is periodic, the smallest positive integer n for which
σ n(x)= x is the least period of x .

Definition 7. Let (X, T ) and (Y, S) be two topological dynamical systems. The
systems (X, T ) and (Y, S) are conjugate if there exists between them a homeomor-
phism h : X→ Y such that h(T (x))= S(h(x)) for all x ∈ X .

We note that if (X, T ) and (Y, S) are conjugate via h : X → Y , then T nx = x
if and only if Snh(x)= h(x), and so conjugacy preserves the number of points of
(least) period n in any dynamical system.

Definition 8. A shift space is a subset X of a full shift AZ such that, for some
collection F of forbidden blocks over A, the subset X is equal to X (F), the set of
all possible biinfinite sequences that do not contain any blocks from F .

Whenever X is a shift space, (X, σ ) is a topological dynamical system when X
is given the induced product topology from AZ.

Definition 9. A shift of finite type (or SFT) is a shift space X that is equal to X (F)
for some finite collection F of forbidden blocks.

Definition 10. A sofic shift is any shift space which is the image of an SFT under
a continuous map which commutes with the shift σ .

Definition 11. The language is the set of all possible blocks of length n ∈ N of a
shift space X , denoted by B(X).

Definition 12. A shift space X is irreducible if for every ordered pair of blocks
u, v ∈ B(X) there exists w ∈ B(X) such that uwv ∈ B(X).

Definition 13. A shift space X is mixing if, for every ordered pair u, v ∈ B(X),
there is an N such that for each n≥ N there existsw∈ Bn(X) such that uwv∈ B(X).

Definition 14. A graph G consists of a finite set V = V (G) of vertices (or states)
together with a finite set E = E(G) of edges. All of the graphs discussed in this
paper are directed graphs, meaning that each edge points from one vertex, called
the initial vertex, to another, called the terminal vertex.

Definition 15. A path in a graph G is a finite sequence of edges such that the
terminal vertex of each is the initial vertex of the next.

Definition 16. A cycle is a path which begins and ends at the same vertex. A cycle
is simple if each vertex along it is visited exactly once.
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Definition 17. A cycle C of an arbitrary graph G is called nonelementary if C is
composed of a single smaller cycle followed two or more times. A cycle is called
elementary if it is not nonelementary.

Definition 18. A graph G is irreducible if for every ordered pair of vertices I and J
there is a path in G starting at I and terminating at J.

Definition 19. Given a graph G, the period of G, denoted per(G), is the greatest
common divisor of its cycle lengths.

Definition 20. A graph is aperiodic if per(G)= 1.

Definition 21. A graph is primitive if it is irreducible and aperiodic.

Definition 22. A set S is closed under N-multiples if for all n ∈ S, mn is also in S
for all m ∈ N.

3. Preliminaries

The following theorems, definitions, and descriptions are used extensively in the
proofs of our results. We will see that any SFT can be studied by way of an
associated graph, every graph can be broken down into primitive pieces, and from
these primitive graphs we can build our results.

Definition 23. For an arbitrary graph G with set of edges E(G), the edge shift χG

is the shift space over the alphabet A = E(G) consisting of all biinfinite sequences
of edges which are connected end-to-end in G.

By Proposition 2.2.6 from [Lind and Marcus 1995], for any graph G, the asso-
ciated edge shift χG is an SFT. Surprisingly, every SFT can also be depicted as a
graph.

Proposition 3.1. For any SFT X, there exists a graph G such that X is conjugate
to the edge shift χG . In addition, if X is irreducible, then G can be taken to be
irreducible, and if X is mixing, then G can be taken to be primitive.

Proof. The first sentence follows from Theorem 2.3.2 in [Lind and Marcus 1995].
The reader may check that the remaining statements hold for the construction done
there. �

This then allows a connection to be made between the periodic points of an SFT
and the cycle lengths of its associated graph G:

Proposition 3.2. For any SFT X , there exists a graph G such that for all p ∈ Z, the
number of points of (least) period p in X equals the number of (elementary) cycles
of length p in G.
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Proposition 3.3. For any irreducible SFT X , there exists an irreducible graph G
such that for all p ∈ Z, the number of points of (least) period p in X equals the
number of (elementary) cycles of length p in G.

Proposition 3.4. For any topologically mixing SFT X , there exists a primitive
graph G such that for all p ∈Z, the number of points of (least) period p in X equals
the number of (elementary) cycles of length p in G.

Proof of Propositions 3.2–3.4. By Proposition 3.1, for any SFT X we can find a
graph G such that X ∼= χG , where G is irreducible if X is irreducible and G is
primitive if X is mixing. Then by Proposition 2.2.12 from [Lind and Marcus 1995],
the number of cycles of length m in G is equal to the number of points in the edge
shift χG with period m. (To prove this, Lind and Marcus use an object called the
adjacency matrix, but we will not need this object in our work.) X is conjugate to χG ,
and as we defined, conjugacy preserves periodic points, completing the proof. �

Thus, in light of Propositions 3.1–3.4, the following six theorems are equivalent
to Theorems 1.1–1.6:

Theorem 3.5. A set S is closed under N-multiples and cofinite if and only if there
exists a primitive graph G such that S is the set of cycle lengths in G.

Theorem 3.6. A set R can be written as p · S, where p ∈ N and S is a cofinite set
which is closed under N-multiples, if and only if there exists an irreducible graph H
such that R is the set of cycle lengths in H.

Theorem 3.7. A set Q can be written as
⋃n

i=1 pi · Si for some pi ∈N and cofinite
sets Si which are closed under N-multiples if and only if there exists a graph F such
that Q is the set of cycle lengths in F.

Theorem 3.8. A set S is either {1} or cofinite if and only if there exists a primitive
graph G such that S is the set of elementary cycle lengths in G.

Theorem 3.9. A set R is either a singleton or can be written as p · S, where p ∈ N

and S is a cofinite set, if and only if there exists an irreducible graph H such that R
is the set of elementary cycle lengths in H.

Theorem 3.10. A set Q can be written as U ∪
⋃n

i=1 pi · Si for some finite set U,
pi ∈ N, and cofinite sets Si , if and only if there exists a graph F such that Q is the
set of elementary cycle lengths in F.

Now, the graphs themselves can be decomposed into irreducible and primitive
components, the consequences of which will be used extensively in the proofs of
our results.

Proposition 3.11. For every graph G, there exist irreducible subgraphs G1, G2,
. . . , Gk such that the set of (elementary) cycles that appear in G is the disjoint union
of the sets of (elementary) cycles that appear in the Gi .
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Proof. Begin by separating G into communicating classes Ci ⊂ V (G) defined by
the collections of vertices such that, for each pair of vertices I and J within a
collection, there exists a path I to J and J to I . Let Gi be the subgraph G|Ci . We
claim that no cycles of G can contain vertices from two different communicating
classes. To see this, let C, B be two communicating classes. Then suppose for a
contradiction there exists an edge connecting a vertex of C to a vertex of B and
another edge connecting a vertex of B to a vertex of C. This would create a larger
communicating class, which is a contradiction by definition. By again considering
the definition of communicating classes, we see the Gi are irreducible. It is clear
that every cycle of G is part of some Gi ; thus the set of cycles that appear in G is
the disjoint union of the sets of cycles that appear in the Gi . �

Proposition 3.12. Any irreducible graph G has an associated primitive graph G ′

for which the set of (elementary) cycles of G is p · S, where p = per(G) and S is
the set of (elementary) cycle lengths of G ′.

Proof. Let G be irreducible. By Proposition 4.5.6 from [Lind and Marcus 1995],
V (G) can be grouped into exactly p period classes which can be ordered as
D0, D1, . . . , Dp−1 so that every edge that starts in Di terminates in Di+1 (or in
D0 if i = p− 1). The comment following Proposition 4.5.6 states that there is an
associated graph G p, called the higher power graph, that consists of p primitive
(aperiodic and irreducible), disjoint subgraphs G1, . . . ,G p. In Exercise 4.5.6 from
[Lind and Marcus 1995], it is shown that the edge shifts χGi associated to each Gi

are conjugate to each other, and therefore contain the same numbers of points with
(least) period n for every n. Then by Propositions 3.1 and 3.2, the Gi all contain
the same (elementary) cycle lengths.

Since all Gi have the same (elementary) cycle lengths, we consider any Gi . By
definition of the higher power graph (not given here), the set of (elementary) cycle
lengths in G is p-times the set of (elementary) cycle lengths in Gi ; thus there exists
a cycle in Gi of length k if and only if there exists a cycle in G of length pk. �

Any SFT X can therefore be represented by an associated graph G. Through
use of the irreducible components and higher power graph, this G can be reduced
to a primitive graph which is far simpler to work with; this fact will be useful in
the proofs of the following results.

Remark. We should remark that those directions of our results which guarantee
cofiniteness of sets of (least) periods for mixing SFTs can be alternately proven
by using some more advanced results involving so-called topological entropy.
Extremely roughly speaking, entropy measures the exponential growth rate of the
number of words with n-letters in an SFT/paths with n edges in a graph. It is
well known, see Theorem 4.3.6 and Corollary 4.3.8 in [Lind and Marcus 1995],
that in a primitive graph, the number of cycles/elementary cycles of length n grow
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exponentially with the same growth rate, and so in particular that this number is
eventually positive, yielding the desired cofiniteness. We elected here to instead give
direct proofs in order to avoid introducing entropy and keep proofs at an elementary
level.

4. Results on general cycle lengths

4.1. Primitive graphs. The proof of Theorem 3.5, which as noted in Section 3 is
equivalent to Theorem 1.1, now follows. Most of the work is devoted to, for any set
S which is closed under N-multiples and is cofinite, constructing a graph G whose
set of cycle lengths is S. Interestingly, even when S is not necessarily closed under
N-multiples, the set of elementary cycle lengths of G will still be S; this will be
addressed in the later proof of Theorem 3.8.

Proof of Theorem 3.5. “⇒” Let S be a set that is closed under N-multiples and is
cofinite. We will now construct a graph G with the set S as the set of cycle lengths
of G. Since S is cofinite, there exists N ∈ S such that for all n ≥ N, we have n ∈ S.
Build a simple cycle of length N. For all s ∈ S such that s < N, build a simple
cycle of length s such that it shares a vertex with the N -cycle, but does not share a
vertex with any other cycle of length less than N. This is possible as the N -cycle
has N vertices and there exist at most N − 1 elements s ∈ S such that s < N. Call
these cycles of length less than N the “small cycles”. Then, on the smallest cycle k,
build simple cycles of length N + i , with i ∈ {1, . . . , k− 1}, each sharing a unique
vertex with the k-cycle. Call these cycles of length at least N the “large cycles”.
Call the resulting graph G. (See Figure 1.)

Every cycle shares a vertex with either the N -cycle or the k-cycle, the N -cycle
and the k-cycle themselves sharing a vertex. Thus, there exists a path between
vertices in any two cycles, and so G is irreducible. The gcd of the lengths of cycles
in G is 1 since G contains cycles of lengths N and N + 1. Thus G is aperiodic.
Therefore, G is primitive.

Let P be the set of cycle lengths of G. Then let s be any element of S. By
construction, for all s ∈ S such that s ≤ N, there exist cycles of length s. Thus
if s ≤ N, the s-cycle already exists within G by construction. Else, s > N. Then
there exists i , 0 ≤ i ≤ k − 1, such that s ≡ N + i (mod k) since the N + i cover
all k residue classes. Thus s = N + i +mk. If m < 0, then s < N + i and because
i ∈ {1, . . . , k− 1}, we have s < N. This violates the assumption of s > N ; hence
m ≥ 0. Thus if s> N, the s-cycle can be achieved by going around the (N+i)-cycle
once and the k-cycle m times. Therefore, s ∈ P and since s ∈ S was arbitrary,
S ⊆ P.

Let c be any element of P, where C is an associated cycle of G with length c.
There are two cases we consider:



212 MADELINE DOERING AND RONNIE PAVLOV

small cycles

N

k

N+1

...

N+k−2N+k−1

large cycles

Figure 1. The graph G. All labels refer to lengths of the corre-
sponding cycles. The lengths of small cycles are all elements of
S ∩ {1, . . . , N − 1}.

(1) The cycle C contains at least one edge from a large cycle. Then by construction
C must contain the entire large cycle. If C contains even one large cycle, c≥ N
and thus c ∈ S since S contains all integers greater than or equal to N.

(2) The cycle C contains no edges from any large cycle. Then C must be made up
entirely of small cycles. By construction no small cycles share a vertex; thus
C is a cycle of length c = ms, where m ∈ N and s ∈ S. Hence c ∈ S as S is
closed under N-multiples.

Thus, since C was arbitrary, P ⊆ S, and therefore S represents the set of cycles
of G.

“⇐” First, it is clear by definition that the set of cycle lengths of any graph is closed
under N-multiples. It will be shown in the proof of Theorem 3.8 that the set of
elementary cycle lengths of a primitive graph is cofinite, which trivially implies the
same of the even larger set of cycle lengths. �

4.2. Irreducible graphs.

Proof of Theorem 3.6. “⇒” Let R = p · S, where p ∈ N and S is a set that is
closed under N-multiples and is cofinite. By Theorem 3.5, there exists a primitive
graph G such that the set of cycle lengths of G is S. Take this graph G and, for
every directed edge between two vertices I and J in G, create a path of p directed
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edges and p− 1 vertices beginning at I and ending at J ; all such sets of newly
created vertices are disjoint. Call the new graph Gp.

Each cycle length of G has been multiplied by p in Gp; thus per(Gp)= p since
per(G) = 1 as G is primitive. Then take I and J, two vertices of Gp. There are
three cases:

(1) Both exist in G. Then there exists a path in G starting at I and terminating
at J. Such a path then also exists in Gp, but its length has been multiplied by
a factor of p.

(2) One vertex exists in G. Assume I exists in G and J exists only in Gp. By
construction, there exist p − 1 directed edges forming a path starting at a
vertex V existing in G and terminating at J. By case (1) there exists a path in
Gp starting in I and terminating in V. Then V is at most p− 1 directed edges
away from J ; thus there is a path from I to J consisting of the path I to V
then V to J. The case where I exists only in Gp and J exists in G is similar.

(3) Both exist only in Gp. Then by construction there exist at most p− 1 directed
edges forming a path starting at I and terminating at a vertex existing in G,
call it A, and there exist at most p−1 directed edges forming a path starting at
a vertex existing in G, call it B, and terminating at J. By case (1) there exists
a path starting at A and terminating at B; thus there exists a path from I to J.

In each case, for any two vertices I and J there exists a path in Gp starting at I
and terminating at J. Therefore Gp is irreducible.

“⇐” Let H be an irreducible graph with period p. By Proposition 3.12, H can
be associated to a primitive graph G with set of cycle lengths T so that the set of
cycle lengths of H is p · T where, by Theorem 3.5, T is a set that is closed under
N-multiples and is cofinite. �

4.3. Arbitrary graphs.
Proof of Theorem 3.7. “⇒” Let Q =

⋃n
i=1 Ri , with Ri = pi · Si , where pi ∈ N

and Si is closed under N-multiples and is cofinite. By Theorem 3.6, for each
i ∈ {1, . . . , n}, there exists an irreducible graph Gi such that each Gi has set of
cycle lengths Ri . Place them together, with no edges connecting any Gi to any
other, and call the resulting graph G. As there do not exist any edges connecting
vertices from different Gi , the cycles of G are only the cycles of the individual Gi ;
thus the set of cycles of G is Q =

⋃n
i=1 Ri .

“⇐” Let F be an arbitrary graph. By Proposition 3.11, F can be broken down into
irreducible subgraphs Fi for 1≤ i ≤ n. By Theorem 3.6, the set of cycle lengths
of each Fi can be written as Ri = pi · Ti , where Ti is a set that is closed under
N-multiples and is cofinite and pi is the period of Fi . Hence the set of cycle lengths
of F is

⋃n
i=1 Ri . �
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5. Results on elementary cycle lengths

5.1. Primitive graphs.

Proof of Theorem 3.8. “⇒” Let S′ be either {1} or cofinite. If S′ is {1}, then we
can create the primitive graph consisting of a single vertex with a self-loop; this
graph clearly has only one elementary cycle, with length 1. We then assume S′ is a
cofinite set. By the same construction found in the proof of Theorem 3.5, use S′ to
construct a primitive graph G ′. Let P ′ be the set of elementary cycle lengths of G ′.
Note that, since S ⊂ P in Theorem 3.5 and all cycles created are elementary cycles,
S′ ⊂ P ′.

Then let c′ be an element of P ′, where C ′ is an elementary cycle of G ′ of length c′.
The analysis from the proof of the forward direction of Theorem 3.5 can be repeated
with only one change: S was closed under N-multiples, which may not be true of S′.
However, the only place this was used was to treat cycles composed of multiple
traversals of a small cycle, which C ′ cannot be since it is elementary. Therefore, as
before, P ′ ⊆ S′.

“⇐” Let G be a primitive graph. By definition, as G is primitive, G is irreducible and
aperiodic. First, we consider the case where G contains only a single elementary
cycle. Since G is aperiodic, this must be a self-loop and G must be the graph
consisting of a single vertex v with a self-loop. Thus, in this case, the set of
elementary cycle lengths is {1}. We can then assume that for the remainder of the
proof, G contains multiple elementary cycles.

By Lemma 4.5.6 from [Lind and Marcus 1995], since G is irreducible, for an
arbitrary v ∈ V (G), the gcd of all lengths of cycles starting and ending at v is
per(G). Since per(G)= 1, there exist cycles D1, D2, . . . , Dl beginning and ending
at v such that gcd(|D j |) = 1.

If a cycle Di visits v more than only at the beginning and end, it can be written as
a concatenation of cycles C1

i ,C2
i , . . . ,Cm

i , which each visit v only at the beginning
and end. Then, |Di | = |C1

i | + · · · + |C
m
i |, and we claim that

gcd(|C1
i |, . . . , |C

m
i |, |D1|, . . . , |Di−1|, |Di+1|, . . . , |Dl |)= 1.

Assume for a contradiction that

gcd(|C1
i |, . . . , |C

m
i |, |D1|, . . . , |Di−1|, |Di+1|, . . . , |Dl |) 6= 1.

Then there exists a factor q such that

gcd(|C1
i |, . . . , |C

m
i |, |D1|, . . . , |Di−1|, |Di+1|, . . . , |Dl |)= q.

Since |C1
i | + · · · + |C

m
i | = |Di | and q is a factor of all the |C j

i |, we know q is a
factor of |Di |. Thus gcd(|D j |) = q , but this is a contradiction since gcd(|D j |)= 1.
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Continuing in this way, we have shown that we can decompose D1, . . . , Dl into cy-
cles C1, . . . ,Ck which only contain v at their beginning and end, and whose lengths
still have a gcd of 1. In addition, we can assume without loss of generality that
|C1|< |C2|< · · ·< |Ck | by removing cycles with repeated lengths and reordering.

We then break into two cases: either |C1| = 1 or |C1| > 1. Assume first that
|C1|> 1, which implies that k > 1, and define

S1 = {n1|C1| + · · · + nk |Ck | : ni ≥ 0}.

It is well known that S1 is cofinite in N and so there exists N such that for all n≥ N,
n ∈ S1. Let

S2 = {n1|C1| + · · · + nk |Ck | : there exist j, j ′ such that n j , n j ′ > 0};

we will show that S2 is also cofinite. Choose an n bigger than N and all possible
|Ci ||C j | for 1≤ i, j ≤ k. Then there exists ni ≥0 such that n=n1|C1|+· · ·+nk |Ck |.
We then break into subcases:

(1) If at least two of the ni are positive, n ∈ S2 by definition.

(2) Else, since k > 1, there exists i such that for all j 6= i , we have n j = 0.
Then choose any j 6= i . Thus we have n = |C j ||Ci | + |Ci |(ni − |C j |). Recall
n > |Ci ||C j |. As n = ni |Ci |, this implies ni > |C j |. Thus ni −|C j |> 0. Then
n j = |Ci | and n ∈ S2.

In either case, n ∈ S2; therefore S2 is cofinite.
For all n ∈ S2, where n = n1|C1| + · · · + nk |Ck |, we now construct a cycle of

length n by beginning at v and following C1 n1-many times, then C2 n2-many
times, . . . , and finally Ck nk-many times. Call this cycle C. We can then write
C = C t1

i1
C t2

i2
· · ·C t`

i` where ` > 1, i1 < i2 < · · · < i`, and all ti > 0. We claim that
any such C is elementary. To see this, consider the sequence of numbers of edges
between visits to the vertex v as C is traversed. This sequence is |Ci1 |, . . . , |Ci` |,
which is nonconstant and nondecreasing since |C1|< · · ·< |Ck |. It is clear that this
precludes C being multiple traversals of a smaller cycle.

Hence, for every n ∈ S2, we have an elementary cycle C in G, and so in this
case the set of elementary cycle lengths of G is cofinite.

Our only remaining case is |C1| = 1, indicating that a self-loop exists at v. As
we have already dealt with the case where G consists of a single cycle, G must
contain a different elementary cycle, C. Then by irreducibility of G, a cycle exists
that begins at v and traverses C before returning to v; this path is not just a repeated
traversal of the self-loop since we assumed C to be elementary. Then, every cycle
consisting of C followed by any number of traversals of the self-loop is elementary,
yielding a cofinite set of elementary cycle lengths, and completing the proof. �
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5.2. Irreducible graphs.

Proof of Theorem 3.9. “⇒” Let R = p · S, where p ∈ N and S is either {1} or
a cofinite set. In both cases, we can use Theorem 3.8 and the same construction
as in the proof of Theorem 3.6 to construct an irreducible graph H whose set of
elementary cycle lengths is R.

“⇐” Let G be an irreducible graph where R is the set of elementary cycle lengths
of G. Let p= per(G). By Proposition 3.12, G has an associated primitive graph G ′

such that the set of elementary cycle lengths of G is given by p · S, where S is the
set of elementary cycle lengths of G ′. By Theorem 3.8, S is {1} or cofinite. Since
R = p · S, either R = {p} or R = p · S for S cofinite. �

5.3. Arbitrary graphs.

Proof of Theorem 3.10. “⇒” Consider any set Q which can be written as U ∪⋃n
i=1 pi · Si for some finite set U, pi ∈ N, and cofinite sets Si . Then Q can be

written as a finite union of singletons and sets of the form pi · Si , each of which is
the set of elementary cycle lengths of an irreducible graph by Theorem 3.9. We can
use the same construction as in the proof of Theorem 3.7 to construct a graph F
whose set of elementary cycle lengths is Q.

“⇐” Let F be an arbitrary graph. By Proposition 3.11, F can be broken down into
irreducible subgraphs Fi . By Theorem 3.9, the set of elementary cycle lengths
of each Fi can be written as pi · Ti , where Ti is a cofinite set or a singleton
and pi = per(Fi ). Hence the set of elementary cycle lengths of F is the union
U ∪

⋃n
i=1 pi · Si , where U is the finite union of the singletons and {Si }

n
i=1 is the

collection of all Ti which are cofinite. �

6. Results on sofic shifts

The forward directions of Theorems 1.7 and 1.8 follow immediately from those
of Theorems 1.1 and 1.4, since all mixing SFTs are mixing sofic shifts. For the
reverse directions, we will adapt the proof of the reverse direction of Theorem 3.8,
which will require some well-known structural facts about sofic shifts.

We begin by introducing an alternative definition of sofic shift which will be far
more useful for our purposes.

Definition 24. A labeled graph consists of a graph G along with a (usually not
injective) map ` on E(G), called a labeling.

Definition 25. For a labeled graph (G, `), the labeled edge shift χG,` is the shift
space over the alphabet A= `(E(G)) consisting of all labels of biinfinite sequences
of edges which are connected end-to-end in G.
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Theorem 6.1 [Lind and Marcus 1995, Theorem 3.2.1 and Proposition 3.3.11]. A
shift space X is sofic if and only if it is a labeled edge shift χG,` for some labeled
graph (G, `). If G is irreducible, then χG,` is as well.

In fact more can be said about this graph when X is irreducible.

Definition 26. For a labeled graph (G, `), a word w on the alphabet `(E(G))
synchronizes to a vertex v if every path in G which is labeled by w has terminal
vertex v.

Theorem 6.2 [Lind and Marcus 1995, Theorem 3.3.2 and Propositions 3.3.9, 3.3.11,
and 3.3.17]. For any irreducible sofic shift X , there exists a labeled graph (G, `)
where G is irreducible, (G, `) has a word w synchronizing to some vertex v, and
X = χG,`.

We may now prove the following.

Theorem 6.3. For any mixing sofic shift X , the set of least periods of X is either
{1} or cofinite.

Proof. Assume that X is a mixing sofic shift. By Theorem 6.2, there exists a labeled
graph (G, `) where G is irreducible, (G, `) has a word w synchronizing to some
vertex v, and X =χG,`. Denote by L the length ofw. We will use a similar argument
to that of Theorem 3.8 to create points in X with least periods in a cofinite set.

First, we note that by the definition of topological mixing, there exist N and
words u, u′ of lengths N and N +1 respectively where wuw,wu′w ∈ B(X). Since
X = χG,`, this means that there exist paths P1 and P2 labeled by wuw and wu′w
respectively. Since w synchronizes to v, we may remove the first L letters from
P1 and P2 to get cycles D1 and D2 beginning and ending at the vertex v, and for
which `(P1) and `(P2) end with w. In addition, gcd(|D1|, |D2|)= 1 since |D1| and
|D2| differ by 1.

We can now proceed as in the proof of Theorem 3.8; exactly as was done there,
we can break D1 and D2 into cycles C1,C2, . . . ,Ck which start and end at v, and
whose labels end with w and contain no other w. For exactly the same reasons as
before, we can assume without loss of generality that |C1|< |C2|< · · ·< |Ck |, and
that gcd(|C1|, . . . , |Ck |)= 1.

As before, we break into cases |C1| = 1 and |C1| > 1. If |C1| > 1, then k > 1,
and again the set

S2 = {n1|C1| + · · · + nk |Ck | : there exist j, j ′ such that n j , n j ′ > 0}

is cofinite. For every s ∈ S2 we may construct a cycle in G of length s made by
concatenating the cycles C1, . . . ,Ck traversed n1, . . . , nk times respectively; denote
this cycle by C (s) and its label by w(s). The same argument as was used in the proof
of Theorem 3.8 (where “visits to the vertex v” is replaced by “occurrences of the
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subword w”) shows that no w(s) is made up of multiple concatenated copies of a
single word, and so the biinfinite point · · ·w(s)w(s)w(s) · · · has least period s. In
addition, this point is in X = χG,` since C (s) is a cycle. We have then shown that
every s in the cofinite set S2 is in the least period set of X , and so the least period
set of X is cofinite in this case.

Finally, we consider the case |C1| = 1. First, this means that w is a single letter,
labeling a self-loop at v. If every edge of G is labeled by w, then clearly the set
of least periods in X is {1}. If instead G has an edge not labeled by w, then by
irreducibility, that edge is part of a cycle C starting and ending at v, with label `(C)
containing a non-w letter. For every k > 0, repeating a cycle composed of C
followed by k traversals of the self-loop at v yields a point · · · `(C)wk`(C)wk

· · ·

in X with least period |C | + k. This shows that the least period set of X is cofinite
in this case, completing the proof. �

We may now prove Theorems 1.7 and 1.8.

Proofs of Theorems 1.7 and 1.8. As noted above, the forward directions of each of
these results follow immediately from those of Theorems 1.1 and 1.4. The reverse
direction of Theorem 1.8 is precisely Theorem 6.3. For the reverse direction of
Theorem 1.7, we need only note that the period set of any shift space is closed by
definition under N-multiples, and that if the set of least periods is {1}, then the set
of periods is forced to be N and therefore cofinite. �

Finally, we will briefly describe the issues in trying to find characterizations of
(least) period sets for irreducible and general sofic shifts. The general obstacle is
simple to describe: for a labeled graph (G, `), it is not necessarily true that the
(elementary) cycle lengths of G are the same as the (least) periods of X =χG,`. It is
true that every cycle gives rise to a periodic point, but the least period of that point
can now be strictly smaller than the cycle length, even when the cycle is elementary.
For instance, suppose that G consists of a single cycle of length 4, and that the
labels given to its edges are 0, 1, 0, 1 (in order). Then, though the smallest cycle in
X has length 4, the point of X induced by it has least period 2.

If X is irreducible, then by Theorem 6.2, we can find (G, `) so that X = χG,`,
and G has some period p > 1. The same argument used to prove Theorem 6.3
can be used to show that the least period set of X contains a cofinite subset of pN.
However, it is no longer the case that this least period set must be a subset of pN at
all, and this is what makes the problem of characterization more difficult.

Example. Consider an irreducible graph G with 11 vertices and 12 edges, composed
of two 6-cycles which share a single vertex. Define a labeling ` which labels the
edges of the first cycle (starting from the shared vertex) by A, B, A, B, A, B, and
which labels the edges of the second cycle (starting from the shared vertex) by
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A

B

A

B

A

B C

D

E

C

D

E

AB AB AB∞ C DEC DE∞

Figure 2. The labeled graph (G, `) inducing the irreducible sofic
shift X . All cycles of G are concatenations of the cycles on the
left and right halves of G.

C, D, E,C, D, E . (See Figure 2.) Define X to be the labeled edge shift χG,`,
which is an irreducible sofic shift by Theorem 6.1.

Clearly the only biinfinite paths in G consist of concatenations of traversals
of the two cycles. This means that there are three types of periodic points in X :
the shifts of · · · AB AB AB · · · , the shifts of · · ·C DEC DE · · · , and points with
least period containing both cycle labels AB AB AB and C DEC DE as subwords.
It’s clear that the first type has least period 2 and the second has least period 3.
Points of the third type clearly must have least period which is a multiple of 6 and
strictly greater than 6, and all such least periods occur in X ; for k > 1, the point
· · · (AB AB AB)k−1C DEC DE(AB AB AB)k−1C DEC DE · · · is clearly in X and
has least period 6k.

So, the set of least periods of X is {2} ∪ {3} ∪ 6(N+ 1), and the set of periods
of X is 2N∪ 3N, the set of all positive integer multiples of the set of least periods.
Note that the period of the graph G is 6, and yet there are least periods of points in
X which are not multiples of 6. �

The reader may note that though neither the period set nor least period set of
X above satisfies the conditions of Theorems 1.2 or 1.5 respectively, and so the
characterizations from those theorems are definitely not correct for irreducible sofic
shifts. However, the period set 2N∪ 3N is the finite union of two sets as described
in Theorem 1.2, and the least period set {2} ∪ {3} ∪ 6(N+ 1) is just the union of a
finite set with a set as described in Theorem 1.5. This gives some indication that
slight changes to our results could give characterizations of sets of periods/least
periods for irreducible (and maybe general) sofic shifts, but at the moment we are
not able to prove this.
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