
inv lve
a journal of mathematics

msp

Infinite sums in totally ordered abelian groups
Greg Oman, Caitlin Randall and Logan Robinson

2019 vol. 12, no. 2





msp
INVOLVE 12:2 (2019)

dx.doi.org/10.2140/involve.2019.12.281

Infinite sums in totally ordered abelian groups
Greg Oman, Caitlin Randall and Logan Robinson

(Communicated by Vadim Ponomarenko)

The notion of convergence is absolutely fundamental in the study of calculus. In
particular, it enables one to define the sum of certain infinite sets of real numbers
as the limit of a sequence of partial sums, thus obtaining so-called convergent
series. Convergent series, of course, play an integral role in real analysis (and,
more generally, functional analysis) and the theory of differential equations. An
interesting textbook problem is to show that there is no canonical way to “sum”
uncountably many positive real numbers to obtain a finite (i.e., real) value. Plenty
of solutions to this problem, which make strong use of the completeness property
of the real line, can be found both online and in textbooks. In this note, we show
that there is a more general reason for the nonfiniteness of uncountable sums. In
particular, we present a canonical definition of “convergent series”, valid in any
totally ordered abelian group, which extends the usual definition encountered in
elementary analysis. We prove that there are convergent real series of positive
numbers indexed by an arbitrary countable well-ordered set and, moreover, that
any convergent series in a totally ordered abelian group indexed by an arbitrary
well-ordered set has but countably many nonzero terms.

1. Introduction

The set R of real numbers is rich in both algebraic and topological structure. For
example, the usual addition + of real numbers is a continuous binary operation
on R. This enables one to define the sum

∑n
i=0 ri of real numbers r0, . . . , rn for

any nonnegative integer n by recursion as follows:
0∑

i=0

ri := r0, and for 0≤ j < n,
j+1∑
i=0

ri :=

( j∑
i=0

ri

)
+ rj+1. (1-1)

Observe that it is quite difficult to formulate a natural definition of an infinite sum of
real numbers by appealing solely to the usual algebraic (field) axioms of + and ×;
one wants some notion of “getting close to”. This is usually formalized topologically.
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The relevant topology on R is the order topology determined by the usual complete
linear order < on R. In this setting, there is a canonical way to formalize an infinite
list of real numbers “getting arbitrarily close to” another real number; this familiar
notion is often presented in a first course in calculus, and is instrumental in defining
convergence of so-called infinite series. More formally, a countably infinite real
sequence (rn : n ∈ N) converges to a real number r provided that1

for every ε > 0, there exists k ∈ N such that
if n ∈ N and n ≥ k, then |rn − r |< ε. (1-2)

In this case, r is called the limit2 of the sequence (rn : n ∈ N), and we write

lim
n→∞

rn = r. (1-3)

We now give the usual definition of a convergent series encountered in calculus:

Definition 1. Suppose that (rn : n ∈ N) is a countably infinite sequence of real
numbers. For each n ∈ N, set Sn :=

∑n
i=0 ri . The sequence (Sn : n ∈ N) is called

the infinite series determined by (rn : n ∈N), denoted by
∑
∞

n=0 rn . For n ∈N, Sn

is the n-th partial sum of the series. Finally, if the sequence (Sn : n ∈ N) converges
to a real number r , then we say that the series

∑
∞

n=0 rn converges and that the sum
of the series

∑
∞

n=0 rn is r , denoted by
∑
∞

n=0 rn = r .

We now work toward generalizing the above definition to formalize the notion of
a possibly uncountable sum3 in a natural way. Toward this end, consider a collection
S := {ri : i ∈ I } of real numbers, where I is an infinite index set. We want to
define the series determined by S. In what ways might we proceed? Recall that
a real series

∑
∞

n=0 rn converges absolutely if the series
∑
∞

n=0 |rn| converges. If a
series converges but does not converge absolutely, then we say the series converges
conditionally. Next, we recall the following classical result of Riemann:

Theorem 2 (rearrangement theorem; see [Tao 2014, Theorem 8.8.9]). Suppose that∑
∞

n=0 rn converges conditionally but not absolutely, and let r be an arbitrary real
number. Then there exists a bijection f : N→ N such that the rearranged series∑
∞

n=0 r f (n) converges to r .

The rearrangement theorem implies that, in general, the sum of a convergent
series is determined not only by the terms being summed, but also the order in
which they are added. Therefore, it is reasonable to assume that there is some order
relation < on the set I, where (above) S = {ri : i ∈ I } is the set whose sum we have

1We assume that 0 ∈ N throughout this note.
2Since R is dense in itself under <, it is easy to see that a convergent sequence has a unique limit.
3Various such notions exist in the literature; more on this shortly. Though our initial discussion

will involve uncountable sums of real numbers, we will soon transition to the more general setting of
totally ordered abelian groups.
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yet to define. But what kind of order relation? Well, recall that our definition of
“n-th partial sum” in Definition 1 above implicitly employed the recursion theorem
on the index set N of natural numbers. It is reasonable that we may want to employ
the so-called transfinite recursion theorem in our definition of an uncountable sum of
real numbers (more generally, an uncountable sum of elements of a totally ordered
abelian group). But if this is indeed the case, we would like a well-order on I.4

The outline of this note is as follows. In the next section, we give a precise
formulation of a sum of real numbers relative to a well-ordered countable index set
which extends Definition 1 above. We then establish the existence of convergent
sums of positive real numbers relative to an arbitrary countable well-ordered set.
Section 3 is devoted to extending some notions of “uncountable sum” appearing
in the literature. In particular, we show that in any totally ordered abelian group,
every convergent series indexed by an uncountable well-ordered set (this definition
is forthcoming) has but countably many nonzero terms.

2. Countable sums of positive reals

2.1. Order-theoretic terminology review. We begin with a review of some basic
order-theoretic terminology which will be utilized often throughout this note. To
wit, let S be a set. Recall that a binary relation on S is simply a subset of S× S.
If R is a binary relation on S and (a, b) ∈ R, then it is customary to write a Rb to
denote this fact. Next, recall that if R is a binary relation on S, then R is irreflexive
on S if x Rx does not hold for any x ∈ S. If, for all x, y, z ∈ S, x Ry and y Rz imply
x Rz, then we say that R is transitive on S. A relation on S which is both irreflexive
and transitive on S is called a partial order on S. A partial order < on S for which
either x < y or y < x for distinct x, y ∈ S is called a total order or a linear order
on S. If < is a total order on S with the property that for every nonempty X ⊆ S,
there exists x0 ∈ X such that x0 ≤ x for all x ∈ X , then we say that < is a well-order
on S.5 Finally, suppose that P1 := (P1, <1) and P2 := (P2, <2) are totally ordered
sets. A one-to-one function f : P1 → P2 with the property that x <1 y implies
f (x) <2 f (y) for all x, y ∈ P1 is said to be an order embedding of P1 into P2.6

If in addition f is bijective, then f is called an order isomorphism between P1

and P2. If such an isomorphism exists, we write P1 ∼= P2, and say that P1 and P2

are order isomorphic. We conclude this subsection with several natural examples.

Example 3. Let S be a set and let P(S) be the power set of S. Then the usual
proper subset relation ( is a partial order on P(S).

4Very roughly (though definitely not exactly), the well-order is what enables one to prove the
existence of recursively defined functions.

5As usual, the notation x0 ≤ x abbreviates “x0 < x or x0 = x .”
6Observe that if <1 is a total order, then any f with this property is necessarily injective.
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Example 4. Suppose that (X, <1) and (Y, <2) are linearly ordered sets. Then the
order < on X ×Y defined by (x1, y1) < (x2, y2) if and only if x1 <1 x2 or x1 = x2

and y1 <2 y2 is a total order on X × Y , called the dictionary order on X × Y .

Example 5. The usual order < on N is a well-order on N.

2.2. Defining a sum of reals indexed by a countable well-ordered set. Let W :=
(W, <) be a well-ordered set. Let us call a function f : W → R a real-valued
W -sequence. We shall often denote such a sequence by (ri : i ∈ W ). Mimicking
(1-2), the following is a natural notion of convergence:7

Definition 6. Suppose that W := (W, <) is a nonempty well-ordered set, and let
(ri : i ∈ W ) be a real-valued W -sequence. Say that (ri : i ∈ W ) converges to a
real number r , or that r is the limit of the sequence (ri : i ∈W ), provided that for
every ε > 0, there exists i ∈W such that if j ∈W and j ≥ i , then |rj − r |< ε.8 If
(ri : i ∈W ) converges to r , we shall denote this by lim

→
(ri : i ∈W )= r . In the case

W =∅, we set lim
→
(ri : i ∈W ) := 0.

As in the case where (W, <)= (N, <), a real-valued W -sequence can converge
to at most one limit; the proof goes through mutatis mutandis as follows: Suppose
by way of contradiction that (ri : i ∈ W ) converges to real numbers r and s with
r < s. The open balls B(s−r)/2(r) and B(s−r)/2(s) are disjoint, yet it is clear from
the definition of convergence that there must exist a real number in both open balls,
a contradiction.

We now make a trivial yet useful observation.

Lemma 7. Suppose that (W, <) is a well-ordered set. Suppose, moreover, that
W has a largest element w∗ relative to <. Then every real-valued W -sequence
(ri : i ∈W ) converges to rw∗ .

Proof. Let (W, <) and w∗ be as stated, and consider a real-valued W -sequence
(ri : i ∈W ). Let ε > 0 be given. Then note that if w ∈W and w≥w∗, then w=w∗.
Consequently, if w ≥ w∗, then |rw − rw∗ | = |rw∗ − rw∗ | = 0< ε. �

Next, we address the problem of formalizing a sum of real numbers indexed by
a countable well-ordered set. Toward this end, we use Definition 1 as a template,
but choose a countable well-ordered index set W which is ordered much differently
than N in order to guide us to a “natural” definition of a sum of reals relative to an
arbitrary countable well-ordered index set. To wit, consider the set N×N of ordered
pairs of natural numbers. Recall from Example 4 that the dictionary order < is a

7The reader may notice that our definition of convergence resembles the definition of a real-valued
net in the order topology on R. This is certainly the case, but in the interest of keeping the paper as
self-contained as possible, we shall say no more about nets. We refer the reader instead to the popular
text [Munkres 1975] for further reading.

8By abuse of notation, we use the symbol< to denote both the order on W and the usual order on R.
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Figure 1. The set N of natural numbers relative to the usual order
(above) and the set N×N with the dictionary order (below).

total order on N×N. We claim that it is a well-order. To see this, suppose that
S ⊆ N×N is nonempty. Let a0 ∈ N be least (relative to the usual order on N)
such that there exists b ∈ N with (a0, b) ∈ S. Now let b0 ∈ N be least such that
(a0, b0) ∈ S. It is easy to see that (a0, b0) is the <-least element of S, and thus <
well-orders N×N. We pause to contrast the “shapes” of the well-ordered structures
(N, <) and (N×N, <); see Figure 1. Observe that the dictionary order on N×N

is, as an ordered structure, obtained by simply laying off countably infinitely many
copies of N from left to right.

Before defining a convergent series of reals relative to a countable well-ordered
index set, we recall that if (W, <) is a well-ordered set and w ∈W, then seg(w) :=
{x ∈W : x <w}. Observe that seg(w) is well-ordered via the well-order< restricted
to seg(w). We call seg(w) the initial segment up to w.

We now motivate our “bottom-up” definition of a convergent series of real
numbers relative to (N×N, <), where < is the dictionary order on N×N. From
this, we shall derive a natural definition of convergence of a sum of reals relative
to an arbitrary countable well-ordered index set. Suppose that (ri : i ∈ N×N) is
a real-valued N×N-sequence. We may define finite partial sums recursively as
before:

(1) S(0,0) := r(0,0) = 0+ r(0,0)
Def. 6
= lim

→
(Si : i ∈ seg((0, 0)))+ r(0,0).

(2) S(0,1) := S(0,0)+ r(0,1)
Lem. 7
= lim

→
(Si : i ∈ seg((0, 1)))+ r(0,1).

(3) S(0,2) := S(0,1)+ r(0,2) = lim
→
(Si : i ∈ seg((0, 2)))+ r(0,2).

...

Clearly we may continue recursively to define S(0,n) for every natural number n.
Our “next” partial sum to define is thus S(1,0) (observe that from Figure 1, (1, 0)
is the “next” element which appears after all of the pairs (0, n)). Intuitively, we
want S(1,0) to be the sum of all of the ri ’s, where i ≤ (1, 0). Assuming the limit (4)
below exists, we naturally define:

(4) S(1,0) := lim
→
(Si : i ∈ seg((1, 0)))+ r(1,0).

(5) S(1,1) := S(1,0)+ r(1,1) = lim
→
(Si : i ∈ seg((1, 1)))+ r(1,1).
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(6) S(1,2) := S(1,1)+ r(1,2) = lim
→
(Si : i ∈ seg((1, 2)))+ r(1,2).

...

Continuing in this manner, we may define what it means for the series (Si : i ∈N×N)

to converge. Roughly, this simply means that the limits defined above exist at each
“stage” and that, finally, lim

→
(Si : i ∈ N×N) exists (as a real number). With these

observations in mind, we make the following definition:

Definition 8. Suppose that (W, <) is a countable, nonempty well-ordered set and
that (ri : i ∈W ) is a real-valued W -sequence. Choose any e /∈ R. We now present
our definition of the series (Si : i ∈ W ) determined by (ri : i ∈ W ) by recursion
on W.9 Suppose that i ∈ W and that Sj has been defined for every j < i . Next,
define Si as follows:10

Si :=

{
e if Sj=e for some j<i or lim

→
(Sj : j∈seg(i)) does not exist,

lim
→
(Sj : j∈seg(i))+ ri otherwise.

We say that the series (Si : i ∈ W ) converges provided that both Si ∈ R for each
i ∈W and lim

→
(Si : i ∈W ) ∈ R. In this case, we say that S is the sum of the series

(Si : i ∈W ).

2.3. Countable sums of positive real numbers. Our next goal is to show that for
every countable well-ordered set (W, <), there is a positive real-valued W -sequence
(ri : i ∈W ) such that the corresponding series (Si : i ∈W ) converges. We require
another definition.

Definition 9. Let (L , <) be a linearly ordered set:

(1) (L , <) is dense (in itself) if for any x, z ∈ L such that x < z, there exists y ∈ L
such that x < y < z.

(2) (L , <) is without endpoints if for every y ∈ L , there exist x, z ∈ L such that
x < y < z.

We now recall a result of Cantor which we shall soon utilize.

Lemma 10 (Cantor; see [Enderton 1972, Theorem 26H]). Any two nonempty,
countable, dense linearly ordered sets without endpoints are isomorphic.

Our next result is well known. We give a short proof.

Lemma 11. If (W, <) is a countable well-ordered set, then there is X ⊆ (0, 1)
such that (W, <)∼= (X, <), where the second occurrence of < denotes the usual
order on R restricted to X.

9We are employing the transfinite recursion theorem implicitly; see [Enderton 1972] or [Jech
2003] for the precise statement of the theorem and its proof.

10The reader should interpret Si = e to mean, intuitively, that the i-th partial sum of the series
doesn’t exist.
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Proof. Let (W, <) be a countable well-ordered set. If W =∅, the result is patent, so
assume that W is nonempty. Now consider the set W ×Q with the dictionary order.
It is clear that w 7→ (w, 0) is an order embedding of W into W ×Q. It is also easy
to verify that W×Q is a dense linearly ordered set without endpoints (relative to the
dictionary order). By Lemma 10, there is an order isomorphism ϕ :W×Q→Q. Let
i :Q ↪→R be the inclusion map. The functionψ(x) := 1

2(tanh(x)+1) yields an order
isomorphism between the ordered structures (R, <) and ((0, 1),<). Composing
the above maps furnishes us with a sequence of order embeddings

W →W ×Q→Q→ R→ (0, 1).

Now let X be the image of W in the above composition. Then clearly (W, <)∼=
(X, <), concluding the argument. �

Recall that a countably infinite real-valued sequence (rn : n ∈ N) is bounded if
there is M ∈ R such that |rn| ≤ M for every n ∈ N. The natural generalization is:

Definition 12. Let (W, <) be a well-ordered set, and let (ri : i ∈W ) be a real-valued
W -sequence. Say that (ri : i ∈W ) is bounded provided there is a real number M
such that |ri | ≤ M for every i ∈W.

Our next definition generalizes the notion of a countably infinite monotonic
real-valued sequence.

Definition 13. Let (W, <) be a well-ordered set, and let (ri : i ∈W ) be a real-valued
W -sequence:

(1) (ri : i ∈W ) is monotonically increasing if whenever i, j ∈W and i < j , then
ri ≤ rj .

(2) (ri : i ∈W ) is monotonically decreasing if whenever i, j ∈W and i < j , then
ri ≥ rj .

(3) If (ri : i ∈W ) is either monotonically increasing or monotonically decreasing,
then we say that (ri : i ∈W ) is monotonic.

We now generalize the familiar result that every bounded monotonic countably
infinite real sequence converges. The proof is a mutatis mutandis adaptation of the
proof in the countably infinite case.

Lemma 14. Let (W, <) be a well-ordered set, and suppose that (ri : i ∈ W )

is a monotonic real-valued bounded W -sequence. Then (ri : i ∈ W ) converges.
Moreover, if W 6=∅, then (ri : i ∈W ) converges to sup{ri : i ∈W } if (ri : i ∈W )

is increasing. Respectively, (ri : i ∈W ) converges to inf{ri : i ∈W } if (ri : i ∈W )

is decreasing.

Proof. Let (W, <) be a well-ordered set, and assume that (ri : i ∈W ) is real-valued,
monotonic, and bounded. We assume that (ri : i ∈W ) is monotonically increasing, as
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a similar argument handles the case where (ri : i ∈W ) is monotonically decreasing.
If W =∅, then (ri : i ∈W ) converges to 0 by Definition 6. Thus we assume that
W is nonempty. Let M be the least upper bound of {ri : i ∈ W }. We claim that
lim
→
(ri : i ∈ W )= M. To see this, let ε > 0 be given. Then M − ε is not an upper

bound of {ri : i ∈W }. Hence there is i ∈W such that M−ε < ri . Now if j ∈W and
j ≥ i , then M−ε < ri ≤ rj ≤ M < M+ε. Therefore, |rj −M |< ε, as required. �

We are almost equipped to present our first theorem. Our proof will rely upon
the principle of transfinite induction. Recall first the principle of strong induction
for the set N of natural numbers:

Principle of strong induction on N. Suppose that S⊆N has the property that, for
every n ∈ N, if every natural number less than n is in S, then n ∈ S. Then S = N.

A more general version of the above induction principle holds for any well-
ordered set. As a bonus, it is quite easy to prove.

Principle of transfinite induction. Let (W, <) be a well-ordered set. Suppose
further that S ⊆ W has the property that, for every w ∈ W , if seg(w) ⊆ S, then
w ∈ S. Then S =W.

Proof. Suppose that (W, <) is a well-ordered set and that S ⊆ W has the above
property. Assume by way of contradiction that S 6=W. Then W\S is nonempty; let
w ∈W\S be least. By the leastness of w, seg(w)⊆ S. But then by the condition
on S, we have w ∈ S. This contradiction concludes the proof. �

We are now sufficiently equipped to prove the main result of this section.

Theorem 15. Let (W, <) be a countable, nonempty well-ordered set. Then there is
a positive, real-valued W -sequence (ri : i ∈W ) such that the corresponding series
(Si : i ∈W ) converges.

Proof. Let (W, <) be an arbitrary countable, nonempty well-ordered set. By
Lemma 11, there is a sequence (xi : i ∈W ) in the open unit interval (0, 1) such that

for all i, j ∈W, i < j ⇐⇒ xi < x j . (2-1)

Since W is countable, there is an injective map f :W → N. For each i ∈W, set

Ti := xi +
∑
j≤i

1
2 f ( j) . (2-2)

Clearly each Ti ∈ R. Now suppose i, j ∈W with i < j . Then by (2-1),

xi < x j . (2-3)

Moreover, since i < j , ∑
k≤i

1
2 f (k) <

∑
k≤ j

1
2 f (k) . (2-4)
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It is immediate from (2-3) and (2-4) that Ti < Tj . Summarizing,

for all i, j ∈W, i < j ⇐⇒ Ti < Tj . (2-5)

Recall above that for each i ∈ W, we have 0 < xi < 1. It is immediate from the
definition of Ti that 0< Ti < 3 for all i ∈W. Therefore, (Ti : i ∈W ) is monotonically
increasing and bounded, and hence converges by Lemma 14. Even more, for any
i ∈W, the sequence (Tj : j ∈ seg(i)) is also monotonically increasing and bounded.
Summarizing, we have

(Ti : i ∈W ) converges. (2-6)

Moreover,
(Tj : j ∈ seg(i)) converges for every i ∈W. (2-7)

Our next claim is that

lim
→
(Tj : j ∈ seg(i)) < Ti for all i ∈W. (2-8)

To see this, let i ∈W be arbitrary. If i is the least element of W, then the result is
patent. So let us assume this is not the case. Let j ∈ seg(i) be arbitrary. Since j < i ,
we also have x j < xi ; see (2-1). Observe too that

∑
k≤ j 1/2 f (k)

≤
∑

k<i 1/2 f (k).
Therefore, x j +

∑
k≤ j 1/2 f (k) < xi +

∑
k<i 1/2 f (k). Set M := xi +

∑
k<i 1/2 f (k).

We have shown that
Tj < M for all j ∈ seg(i). (2-9)

Finally,
lim
→
(Tj : j ∈ seg(i))= sup{Tj : j ∈ seg(i)} ≤ M < Ti , (2-10)

establishing (2-8).
Now, for each i ∈W, set

ri := Ti − lim
→
(Tj : j ∈ seg(i)). (2-11)

Invoking (2-8), we see that ri > 0 for every i ∈ W. Let (Si : i ∈ W ) be the series
determined by (ri : i ∈W ). Next, we demonstrate that

Si = Ti for all i ∈W. (2-12)

Let i ∈ W and suppose that Sj = Tj for all j < i . By the principle of transfinite
induction, it suffices to prove that Si = Ti . Toward this end, simply note that

Si= lim
→
(Sj : j ∈seg(i))+ri= lim

→
(Tj : j ∈seg(i))+ri=Ti (by the definition of ri ),

and we have proven (2-12). It follows that Si ∈ R for every i ∈W. Applying (2-6)
and (2-12), (Si : i ∈W ) converges, and the proof of Theorem 15 is complete. �
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3. Uncountable sums in totally ordered abelian groups

3.1. Transitioning to uncountable sums. The question of how to define an un-
countable sum of positive real numbers is quite a natural one, given the applications
of (standard) convergent series to calculus. Indeed, this question has received
attention both online and in the literature; see [Tao 2011, Exercise 0.0.1; Rudin
1987, Chapter 1; Folland 1999, Chapter 0]. A common way (which circumvents
the need to delve more deeply into set theory and order theory) is to define the sum
of an uncountable set S of positive real numbers as11∑

S

:= sup{s1+ s2+ · · ·+ sn : n ∈ Z+, si ∈ S, si 6= sj for i 6= j}. (3-1)

Interestingly, regardless of the uncountable set S of positive reals,
∑

S as defined
in (3-1) will never be finite. To see why, let S be an arbitrary uncountable set of
positive real numbers. For every positive integer n, let Sn := S ∩

( 1
n ,∞

)
. One

checks immediately that S =
⋃

n∈Z+ Sn . Because S is uncountable, it follows that
some Sk must be infinite (uncountable, even). But then there are infinitely many
elements of S which are larger than 1

k . Given a real number N, choose (by the
Archimedean property of the real line12) a positive integer m such that m > k N.
Now choose m distinct elements s1, . . . , sm of S which are larger than 1

k . Then
observe that s1+ · · ·+ sm >

m
k > N. We deduce that

∑
S does not exist (as a real

number).
There is a sense in which the reason that

∑
S (as defined in (3-1) above)

is never finite for uncountable S ⊆ (0,∞) is because the real line isn’t “long
enough” to accommodate such a phenomenon. To give a related example, a
well-known topological property of the real line is that there does not exist an
uncountable collection of pairwise-disjoint open intervals. The usual proof is by
contradiction: if such a collection existed, simply pick a rational number from
each interval, and you get an uncountable set of rational numbers, which is ab-
surd. We would like to offer a somewhat different argument. The argument is
much less elegant than the proof just given; our purpose is to make a connection
between the nonexistence of such a collection and the real line’s lack of “length”
to which we alluded above. This phenomenon will inspire many of the results of
Section 3.

Example 16 (well-known). There does not exist an uncountable pairwise-disjoint
collection of open intervals on the real line.

11Note that, in some sense, any “natural” definition of the sum of an uncountable set of positive
real numbers must be at least as big as the sup given above.

12The Archimedean property is simply that for every r ∈ R and x ∈ (0,∞), there is n ∈ Z+ such
that nx > r .
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Proof. Suppose by way of contradiction that there exists a collection C := {(ai , ci ) :

i ∈ I } of pairwise-disjoint (nonempty) open intervals on the real line, where I is an
uncountable set enumerating C. For each i ∈ I, set bi :=min(ci , ai + 1). Then one
checks at once that the map (ai , ci ) 7→ (ai , bi ) is injective. Set B := {(ai , bi ) : i ∈ I }.
As the members of C are pairwise-disjoint, it is immediate that

the members of B are also pairwise-disjoint. (3-2)

For each i ∈ I, let `(ai , bi ) := bi − ai be the length of the interval (ai , bi ). By
construction of the bi ’s,

`(ai , bi )≤ 1 for every i ∈ I. (3-3)

Because the members of B are pairwise-disjoint, it is clear that

ai 6= aj for i 6= j in I. (3-4)

Now, since {ai : i ∈ I } is uncountable, there is some integer n for which [n, n+1]∩
{ai : i ∈ I } := J is uncountable. Applying (3-3), (aj , bj )⊆ [n, n+ 2] for all j ∈ J.
Thus we may assume without loss of generality that

(ai , bi )⊆ [n, n+ 2] for every i ∈ I. (3-5)

Consider the length function ` : B → [0, 2] defined above. Because (aj , bj ) ⊆

[n, n+ 2] for all j ∈ I and the intervals (ai , bi ), i ∈ I, are pairwise-disjoint, we
conclude that

`−1(y) is finite for every y ∈ [0, 2]. (3-6)

Noting that {`−1(y) : y ∈ ran(`)} partitions the uncountable set B, we deduce from
(3-6) that

ran(`) is uncountable. (3-7)

For each y ∈ ran(`), choose (ay, by) ∈ B such that y = `(ay, by)= by − ay . Next,
set S := {by − ay : y ∈ ran(`)}. Note that S is uncountable by (3-7). Consider
again the definition of

∑
S given in (3-1) for S an uncountable set of positive

real numbers. We argued that
∑

S is not a real number. However, observe that
if by1 − ay1, . . . , byk − ayk are distinct members of S; then we deduce from the
pairwise-disjointness of the intervals (ay, by) and (3-5) that

∑k
i=1 byi − ayi ≤ 2.

But then certainly
∑

S is real, a contradiction. �

Several questions and comments are now in order. First, there are plenty of
examples of conditionally convergent (countably infinite) real series. Is it possible to
define the sum of a real series with uncountably many nonzero terms which has both
positive and negative terms? If we can find such a way, is convergence to a finite
value possible? Next, observe that in our proof that

∑
S , defined in (3-1), is infinite,
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we applied the Archimedean property of the ordering on R. What if we replace the
totally ordered additive abelian group of real numbers by an arbitrary totally ordered
abelian group (the definition of which is forthcoming in Section 3.2)? The notions
of convergence we have discussed can easily be translated to this more general
context (we settle on such a notion in Section 3). Are there any uncountable sums
of nonzero elements of a totally ordered abelian group which are “finite” (that is,
have values in the group)? Finally,13 recall that the cumulative hierarchy of sets Vα ,
where α an ordinal, is generated from the empty set by transfinite applications of
the union and power set operations. By definition, Vω1 =

⋃
i<ω1

Vi , so in a sense,
Vω1 is a “limit” of the Vi ’s for i <ω1. Moreover, there is no countable S ⊆ ω1 such
that Vω1 is the “limit” of {Vi : i ∈ S} in the sense that, for any countable such S, we
have

⋃
i∈S Vi ( Vω1 .14 Thus Vω1 cannot be obtained as the union of a countable

collection of Vj ’s, where each j < ω1. Supposing we have settled on a definition
of “uncountable sum” in a totally ordered abelian group, as in the cumulative
hierarchy example above, can we find a convergent series of positive terms whose
sum is not the sup of the collection of finite sums (in contrast to the definition of an
uncountable sum of positive reals given in (3-1))? We investigate these questions in
the remainder of this article. As a precursor, we give a self-contained introduction
to ordered abelian groups to be utilized shortly.

3.2. Preliminaries: totally ordered abelian groups. The purpose of this subsection
is to give a gentle introduction to the theory of totally ordered abelian groups, as
we shall cast our remaining results in terms of these structures. For the reader
already comfortable with ordered groups, we recommend skipping to the definition
of coinitiality below.

To begin, consider the set Z of integers. The usual addition + on Z enjoys many
nice properties; we single out several below:

(1) (+ is associative on Z) x + (y+ z)= (x + y)+ z for all x, y, z ∈ Z.

(2) (+ is commutative on Z) x + y = y+ x for all x, y ∈ Z.

(3) (existence of an additive identity) There exists an element 0 ∈ Z such that
x + 0= x for all x ∈ Z.

(4) (existence of additive inverses) For all x ∈ Z, there exists y ∈ Z such that
x + y = 0.

Suppose now that G is a set and⊕ is a binary operation on G (that is,⊕:G×G→G
is a function). Then observe that the properties of associativity and commutativity,
the existence of an additive identity, and the existence of additive inverses enjoyed
above by Z with the usual addition can all be translated mutatis mutandis to this more

13This example requires some knowledge of axiomatic set theory.
14On the other hand,

⋃
i∈S Vi = Vω1 if S is uncountable.
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abstract setting. For example, ⊕ is commutative on G exactly when x ⊕ y = y⊕ x
for all x, y ∈G. If G is a set and⊕ is a binary operation on S such that (1)–(4) above
hold (with + replaced with ⊕, of course), then we say that the structure (G,⊕)
is an abelian group. We pause to give two additional examples. The uninitiated
reader is encouraged to verify that the following are, in fact, abelian groups.

Example 17. Let X be a set, and let F(X,R) be the collection of all functions
f : X→ R. Define ⊕ on F(X,R) by ( f ⊕ g)(x) := f (x)+ g(x), where + is the
usual addition on R. Then (F(X,R),⊕) is an abelian group.

Example 18. Let S be a set, and let P(S) denote the power set of S. Define ⊕ on
P(S) by A⊕ B := (A\B)∪ (B\A). Then (P(S),⊕) is an abelian group.

Remark 19. We now adopt the usual convention of denoting the operation on an
arbitrary abelian group by + instead of ⊕.

In Section 2.1, we defined various binary relations on a set S. Consider instead an
abelian group (G,+) and a total order ≺ on G. If we are to define a totally ordered
abelian group structure, we would expect some compatibility between the order ≺
and the addition on G. This compatibility is in the form of so-called translation
invariance, which simply means that if x, y, z ∈ G with x ≺ y, then x + z ≺ y+ z.
If (G,+) is an abelian group and ≺ is a translation invariant total order on G, then
we call the structure (G,+,≺) a totally ordered abelian group. More examples
are now in order. Again, the reader is encouraged to check the details for her- or
himself.

Example 20. Let G := Z×Z with the usual componentwise addition. Then the
dictionary order ≺ on G is total and translation invariant.

Example 21. Consider the set R[X ] of polynomial functions with real coefficients.
Then R[X ] becomes an abelian group under the usual addition of polynomial
functions. Define ≺ on R[X ] by f ≺ g if and only if there is N ∈ R such that
f (x) < g(x) for all x ≥ N. It is straightforward to verify that (R[X ],+,≺) is a
totally ordered abelian group.

Our final preliminary result concerns convergence in ordered abelian groups,
though for now, we have no need to complicate things by introducing a formal
definition of convergence just yet (though as the reader may expect, it will mirror
Definition 8). First, we present the ordered group analog of Definition 13.

Definition 22. Let (G,+,≺) be a totally ordered abelian group, and (W, <) be a
well-ordered set. Further, suppose that (gi : i ∈W ) is a W -indexed sequence in G:

(1) (gi : i ∈ W ) is increasing (or strictly increasing) if whenever i, j ∈ W and
i < j , then gi � gj (respectively, gi ≺ gj ).
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(2) (gi : i ∈ W ) is decreasing (or strictly decreasing) if whenever i, j ∈ W and
i < j , then gi � gj (respectively, gi � gj ).

(3) If (gi : i ∈ W ) is either (strictly) increasing or (strictly) decreasing, then we
say that (gi : i ∈W ) is (strictly) monotonic.

To close this subsection, we introduce an important definition and lemma of
which we shall shortly make use.

Definition 23. Suppose that (G,+,≺) is a totally ordered abelian group and (W, <)
is a well-ordered set. Further, let g∗ ∈ G:

(1) Suppose that (gi : i ∈ W ) is a strictly increasing sequence in G such that
gi ≺ g∗ for all i ∈W. Then we say that (gi : i ∈W ) is left g∗-coinitial provided
that, for every g ∈ G, if g ≺ g∗, then there is i ∈W such that g � gi .

(2) Suppose that (gi : i ∈ W ) is a strictly decreasing sequence in G such that
g∗ ≺ gi for all i ∈ W. Then we say that (gi : i ∈ W ) is right g∗-coinitial
provided that, for every g ∈ G, if g∗ ≺ g, then there is i ∈W such that gi � g.

We conclude with the following observation:

Lemma 24. Let (G,+,≺) be a totally ordered abelian group and (W, <) be a
well-ordered set. Suppose that (gi : i ∈W ) is a W -sequence of elements of G and
that g∗ ∈ G. If (gi : i ∈W ) is either left or right g∗-coinitial, then there is a right
0-coinitial G-valued W -sequence (hi : i ∈W ).

Proof. Let (G,+,≺), (W, <), (gi : i ∈W ), and g∗ be as stated.

Case 1: (gi : i ∈W ) is right g∗-coinitial. Then (gi : i ∈W ) is strictly decreasing. For
i ∈W, let hi := gi−g∗. We claim that (hi : i ∈W ) is right 0-coinitial. First, suppose
that i, j ∈W and i < j . Then gj ≺ gi . By translation invariance, gj − g∗ ≺ gi − g∗;
that is, h j ≺ hi . Thus (hi : i ∈W ) is strictly decreasing. We claim that hi � 0 for
all i ∈W. It is clear that this reduces to gi � g∗ for all i ∈W, which is true since
(gi : i ∈W ) is right g∗-coinitial. It remains to show that if g� 0, then there is i ∈W
such that hi � g. So suppose that g � 0. Then g+ g∗ � g∗. Because (gi : i ∈W ) is
right g∗-coinitial, there is i ∈ W such that gi � g+ g∗. Subtracting g∗ from both
sides of the inequality, we obtain gi − g∗ � g; that is, hi � g. We have shown that
(hi : i ∈W ) is right 0-coinitial, completing the proof in this case.

Case 2: (gi : i ∈ W ) is left g∗-coinitial. Then it is clear that (−gi : i ∈ W ) is
right (−g∗)-coinitial. Therefore, by Case 1, there is a right 0-coinitial G-valued
W -sequence (hi : i ∈W ). �

For further reading on ordered groups, we refer the reader to [Botto Mura and
Rhemtulla 1977].
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3.3. Defining and exploring uncountable sums in totally ordered abelian groups.
Our first task is to give a rigorous definition of “infinite sum” in a totally ordered
abelian group. We begin by defining the convergence of a sequence. To wit, let
(G,+,≺) be a totally ordered abelian group. We may define the absolute value of
g ∈ G by mimicking the usual definition on the real line:

|g| :=
{

g if g � 0,
−g otherwise.

We are now prepared to define convergence of a G-valued W -sequence, where
(G,+,≺) is a totally ordered abelian group and (W, <) is a well-ordered set
(compare to Definition 6).

Definition 25. Let (G,+,≺) be a totally ordered abelian group, (W, <) a nonempty
well-ordered set, (gi : i ∈ W ) a G-valued W -sequence, and g ∈ G. We say that
(gi : i ∈W ) converges to g, or that g is the limit of (gi : i ∈W ), provided that for
every ε � 0, there exists i ∈W such that if j ∈W and j ≥ i , then |gj − g| ≺ ε. In
this case, we write lim

→
(gi : i ∈W )= g. If W =∅, then we set lim

→
(gi : i ∈W ) := 0.

We must pause to address a potential difficulty. Notice the appearance of the
word “the” in the phrase, “g is the limit of (gi : i ∈W )” above. To justify our choice
of article, we must confirm that a convergent G-valued W -sequence has a unique
limit.

Lemma 26. Let (G,+,≺), (W, <), and (gi : i ∈W ) be as in Definition 25. Then
(gi : i ∈W ) converges to at most one g ∈ G.

Proof. Suppose that (gi : i ∈ W ) is a convergent G-valued W -sequence. If G is
trivial, then the result is trivial as well, so we assume that G is nontrivial. Then
there is some nonzero g ∈ G. Now, either g � 0 or −g � 0, so G has positive
elements relative to ≺.

Case 1: G has a least positive element, say ε0. Let g be a limit of (gi : i ∈ W ).
There exists i ∈W such that, for all j ≥ i , we have |gj − g|< ε0. By the leastness
of ε0, we must have |gj − g| = 0, and hence gj = g for all j ≥ i . If g′ is any
other limit of (gi : i ∈W ), then there is i ′ ∈W such that gj = g′ for all j ≥ i ′. Let
k :=max(i, i ′). Then observe that gk = g = g′, and we are done in this case.

Case 2: G has no least positive element. We claim that G is dense in itself with
respect to ≺.15 To see this, suppose x ≺ z. By translation invariance, z − x � 0.
Since G has no least positive element, there is g ∈ G such that 0 ≺ g ≺ z − x .
Adding x throughout, we get x ≺ g+ x ≺ z, completing the verification that G is
dense in itself relative to ≺. Now, suppose by way of contradiction that (gi : i ∈W )

converges to both x and z for some distinct x, z ∈ G. Without loss of generality,

15This is a fundamental result in the theory of totally ordered abelian groups.
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we may suppose that x ≺ z. By denseness, there is y ∈ G such that x ≺ y ≺ z. Set
ε := min(y− x, z− y). Then the balls Bε(x) := {g ∈ G : |x − g| ≺ ε} and Bε(z)
are disjoint. But by convergence, there is some i ∈W such that gi is a member of
both balls, a contradiction. �

Now that we have established the uniqueness of limits, we are ready to define
infinite series in an arbitrary totally ordered abelian group. Our definition is the
canonical extension of Definition 8.

Definition 27. Suppose that (G,+,≺) is a totally ordered abelian group and that
(W, <) is a nonempty well-ordered set. Next, let (gi : i ∈ W ) be a G-valued
W -sequence, and choose any e /∈ G. We now define the series (Si : i ∈ W )

determined by (gi : i ∈W ) by recursion on W. Suppose that i ∈W and that Sj has
been defined for every j < i . We now define Si as

Si :=

{
e if Sj=e for some j<i or lim

→
(Sj : j∈seg(i)) does not exist,

lim
→
(Sj : j∈seg(i))+ gi otherwise.

We say that the series (Si : i ∈ W ) converges if Si ∈ G for each i ∈ W and
lim
→
(Si : i ∈ W ) := S ∈ G. In this case, we say that S is the sum of the series

(Si : i ∈W ).

We now present a trivial example of a convergent series relative to the above
definition.

Example 28. Let (W, <) be an uncountable well-ordered set, and let i0 be the least
element of W. Continuing recursively (on N), define in+1 := the least element of W
larger than in . Because W is uncountable, it is clear that in is a well-defined member
of W for every n ∈N. Next, for n ∈N, set rin :=

( 1
2

)n . For j ∈W\{in : n ∈N}, set
rj := 0. Then (as one might expect) the corresponding series sums to 2.

Notice that the sequence introduced above has but countably many nonzero terms
(this is what we mean by “trivial”). The following question is natural:

Question 29. Does there exist a totally ordered abelian group (G,+,≺), a well-
ordered set (W, <), and a G-valued W -sequence (gi : i ∈W ) such that gi 6= 0 for
uncountably many i ∈W, yet the corresponding series (Si : i ∈W ) converges?

The remainder of this paper is devoted to proving that Question 29 has a negative
answer.

3.4. Nonexistence of convergent series with uncountably many nonzero terms.
We begin by remarking that in order to show that there does not exist a totally ordered
abelian group (G,+,≺), a well-ordered set (W, <), and a G-valued W -indexed
sequence (gi : i ∈ W ) such that the corresponding series (Si : i ∈ W ) converges
and gi 6= 0 for uncountably many i ∈W, it suffices to show that if (gi : i ∈W ) is
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a G-valued W -sequence for which both gi 6= 0 for every i ∈ W and (Si : i ∈ W )

converges, then W is countable. One can give a proof that this is sufficient to
guarantee a negative answer to Question 29 via straightforward (transfinite) inductive
arguments. As such, we omit the details.

Before proceeding, we shall require more terminology. Let (W, <) be a nonempty
well-ordered set, and let S ⊆W be nonempty. Since < is a well-order on W, there
exists a least element s ∈ S (relative to <). Because < is total, it follows that s
is unique; we denote this s by inf(S) (the infimum of S). As in the real case, say
that S ⊆W is bounded above if there is i ∈W such that s ≤ i for all s ∈ S. Such
an i is called an upper bound of S. If S is bounded above, then the least upper
bound of S is called the supremum of S and is denoted by sup(S). Next, we say
that i ∈ W is a successor if there is j ∈ W such that j < i and there is no k ∈ W
such that j < k < i . If this is the case, then we write i = j+. Finally, if i ∈ W is
not a successor, then we say that i is a limit.16 We present an example below.

Example 30. Let∞ be any object not in N. Now extend the usual order < on N

to N∪ {∞} by declaring n <∞ for all n ∈ N. Setting W := N∪ {∞}, we see that
0= inf(W ) is a limit, every nonzero natural number is a successor, and∞ is a limit.
Moreover,∞= sup(N).

We now state a more general version of Lemma 7. As the proof is essentially
identical, we omit it.

Lemma 31. Suppose that (G,+,≺) is a totally ordered abelian group and that
(W, <) is a well-ordered set with largest element w∗. Further, suppose that
(gi : i ∈W ) is a G-valued W -sequence. Then lim

→
(gi : i ∈W )= gw∗ .

We are almost ready to prove the final result of this paper. We shall require two
definitions and three additional lemmas. The first definition and lemma generalize
the well-known fact that if (rn : n ∈N) is a convergent real-valued sequence, then
every subsequence of (rn : n ∈ N) converges to the same limit.

Definition 32. Suppose that (W, <) is a nonempty well-ordered set and that S⊆W.
Say that S is cofinal in W if for every w ∈W, there is s ∈ S such that w ≤ s.

Lemma 33. Let (G,+,≺) be a totally ordered abelian group and (W, <) be a
nonempty well-ordered set. Further, let (gi : i ∈W ) be a G-valued W -sequence. If
S ⊆W is cofinal in W and lim

→
(gi : i ∈W )= g∗ ∈ G, then also lim

→
(gi : i ∈ S)= g∗.

Proof. Suppose S is cofinal in W and lim
→
(gi : i ∈ W ) = g∗ ∈ G. Now let ε � 0.

There exists i ∈ W such that if j ≥ i , then |gj − g∗| ≺ ε. Since S is cofinal in W,
there is s ∈ S such that s ≥ i . Hence if j ∈ S and j ≥ s, then also j ≥ i . Therefore,
|gj − g∗| ≺ ε, and lim

→
(gi : i ∈ S)= g∗. �

16The reader familiar with the class of ordinal numbers should appreciate the terminology chosen
above.
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Definition 34. Let (G,+,≺) be a totally ordered abelian group and (W, <) be a
nonempty well-ordered set. Further, let (gi : i ∈ W ) be a G-valued W -sequence.
Then (gi : i ∈ W ) is called ultimately constant provided there is i ∈ W such that
gj = gi for all j ≥ i .

Lemma 35. Suppose that (G,+,≺) is a totally ordered abelian group, (W, <)
a nonempty well-ordered set with no largest member, and that (gi : i ∈ W ) is a
G-valued W -sequence with nonzero terms. If the corresponding series (Si : i ∈W )

converges, then (Si : i ∈W ) is not ultimately constant.

Proof. Fix an arbitrary i ∈W. Now observe
that

Si+ = lim
→
(Sj : j ∈ seg(i+))+ gi+

Lem. 31
= Si + gi+ .

Because gi+ 6= 0, we conclude that Si 6= S+i . Recalling that W has no largest element,
it is clear that (Si : i ∈W ) is not ultimately constant. �

Lemma 36. Let (G,+,≺) be a totally ordered abelian group, and suppose that
(gn : n ∈N) is a convergent sequence in G which is not ultimately constant. Then
there exists a right 0-coinitial G-valued sequence (hn : n ∈ N).

Proof. We suppose that (gn : n ∈ N) is a convergent G-valued sequence which is
not ultimately constant. Let lim

→
(gn : n ∈N) := g. Since (gn : n ∈N) is nonconstant,

there is some n0 ∈N such that gn0 6= g. Set ε0 := |gn0−g|. There is k ∈N such that
if j ≥ k, then |gj − g|< ε0. Because (gn : n ∈ N) is nonconstant, there is n1 ∈ N

such that n1 > n0, gn1 6= g, and |gn1 − g|< ε0. Next, set ε1 := |gn1 − g|. Similarly,
there is n2 > n1 such that gn2 6= g and |gn2 − g|< ε1. Continuing recursively, we
obtain a sequence (gnk : k ∈ N) such that n0 < n1 < n2 < · · · and for every k ∈ N,
|gnk+1 − g|< |gnk − g|. We deduce that

gni 6= gn j for i 6= j. (3-8)

Via the same argument one uses to prove that every real-valued sequence has a
monotonic subsequence, we conclude that (gnk :k∈N) has a monotonic subsequence
(gnkl
: l ∈N). Invoking (3-8), it follows that (gnkl

: l ∈N) is strictly monotonic. Since
{nkl : l ∈N} is cofinal in N, we deduce from Lemma 33 that (gnkl

: l ∈N) is a strictly
monotonic sequence which converges to g. It follows that (gnkl

: l ∈N) is either left
or right g-coinitial. Applying Lemma 24 yields the desired conclusion. �

At long last, we are prepared to prove the concluding theorem of this note.

Theorem 37. There does not exist a totally ordered abelian group (G,+,≺), an
uncountable well-ordered set W, and a G-valued W -sequence (gi : i ∈ W ) of
nonzero terms such that the corresponding series (Si : i ∈W ) converges.
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Proof. We argue by contradiction. Thus suppose (G,+,≺) is a totally ordered
abelian group, W is an uncountable well-ordered set, and (gi : i ∈W ) is a G-valued
W -sequence of nonzero terms such that the corresponding series (Si : i ∈ W )

converges to S ∈ G. Let i0 be the least element of W. Proceeding by recursion, set
in+1 := inf{ j ∈W : in < j}. Because W is uncountable, the in’s do not exhaust W.
Let iω be the least element of W larger than every in . Since (Si : i ∈W ) converges,
it follows by the definition of convergence that the sequence (Sj : j ∈ seg(iω))=
(Sin : n ∈N) also converges. By Lemma 35, (Sin : n ∈N) is not ultimately constant;
invoking Lemma 36,

there is a right 0-coinitial G-valued sequence (hn : n ∈ N). (3-9)

We now consider two cases to obtain a contradiction.

Case 1: For every w ∈ W, seg(w) is countable. Because W is uncountable, it
follows that W does not possess a largest element. Employing Lemma 35, we
deduce that

(Si : i ∈W ) is not ultimately constant. (3-10)

Because (Si : i ∈ W ) converges to S, for each n ∈ N, choose jn ∈ W such that if
w ∈W and w ≥ jn , then |Sw − S|< hn . We claim that

there is j ∈W such that j > jn for all n ∈ N. (3-11)

If not, then W = { jn : n ∈ N} ∪
(⋃
{seg( jn) : n ∈ N}

)
. But now W is a countable

union of countable sets, and hence countable, a contradiction. Let j ∈ W satisfy
(3-11), and consider any w ∈W such that w ≥ j . Then w ≥ jn for all n ∈ N, and
so |Sw − S| < hn for every n ∈ N. Because (hn : n ∈ N) is right 0-cofinal, we
conclude that |Sw− S| = 0, and therefore Sw = S. But now Sw = S for all w ≥ j
and (Si : i ∈W ) is ultimately constant, a contradiction to (3-10).

Case 2: There is some w ∈ W such that seg(w) is uncountable. Choose the least
such w. Then observe that seg(w) is uncountable, but for every i ∈ seg(w), we
have seg(i) is countable. Now simply consider the sequence (gj : j ∈ seg(i)) and
the corresponding series (Sj : j ∈ seg(i)). This restriction puts us back in Case 1,
and so we obtain a contradiction again, as required. �

Now that the smoke has cleared, we conclude the note with an informal descrip-
tion of why nontrivial uncountable sums don’t exist in any totally ordered abelian
group. With notation as in the previous theorem, we let i ∈W be the first nonzero
limit of W. Then convergence of the partial sums at this stage, say to S, forces there
to be (in some sense) “countably much space” on at least one side of S in that there
is a countable S-coinitial sequence. By translation invariance, there is countably
much space around any g ∈ G (on both sides of g). Consequently, there simply
isn’t enough “room” for a nontrivial uncountable series to converge.
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