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We describe the curves of constant (geodesic) curvature and torsion in the three-
dimensional round sphere. These curves are the trajectory of a point whose motion
is the superposition of two circular motions in orthogonal planes. The global
behavior may be periodic or the curve may be dense in a Clifford torus embedded
in the 3-sphere. This behavior is very different from that of helices in three-
dimensional Euclidean space, which also have constant curvature and torsion.

1. Introduction

Let (M, 〈 , 〉) be a three-dimensional Riemannian manifold, let I ⊆ R be an open
interval, and let γ : I → M be a smooth curve in M, which we assume to be
parametrized by the arc length t . It is well known that the local geometry of γ is
characterized by the curvature κ and the torsion τ . These are functions defined
along γ and are the coefficients of the well-known Frenet–Serret formulas [Spivak
1975b, pp. 21–23]

D
dt

T (t)= κ(t)N(t),

D
dt

N(t)=−κ(t)T (t) +τ(t)B(t),

D
dt

B(t)= − τ(t)N(t),

(1-1)

where the orthogonal unit vector fields T , N, B, with T = γ ′, along the unit-speed
curve γ , constitute its Frenet frame and D

dt denotes covariant differentiation along γ

with respect to the arc length t . We will assume that each of the functions κ and τ
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is either nowhere zero or vanishes identically. Additionally, if κ is identically zero,
then τ is also taken to be identically zero. For completeness, we include a proof of
the set of equations given in (1-1) in Section 3A below. We make the following
definition:

Definition 1.1. Let M be a Riemannian manifold of dimension 3. A curve γ :

I → M, where I ⊆ R is an open interval, will be called a helix (plural: helices) if
its curvature κ and torsion τ are nonnegative constants. A helix is nondegenerate
if κ and τ are both positive, and degenerate otherwise. We say that the helix γ is
periodic if there is a T > 0 such that γ (t + T )= γ (t) for each t ∈ I .

We take τ to be nonnegative since we use the nonoriented form of the Frenet–
Serret equations (see Section 3). Definition 1.1 is motivated by the example of the
Euclidean space R3, where nondegenerate helices are curves of the form

γ (t)= cos(ωt)A+ sin(ωt)B+ tC + D, (1-2)

where A, B,C, D ∈ R3, A, B,C are nonzero and orthogonal with |A| = |B|, and
ω > 0. These are elegant curves that are invariant under a one-parameter group
of isometries of the ambient space. Note that there are no nondegenerate periodic
helices in R3.

The aim of this paper is to study helices in the three-dimensional round sphere S3.
Thanks to the fact that S3 is compact, we expect that a nondegenerate helix in
S3 should “come back where it started from” provided we wait long enough, and
therefore, there is a possibility that, for a favorable choice of the curvature and
torsion, the helix is actually periodic, though locally it is not much different from
a helix in R3. Globally, a nondegenerate helix in S3 has two fundamental angular
frequencies, ω1 and ω2, as opposed to the single fundamental angular frequency, ω,
of the helix given by (1-2) in R3. A nondegenerate helix in S3 may be thought of
as the trajectory of a particle which performs two superimposed circular motions
with frequencies ω1 and ω2. These fundamental angular frequencies must satisfy

ω2 > 1> ω1,

a constraint which arises because a curve with nonzero curvature and torsion must
lie in the positively curved compact space S3. Unlike in R3 where nondegenerate
helices are embedded noncompact submanifolds, depending on the fundamental
angular frequencies ω1 and ω2, a nondegenerate helix in S3 can either be periodic
(when it is a compact embedded submanifold) or be dense in a flat 2-torus contained
in S3 (when the image of the helix is not an embedded submanifold of S3). This
divergence of global behavior from the flat case is the main topic of this paper.

The properties of helices in the 3-sphere and other spaces of constant curvature
have been studied before; see, e.g., [Arroyo et al. 2004; Barros 1997]. While some
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of the results of this paper can be found scattered in these and other references,
we use a completely elementary and direct approach to the problem, based on an
explicit integration of the Frenet equations, the possibility of which does not seem
to be widely known in the context of spheres. Our method uses nothing beyond
undergraduate calculus and linear algebra. Of course, the questions considered
in this paper can be asked in any number of spatial dimensions, and for other
Riemannian manifolds. Here, for simplicity we consider the special case of S3,
which allows us to visualize helices using the stereographic projection of S3 onto
R3 (see Section 2A below). The method used in this paper will likely generalize to
round spheres of any number of dimensions.

2. Main results

We consider S3 to be embedded in the Euclidean space R4 in the natural way as the
hypersurface {x2

1 + x2
2 + x2

3 + x2
4 = 1}, and endow S3 with the Riemannian metric

induced from R4. This entails no loss of generality because the metric so induced
is the same as the standard round metric of S3 with constant sectional curvature 1.
To state our results concisely, let us introduce the following definition:

Definition 2.1. A smooth curve γ in R4 will be called a Lissajous curve if there
are numbers ω2 > ω1 ≥ 0 and vectors A1, B1, A2, B2 ∈ R4 such that, for each t ,

γ (t)= cos(ω1t)A1+ sin(ω1t)B1+ cos(ω2t)A2+ sin(ω2t)B2. (2-1)

We will call ω1 and ω2 the fundamental angular frequencies of the curve γ and
A1, B1, A2, B2 the coefficient vectors of γ .

Therefore, a Lissajous curve, in our sense, can be thought of as the trajec-
tory of a point in R4 which oscillates with frequency ω1 in the A1 B1-plane and
with frequency ω2 in the A2 B2-plane. Note also that the projection of γ on any
two-dimensional linear subspace different from the A1 B1- and A2 B2-planes is a
planar Lissajous curve in the usual sense of the term [Hasselblatt and Katok 2003,
pp. 114–115]. We are now ready to describe helices in S3:

Theorem 1. Let κ, τ ≥ 0 be given numbers where, if κ = 0, then τ = 0:

(1) There exists a helix γ : R→ S3 with constant curvature κ and torsion τ .

(2) Such a helix γ is a Lissajous curve in the form of (2-1).

(3) The fundamental angular frequencies of γ are distinct and are given by

ω1 =

√
1
2(χ

2−
√
χ4− 4τ 2), (2-2)

ω2 =

√
1
2(χ

2+
√
χ4− 4τ 2), (2-3)
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with
χ2
= κ2
+ τ 2
+ 1. (2-4)

(4) If κ > 0, then the frequencies ω1 and ω2 satisfy

ω2 > 1> ω1. (2-5)

(5) If τ 6= 0 then the four coefficient vectors A1, B1, A2, B2 are orthogonal in R4,
and their magnitudes are given by

|A1|
2
= |B1|

2
=

1−ω2
2

ω2
1−ω

2
2
, (2-6)

|A2|
2
= |B2|

2
=

1−ω2
1

ω2
2−ω

2
1
. (2-7)

(6) If τ = 0, then γ is a circle given by

γ (t)= A1+ cos(ωt)A2+ sin(ωt)B2,

where
ω =

√
κ2+ 1.

Further, the coefficient vectors A1, A2, B2 are mutually orthogonal and we
have

|A2| = |B2| =
1
ω

and |A1| =

√
1−

1
ω2 .

Several interesting features may be noted here:

(a) The local existence of helices follows from the existence theorem for solutions
of systems of ordinary differential equations on manifolds. However, we prove the
existence of helices directly by solving the Frenet–Serret equations and obtain an
explicit representation of the solution.

(b) When κ, τ > 0, the curve γ may be thought of as the trajectory of a motion
consisting of two superimposed circular motions in perpendicular planes: one at a
“slow” frequency ω1 < 1 and the other at a “fast” frequency ω2 > 1. This global
behavior arises from the fact that the curve γ must lie on the compact surface S3.
Observe that there is no such restriction on the angular frequency ω of the Euclidean
helix given by (1-2).

(c) When κ = 0, by definition we have τ = 0. Such a curve is a geodesic; i.e.,
its unit tangent field is autoparallel along the curve. Therefore, geodesics on the
sphere S3 are of the form

γ (t)= cos(t)A+ sin(t)B,
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where |A| = |B| = 1 and A, B are mutually orthogonal. Thus, we recapture the
well-known fact that geodesics in S3 are great circles.

(c) An alternative approach to the study of curves in S3 is given by the use of the
Hopf map, which is a smooth map from S3 to the 2-sphere S2(4); see [Pinkall 1985;
Arroyo et al. 2004; Barros 1997] for details. Given a curve γ in S2(4), its complete
lift under the Hopf map is a flat surface in S3, called the Hopf cylinder shaped on γ .
It turns out that helices in S3 can be thought of as geodesics of Hopf tori shaped on
circles in S2(4), and from this relation more general versions of some of the results
in this paper can be deduced; see [Arroyo et al. 2004; Barros 1997].

As already pointed out, our method is based on a direct integration of the Frenet
equations, and yields explicit formulas for the helices. For the particular problem
of characterizing curves of constant curvature and torsion considered in this paper,
our method enjoys several advantages over that based on the Hopf map. First of all,
it is explicit and gives very simple formulas describing the helices. It is certainly
much simpler and uses nothing beyond elementary calculus and linear algebra.
But the most important advantage is that it can be generalized to study curves of
functions with constant Frenet curvature in higher-dimensional spheres. Indeed, on
the sphere Sn, it is easy to write down an analog of (3-6), or its matrix form (5-2).
Clearly, C will be replaced by an (n+1)× (n+1) matrix which is skew symmetric,
tridiagonal and whose entries are the functions of the helix with constant Frenet
curvature, and therefore the Frenet equations can again be explicitly integrated.
While the method based on the Hopf map is very powerful, it is also specific to S3

and does not generalize to higher dimensions.

We now turn to the question of uniqueness and periodicity of helices. First, note
that if γ is a helix in a Riemannian 3-manifold M and f :M→M is a self-isometry
of M, then f ◦ γ is also a helix in M with the same curvature and torsion as that
of γ . In R3, the converse holds; i.e., helices with the same curvature and torsion
are congruent under an isometry of R3. This is a special case of the well-known
fundamental theorem of curves, see, e.g., [Stoker 1969, pp. 65–67], according to
which a Frenet curve is determined up to congruence by its curvature and torsion as
functions of arc length. It is easy to see that a similar statement must also hold in S3,
and using the explicit form of helices determined above, we verify this fundamental
theorem in this special case below. We also determine when helices are periodic.

Recall that a Clifford torus is a Riemannian 2-manifold which is the metric
product of two circles. Clearly, a Clifford torus is flat; i.e., its Gaussian curvature
vanishes identically. It is well known that there are Clifford tori embedded in the
sphere S3; e.g., for 0< λ < 1, the surface in R4 given by

Cλ = {X ∈ R4
: x2

1 + x2
2 = λ, x2

3 + x2
4 = 1− λ}
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is clearly contained in S3 and is therefore a Clifford torus in S3 which is flat in the
Riemannian metric induced by the round metric of S3.

Theorem 2. Let κ, τ ≥ 0 be given numbers where, if κ = 0, then τ = 0:

(1) If α and β are two helices in S3 with the same curvature κ and torsion τ , then
α and β are congruent; i.e., there is a Riemannian isometry f : S3

→ S3 such
that β = f ◦α.

(2) A helix γ is periodic if and only if the ratio of the angular frequencies

ω1

ω2
=

√
χ2
−
√
χ4− 4τ 2

χ2+
√
χ4− 4τ 2

(2-8)

is a rational number, where χ2
= κ2
+ τ 2
+ 1.

(3) If κ, τ > 0, there exists a Clifford torus T2
γ contained in S3 such that the image

of γ lies on T2
γ .

(4) If κ, τ > 0 and ω1/ω2 is irrational, the image of γ is dense in the torus T2
γ .

2A. Visualization of helices. One way to visualize S3 is to use the stereographic
projection σ : S3

\ {p} → R3, where p is a point in S3 which serves as the pole of
the projection. It is well known that σ is conformal; i.e., it preserves angles but not
lengths. Using Wolfram Mathematica, we produced visualizations of two helices
in S3 which are shown in Figures 1 and 2. Each of these pictures represents two
distinct perspective projections onto R2 of the stereographic projection of the helix,
where p is chosen to not be on the helix. The helix in Figure 1 is nonperiodic and
therefore dense in a Clifford torus. The helix in Figure 2 is periodic and therefore
an embedded curve in S3. The hue and brightness of the curves are functions of the
fourth coordinate of the curve γ in its embedding in R4.

Figure 1. Two views of a dense helix in S3 with κ = 5
√

3
4 and

τ =
√

29
4 . The corresponding fundamental angular frequencies

are then ω1 =
1
2 , ω2 =

√
29
2 , and thus, their ratio is the irrational

number ω2/ω1 =
√

29.
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Figure 2. Two views of a periodic helix in S3 with κ =
√

15
3

and τ = 5
12 . The corresponding fundamental angular frequencies

are then ω1 =
1
4 , ω2 =

5
3 , and thus, their ratio is the rational

number ω2/ω1 =
20
3 .

3. The Frenet–Serret equations

3A. The Frenet–Serret equations in a three-dimensional Riemannian manifold.
Consider a three-dimensional Riemannian manifold (M, 〈 , 〉) and an arc-length
parametrized curve γ : I → M, where I ⊂ R is an open interval. Let D

dt represent
the covariant derivative of a vector field along a curve (parametrized by t). Let
T = γ ′ denote the unit tangent vector field of γ . Since 〈T (t), T (t)〉 = 1 for each t
we have

0= d
dt
〈T (t), T (t)〉 = 2

〈
T (t), D

dt
T (t)

〉
.

Then, the curvature function κ is defined as

κ(t)=
∣∣∣ D
dt

T (t)
∣∣∣. (3-1)

We will assume that either κ(t) 6= 0 for all t or that κ ≡ 0. In the case where κ
never vanishes, we define the normal vector field to γ by

N(t)= 1
κ(t)

D
dt

T (t).

Then N is a unit vector field along γ which is always orthogonal to T. The definition
of N gives the first Frenet–Serret equation

D
dt

T (t)= κ(t)N(t). (3-2)

Similarly, since 〈N(t), N(t)〉 = 1 for each t ∈ I,

2
〈
N(t), D

dt
N(t)

〉
= 0,
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and because 〈T (t), N(t)〉 = 0 for each t ∈ I,〈 D
dt

T (t), N(t)
〉
+

〈
T (t), D

dt
N(t)

〉
= κ(t)+

〈
T (t), D

dt
N(t)

〉
= 0

by (3-2). Then,

D
dt

N(t)=−κ(t)T (t)+ vector orthogonal to T (t) and N(t).

We define a torsion function τ by

τ(t)=
∣∣∣ D
dt

N(t)+ κ(t)T (t)
∣∣∣. (3-3)

We will assume that either τ 6= 0 for all t , or τ ≡ 0. If τ(t) 6= 0 for all t , then we set

B(t)= 1
τ(t)

( D
dt

N(t)+ κ(t)T (t)
)

so that B is a unit vector field along γ which is orthogonal to T and N for all t . If
τ ≡ 0, then we choose B to be an autoparallel vector field along γ such that the
vectors T (t), N(t) and B(t) form an orthonormal basis of Tγ (t)S

3. In both cases
we have

D
dt

N(t)=−κ(t)T (t)+ τ(t)B(t). (3-4)

Finally, since 〈B(t), B(t)〉 = 1 for each t ∈ I,〈
B(t), D

dt
B(t)

〉
= 0,

and because 〈N(t), B(t)〉 = 0 for each t ∈ I,〈 D
dt

N(t), B(t)
〉
+

〈
N(t), D

dt
B(t)

〉
= τ(t)+

〈
N(t), D

dt
B(t)

〉
by (3-4). Then,

D
dt

B(t)=−τ(t)N(t)+ vector orthogonal to N(t) and B(t)

=⇒
D
dt

B(t)=−τ(t)N(t)+ cT (t)

since T (t) is orthogonal to N(t) and B(t) for each t ∈ I by construction. By taking
the dot product of both sides with T (t) we have〈 D

dt
B(t), T (t)

〉
=−τ(t)N(t)+ cT (t)= c

and by the product rule〈 D
dt

B(t), T (t)
〉
=

d
dt
〈B(t), T (t)〉−

〈
B(t), D

dt
T (t)

〉
= 0 =⇒ c = 0.
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Therefore we have our third and final Frenet–Serret equation

D
dt

B(t)=−τ(t)N(t). (3-5)

Equations (3-2), (3-4) and (3-5) constitute the Frenet–Serret equations in a three-
dimensional Riemannian manifold and characterize the local geometry of the
curve γ . This concludes the derivation of the Frenet–Serret formulas in the case
where κ(t) 6= 0 for all t .

However, in the case where κ ≡ 0, we define τ ≡ 0 and choose N, B to be
autoparallel vector fields along γ such that the vectors T (t), N(t), and B(t) form
an orthonormal basis of Tγ (t)S

3. Under this choice, the Frenet–Serret formulas
given in (1-1) are again satisfied.

Note that we are not assuming that the manifold M is orientable. In the case
where M is in fact oriented (i.e., M is orientable, and one of the two orientations is
specified), there is a variant of the Frenet–Serret equations in which one assumes that
the frame {T , N, B} is positively oriented. Indeed, one can then take B = T × N ,
the cross product defined in the tangent space by the Riemannian metric and the
orientation. Then, one must allow the torsion τ to assume negative values. The
equations (1-1) continue to hold with this new interpretation. However, in this
paper, we use the nonoriented form of the Frenet–Serret equations, where κ and τ
are always nonnegative. Geometrically, this means that while considering helices
in S3, we disregard the chirality.

3B. The Frenet equations in S3. We begin by specializing the Frenet–Serret equa-
tions given in (1-1) to the case of the embedded sphere S3 in R4. Let

ι : S3 ↪→ R4

be the natural embedding. Given a curve γ : I → S3, where I ⊂ R is an open
interval, we may think of γ as a curve in R4, by identifying γ with ι ◦ γ . Similarly,
given a vector field V along the curve γ which assigns to each point t ∈ I a vector
V (t) ∈ Tγ (t)S

3, we can identify V with the vector field ι∗V along ι ◦ γ , which
assigns to the point t ∈ I the vector ι∗V (t)∈ Tι◦γ (t)R4. In order to simplify notation,
we adopt the following conventions:

(1) Consistently identifying S3 with the embedded image, we will omit the map ι
and its pushforward ι∗ from the notation. Thus, we will think of the γ in S3 as a
curve in R4 whose image lies in S3. Similarly, we will think of a vector field V
in S3 along γ as a vector field in R4 along γ such that, for each t , the vector
V (t) ∈ Tγ (t)R

4 lies in the subspace Tγ (t)S
3.

(2) We identify the tangent bundle T R4 with R4
×R4. Therefore, all vector fields

in R4 may be identified with R4-valued functions.
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(3) Given a vector field V along a curve γ in S3, by the previous two parts, we can
identify it with an R4-valued function. We will let V ′ denote its derivative in the
Euclidean space R4; i.e., if V is represented using the natural coordinates as

V (t)= (v1(t), v2(t), v3(t), v4(t)),

where v j : I → R4 is smooth, j = 1, . . . , 4, then

V ′(t)= (v′1(t), v
′

2(t), v
′

3(t), v
′

4(t)).

Of course, this is nothing but a coordinate expression for the covariant derivative of
the vector field V along γ with respect to the flat Euclidean metric of R4.

Proposition 3.1. Let γ : I → S3 be a smooth curve in the 3-sphere parametrized
by arc length, and let T , N, B be its Frenet frame. Using the notational convention
explained above, we think of T , N, B as functions from I to R4. Then, these
vector-valued functions satisfy the differential equations

T ′(t)+ γ (t)=−κ(t)N(t),

N ′(t)=−κ(t)T (t)+ τ(t)B(t),

B′(t)=−τ(t)N(t).

(3-6)

Remark. These formulas can be derived from a consideration of the Gauss equation
satisfied by the second fundamental form of the embedding of S3 in R4; see [Spivak
1975b, p. 35]. We give a more elementary proof based on a direct computation of
the covariant derivative.

Proof. We begin by recalling the following fact from differential geometry [Spivak
1975a, p. 2]. Let M be an embedded submanifold of RN, and for each point x ∈M, let

Px : Tx RN
→ Tx M

denote the orthogonal projection (where we identify Tx M in the natural way with
a subspace of Tx RN

= RN ). We endow M with the Riemannian metric induced
by the Euclidean metric of RN. Let γ : I → M be a smooth curve in M, where
I ⊂ R is an open interval, and assume that γ is parametrized by arc length. If V is
a vector field along γ , it is well known that the covariant derivative of V is given by

D
dt

V (t)= Pγ (t)(V ′(t)) ∈ Tγ (t)M.

When M is a hypersurface in RN and x ∈ M, we may write, for R ∈ Tx RN
' RN,

Px(R)= R− (N(x) · R)N(x),

where N(x) denotes a unit vector normal to the hypersurface M at the point x .
Consequently we obtain the following formula for differentiating a vector field V
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along the curve γ :

D
dt

V (t)= V ′(t)− (N(γ (t)) · V ′(t))N(γ (t)).

When M = S3 in R4, we may take for X ∈ S3

N(X)= X,
so that

D
dt

V (t)= V ′(t)− (γ (t) · V ′(t))γ (t). (3-7)

We now compute γ (t) · V ′(t) when V is one of the Frenet frame vector fields
T, B, N. Note that the four vectors γ (t), T (t), N(t), and B(t) form an orthonormal
set in R4. Observe that for each t we have the equations

T ′(t) · γ (t)= (T · γ )′(t)− T (t) · γ ′(t)= 0− (T (t) · T (t))=−1,

N ′(t) · γ (t)= (N · γ )′(t)− N(t) · γ ′(t)= 0− (N(t) · T (t))= 0,

B′(t) · γ (t)= (B · γ )′(t)− B(t) · γ ′(t)= 0− (B(t) · T (t))= 0.

In the first equation, we have used the fact that T = γ ′. Using (3-7) and the above
computations, we obtain the following representations of the covariant derivatives
of the Frenet frame:

D
dt

T (t)= T ′(t)+ γ (t), D
dt

N(t)= N ′(t), D
dt

B(t)= B′(t).

By combining these with the Frenet–Serret equations (1-1) in a Riemannian
3-manifold, (3-6) follows. �

4. Lissajous curves in S3

We now prove a few results that will be needed to complete the proof of Theorem 1.
The following lemma will be required.

Lemma 4.1. Let α0, α1, . . . , αN be distinct nonnegative real numbers, and suppose
that for each t ≥ 0, we have

N∑
k=0

(ak sin (αk t)+ bk cos (αk t))= 0, (4-1)

where the coefficients ak, bk are complex numbers. Then we have ak = bk = 0 for
each k.

Proof. We can assume without loss of generality that α0=0 (simply take a0=b0=0).
For k = 1, . . . , N , let us set α−k =−αk . Then, (4-1) takes the form

N∑
k=−N

ckeiαk t
= 0, (4-2)
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where

ck =


1
2i (a|k|+ ib|k|), k > 0,
a0, k = 0,
1
2i (−a|k|+ ib|k|), k < 0.

For each k ≥ 0, it follows that ck = c−k = 0 if and only if ak = bk = 0.
Fix an integer `, |`| ≤ N, and multiply both sides of (4-2) by e−iα`t. Integrating

on the interval [0, T ] and dividing by T, we see that for each T ≥ 0 we have

N∑
k=−N

k 6=`

ck

T

∫ T

0
ei(αk−α`)t dt + c` = 0. (4-3)

Note, however, that if k 6= `, we have∣∣∣∣∫ T

0
ei(αk−α`)t dt

∣∣∣∣≤ ∣∣∣∣ei(αk−α`)T − 1
i(αk −α`)

∣∣∣∣≤ 2
|αk −α`|

.

Since for each k, this is bounded independently of T, as T →∞, each term in the
first sum of (4-3) goes to 0, which shows that c` = 0. Therefore, a` = b` = 0. Since
` is arbitrary, the lemma is proved. �

We will also need the following proposition.

Proposition 4.2. Suppose that the Lissajous curve given by (2-1) lies in S3:

(a) If ω1 6= 0 and γ has constant speed, then the coefficient vectors of γ satisfy
the following relations:

(1) A1, B1, A2, B2 are orthogonal.
(2) |A1| = |B1| and |A2| = |B2|.
(3) |A1|

2
+ |A2|

2
= 1.

(b) If ω1 = 0, then:

(1) A1, A2, B2 are orthogonal.
(2) |A2| = |B2|.
(3) |A1|

2
+ |A2|

2
= 1.

Proof. For use in the later portions of this proof, we will first compute |γ (t)|2.
Using (2-1) and the fact that γ lies in S3, for each t we have

γ (t)·γ (t)= 1= |A1|
2 cos2(ω1t)+|B1|

2 sin2(ω1t)+|A2|
2 cos2(ω2t)+|B2|

2 sin2(ω2t)

+2(A1·B1)cos(ω1t)sin(ω1t)+2(A1·A2)cos(ω1t)cos(ω2t)

+2(A1·B2)cos(ω1t)sin(ω2t)+2(B1·A2)sin(ω1t)cos(ω2t)

+2(B1·B2)sin(ω1t)sin(ω2t)+2(A2·B2)cos(ω2t)sin(ω2t)
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=
1
2(|A1|

2
+|B1|

2
+|A2|

2
+|B2|

2)

+
1
2(|A1|

2
−|B1|

2)cos(2ω1t)+(A1·B1)sin(2ω1t)

+
1
2(|A2|

2
−|B2|

2)cos(2ω2t)+(A2·B2)sin(2ω2t)

+(A1·A2−B1·B2)cos((ω1+ω2)t)+(A1·B2+B1·A2)sin((ω1+ω2)t)

+(B1·B2+A1·A2)cos((ω2−ω1)t)+(A1·B2−B1·A2)sin((ω2−ω1)t). (4-4)

First, we prove part (a) of the proposition. Let us begin by assuming that ω2 6= 3ω1.
Since ω2 6= 3ω1 and ω1 6= 0, we see that the five numbers

0, 2ω1, 2ω2, ω2+ω1, and ω2−ω1

are all distinct. By Lemma 4.1, each of the coefficients in the expression for
γ (t) ·γ (t)−1 vanishes, as in the left-hand side of (4-1). Thus, from the coefficients
of (4-4), we obtain

1
2(|A1|

2
+ |B1|

2
+ |A2|

2
+ |B2|

2)= 1,
1
2(|A1|

2
− |B1|

2)= 0, A1 · B1 = 0,
1
2(|A2|

2
− |B2|

2)= 0, A2 · B2 = 0,

A1 · A2− B1 · B2 = 0, A1 · B2+ B1 · A2= 0,

B1 · B2+ A1 · A2 = 0, A1 · B2− B1 · A2= 0,
which yields

|A1|
2
+ |B1|

2
+ |A2|

2
+ |B2|

2
= 2, (4-5)

|A1| = |B1|, (4-6)

|A2| = |B2|, (4-7)

A1 · B1 = A1 · A2 = A1 · B2 = B1 · A2 = B1 · B2 = A2 · B2 = 0. (4-8)

Equation (4-8) shows that the vectors A1, B1, A2, and B2 are orthogonal, which is
conclusion (1) of the proposition. Moreover, (4-6) and (4-7) are precisely conclu-
sion (2). Further, recognize that by using (4-5)–(4-7), we get

|A1|
2
+ |A2|

2
= 1, (4-9)

which is conclusion (3).
To complete the proof of part (a) of the proposition, we now consider the case

when ω2 = 3ω1. Let us set ω1 = ω, and thus ω2 = 3ω. Therefore, we have

2ω1 = 2ω, 2ω2 = 6ω, ω2−ω1 = 2ω, and ω2+ω1 = 4ω.

Notice, 2ω1 = ω2−ω1 = 2ω. Therefore, comparing coefficients in (4-4) and using
Lemma 4.1 now gives

|A1|
2
+ |A2|

2
+ |B1|

2
+ |B2|

2
= 2, (4-10)

|A1|
2
− |B1|

2
+ 2(A1 · A2+ B1 · B2)= 0, (4-11)
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|A2| = |B2|, (4-12)

A1 · B1+ A1 · B2− B1 · A2 = 0, (4-13)

A2 · B2 = 0, (4-14)

A1 · A2 = B1 · B2, (4-15)

A1 · B2 =−B1 · A2. (4-16)

Since γ has constant speed, there exists a C > 0 such that for all t , we have
|γ ′(t)| = C . The relation γ ′(t) · γ ′(t)= C2 yields, using (4-4),

0=
( 1

2ω
2
|B1|

2
+ 9ω2

|B2|
2
+ω2
|A1|

2
+ 9ω2

|A2|
2)
−C2

+
( 1

2(ω
2
|B1|

2
−ω2
|A1|

2)+ 3ω2 B1 · B2+ 3ω2 A1 · A2
)

cos(2ωt)

+ 9ω2 1
2(|B2|

2
− |A2|

2) cos(6ωt)

−
(
ω2(A1 · B1)+ 3ω2(B1 · A2)− 3ω2(B2 · A1)

)
sin(2ωt)

− 9ω2(A2 · B2) sin(6ωt)+ 3ω2(B1 · B2− A1 · A2) cos(4ωt)

− 3ω2(B1 · A2+ A1 · B2) sin(4ωt). (4-17)

Using Lemma 4.1, this gives the relations

ω2(|B1|
2
+ 9|B2|

2
+ |A1|

2
+ 9|A2|

2)= 2C2, (4-18)

|B1|
2
− |A1|

2
+ 6(B1 · B2+ A1 · A2)= 0, (4-19)

|B2| = |A2|, (4-20)

A1 · B1+ 3(B1 · A2− B2 · A1)= 0, (4-21)

A2 · B2 = 0, (4-22)

B1 · B2 = A1 · A2, (4-23)

B1 · A2 =−A1 · B2. (4-24)

Comparing (4-10)–(4-16) and (4-18)–(4-24), we see that we have obtained three
new relations, which are (4-18), (4-19) and (4-21). Combining (4-11) with (4-19)
we see that

|A1| = |B1| and A1 · A2 =−B1 · B2.

Similarly, (4-13) and (4-21) imply

A1 · B1 = 0 and A1 · B2 = B1 · A2.

Combining these last two relations with (4-10)–(4-16), we get that the coefficient
vectors A1, B1, A2, B2 are mutually orthogonal, |A1| = |B1|, and |A2| = |B2|.
Conclusions (1), (2) and (3) follow again.
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Now we will prove part (b) of the proposition. We set ω1 = 0 and ω2 = ω in
(4-4). Then in (4-4) we have the three distinct frequencies

0= 2ω1, 2ω2 = 2ω, ω2+ω1 = ω2−ω1 = ω.

Therefore, by Lemma 4.1 we have

2|A1|
2
+ |A2|

2
+ |B2|

2
= 2, (4-25)

|A2| = |B2|, (4-26)

A1 · A2 = 0, A1 · B2 = 0 and A2 · B2 = 0.

Equations (4-25) and (4-26) are precisely conclusions (1) and (2) of part (b) of the
proposition. Additionally, combining (4-25) and (4-26) we have conclusion (3). �

In connection with the proof of part (a) of the above proposition, we note that
if ω2 = 3ω1, one can construct Lissajous curves in S3 (of nonconstant speed) for
which the coefficient vectors are not orthogonal.

5. Proof of Theorem 1

(1) Adjoining the relation γ ′(t) = T (t) to the Frenet–Serret equations (3-6) we
obtain the system of equations

γ ′(t)= T (t),

T ′(t)=− γ (t) − κN(t),

N ′(t)= − κT (t) + τ B(t),

B′(t)= − τN(t),

(5-1)

where κ and τ are the given constants. We now rewrite these equations in matrix
form. Note that the four vectors γ (t), T (t), N(t), B(t) form an orthonormal basis
of R4. Let X(t) denote the 4× 4 matrix whose rows are these four vectors. Then
for each t , the matrix X(t) is orthogonal. When the curvature κ and the torsion τ
are constants, the augmented Frenet–Serret equations given by the set of equations
in (5-1) in the sphere equation may be written in matrix form as

X ′(t)= C · X(t), (5-2)

where C denotes the skew-symmetric matrix

C =


0 1 0 0
−1 0 κ 0

0 −κ 0 τ

0 0 −τ 0

 . (5-3)
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From the theory of ordinary differential equations we know that the solution to
the constant coefficient system presented in (5-2) exists for all t and is given by

X(t)= etC
· X(0). (5-4)

This proves part (1) of the theorem.

(2) In order to calculate the matrix exponential etC, we first recognize that since C
is skew-symmetric it can be diagonalized and thus written as

C = P(i D)P−1,

where D is a diagonal matrix with real entries of the form

D = diag(ω1,−ω1, ω2,−ω2), (5-5)

where ω1, ω2 ≥ 0. This is because the eigenvalues of the real skew-symmetric
matrix C are purely imaginary and occur in complex conjugate pairs. Therefore,

etC
= Pei t D P−1. (5-6)

From (5-5) it follows that

ei t D
= diag(eiω1t , e−iω1t , eiω2t , e−iω2t).

Since γ (t) is the first row of the matrix X(t)= Pei t D P−1
· X(0) it follows that

γ (t)= cos (ω1t)A1+ sin (ω1t)B1+ cos (ω2t)A2+ sin (ω2t)B2,

where the coefficient vectors A1, B1, A2, and B2 are constant vectors in R4. This
proves part (2) of the theorem.

(3) The diagonal entries of i D, where D is as in (5-5), are the eigenvalues of the
matrix C of (5-3). We find them by solving the characteristic equation

det(C − x I)= x4
+ (κ2

+ τ 2
+ 1)x2

+ τ 2
= x4
+χ2x2

+ τ 2
= 0, (5-7)

with χ as in (2-4). The solutions of the characteristic equation are

x =±iω1 or x =±iω2,

where ω1, ω2 are as in (2-2) and (2-3). This proves part (3) of the theorem.

(4) Since κ > 0, we have

χ4
− 4τ 2

= (κ2
+ τ 2
+ 1)2− 4τ 2

= κ4
+ (τ 2

− 1)2+ 2κ2τ 2
+ 2κ2

> (τ 2
− 1)2. (5-8)
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Therefore, from (2-2) and (2-3) we see that ω2 >ω1. By the definition of χ in (2-4)
we have,

χ2
= κ2
+ τ 2
+ 1> 1+ τ 2. (5-9)

Combining (5-8) and (5-9) we have

χ2
+

√
χ4− 4τ 2 > (1+ τ 2)+

√
(τ 2− 1)2 (5-10)

= 1+ τ 2
+ |τ 2

− 1|

=

{
2τ 2, τ ≥ 1,
2, τ < 1.

(5-11)

Therefore, χ2
+
√
χ4− 4τ 2 > 2, and we have

ω2
2 =

1
2(χ

2
+

√
χ4− 4τ 2) > 1. (5-12)

Then, by making use of (5-11),

ω2
1 =

χ2
−
√
χ4− 4τ 2

2
=

2τ 2

χ2+
√
χ2− 4τ 2

<

{
1, τ ≥ 1,
τ 2, τ < 1.

(5-13)

Thus,
ω1 < 1. (5-14)

This proves part (4) of the theorem.

(5) Note that |γ (t)| = 1 for all t and |γ ′(t)| = 1 for all t as well, since γ lies in
S3 and has unit speed. Since τ 6= 0 by (2-2), we know that ω1 > 0. Therefore, by
part (a) of Proposition 4.2:

(1) The coefficient vectors A1, B1, A2, B2 are mutually orthogonal, which is one
of the conclusions of part (5) of Theorem 1.

(2) |A1| = |B1| and |A2| = |B2|, which is part of (2-6)–(2-7). We will however
need to work further to complete the proof of part (5).

(3) We have
|A1|

2
+ |A2|

2
= 1. (5-15)

Now, let α(t)= γ ′(t). Then, |α(t)| = 1 (since γ (t) is parametrized by arc length)
and differentiating (2-1), we see that α(t) may be represented as

α(t)= ω1 cos(ω1t)B1−ω1 sin(ω1t)A1+ω2 cos(ω2t)B2−ω2 sin(ω2t)A2

= cos(ω1t)P1+ sin(ω1t)Q1+ cos(ω2t)P2+ sin(ω2t)Q2,

where P1 = ω1 B1, Q1 =−ω1 A1, P2 = ω2 B2, and Q2 =−ω2 A2. This shows that
α is a Lissajous curve in S3.
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Now, we claim that |α′(t)| is constant independently of t . Recall, that

α′(t)= γ ′′(t)= T ′(t),

where T is the tangent vector field in the Frenet frame (T , N, B). Therefore, by
the first equation in (3-6), we have

γ ′′(t)=−κN(t)− γ (t),

which yields,
α′(t) ·α′(t)= κ2

+ 1+ 2κ(N(t) · γ (t))

= κ2
+ 1, (5-16)

where N(t) · γ (t)= 0 since N(t) ∈ Tγ (t)S
3. We may now apply conclusion (3) of

part (a) of Proposition 4.2 to obtain that |P1|
2
+ |P2|

2
= 1, which is equivalent to

ω2
1|A1|

2
+ω2

2|A2|
2
= 1. (5-17)

Combining (5-15) and (5-17), we get

ω2
1|A1|

2
+ω2

2(1− |A1|
2)= 1

and
ω2

1(1− |A2|
2)+ω2

2|A2|
2
= 1.

Solving these equations for |A1|
2 and |A2|

2, we obtain (2-6) and (2-7).

(6) If τ = 0, by (2-2), we have ω1 = 0. We set ω2 = ω =
√
κ2+ 1 by (2-3) and

then by parts (1)–(3) of this theorem, proved above, γ is given by

γ (t)= A1+ cos(ωt)A2+ sin(ωt)B2.

Furthermore, by part (b) of Proposition 4.2 we know that |A2| = |B2| and that the
coefficient vectors A1, A2, and B2 are mutually orthogonal. Note that

γ ′(t)=−ω sin(ωt)A2+ω cos(ωt)B2.

Since γ ′(t) has unit speed, we have

γ ′(t) · γ ′(t)= 1= ω2
|A2|

2 sin2(ωt)+ω2
|B2|

2 cos2(ωt)= ω2
|A2|

2,

which implies,

|A2| =
1
ω
. (5-18)

Combining (5-18) with conclusion (3) of part (b) of Proposition 4.2, we get

|A1| =

√
1− 1

ω2 . (5-19)
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6. Proof of Theorem 2

(1) Suppose that we have two helices α and β in S3 with the same curvature
κ ≥ 0 and torsion τ ≥ 0. Then, by part (3) of Theorem 1, the fundamental angular
frequencies ω1 and ω2 of these two curves are the same. Thus, the curves are
represented as

α(t)= cos(ω1t)A1+ sin(ω1t)B1+ cos(ω2t)A2+ sin(ω2t)B2,

β(t)= cos(ω1t)C1+ sin(ω1t)D1+ cos(ω2t)C2+ sin(ω2t)D2.

If τ 6= 0, by part (5) of Theorem 1, we also know that

|A1| = |B1| = |C1| = |D1| =

√
1−ω2

2

ω2
1−ω

2
2
,

[2pt]|A2| = |B2| = |C2| = |D2| =

√
1−ω2

1

ω2
2−ω

2
1
,

and that the sets of vectors {A1, B1, A2, B2} and {C1, D1,C2, D2} are both mutually
orthogonal. Therefore, there exists an orthogonal map, G : R4

→ R4 in O(4) such
that G(A1)= C1, G(B1)= D1, G(A2)= C2, and G(B2)= D2. Then f = G|S3

is an isometry of S3 and it is clear that β = f ◦α.
If τ = 0, then by part (6) of Theorem 1, we know that α and β take the form

α(t)= A1+ cos(ωt)A2+ sin(ωt)B2,

β(t)= C1+ cos(ωt)C2+ sin(ωt)D2,

where ω1 = 0 and ω = ω2 =
√
κ2+ 1 by (2-2) and (2-3). Furthermore, by part (6)

of Theorem 1, we know that

|A2| = |B2| = |C2| = |D2| =
1
ω
, |A1| = |C1| =

√
1− 1

ω2 ,

and that the sets of vectors {A1, A2, B2} and {C1,C2, D2} are both mutually or-
thogonal. Therefore, there again exists an orthogonal map G : R4

→ R4 in O(4)
such that G(A1) = C1, G(A2) = C2, and G(B2) = D2. Then f = G|S3 is again
an isometry of S3 and it is clear that β = f ◦α.

(2) Let γ be a helix in S3 which can be written, thanks to Theorem 1, in the form
of (2-1):

γ (t)= cos(ω1t)A1+ sin(ω1t)B1+ cos(ω2t)A2+ sin(ω2t)B2.

Now suppose that γ is periodic with period T. Then, for each t ∈ R, we have

γ (t)= γ (t + T ).
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First, let us assume that τ 6= 0 and consequently, because of (2-2), ω1 6= 0. Then,
comparing the coefficients of A1 and B1, we obtain,

cos(ω1(t + T ))= cos(ω1t) and sin(ω1(t + T ))= sin(ω1t) (6-1)

for each t ∈ R. This shows that there exists a nonzero m ∈ Z such that

T =
2πm
ω1

.

Similarly, we compare the coefficients of A2 and B2, to get

cos(ω2(t + T ))= cos(ω2t) and sin(ω2(t + T ))= sin(ω2t) (6-2)

for each t ∈ R. This shows that there exists a nonzero n ∈ Z such that

T =
2πn
ω2

.

It follows that
ω1

ω2
=

m
n
∈Q.

Now we prove the converse. Suppose that ω1/ω2 = m/n ∈Q. Then, let

T =
2πm
ω1
=

2πn
ω2

.

Thus, (6-1) and (6-2) hold. Therefore,

γ (t + T )= γ (t),

which proves part (2) of Theorem 2 in the case where τ 6= 0. If, on the other hand,
τ = 0 and consequently ω1 = 0, then γ is given by

γ (t)= A1+ cos(ω2t)A2+ sin(ω2t)B2,

which is always periodic with a period of

T =
2π
ω2
.

This proves part (2) of the theorem.

(3) Let κ, τ >0 and let A1, B1, A2, and B2 be the orthonormal basis of R4 consisting
of the unit vectors along the coefficient vectors A1, B1, A2, and B2 of γ as given
in (2-1). We denote the coordinates of a point X ∈ R4 by

X = x1 A1+ x2 B1+ x3 A2+ x4 B2.

By parts (2) and (5) of Theorem 1, we have that γ is represented in these co-
ordinates by x1 = |A1| cos(ω1t), x2 = |A1| sin(ω1t), x3 = |A2| cos(ω2t), and
x4 = |A2| sin(ω2t). Consider the torus in R4 given by

T2
γ = {X ∈ R4

: x2
1 + x2

2 = |A1|
2, x2

3 + x2
4 = |A2|

2
}. (6-3)
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Clearly γ lies on T2
γ . It is clear that T2

γ is a flat Clifford torus in R4, and is contained
in S3, since if X = (x1, x2, x3, x4) ∈ T2

γ , then

|X|2 = x2
1 + x2

2 + x2
3 + x2

4 = |A1|
2
+ |A2|

2
=

1−ω2
2

ω2
1−ω

2
2
+

1−ω2
1

ω2
2−ω

2
1
= 1,

where the last equality follows by (2-6) and (2-7).

(4) Note that the helix γ is a solution of the differential equations on the torus T2
γ

dθ1

dt
= ω1 and

dθ2

dt
= ω2,

where θ1, θ2 are angular coordinates on the circles x2
1 + x2

2 = |A1|
2 and x2

3 + x2
4 =

|A2|
2 respectively. If ω1/ω2 /∈Q, then a classical result in the theory of dynamical

systems [Hasselblatt and Katok 2003, Proposition 4.2.8, p. 113] shows that the
image of γ is dense in T2

γ . Therefore, part (4) of the theorem is proven.
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351Erdős–Szekeres theorem for cyclic permutations
ÉVA CZABARKA AND ZHIYU WANG

involve
2019

vol.12,
no.2

http://dx.doi.org/10.2140/involve.2019.12.181
http://dx.doi.org/10.2140/involve.2019.12.203
http://dx.doi.org/10.2140/involve.2019.12.221
http://dx.doi.org/10.2140/involve.2019.12.221
http://dx.doi.org/10.2140/involve.2019.12.235
http://dx.doi.org/10.2140/involve.2019.12.257
http://dx.doi.org/10.2140/involve.2019.12.281
http://dx.doi.org/10.2140/involve.2019.12.301
http://dx.doi.org/10.2140/involve.2019.12.321
http://dx.doi.org/10.2140/involve.2019.12.329
http://dx.doi.org/10.2140/involve.2019.12.343
http://dx.doi.org/10.2140/involve.2019.12.351

	1. Introduction
	2. Main results
	2A. Visualization of helices

	3. The Frenet–Serret equations
	3A. The Frenet–Serret equations in a three-dimensional Riemannian manifold
	3B. The Frenet equations in S^3

	4. Lissajous curves in S^3
	5. Proof of Theorem 1
	6. Proof of Theorem 2
	Acknowledgements
	References
	
	

