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RNA secondary structures have been modeled using a variety of matching families.
We first explore the intersections of different matching families which are models
for likely RNA secondary structures. We then introduce their respective enumera-
tion sequences and prove our proposed equations for enumeration. Next, we prove
a formula for the number of matchings with a given crossing number for a variety
of matching families. Then we develop a new statistic called the pseudoknot
number and find the maximum pseudoknot number on a given set of matchings.
We end by providing a comparison between the crossing number, nesting number,
and pseudoknot number for three matching families on nine edges.

1. Introduction

1A. Background Information. Ribonucleic acid (RNA) is an important molecule
in all living organisms that directly codes for amino acids and acts as a messenger
between DNA and ribosomes to make proteins. RNA is a single-stranded molecule
made up of the nucleotides adenine, guanine, cytosine, and uracil. This string of
nucleotides folds over on itself and forms secondary bonds between some of its
nucleotides [Martinez and Riehl 2017]. Biologists and mathematicians have spent
a great deal of time studying these RNA secondary structures [Condon et al. 2004;
Jefferson 2015]. In mathematics we represent the secondary structures using a
type of graph called a matching. A matching is a graph-theoretical structure in
which each vertex has at most degree 1. In our matchings each vertex represents a
nucleotide and each edge represents a secondary bond. Since RNA is a string of
ordered nucleotides connected by bonds, we list all the vertices of the matching
in order along a horizontal line (the backbone) where the edges connect above
the vertices. To simplify the graph, we omit any nucleotides that are not part of a
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Figure 1. An RNA motif (top) [Ronan 2006] and its matching (bottom).

secondary bond, making each matching a complete matching on 2n vertices and
n edges. In a complete matching, sometimes called a perfect matching, every vertex
is incident to one edge. To recreate an RNA structure with isolated vertices from
its matching we can add them into the complete matching in their corresponding
spots. Figure 1 demonstrates an RNA motif represented as a matching.

For an edge, i , in a matching, we write i = (i1, i2), where i1, i2 are the positions
of the left- and right-endpoints of the edge, respectively. A pair of edges i = (i1, i2)

and j = ( j1, j2) in a matching, M , are said to be crossing if i1 < j1 < i2 < j2. A
pair of edges are said to be nested if i1 < j1 < j2 < i2. Similarly, if j1 = i1 + 1
and j2 = i2+ 1, then i and j form a hairpin. Finally, a nested sequence of n edges
is called a ladder [Martinez and Riehl 2017]. In Section 4 we will be particularly
interested in examining pseudoknot numbers for certain matching families along
with all perfect matchings.

A number of statistics can be applied to the matchings (e.g., crossing number
and nesting number). The crossing number, cr(M), counts the number of times
a pair of edges in the matching cross. The nesting number for one edge counts
the number of edges nested under said edge. The nesting number statistic for a
matching, ne(M), is the sum of the nesting numbers for each edge in the matching.

We introduce here a biologically motivated statistic called the pseudoknot number,
pknot(M). A pseudoknot occurs in a strand of RNA when the strand folds on itself
and forms secondary bonds between nucleotides, and then the same strand wraps
around and forms secondary bonds again. See Figure 1 for an example. These
formations are important because viruses have pseudoknots to infiltrate a host cell
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Figure 2. A matching on four edges that can be represented as the
permutation σ = 17253468.

to cause such diseases as hepatitis C, HIV, and SARS [Brierley et al. 2007]. The
pseudoknot number of a matching, pknot(M), counts the number of pseudoknots
on the RNA motif by deflating any ladders in the matching and then finding the
crossing number on the resulting matching.

Matchings can also be represented as permutations of length 2n. The permutation
is constructed by numbering the vertices (i.e., the nucleotides along the backbone)
from 1 to 2n. We then work from left to right recording the left vertex number
followed by the right vertex number of each edge that we encounter. This creates a
permutation in which the odd indices are monotonically increasing. For example,
the matching in Figure 2, written as a permutation, is 17253468. We represented
matchings as permutations in our code that generated data and helped us arrive at
conjectures.

Definition 1.1. The Catalan numbers are a sequence that appears in mathematics
in many different settings. This sequence is enumerated by the formula

Cn =
2n

(n+ 1)! n!
,

where Cn represents the n-th Catalan number. This sequence begins

1, 2, 5, 14, 132, . . . .

Example 1.1. Given n pairs of parentheses, there are Cn many ways to arrange
these parentheses such that every open parenthesis has a matching closed parenthesis
after it. Table 1 shows the ways to arrange n pairs of parentheses where 1≤ n ≤ 4.

There is clear bijection between these n pairs of parentheses and the noncrossing
matchings on n edges. A left parenthesis corresponds to where an edge starts and
a right parenthesis corresponds to where an edge ends. For example, Figure 3
corresponds to the arrangement of five pairs of parentheses given by ()(()())().

Therefore, it is known that the Catalan numbers also count the noncrossing
matchings.

In Section 1B we briefly describe families of matchings that represent RNA
secondary structures where unlikely biological structures are significantly restricted.
Many of these families of matchings are inductively built starting from a single
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n arrangements no. of
arrang.

1 () 1

2 ()(), (()) 2

3 ()()(), ()(()), (())(), (()()), ((())) 5

4 ()()()(), (())()(), ()(())(), ()()(()), ()(()()), 14
(())(()), (()())(), ((()))(), ()((())), (()()()),
((())()), (()(())), ((()())), (((())))

Table 1. The Catalan-many ways to arrange n pairs of parentheses,
where 1≤ n ≤ 4 [Davis 2016].

Figure 3. The matching corresponding to the arrangement of five
pairs of parentheses given by ()(()())().

edge or a hairpin. Algebraic generating functions for the five main families of
matchings have been found [Jefferson 2015]. In Sections 2 and 3 we will investigate
intersections of these families.

1B. Hairpin-only Families. Mathematical biologists have defined five hairpin-
only families of matchings that model RNA secondary structures. These families
(often named after the people who first studied them) are: LHF (largest hairpin
family), D&P (Dirks and Pierce), R&G (Rieder and Giegerich), C&C (Cao and
Chen), and L&P (Lyngsø and Pedersen) (shown in Figure 4 from least restrictive to
most restrictive) [Jefferson 2015].

Suppose we have two matchings M and N with 2m and 2n vertices respectively.
For a vertex i in M , the vertex insertion in M by N after i is the matching with

LHF

D & P

L & P R & G

C & C

Figure 4. The inclusions among hairpin-only families.
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Figure 5. A hairpin with the left edge inflated by a hairpin.

2m+2n vertices in which a copy of N is inserted between i and i+1 in M [Jefferson
2015]. Now, given any matching Q with q edges and a matching R with r edges,
if (i, j) is an edge of Q then the edge inflation of Q by R at (i, j) is the matching
on the vertices 2q + 2r − 2 in which the vertex i is replaced by the left-endpoints
of R, the vertex j is replaced by the right-endpoints of R, and the edges between
these two sets of vertices are defined as they are in R [Jefferson 2015]. An example
of edge inflation by a matching is shown in Figure 5.

LHF matchings. The largest hairpin family is formed by matchings that begin with
either a single edge or a hairpin. Then arbitrary vertex insertions and edge inflations
by matchings may be performed.

An example of a matching in LHF is shown on the right-hand side of Figure 5.
To construct this matching we start with a hairpin and inflate one of its edges by
another hairpin.

The D&P (Dirks and Pierce) family. The D&P family can be constructed induc-
tively by beginning with either a single edge or a hairpin. Then the following
procedures can be performed: (1) inflate an edge by a ladder and (2) insert one
D&P matching into another. The D&P family differs from LHF because instead
of being closed under edge inflation, only edge inflations by ladders are allowed.
An example of a D&P matching is shown in Figure 6. To construct this matching
we start with a hairpin and then inflate its left edge by a ladder. Then we insert a
hairpin between the two edges of the ladder.

The R&G (Rieder and Giegerich) family. Starting from either a single edge or a
hairpin, matchings of the R&G family can be built inductively via the following
operations: (1) insert R&G matchings into the places shown in Figure 7, followed
by (2) inflating the original edge(s) by ladders. An example of an R&G matching
is shown in Figure 8. To construct this matching we start with a hairpin and insert
another hairpin into the middle.

Figure 6. A D&P matching on five edges.
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↑ ↑ ↑ ↑ ↑ ↑

Figure 7. The allowable places for insertion in the R&G family.

Figure 8. An R&G matching on four edges.

The C&C (Cao and Chen) family. Starting from either a single edge or a hairpin,
matchings of the C&C family can be built inductively via the following operations:
(1) insert C&C matchings in the allowable places (as shown in Figure 9) and then
(2) inflate the original edge(s) by ladders. An example of a C&C matching is shown
in Figure 10. To construct this matching we start with a single edge and insert a
hairpin under the edge.

The L&P (Lyngsø and Pedersen) family. Starting from either a single edge or a
hairpin, the matchings of the L&P family can be built inductively via the following
operations: (1) inflate an edge of an L&P matching by a ladder and (2) insert a
noncrossing matching into an L&P matching. An example of an L&P matching is
shown in Figure 11. To construct this matching we start with a hairpin and insert a
noncrossing matching of size 2 into the middle of the hairpin.

We studied different intersections of the hairpin-only families. The Venn diagram
in Figure 12 depicts the different intersections in which we have labeled each distinct
region using script letters. For example, A is the group of matchings that are both
L&P and C&C. B is the group of matchings that are L&P and R&G but not C&C.
In Sections 2 and 3 we will describe A and B and the formulae that enumerate these
matchings. In Section 4 we will examine the crossing number, nesting number, and

↑ ↑ ↑ ↑ ↑

Figure 9. The allowable places for insertion in the C&C family.

Figure 10. A C&C matching on three edges.
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Figure 11. An L&P matching on four edges.

E

DABC

R&G

L&P

C&C

Figure 12. The Venn diagram that shows the different regions we
have analyzed.

pseudoknot number statistics on L&P matchings, C&C matchings, and all perfect
matchings. We will then compare the distributions of these statistics for each of the
given families on nine edges.

2. Matchings that are L&P and C&C (i.e., in A)

Matchings in A must be both L&P and C&C matchings. Figure 13 shows all
11 matchings in A with three edges.

For a small n, where n is the number of edges in each matching, the sequence of
matchings in A starting at n = 1 is given by, see [Goryl 2017b],

1, 3, 11, 39, 134, 456, 1557, 5364, . . . . (1)

Figure 13. The 11 matchings in A with three edges.
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Figure 14. Matching in A with nine edges.

The matchings that are both L&P and C&C can be created inductively through
the following operations in the given order:

• We begin with either a single edge or a hairpin.

• We can insert noncrossing matchings, to ensure the matching is L&P, into the
insertion spots as shown in Figure 10, to ensure the matching is C&C.

• Finally, we can inflate the original edge(s) by ladders. Inflating the original
edges last ensures that the matchings are C&C as we cannot insert matchings
between ladders.

Each matching in A can be split into two separate parts: a (possibly empty)
noncrossing matching and a (possibly empty) hairpin first matching. Let NCMn

be the noncrossing matchings on n edges and let NCMn = |NCMn|. Let HFn be
the matchings in An whose leftmost edge is part of a hairpin and let HFn = |HFn|.

For example, in Figure 14, the leftmost edge is part of a noncrossing matching
consisting of three edges, so these three edges are in NCM3. The next part of the
matching has its leftmost edge as part of a hairpin. So these six edges are in HF6.

Lemma 2.1. The number of ways to insert (possibly empty) noncrossing matches
into three possible positions with m total edges is Cm+2−Cm+1.

Proof. Since the edges we insert are noncrossing and the noncrossing matchings are
counted by the Catalan numbers, the summation of these products of three Catalan
numbers with subscripts i, j, k would enumerate the number of ways we could
insert a total of m edges, made of noncrossing matchings. It can be proved using
generating functions [Sloane 2010b] for this sequence that∑

i, j,k≥0
i+ j+k=m

Ci C j Ck = Cm+2−Cm+1. �

Lemma 2.2. Matchings in A where the leftmost edge is part of the hairpin can be
enumerated by the formula

H Fn =

n∑
j=1

C j − n.

Proof. Consider matchings in A where the leftmost edge is part of a hairpin. Since
these matchings are C&C, there are only three insertion spots, and n− 2 edges left
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to insert. By Lemma 2.1, there are Cn−Cn−1 ways to do so. If we have either side
inflated by one ladder, it can either inflate the left or right side of the hairpin, and
then we have n− 3 edges left to insert, so that’s 2(Cn−1−Cn−2) more matchings.
If we continue on with this process, the number of ways to insert noncrossing
matchings into a hairpin, now taking ladders into consideration, is given by

(Cn−Cn−1)+2(Cn−1−Cn−2)+3(Cn−2−Cn−3)+· · ·+ (n−1)(C2−C1)

= Cn−Cn−1+2Cn−1−2Cn−2+3Cn−2−3Cn−3+· · ·+ (n−1)C2− (n−1)C1

= Cn+Cn−1+Cn−2+· · ·+C3+C2− (n−1) since C1 = 1.

In order to sum over all the Catalan numbers, we can add in C1 and then subtract
C1 = 1 at the end, giving us

n∑
j=1

C j − n. �

Lemma 2.3. All matchings in A can be enumerated by
n∑

i=0

Ci HFn−i ,

with initial conditions

HF0 = 1, HF1 = 0, HF2 = 1, C0 = 1, C1 = 1,

where Ci are the Catalan numbers, and HFn represents the number of matchings
that are both L&P, C&C, and have the leftmost edge as part of a hairpin.

Proof. Matchings in A are completely described by all combinations of NCMi

and HFn−i . Since we know that the Catalan numbers enumerate the noncrossing
matchings, by [Sloane 2010a] we know all matchings in A are enumerated by

n∑
i=0

Ci HFn−i . �

Theorem 2.1. The matchings that are both L&P and C&C can be enumerated by
the formula

n−2∑
i=0

Ci

(n−i∑
j=1

C j − (n− i)
)
+Cn,

where Ck is the k-th Catalan number.

Proof. From Lemma 2.3 we know the first sum will be
n∑

i=0

Ci HFn−i .
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Combining this with Lemma 2.2, we see that

|A| =
n−2∑
i=0

Ci

(n−i∑
j=1

C j − (n− i)
)
+Cn. �

Example 2.1. Suppose we want to determine the number of matchings that are
L&P and C&C with three edges.

Let n = 3. So,
n−2∑
i=0

Ci

(n−i∑
j=1

C j − (n− i)
)
+Cn =

1∑
i=0

Ci

(3−i∑
j=1

C j − (3− i)
)
+C3

= C0

( 3∑
j=1

C j − 3
)
+C1

( 2∑
j=1

C j − 2
)
+C3

= C0(C1+C2+C3− 3)+C1(C1+C2− 2)+C3

= 1(1+ 2+ 5− 3)+ 1(1+ 2− 2)+ 5= 11,

which agrees with formula (1). The 11 matchings with three edges that are L&P
and C&C are shown in Figure 13.

3. Matchings that are L&P and R&G but not C&C (i.e., in B)

Matchings in B must be both L&P and R&G but not C&C. Figure 15 shows all
eight matchings in B with four edges.

Figure 15. The eight matchings in B with 4 edges.
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Figure 16. The smallest matching in B.

For a small n, where n is the number of edges in each matching, the sequence of
matchings in B starting at n = 1 is given by, see [Goryl 2017a],

0, 0, 1, 8, 42, 186, 759, 2970, 11369, . . . . (2)
The group of matchings that are L&P and R&G but not C&C can be created

inductively through the following operations in the given order:

• We must begin with a hairpin that has a single edge inserted into the middle
of the hairpin as shown in Figure 16. The edge inserted into the middle of the
hairpin will ensure that all matchings are not C&C.

• To ensure that the matchings are L&P, we next insert noncrossing matchings.

• Finally, we can inflate the edges of the hairpin by ladders. Inflating the edges
of the hairpin last ensures that the matchings are R&G, in which you cannot
insert matchings between ladders.

Lemma 3.1. Let an be the number of matchings in B with n edges where the last
step in its inductive creation is inflation by a ladder, denoted by inflate(n). Then
an = 2an−1− an−2.

Proof. In order for a matching to be R&G, inflations of the original edges must
occur after all insertions. Since matchings in B start with a hairpin, the only edges
we can inflate are the two edges that make up the hairpin. To obtain these matchings
with n edges, we can take all matchings in B with n − 1 edges and inflate each
matching’s left edge of the hairpin by a ladder. That gives us an−1 matchings. Then,
for the matchings in B with n− 1 edges, we can inflate each matching’s right edge
of the hairpin by a ladder, which gives us another an−1 matchings. In total, this
gives us 2an−1 matchings, but we have over-counted. Inflating the left side of the
hairpin and then the right is the same as inflating the right side of the hairpin and
then the left, so we want to remove those matchings that had one edge added to each
half of the hairpin. If we take all the matchings with n− 2 edges in B and inflate
the left edge of the hairpin by one ladder and then right edge of the hairpin by one
ladder, we get an−2 matchings with n edges. So, if we subtract the over-counted
matchings, we get 2an−1− an−2 matchings in inflate(n). �

Lemma 3.2. Matchings with n edges in B where the last step is an insertion,
denoted by ins(n), are enumerated by

6
n+3

(2n−1
n−3

)
. (3)



268 N. ANDERSON, M. BREUNIG, K. GORYL, H. LEWIS, M. RIEHL AND M. SCANLAN

↑ ↑ ↑ ↑ ↑

Figure 17. Five allowable places for insertion in B.

Proof. Starting with a hairpin, we can insert noncrossing matchings into the five
different insertion spots shown in Figure 17 given there is at least one element
of NCM1 in the middle of the hairpin. We know that the inserted noncrossing
matchings cannot be inserted between ladders because the matchings must be
both R&G and L&P. Note, for R&G matchings there are only four insertion spots
because we cannot insert to the left of the hairpin. Noncrossing matchings inserted
on the left of the hairpin can be thought of as starting with a noncrossing matching
and inserting a matching containing a hairpin on the right. Therefore, we will
be inserting noncrossing matchings into five insertion spots. Letting i, j, k ≥ 1,
we insert i − 1 edges on the left side of the hairpin, j edges in the middle of the
hairpin (since we must have at least one edge inserted here), and k−1 edges on the
right side of the hairpin. Since there are already two edges included in the hairpin,
i − 1+ j + k− 1= n− 2, which implies i + j + k = n.

First, consider noncrossing matchings that are on the left side of the hairpin. This
includes both matchings that are on the far left outside of the hairpin and matchings
that are under the left edge of the hairpin. There are Ci−1C0 + Ci−2C1 + · · · +

C1Ci−2+C0Cn−1 ways to insert i−1 edges into two insertion spots on the left side
of the hairpin. It is known that sum is equal to Ci [Davis 2016]. Therefore, there are
Ci ways to insert i−1 edges into the left side of the hairpin. Likewise, there are Ck

ways to insert k−1 edges into the right side of the hairpin, which includes on the far
right outside of the hairpin and matchings under the right edge of the hairpin. There
are C j ways to insert j edges into the middle of a hairpin because we can only insert
noncrossing matchings. This implies we can enumerate matchings in ins(n) by∑

i, j,k≥1
i+ j+k=n

Ci C j Ck

It is known this is given by the closed form (3) [Sloane 1991]. �

Theorem 3.1. The matchings that are L&P and R&G but not C&C can be enumer-
ated by the formula

an = 2an−1− an−2+
6

n+3

(2n−1
n−3

)
. (4)

Proof. Since we inductively build matchings in B with exactly two operations,
Lemmas 3.1 and 3.2 completely describe how to build all matchings in B. Therefore,
by Lemmas 3.1 and 3.2, we can add our two formulas together to obtain the
recurrence relation (4), which enumerates all matchings in B. �
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This recurrence relation has no closed formula, although it can be written using
hypergeometric series. Since there is a closed form for L&P matchings and we
have now found equations for A and B, we can use these to enumerate matchings
in C using subtraction.

Example 3.1. Suppose we want to find the matchings in B with n = 4 edges. Then
we can compute

a4 = 2a3− a2+
6
7

(7
1

)
= 2(1)− 0+ 7 6

7 = 8,

which agrees with formula (2). The eight matchings with four edges in B can be
found in Figure 15.

4. Statistics

We implemented the following statistics and constructions of each hairpin family
in Python, and those programs are available upon request.

4A. L&P Matchings. L&P matchings insert only noncrossing matchings; there-
fore the only way to have two crossing edges is to begin with a hairpin. The only
way to increase the crossing number is to inflate the edges of the hairpin. Because
all of the crossings happen in the hairpin, we can count the number of crossings by
taking the product of the number of edges that inflate the left side of the hairpin
and the number of edges that inflate the right side of the hairpin.

Theorem 4.1. The number of L&P matchings on n edges with a given crossing
number h > 0 is ∑

(γ1,γ2,...,γk)
γi≥0
γi≤βi∀i

∑
(α1,α2,...,α(2E+1))

αi≥0∑
αi=n−E

2E+1∏
i=1

Cαi ,

where h = pβ1
1 pβ2

2 · · · p
βk
k is the prime factorization of h, pγ1

1 pγ2
2 · · · p

γk
k is a factor

of h, and E is pγ1
1 pγ2

2 · · · p
γk
k + pβ1−γ1

1 pβ2−γ2
2 · · · pβk−γk

k .

Proof. Let h be the desired crossing number and n be the number of edges in
the L&P matching. Because h > 0 and the matchings are L&P we know that
there is exactly 1 hairpin in the matching. Then let h = pβ1

1 pβ2
2 · · · p

βk
k be its

unique prime factorization. Each factor of h is then given by pγ1
1 pγ2

2 · · · p
γk
k with

0≤ γi ≤ βi . The product of the edges on the right and the left sides of the hairpin
must be h so there must be pγ1

1 pγ2
2 · · · p

γk
k edges on the left side of the hairpin

and pβ1−γ1
1 pβ2−γ2

2 · · · pβk−γk
k edges on the right side of the hairpin. Then there

are n− E edges left to insert into the matching in some of 2E + 1 places. Then
consider the number of noncrossing edges inserted into each spot of the matching
as a vector Eα. If each αi will be the number of edges inserted into the i-th spot of



270 N. ANDERSON, M. BREUNIG, K. GORYL, H. LEWIS, M. RIEHL AND M. SCANLAN

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Figure 18. Places to insert in an L&P matching.

the matching, the insertion vector Eα is given by (α1, α2, . . . , α2E+1), where αi ≥ 0
and

∑
i αi = n− E . The insertions must be noncrossing because the matchings are

L&P; therefore there are Catalan-many ways to insert each noncrossing matching.
Then there are Cα1Cα2 · · ·Cα2E+1 ways to insert each Eα into the matching. We can
sum over all Eα to find all the matchings with the given number of edges on the left
and right sides of the hairpin. Then we sum over all the possible factors of h to get
all possible L&P matchings on n edges with crossing number h. �

For example, to find the number of L&P matchings on n=9 edges with a crossing
number of h = 6 we will start by writing the prime factorization of h: h = 21

∗ 31.
Using the prime factorization we can find all of the factors of h: 1, 2, 3, 6. We begin
with our first factor, 1, being the number of edges on the left side of the hairpin. We
know the product of the number of edges on the left and right sides of the hairpin
must be 6, so there must be six edges on the right side of the hairpin. Then there
are a total of seven edges in the hairpin, and there are two edges left to insert into
the matching in the 15 places shown by the arrows in Figure 18. There are two
edges left to insert into the inflated hairpin and they could be inserted into the same
place or into two different places. If they are inserted into two different places the
corresponding Eα would contain two 1’s, and 13 0’s. There are

(15
2

)
distinct Eα of this

type. There are C1 ways to arrange the first inserted edge and there are C1 ways
to arrange the second inserted edge. If both edges are inserted into the same place
the corresponding Eα would contain one 2 and 14 0’s. There are 15 distinct Eα of this
type. There are C2 ways to arrange the inserted noncrossing matching of size 2. The
number of L&P matchings on nine edges with one edge on the left side of the hairpin
and six edges on the right side of the hairpin is therefore

(15
2

)
C1C1+15C2=135. We

repeat this process with each remaining factors of h, 2, 3, and 6, where each factor is
the number of edges on the left side of the hairpin. After considering all factors we
find that there are 4758 L&P matchings on nine edges with a crossing number of six.

Example 4.1. Suppose we want to find the number of L&P matchings with n = 4
edges and h = 1.

We start with the prime factorization of h: h = 1. Thus, the only factor of h is 1.
This means there is one edge on each of the left and right sides of the hairpin. Hence,
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Figure 19. The 20 matchings that are L&P with n = 4 edges and h = 1.

there are two edges left to insert into five spots. Using the same process as before,
we get

(5
2

)
C1C1+5C2 = 20 matchings. These 20 matchings are found in Figure 19.

4A1. Maximum values. To find the maximum crossing number of an L&P matching
on n edges, we require that all edges be part of the initial hairpin and that there be
as close to an equal number edges inflated on each side of the hairpin as possible.
This results in a maximum crossing number of 1

8(2n2
− 1+ (−1)n), which is the

closed form of
∑⌊ 1

2 n
⌋
+ 1, which is obtained by successively adding one edge to

the previously maximally inflated hairpin. We note that the formula in Theorem 4.1
is zero if h >

∑⌊ 1
2 n+ 1

⌋
.

The maximum nesting number of an L&P matching is the same as that of a
noncrossing matching (i.e., a ladder on n edges), which is 1

2 n(n+ 1).

4B. C&C. The maximum crossing and nesting number of a C&C matching of
n edges is the same as that of an L&P matching. This is because the C&C matchings
contain the noncrossing matchings (i.e., the maximally nested matchings) and the
matchings with the maximum crossing number are L&P and C&C.

4C. A, matchings that are L&P and C&C.

Lemma 4.1. If a C&C matching that contains exactly one hairpin is inserted to the
right of a noncrossing matching, the obtained matching is C&C.
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↑ ↑ ↑ ↑

Figure 20. Allowable insertion spots for A.

Proof. A noncrossing matching is C&C, and according to the inductive definition
of C&C matchings we can insert another C&C matching to the right of it. �

Lemma 4.2. There are four places to insert noncrossing matchings in a hairpin
to obtain a matching in A. Matchings cannot be inserted between ladders of the
hairpin, and they cannot be inserted into the middle of the hairpin.

Proof. By Lemma 4.1 if we insert a noncrossing matching to the far left of a C&C
matching that contains exactly one possibly inflated hairpin, the obtained matching is
C&C. By the rules of creating C&C matchings, if we insert a noncrossing matching
into the spots shown by the three remaining arrows in Figure 20 it will still be C&C.
We cannot insert noncrossing matchings in between ladders or in the middle of
the hairpin because then it would no longer be C&C. Because there is only one
possibly inflated hairpin and we are inserting only noncrossing matchings we are
guaranteed that these matchings are also L&P, and therefore they are in A. �

Theorem 4.2. The number of matchings in A on n edges with crossing number
h > 0 is given by ∑

(γ1,γ2,...,γk)
γi≥0
γi≤βi∀i

∑
(α1,α2,α3,α4)

αi≥0∑
αi=n−E

4∏
i=1

Cαi ,

where h = pβ1
1 pβ2

2 · · · p
βk
k is the prime factorization of h, pγ1

1 pγ2
2 · · · p

γk
k is a factor

of h, and E is pγ1
1 pγ2

2 · · · p
γk
k + pβ1−γ1

1 pβ2−γ2
2 · · · pβk−γk

k .

Proof. Let h be the given crossing number and n be the number of edges in the
matching in A. Because h > 0 and the matchings are L&P we know that there is
exactly one possibly inflated hairpin in the matching. Then let h = pβ1

1 pβ2
2 · · · p

βk
k

be its unique prime factorization. Each factor of h is then given by pγ1
1 pγ2

2 · · · p
γk
k .

Since these matchings are L&P, the product of the edges on the right and the left
sides of the hairpin must be h. Thus, there must be pγ1

1 pγ2
2 · · · p

γk
k edges on the

left side of the hairpin and pβ1−γ1
1 pβ2−γ2

2 · · · pβk−γk
k edges on the right side of the

hairpin. Then the total number of edges E in the hairpin is given by pγ1
1 pγ2

2 · · · p
γk
k +

pβ1−γ1
1 pβ2−γ2

2 · · · pβk−γk
k . Then there are n−E edges left to insert into the matching.

By Lemma 4.2 there are four places to insert. The insertions must be noncrossing
because the matchings are L&P; therefore there are Catalan-many ways to insert
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Figure 21. The 14 matchings in A with n = 4 edges and h = 1.

each noncrossing matching. If we think about the number of noncrossing edges
inserted into each spot of the matching as a vector Eα then each αi will be the number
of edges inserted into the i-th spot of the matching. The insertion vector Eα is given
by (α1, α2, α3, α4), where αi ≥ 0 and

∑
i αi = n−E . Then there are Cα1Cα2Cα3Cα4

ways to insert each Eα into the matching. We can then sum over all Eα to find all the
matchings with the given number of edges on the left and right sides of the hairpin.
Then we sum over all the possible factors of h to get all possible matchings in A
on n edges with crossing number h. �

Example 4.2. Suppose we want to find the number of matchings in A with n = 4
edges and h = 1.

We start with the prime factorization of h: h = 1. Thus, the only factor of h is 1.
This means there is one edge on each of the left and right sides of the hairpin. Hence,
there are two edges left to insert into four spots. Using the same process as before,
we get

(4
2

)
C1C1+4C2 = 14 matchings. These 14 matchings are found in Figure 21.

4D. B, matchings that are R&G and L&P but not C&C.

Lemma 4.3. There are six places to insert noncrossing matchings in an inflated
hairpin that has one edge inserted into the middle in order for a matching in B.
These places are shown in Figure 22.

Proof. By Lemma 4.1 if we insert a noncrossing matching to the far left of a C&C
matching that contains exactly one hairpin, the obtained matching is C&C. Therefore
if we insert a noncrossing matching to the far left of an R&G matching that contains
exactly one hairpin, then the obtained matching is R&G. We can’t insert matchings
between the ladders that inflate the hairpin because then the matching would not
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↑ ↑ ↑ ↑ ↑ ↑

Figure 22. Allowable insertion spots for B.

be R&G. The obtained matching is also L&P because it has exactly one hairpin,
and only noncrossing matchings are inserted. The obtained matching is not C&C
because of the guaranteed single edge inserted into the middle of the hairpin. We
don’t insert to the left of the single edge in the middle of the hairpin in order to
prevent duplicates from being made. �

Theorem 4.3. The number of matchings in B on n edges with crossing number
h > 0 is given by the formula∑

(γ1,γ2,...,γk)
γi≥0
γi≤βi∀i

∑
(α1,α2,...,α6)

αi≥0∑
αi=n−E−1

6∏
i=1

Cαi ,

where h = pβ1
1 pβ2

2 · · · p
βk
k is the prime factorization of h, pγ1

1 pγ2
2 · · · p

γk
k is a factor

of h, and E is pγ1
1 pγ2

2 · · · p
γk
k + pβ1−γ1

1 pβ2−γ2
2 · · · pβk−γk

k .

Proof. Let h be the given crossing number and n be the number of edges in the
matching in B. Because h > 0 and the matchings are L&P we know that there is
exactly one possibly inflated hairpin in the matching. Then let h = pβ1

1 pβ2
2 · · · p

βk
k

be its unique prime factorization. Each factor of h is then given by pγ1
1 pγ2

2 · · · p
γk
k .

Since these matchings are L&P, the product of the edges on the right and the left
sides of the hairpin must be h. Thus, there must be pγ1

1 pγ2
2 · · · p

γk
k edges on the

left side of the hairpin and pβ1−γ1
1 pβ2−γ2

2 · · · pβk−γk
k edges on the right side of the

hairpin. Then the total number of edges E in the hairpin is given by pγ1
1 pγ2

2 · · · p
γk
k +

pβ1−γ1
1 pβ2−γ2

2 · · · pβk−γk
k . Then there are n − E − 1 edges left to insert into the

matching. We subtract 1 since a single edge is guaranteed to be inserted into the
middle of the hairpin. By Lemma 4.3 there are six places to insert. The insertions
must be noncrossing because the matchings are L&P. Therefore there are Catalan-
many ways to insert each noncrossing matching. If we think about the number of
noncrossing edges inserted into each spot of the matching as a vector Eα, then each
αi will be the number of edges inserted into the i-th spot of the matching. The
insertion vector Eα is given by (α1, α2, . . . , α6), where αi ≥ 0 and

∑
i αi = n−E−1.

Then there are Cα1Cα2 · · ·Cα6 ways to insert each Eα into the matching. We can then
sum over all Eα to find all the matchings with the given number of edges on the left
and right sides of the hairpin. Then we sum over all the possible factors of h to get
all possible matchings in B on n edges with crossing number h. �



PROPERTIES OF RNA SECONDARY STRUCTURE MATCHING MODELS 275

Figure 23. The 27 matchings in B with n = 5 edges and h = 1.

Example 4.3. Suppose we want to find the number of matchings in B with n = 5
edges and h = 1.

We start with the prime factorization of h: h = 1. Thus, the only factor of h is 1.
This means there is one edge on each of the left and right sides of the hairpin. Hence,
there are two edges left to insert into four spots. Using the same process as before,
we get

(6
2

)
C1C1+6C2 = 27 matchings. These 27 matchings are found in Figure 23.

4E. Maximum Pseudoknot. The pseudoknot number of a matching is found by
deflating the ladders of every edge in the matching and finding the crossing number
of the new matching. To find the maximum pseudoknot number of a matching on
n edges, we want a matching that has the highest crossing number once its edges
have been deflated.

Let Mn be the set of all perfect matchings on n edges. Let CCn be the set
of all C&C matchings on n edges. For a set of matchings A, let pknotmax(A) =
max{pknot(M) | M ∈ A}.
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Figure 24. Matching that gives the maximum pseudoknot number
on four edges for the C&C family.

Definition 4.1. We define a deflation as follows. If we have two edges i = (i1, i2)

and j = ( j1, j2) such that i1 = j1− 1 and i2 = j2+ 1, then we delete edge i .

Theorem 4.4. The maximum pseudoknot number of the set of C&C matchings on
n edges is given by

pknotmax(CCn)=

{
1
2 n, n ∈ N and is even,
1
2(n− 1), n ∈ N and is odd.

Proof. In C&C matchings, the maximum pseudoknot number occurs when we
maximize the number of noninflated hairpins since we cannot insert between ladders
in C&C matchings.

Case 1: n is even. Since n is even, every two edges must be involved in distinct
hairpins in the matching in order to maximize the number of noninflated hairpins.
Then every matching must have 1

2 n hairpins. Because our matching M consists of
strictly hairpins, there are no deflations. Hence, pknot(M)= cr(M). Since all the
hairpins are not inflated, to find cr(M) we can count the number of hairpins. Thus
cr(M) = 1

2 n = pknotmax(CCn).

Case 2: n is odd. When n is odd, every two edges except for one must be involved
in distinct hairpins in order to maximize the number of noninflated hairpins. Then
the matching M must have 1

2(n− 1) hairpins. Whether the final edge not involved
in a hairpin is inserted or inflates another edge has no effect on the pseudoknot
number. After deflations on all edges are made, there are still guaranteed to be
1
2(n− 1) hairpins, and pknot(M) is the crossing number of the deflated matching,
which is the number of hairpins. Thus pknotmax(CCn)=

1
2(n− 1). �

Example 4.4. Suppose we want to calculate the maximum pseudoknot numbers
for the C&C families with four and five edges.

First, let n = 4. According to Theorem 4.4, pknotmax(M)= 2. Figure 24 shows
the matching with this pseudoknot number.

Now, let n = 5. By Theorem 4.4, the maximum pseudoknot will be just like
n = 4. With the extra edge, we can either insert it into the allowable space or inflate
the original matching. If we conduct an insertion, we will not increase the crossing
number, unlike inflating. However, this one edge will become deflated. Figure 25
shows matchings which produce a maximum pseudoknot number of 2 on n = 5
edges.
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Figure 25. Matchings that give the maximum pseudoknot number
on five edges for the C&C family.

Figure 26. Matching that gives the maximum pseudoknot number
on five edges for all perfect matchings.

Theorem 4.5. The maximum pseudoknot number of the set of all perfect matchings
on n edges is given by

pknotmax(Mn)=
1
2 n(n− 1)

Proof. The only restrictions we have on all perfect matchings are that an edge
cannot cross itself or go below the horizon. In order to maximize pknot(Mn) in a
perfect matching, none of the edges should be involved in ladders, and each edge
should cross every edge in the matching once. The way to maximize pknot(Mn) for
any given n is to use the matching on n− 1 edges with the maximum pseudoknot
number, and cross all of those edges with the new edge we add. Thus, we can
represent this as the recurrence relation pknotmax(Mn)= pknotmax(Mn−1)+ (n−1)
with the initial condition pknotmax(M2)= 1 and where (n−1) represents how many
edges our new edge will cross. Solving this recurrence relation gives 1

2 n(n− 1). �

Example 4.5. Suppose we want to find pknotmax(Mn) for all perfect matchings on
n = 5 edges.

According to Theorem 4.5, pknotmax(M5) =
5(4)

2 = 10. Figure 26 shows the
matching with the maximum pseudoknot number.

4F. Comparison. Pseudoknots are not found as commonly in RNA secondary
structures as they are in perfect matchings. One desired result of the inductive
definitions of L&P and C&C is that the models more accurately reflect the likelihood
of pseudoknots observed in nature. The following graphs in Figures 27, 29, and 28
display the distributions of the crossing number, pseudoknot number, and nesting
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Figure 27. Percent of matchings on nine edges with given crossing number.
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Figure 28. Percent of matchings on nine edges with given nesting number.

number for each given family on nine edges as a percentage of the total matchings
in that family. The motivation for this section is to examine how limiting the number
of pseudoknots affects the crossing, nesting, and pseudoknot number distribution
compared to all perfect matchings.

In all perfect matchings the crossing and nesting number statistics are sym-
metrically distributed and their joint distribution has been an area of recent study.
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Note that in all perfect matchings on n edges, as the crossing number increases,
the nesting number decreases, and vice versa. These two statistics are inversely
related and symmetrically distributed when considering all perfect matchings [Chen
et al. 2007]. However, when we limit the number of pseudoknots by looking at
L&P and C&C matchings, the distributions for crossing number and pseudoknot
number become skewed right. Because the crossing and nesting number statistics
are inversely related when considering all perfect matchings we would predict
that the nesting number distribution would become skewed left when considering
these L&P and C&C matchings. Surprisingly, the distributions of nesting numbers
for L&P and C&C remain largely similar to the distribution of nesting numbers
for all matchings. However, recall that these matching families limit the unlikely
biological structures, in this case a high number of pseudoknots. Pseudoknots are
represented in matchings by a hairpin, ignoring the additional ladders. Therefore
these matchings limit the number of hairpins, so we should expect there to be more
matchings with a smaller crossing number. These matching families don’t limit the
ladders that can occur on edges or newly inserted edges in a hairpin, so the nesting
number stays relatively symmetrically distributed.
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