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We study the minimum mean-squared error for 2-means clustering when the
outcomes of the vector-valued random variable to be clustered are on two spheres,
that is, the surface of two touching balls of unit radius in n-dimensional Euclidean
space, and the underlying probability distribution is the normalized surface measure.
For simplicity, we only consider the asymptotics of large sample sizes and replace
empirical samples by the probability measure. The concrete question addressed
here is whether a minimizer for the mean-squared error identifies the two individual
spheres as clusters. Indeed, in dimensions n� 3, the minimum of the mean-squared
error is achieved by a partition obtained from a separating hyperplane tangent to
both spheres at the point where they touch. In dimension n D 2, however, the
minimizer fails to identify the individual spheres; an optimal partition is associated
with a hyperplane that does not contain the intersection of the two spheres.

1. Introduction

In many applications of data science, large sets of vectors need to be grouped into
a small number of subsets whose elements are close to each other. This type of
partitioning into subsets is also called clustering [MacKay 2003]. The subsets are
often believed to be distinct constituents in a mixture of random vectors that are
sampled from different distributions. In many cases, the distributions are from
a known family that is parametrized by the expected value of the outcomes, and
the outcomes concentrate near the expected value [Pollard 1982; Dasgupta 1999].
Partitioning the observed set of vectors into subsets yields the empirical means, also
called centroids, which provide an estimate for the expected values. On the other
hand, once the expected values are accurately determined, one assumes that mapping
each vector to the subset whose centroid is closest provides a good partition. This
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heuristic approach to the clustering problem is captured in an iterative algorithm
by Lloyd [1982], which aims to minimize an objective function that measures the
Euclidean mean-squared distance of the elements in each of the subsets from the
respective centroid. Although the algorithm seems to work well in practice, known
results lack general a priori performance guarantees [Bucklew and Wise 1982;
Kieffer 1982; Selim and Ismail 1984; Du et al. 1999; Lu and Zhou 2016] or show
cases with slow convergence [Vattani 2011] even for two-dimensional clustering.

Another setting in which one tries to minimize the mean-squared distance is in
vector quantization [Berger 1971; Gersho and Gray 1991]; see also [Steinhaus 1956].
There, partitioning of the outcomes of a random vector is not explicitly motivated by
an underlying assumption that it is a mixture. The main goal is to approximate the
random vector by a quantized one, with a finite or discrete set of outcomes, while
minimizing the distortion, measured in the expected Euclidean squared norm of the
quantization error or in terms of more general norms [Graf and Luschgy 2000].

In this paper, we investigate the problem of minimizing the objective function
appearing in Lloyd’s algorithm for the special case of partitioning into two subsets.
Optimality for the 2-means problem has already been considered in dimension nD 2

for the concrete examples of the uniform distribution on the disk and on the square
[Roychowdhury 2016]. We consider the example of random vectors governed by
a probability measure � that is formed by taking the average of two probability
measures that are uniform on two spheres, that is, the surface of two balls of unit
radius in n-dimensional Euclidean space. If the set S is the union of the two
touching spheres and � the associated normalized surface measure, we wish to
find the assignment q W S ! fc1; c2g which maps S to c1; c2 2 Rn such that the
mean-squared error

R
S kx� q.x/k2 d�.x/ is minimized. The concrete question is

then whether an optimizer to the mean-squared error assigns, up to sets of measure
zero, a partition that singles out each individual sphere.

Earlier results prove that applying semidefinite programming to a convex relax-
ation of the objective function in Lloyd’s clustering algorithm [Peng and Wei 2007]
is successful if the spheres are sufficiently separated [Iguchi et al. 2015; 2017;
Li et al. 2017]; see also a separation requirement for more general, subgaussian
clusters [Mixon et al. 2016]. Indeed, in dimension n D 1, the desired result is
achieved if and only if the spheres are separated by a sufficiently large distance. A
unit sphere in dimension nD 1 is a set of two points at a distance of 2. The uniform
probability measure on two symmetrically arranged spheres at a distance 2� is
�D 1

4
ı�2��C

1
4
ı��C

1
4
ı�C

1
4
ı2C�, where ıa is, for any a 2 R, a Dirac measure

with support fag. If we choose 0< � < 1
2
.
p

3� 1/, then by exhausting all choices
of partitions, it is seen that the set S1 D f��; �; 2C �g with mean 1

3
m1 D .2C �/

and the set S2 D f�2� �g with mean m2 D�2� � provide an optimal partition of
f�2��;��; �; 2C�g for which the resulting mean-squared error is 2

3
.1C�C�2/<1,
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whereas the symmetric choice R1 D f�; 2C �g and R2 D f��;�2� �g gives a
mean-squared error of 1. On the other hand, if � > 1

2
.
p

3�1/, then the partitioning
into R1 and R2 is indeed optimal for the mean-squared error.

It is tempting to attribute the failure to recover the individual spheres to the
discrete nature of the “surface” measures in R. A closer look shows that the
concentration of the measure near the origin is the reason for the optimal partition
formed by one sphere cannibalizing the other. As n grows, the measure � is
less concentrated near the origin, and one expects this cannibalizing behavior to
disappear. Here, we examine the question of whether a successful partition can be
obtained in dimensions n� 2 even if the spheres touch. This is the most challenging
case in which separation can still be achieved theoretically. We consider the con-
tinuum limit, which means instead of sampling the distributions with finitely many
outcomes, we assume data given in the form of uniform measures on the spheres.

Our results show that minimizing the mean-squared error in R2 leads to a nonsym-
metric partition, as in the case of dimension nD 1. Fortunately, in dimensions n� 3

the minimizer recovers the partition into individual spheres, as one hopes to achieve.
In that case, the partition is symmetric (up to sets of measure zero); it is given by a
separating hyperplane that is invariant under reflections mapping each sphere onto
the other.

This paper is organized as follows: In Section 2, we present the main results.
The proofs are either elementary and included there or relegated to Section 3. The
first part of the proofs establishes that optimal partitions for 2-means clustering are
obtained from separating hyperplanes. The next part determines the location of the
hyperplane.

2. Optimal partitions for the mean-squared error

The problem we are concerned with is the minimization of the mean-squared
error. Its value depends on the partition of the support of a probability measure �
describing the outcomes of a mixture of random vectors.

Definition 2.1. Given a Borel probability measure � on Rn with support S and a
Borel-measurable subset S1 � S with complement S2 D S nS1, the mean-squared
error associated with the partition fS1;S2g of S is

E.S1/D min
c12Rn

Z
S1

kx� c1k
2 d�.x/C min

c22Rn

Z
S2

kx� c2k
2 d�.x/:

Here, kx� cik is the Euclidean distance between x and ci in Rn, i 2 f1; 2g.

In this paper, we are concerned with a special case where � is the (normalized)
surface measure for the union of two touching spheres,

�D 1
2
.��1C �1/:
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Here �a is the surface measure supported on Sa � fx 2 Rn W kx � ae1k D 1g,
where e1 is the first canonical basis vector in Rn. The measure �a is obtained from
translating �0, so for any Borel measurable set A, we have �a.AC ae1/D �0.A/,
and for any orthogonal matrix O , we have �0.A/D �0.O

�1.A//.
The following are the main theorems in this paper:

Theorem 2.2. Let the Borel measure be given by � D 1
2
.��1 C �1/ on Rn with

support S DS�1[S1. Let S1;S2 form a partition of S into two Borel measurable
subsets. Then there exist a2R and T1Dfx 2Rn Wx1� ag such that E.T1/� E.S1/.
Moreover, if S1 is minimal for the mean-squared error, then there is a choice of the
cutoff a for which T1 coincides with S1 or S2, up to a set of zero probability.

In short, disregarding sets of zero probability, an optimal partition of S is given
by two sets separated by a hyperplane orthogonal to e1, at an offset a from the
origin. The fact that an optimal partition comes from a separating hyperplane is well
known [Du et al. 1999], which we supplement with a symmetrization argument.

This result motivates abbreviating the mean-squared error for this special case,
and studying its dependence on the cutoff,

E.n; a/D E
�
fx 2 S W x1 � �ag

�
:

By the reflection symmetry of � with respect to the first coordinate, it is sufficient
to consider E.n; a/ for a � 0. With this simplification, we can study the case of
dimension nD 2 in elementary terms.

Theorem 2.3. In dimension n D 2, the absolute minimum of E.2; a/ among a 2

Œ0; 2/ is attained at a nonzero cutoff a.

Proof. Parametrizing the two circles by arc length gives, by a direct computation
for aD 1�

p
3

2
, the probabilities

�
�˚

x 2 R2
W x1 � �1C

p
3

2

	�
D

5
12
;

�
�˚

x 2 R2
W x1 > �1C

p
3

2

	�
D

7
12
:

Choosing c1 D .�1; 0/ and c2 D .�2; 0/ with �1 D�1� 3
5�

and �2 D 5
7
C

3
7�

gives
for the mean-squared error

E
�
2;1�

p
3

2

�
�

1

4�

�Z 11�=6

�=6

..�1Ccos t��1/
2
Csin2 t/dt

C

Z �=6

��=6

..�1Ccos t��2/
2
Csin2 t/dtC

Z 2�

0

..cos tC1��2/
2
Csin2 t/dt

�
D

45�2�30��9

35�2
< 0:987:

This is less than E.2; 0/D 1, so the absolute minimum is not attained at aD 0. �
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Figure 1. An optimal partition of the union of two circles. First
set (solid) on left, second (dash-dotted) on right.
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Figure 2. Value of E.2; a/ depending on cutoff a 2 Œ�2; 2�, with
minimum achieved at two nonzero values of a.

To illustrate this result, we have computed the minimizing offset numerically
and plotted the resulting partition of the two circles in Figure 1, together with the
value of the mean-squared error associated with a given offset in Figure 2.

After expressing the means of the two subsets fx 2 R2 W x1 � ag and fx 2 R2 W

x1 > ag in terms of a, Theorem 2.2 reduces identifying the optimal mean-squared
error to finding the minimum of a parameter integral.

In dimension nD 3, the mean-squared error can be computed explicitly.

Theorem 2.4. In dimension n D 3, the absolute minimum of E.3; a/ among a 2

Œ0; 2/ occurs at aD 0.

Proof. We parametrize the two spheres by spherical coordinates and normalize the
measure by surface area. Based on Theorem 2.2, an optimal partition is obtained
with a separating hyperplane orthogonal to the symmetry axis Re1. The associated
probabilities are, for �2� a� 2,

�.fx 2 R2
W x1 � �ag/D 1

2
�

a
4
;

�.fx 2 R2
W x1 > �ag/D 1

2
C

a
4
:
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As shown in Theorem 3.4 below, the mean-squared error is obtained by choosing
c1 and c2 to be the means of the two subsets, c1 D .�1; 0; 0/, c2 D .�2; 0; 0/ with
�1 D�1� a

2
, �2 D 1� a

2
.

This choice results in

E.3;a/D
1

8�

�Z 2�

0

Z �

arccos.1�a/

..�1Ccosu��1/
2
Csin2 u/sinududt

C

Z 2�

0

Z arccos.1�a/

0

..�1Ccosu��2/
2
Csin2 u/sinududt

C

Z 2�

0

Z �

0

..1Ccosu��2/
2
Csin2 u/sinududt

�
D

1
4
a2
C1:

Thus E.3; a/ achieves its absolute minimum at aD 0. �

Even in the absence of explicit computations for E.n; a/, in the case n> 3, we
obtain the same monotonicity property as for nD 3.

Theorem 2.5. The inequality @
@a

E.n; a/ > 0 holds for all a 2 .0; 2/ and n > 3.
Moreover, E.n; a/ attains a minimum at aD 0, and this minimum is unique.

Theorems 2.4 and 2.5 give us that the 2-means objective function E of two
touching n-spheres is increasing in the variable a for the cutoff for n � 3 in the
continuum limit. Thus, for dimensions n � 3, the optimal 2-means cutoff has a
value of zero, so both n-spheres are recovered successfully.

The remainder of the paper is dedicated to the proofs of Theorems 2.2 and 2.5.

3. Proofs of main results on optimal partitions

The first part of this section establishes the proof that an optimal partition is given
by a separating hyperplane that is orthogonal to the symmetry axis. The second
part examines the offset of the optimal separating hyperplane.

Minimizing the mean-squared error by partitions with a separating hyperplane.
First, we consider a general Borel measure � with support S in Rn. Given a
partition fS1;S2g of S , and �.Si/ > 0, we call m.Si/ D

R
Si

x d�.x/=�.Si/ the
mean associated with the set Si . If Si is clear from the context, we also abbreviate
mi Dm.Si/.

By a direct computation, we have for any Si with �.Si/ > 0 and ci 2 RnZ
Si

kx� cik
2 d�.x/D

Z
Si

kx�mik
2 d�.x/Ckci �mik

2�.Si/;

so the minimum is achieved if and only if ci Dmi .
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Moreover, given c1; c2 2 Rn, among all the partitions, the partition into Voronoi
regions is optimal, as shown in Lemma 3.2 below.

Definition 3.1. Given c1; c2 2 Rn, we define the Voronoi partition fT1;T2g of a
Borel set S associated with the vectors c1 and c2 by the assignment

T1 D fx 2 S W kc1�xk � kc2�xkg; T2 D S nT1:

From this definition, we see that this Voronoi partition consists of a closed half-
space and its complement, with a separating hyperplane that is orthogonal to c1�c2

and contains the midpoint 1
2
.c1C c2/.

Next, we note that given a partition into sets of nonzero probability, passing to
the Voronoi partition associated with the means can only improve the mean-squared
error. This fact is generally known; see for example [Du et al. 1999, Proposition 3.1].

Lemma 3.2. Let S1;S2 be a partition of S with 0 < �.S1/ < 1 and associated
means m1 and m2. Then the Voronoi partition associated with m1;m2 satisfies

E.T1/� E.S1/:

Proof. For any measurable partition S1 and S2 and i 2 f1; 2g, choosing any x 2 Ti

gives, by the definition of the Voronoi partition,

kx�mik �minfkx�m1k; kx�m2kg:

Thus, the partition of S into T1 and T2 gives a mean-squared error that is bounded
above by that associated with S1 and S2. �

In the following, we focus on properties of optimal partitions. These properties
are also known, even in the more general context of k-means; see, e.g., [Du et al.
1999, Propositions 3.1 and 3.5] or [Graf and Luschgy 2000, Section 4.1]. We have
decided to include them here to keep the exposition self-contained.

Lemma 3.3. If fS1;S2g is a minimizing partition for the mean-squared error, then
0<m.Si/ < 1 for i 2 f1; 2g and m.S1/¤m.S2/.

Proof. Let fS1;S2g be a minimizing partition. We know 0< �.S1/ < 1; otherwise
S1 or S2 have unit measure and we can refine S1 or S2 and improve the mean-
squared error.

Moreover, assuming an optimal partition into two sets S1 and S2 of nonzero
probability and equal means m1Dm2, any partition performs equally well, and we
can choose a subset R1 � S1 with 0 < �.R1/ < 1 such that the associated mean
satisfies r1 �m.R1/¤m1. By the characterization of the mean,Z

R1

kx� r1k
2 d�.x/ <

Z
R1

kx�m1k
2 d�.x/:
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For the partition formed by R1 and R2 D S nR1, we then getZ
R1

kx�r1k
2 d�.x/C

Z
R2

kx�m1k
2 d�.x/

<

Z
R1

kx�m1k
2 d�.x/C

Z
R2

kx�m1k
2 d�.x/D E.S1/:

Now inserting the mean of R2 instead of m1 in the second term on the left shows

E.R1/ < E.S1/:

This contradicts optimality, so m1Dm2 cannot hold for a minimizing partition. �

Theorem 3.4. Let � be a Borel measure on Rn with support S . If the partition
fS1;S2g is a minimizer for the mean-squared error, then the sets T1 and T2 in
the Voronoi partition associated with the means fm.Si/g

2
iD1

coincide with S1 and
S2 up to changes involving subsets of the separating hyperplane or sets whose
probability vanishes.

Proof. We know 0< �.S1/ < 1, so both sets S1 and S2 have means under �.
Passing to the Voronoi partition fT1;T2g associated with these means fm.Si/g

2
iD1

gives
E.T1/D E.S1/:

Using the inequality in the definition of the Voronoi partition, we see that if R1 D

T1\S2 is nonempty, then so is R2 D T2\S1, and

kx�mik �minfkx�m1k; kx�m2kg if x 2Ri � Ti ; i 2 f1; 2g:

Hence, defining the hyperplane H D fx 2Rn W kx�m1k D kx�m2kg, on R1 nH

and R2 nH strict inequality holds in the norm bounds, and we see that by the
monotonicity of integrals, the equality E.T1/ D E.S1/ forces both sets to have
probability zero; that is, �.R1 nH /D �.R2 nH /D 0. �

From now on, we specialize to �D 1
2
.��1C�1/. As a first result for this concrete

choice of �, we show that the mean-squared error does not increase when passing to a
suitable partition into half-spaces that are separated by a hyperplane orthogonal to e1.

To obtain this, we note that choosing a partition that separates into half-spaces
with a separating hyperplane that contains the symmetry axis Re1 is not optimal.
Without loss of generality, we orient this hyperplane so that it is orthogonal to e2.

Lemma 3.5. Let n � 2, � D 1
2
.��1 C �1/ be the measure defined on Rn with

support S , S1 D S \ fx 2 Rn W x2 � 0g and T1 D S \ fx 2 Rn W x1 � 0g. Then
E.S1/ > E.T1/.

Proof. By symmetry, the mean of S1 is m.S1/D ˛e2. Also, we know that the mean
is in the interior of the convex hull of S1, so 0< ˛ < 1. Again using the symmetry
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between S1 and S2, as well as �.S1/D �.S2/D
1
2

,

E.S1/D 2

Z
S1

kx�˛e2k
2 d�D 2

Z
S1

kxk2 d��˛2
D

Z
S

kxk2 d��˛2:

Next, comparing with the Voronoi partition corresponding to f˙e1g and using
symmetry properties, we have

E.S1/D 2

�Z
T1

kx� e1k
2
C

1
2

�
�˛2

D E.T1/C 1�˛2:

From 0< ˛ < 1, we then have E.S1/ > E.T1/. �

We are now ready to prove Theorem 2.2, which states that an optimal partition
coincides, up to sets of measure zero, with one obtained from a separating hyperplane
that is orthogonal to Re1.

Proof of Theorem 2.2. Given a partition of S by S1 and S2 with means mi Dm.Si/,
i 2 f1; 2g, we observe the following:

The algebra of Borel sets of the form A1 �Rn�1 with A1 � R, is a subalgebra
of the Borel algebra of Rn. The functions that are measurable with respect to this
algebra depend only on the first coordinate. By the Radon–Nikodym theorem, there
exist functions di W R! R such that for any ADA1 �Rn�1,Z

A

di.x1/ �Si
.x/ d�.x/D

Z
A

kx�mik
2 �Si

.x/ d�.x/:

Next, using Fubini, if � is the image measure of � under projection onto the first
coordinate, �.A1/D �.A1 �Rn�1/, then there is f W R! Œ0; 1� such thatZ

A1

d1f d�D

Z
A1�Rn�1

kx�m1k
2�S1

.x/ d�.x/

and Z
A1

d2.1�f / d�D

Z
A1�Rn�1

kx�m2k
2.1��S1

.x// d�.x/:

Next, we observe if f is the function associated with a partition S1 and S2 and
R1 D fx 2 R W d1.x/� d2.x/g, then letting g D �R1

givesZ
R

d1g d�C

Z
R

d2.1�g/ d��

Z
R

d1f d�C

Z
R

d2.1�f / d�:

We conclude, setting T 0
1
D S \ .R1 �Rn�1/ and T 0

2
D S nT 0

1
thatZ

kx�m1k
2 �T 0

1
d�C

Z
kx�m2k

2 �T 0
2

d� � E.S1/:
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Next, replacing m1 and m2 by the means m0i �m.T 0i /, i 2 f1; 2g, does not increase
the left-hand side, which shows that

E.T 01/� E.S1/:

Finally, setting fT1;T2g to be the Voronoi partition associated with the means m0
1

and m0
2

implies
E.T1/� E.S1/:

Moreover, if S1 is chosen as a minimizer for the mean-squared error, then
necessarily mi Dm0i , i 2 f1; 2g; otherwise we would have strict inequality between
E.T 0

1
/ and E.S1/. This implies that the means mi are on the symmetry axis Re1.

Applying Theorem 3.4 now shows that, up to a set of probability zero, S1 and S2

are separated by a hyperplane. From the preceding lemma, optimality implies that
the hyperplane does not contain the symmetry axis. If it is not orthogonal to e1, then
there is a set A1�R such that 0<�.A1�Rn�1\S1/<

1
2
�.A1�Rn�1\S/ and hence

there is a subset B1�A1 with�.B1/>0 for which f .B1/�
�
0; 1

2

�
. This contradicts

optimality, because changing from f to the characteristic function g would lower
the mean-squared error. We conclude that the hyperplane is orthogonal to e1. �

The optimal offset of the separating hyperplane. From here on, we consider the
dependence of the mean-squared error on the offset of the separating hyperplane.

We first introduce some additional notation. When the mean-squared error is
computed, the measure � can be replaced by an effective measure on R obtained
from projecting onto the first coordinate. We first consider the projection of �0.
With the normalization constant

An WD

�Z 1

�1

.1�x2/
n�3

2 dx

��1

D
�
�

n
2

�
p
��

�
n�1

2

� ;
the resulting measure �n on Borel sets in Œ�1; 1� is given by [Mueller and Weissler
1982]

d�n.x/ WDAn.1�x2/
n�3

2 dx:

The probability that �0 assigns to fx 2 S0 W x1 � 1� ag, a 2 Œ�1; 1�, is equal to
the probability of fx 2 R W x � 1� ag under �n,

M�
n .a/ WD

Z 1�a

�1

d�n.x/:

This is the mass of part of the first sphere, obtained by a separating hyperplane
between the two centers of the touching spheres, at a distance of 1� a from the
center of the first sphere. From the normalization convention, the total mass of the
measure obtained from two spheres is 2, so the complementary mass remaining is

MC
n .a/ WD 2�M�

n .a/:
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The mean of the first piece is

C�n .a/ WD

R 1�a
�1 x d�n.x/

M�
n .a/

;

and that of the second piece, relative to C�n .0/D 0, is accordingly

CCn .a/ WD
2�

R 1�a
�1 x d�n.x/

MC
n .a/

:

With the help of Fubini–Tonelli, the integration over Rn giving the mean-squared
error can be reduced to an integral with respect to �n. The contributions to the
mean-squared error are split into three terms,

E�.n; a/ WD

Z 1�a

�1

.1�x2
C .x�C�n .a//

2/ d�n.x/;

E˙.n; a/ WD

Z 1

1�a

.1�x2
C .x�CCn .a//

2/ d�n.x/;

EC.n; a/ WD

Z 1

�1

.1�x2
C .2Cx�CCn .a//

2/ d�n.x/:

In each of these cases the integrand is the squared distance of a point on either of the
two spheres from the respective mean of the partition. The resulting mean-squared
error is obtained by summing the three contributions and dividing by the total mass,

E.n; a/D 1
2
ŒE�.n; a/CE˙.n; a/CEC.n; a/�:

Lemma 3.6. Let n � 2 and a 2 Œ0; 2�. Then E.n; a/ is expressed in terms of C�n ,
M�

n , CCn , and MC
n according to

E.n; a/D 3� 1
2

�
.C�n .a//

2M�
n .a/C .C

C
n .a//

2MC
n .a/

�
:

Proof. From normalization, we have the identitiesZ 1

�1

d�n.x/D 1;

Z 1�a

�1

d�n.x/D 1�

Z 1

1�a

d�n.x/I

from symmetry,Z 1

�1

x d�n.x/D 0

Z 1�a

�1

x d�n.x/D�

Z 1

1�a

x d�n.x/:

With the expression for C�n .a/ and M�
n .a/,

E�.n; a/DM�
n .a/� 2C�n .a/

Z 1�a

�1

x d�n.x/C .C
�
n .a//

2M�
n .a/

DM�
n .a/� .C

�
n .a//

2M�
n .a/:
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The integrals in the other terms are converted similarly, including CCn .a/ and
MC

n .a/,

E˙.n; a/D

Z 1

1�a

d�n.x/� 2CCn .a/

Z 1

1�a

x d�n.x/C .C
C
n .a//

2

Z 1

1�a

d�n.x/

D 1�M�
n .a/C 2CCn .a/C

�
n .a/M

�
n .a/C .C

C
n .a//

2.1�M�
n .a//

D 1�M�
n .a/C 2CCn .a/C

�
n .a/M

�
n .a/C .C

C
n .a//

2.MC
n .a/� 1/:

Because the last term is integrated over the entire sphere, the normalization and
symmetry yield

EC.n; a/D

Z 1

�1

d�n.x/�2.2�CCn .a//

Z 1

�1

x d�n.x/C.2�CCn .a//
2

Z 1

�1

d�n.x/

D 1C.2�CCn .a//
2

D 5�4CCn .a/C.C
C
n .a//

2:

Adding together E�.n; a/, E˙.n; a/, and EC.n; a/ and dividing by 2 gives,
after collecting terms,

E.n; a/D 1
2

�
M�

n .a/� .C
�
n .a//

2M�
n .a/C 1�M�

n .a/C 2CCn .a/C
�
n .a/M

�
n .a/

C .CCn .a//
2.MC

n .a/� 1/C 5� 4CCn .a/C .C
C
n .a//

2
�

D
1
2

�
6� .C�n .a//

2M�
n .a/C 2CCn .a/C

�
n .a/M

�
n .a/

C .CCn .a//
2MC

n .a/� 4CCn .a/
�
:

We simplify further by converting between M�
n and MC

n ,

E.n; a/D 1
2

�
6� .C�n .a//

2M�
n .a/C 2CCn .a/.2�CCn .a/M

C
n .a//

C .CCn .a//
2MC

n .a/� 4CCn .a/
�

D
1
2

�
6� .C�n .a//

2M�
n .a/� 2.CCn .a//

2MC
n .a/C .C

C
n .a//

2MC
n .a/

�
:

Thus,

E.n; a/D 3� 1
2

�
.C�n .a//

2M�
n .a/C .C

C
n .a//

2MC
n .a/

�
: �

Lemma 3.7. The derivative @
@a

E.n; a/ is expressed in terms of M�
n , MC

n and a as

@

@a
E.n;a/D

2An.2a�a2/
n�3

2

.M�
n .a/M

C
n .a//2

�

�
.1�a/.M�

n .a//
3
C.2a�1/.M�

n .a//
2

C
An

n�1
.2�a/.2a�a2/

n�1
2 .M�

n .a//
2
C

�
An

n�1

�2

.2a�a2/n�1M�
n .a/

C2
An

n�1
.a�1/.2a�a2/

n�1
2 M�

n .a/�

�
An

n�1

�2

.2a�a2/n�1

�
:
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Proof. Note that Z 1�a

�1

x d�n.x/D�
An

n� 1
.2a� a2/

n�1
2

by direct integration.
Differentiating term by term yields

@

@a
E.n;a/

D�
1

2.M�
n .a//

2

�
2

A2
n

n�1
.1�a/.2a�a2/n�2M�

n .a/

C

�
An

n�1

�2

.2a�a2/n�1An.2a�a2/
n�3

2

�
�

1

2.MC
n .a//2

�
2

�
2C

An

n�1
.2a�a2/

n�1
2

�
An.1�a/.2a�a2/

n�3
2 MC

n .a/

�

�
2C

An

n�1
.2a�a2/

n�1
2

�2

An.2a�a2/
n�3

2

�

D�
An.2a�a2/

n�3
2

2.M�
n .a//

2

�
2

An

n�1
.1�a/.2a�a2/

n�1
2 M�

n .a/C

�
An

n�1

�2

.2a�a2/n�1

�

�
An.2a�a2/

n�3
2

2.MC
n .a//2

�
2

�
2C

An

n�1
.2a�a2/

n�1
2

�
.1�a/MC

n .a/

�

�
2C

An

n�1
.2a�a2/

n�1
2

�2�
:

Combining terms and simplifying gives

@

@a
E.n;a/D

2An.2a�a2/
n�3

2

.M�
n .a/M

C
n .a//2

�

�
�2

An

n�1
.1�a/.2a�a2/

n�1
2 M�

n .a/�

�
An

n�1

�2

.2a�a2/n�1

C

�
An

n�1

�2

.2a�a2/n�1M�
n .a/C.2a�1/.M�

n .a//
2

C.1�a/.M�
n .a//

3
C

An

n�1
.2�a/.2a�a2/

n�1
2 .M�

n .a//
2

�
:

Finally, rearranging terms gives the claimed expression for @
@a

E.n; a/. �

To prove that for any fixed n > 3, the function a 7! E.n; a/ is increasing for
a 2 .0; 2/, it suffices to show that @

@a
E.n; a/ is positive for all a 2 .0; 2/ and n> 3.

This will be the centerpiece of the proof of Theorem 2.5. To prepare this, we use
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the simplified expression for @
@a

E.n; a/ given in the preceding lemma and find an
estimate for M�

n that is obtained by studying the monotonicity properties of the
function n 7!M�

n .a/ for a fixed.

Lemma 3.8. The expression M�
n .a/ is continuous in both n 2 Œ3;1/ and a 2 Œ0; 2�,

and @
@n

M�
n .a/ > 0 for n> 3 and a2 .0; 1/ (and is negative for n> 3 and a2 .1; 2/).

Proof. First, note that by Leibniz integral rule and integrability of x˛ ln x, ˛ > 1,
at 0,

@

@n

Z 1�a

�1

.1�x2/
n�3

2 dx D

Z 1�a

�1

@

@n
.1�x2/

n�3
2 dx

D

Z 1�a

�1

ln.1�x2/.1�x2/
n�3

2 dx:

Thus, taking the partial derivative with respect to n, we obtain

@

@n
M�

n .a/D

Z 1�a

�1

ln.1�x2/ d�n.x/�

Z 1�a

�1

d�n.x/

Z 1

�1

ln.1�x2/ d�n.x/:

Consequently, we have @
@n

M�
n .0/D

@
@n

M�
n .1/D

@
@n

M�
n .2/D 0. Next, we show

that @
@n

M�
n .a/ > 0 for a 2 .0; 1/. To this end, we find critical points of a 7!

@
@n

M�
n .a/.

By

@

@a

@

@n
M�

n .a/D
.2a� a2/

n�3
2R 1

�1.1�x2/
n�3

2 dx

Z 1

�1

�
ln.1�x2/� ln.2a� a2/

�
d�n.x/;

we have that @
@a

@
@n

M�
n .a/D 0 if and only if

a 2

�
0; 1˙

r
1� exp

�Z 1

�1

ln.1�x2/ d�n.x/

�
; 2

�
:

Hence, for

a 2

�
0; 1�

r
1� exp

�Z 1

�1

ln.1�x2/ d�n.x/

��
;

we have @
@n

M�
n .a/ is increasing in a. To see this, take

0< ! �

Z 1

�1

ln.1�x2/ d�n.x/;

set !� D 1�
p

1� exp.!/ and verify @
@a

@
@n

M�
n .!

�/ > 0. Similarly, for

a 2

�
1�

r
1� exp

�Z 1

�1

ln.1�x2/ d�n.x/

�
; 1

�
;

we have @
@n

M�
n .a/ is decreasing in a. Therefore, by @

@n
M�

n .0/D
@
@n

M�
n .1/D0, we

see @
@n

M�
n .a/> 0 for all a2 .0; 1/. Repeating this for a2 Œ1; 2� gives @

@n
M�

n .a/< 0
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for all a 2 .1; 2/. Thus we have shown M�
n .a/ is increasing in n> 3 for a 2 .0; 1/

(and decreasing in n> 3 for a 2 .1; 2/). �

Corollary 3.9. For a 2 Œ0; 1�, we then have the inequalities M�
3
.a/�M�

n .a/� 1

for all n> 3.

Lemma 3.10. For all n� 3 and for all a 2 Œ1; 2/,

M�
n .a/�

An

n� 1
.2a� a2/

n�1
2 :

Proof. We make the change of variables y D 1C x with dy D dx, in M�
n .a/DR 1�a

�1 An.1�x2/
n�3

2 dx to obtain M�
n .a/D

R 2�a
0 An.2y�y2/

n�3
2 dy. Repeating

integration by parts on parts .2�y/
n�3

2 and y
n�3

2 dy yields the formulaZ 2�a

0

An.2�y/
n�3

2 y
n�3

2 dy

D 2
An

n� 1

1X
kD0

� kY
jD0

n� 2j � 1

nC 2j � 1

�
.2a� a2/

n�.2kC3/
2 .2� a/2kC1:

By ˇ̌̌̌� KY
jD0

n� 2j � 1

nC 2j � 1

�ˇ̌̌̌
D

ˇ̌̌̌
.�1/K

� KY
jD0

�
1�

n� 1

j C n�1
2

��ˇ̌̌̌

�

ˇ̌̌̌� KY
jD0

exp
�
�

n� 1

j C n�1
2

��ˇ̌̌̌

D

ˇ̌̌̌
exp

�
�

KX
jD0

n� 1

j C n�1
2

�ˇ̌̌̌
! 0

as K!1, we see the alternating series converges. Moreover, since the first term
is always positive, the sum converges to a function always greater than zero for
a2 .1; 2/ (by a property of alternating series). Lastly, we see that for each odd n� 3,
there are exactly n�1

2
positive terms and for even n � 4, there are n�2

2
positive

terms prior to a convergent alternating series (which starts at a positive term).
Consequently,

M�
n .a/� 2

An

n� 1
.2a� a2/

n�3
2 .2� a/D

2

a

An

n� 1
.2a� a2/

n�1
2 ;

which is greater than or equal to An

n�1
.2a�a2/

n�1
2 (by maximizing the denominator

for a 2 Œ1; 2/). �

Lemma 3.10 gives estimates on M�
n .a/ that we combined with the expression

for E.n; a/ and @
@a

E.n; a/ from Lemmas 3.6 and 3.7 to show the main inequality
@
@a

E.n; a/ > 0 for a 2 Œ1; 2/ in the proof of Theorem 2.5.
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Proof of Theorem 2.5. We recall the simplified expressions

E.n; a/D 3� 1
2

�
.C�n .a//

2M�
n .a/C .C

C
n .a//

2MC
n .a/

�
and

@

@a
E.n; a/D

2An.2a� a2/
n�3

2

.M�
n .a/M

C
n .a//2

L.n; a/;

where

L.n; a/D
�
.1�a/M�

n .a/C2a�1
�
.M�

n .a//
2

C

�
An

n�1
.2a�a2/

n�1
2 M�

n .a/�2
An

n�1
.1�a/.2a�a2/

n�1
2

�
M�

n .a/

C

�
An

n�1

�2

.2a�a2/n�1M�
n .a/�

�
An

n�1

�2

.2a�a2/n�1:

To show the desired inequality, we need only show that L.n; a/ is positive for
a 2 .0; 2/ and n> 3.

We distinguish two cases, depending on the value of a.

Case I: If a 2 .0; 1/, by Corollary 3.9, we replace M�
n .a/ with M�

3
.a/D 2�a

2
for

all positive terms. That is,

L.n; a/�
�
.1�a/M�

n .a/C2a�1
�
.M�

n .a//
2

C
An

n�1
.2a�a2/

n�1
2

�
2�a

2

�2

�2
An

n�1
.1�a/.2a�a2/

n�1
2 M�

n .a/

C

�
An

n�1

�2

.2a�a2/n�1

�
2�a

2

�
�

�
An

n�1

�2

.2a�a2/n�1:

Moreover, we see

.1� a/M�
n .a/C 2a� 1� .1� a/M�

3 .a/C 2a� 1D
a

2
C

a2

2
� 0:

Hence, the first term can be estimated as well by eliminating M�
n .a/, resulting

in the lower bound

L.n; a/�

�
a

2
C

a2

2

��
2� a

2

�2

C
An

n� 1
.2a� a2/

n�1
2

�
2� a

2

�2

� 2
An

n� 1
.1� a/.2a� a2/

n�1
2 M�

n .a/

C

�
An

n� 1

�2

.2a� a2/n�1

�
2� a

2

�
�

�
An

n� 1

�2

.2a� a2/n�1:

By Lemma 3.8, we also have that M�
n .a/�M�

n .0/D 1.



ON THE MINIMUM OF THE MEAN-SQUARED ERROR IN 2-MEANS CLUSTERING 317

Using this estimate for the remaining negative factor multiplying M�
n gives a

further lower bound from which all quantities other than a have been eliminated,

L.n; a/�
.1C a/a.2� a/2

8
C

An

n� 1
.2a� a2/

n�1
2

�
2� a

2

�2

� 2
An

n� 1
.1� a/.2a� a2/

n�1
2

C

�
An

n� 1

�2

.2a� a2/n�1

�
2� a

2

�
�

�
An

n� 1

�2

.2a� a2/n�1

D
.1C a/a.2� a/2

8
C

1

8

An

n� 1
.2a4
� 8a3

C 24a2
� 16a/.2a� a2/

n�1
2

�
1

2

�
An

n� 1

�2

a.2a� a2/n�1:

Finally, by the second and third term decreasing in a 2 .0; 1/, we have

L.n; a/�
.1C a/a.2� a/2

8
C

1

4

An

n� 1
�

1

2

�
An

n� 1

�2

D
1

8

�
.1C a/a.2� a/2C

2An

n� 1
�

�
2An

n� 1

�2�
�
.1C a/a.2� a/2

8
> 0:

Consequently for a 2 .0; 1�, we have @
@a

E.n; a/ > 0.

Case II: If a 2 Œ1; 2/, we re-examine L.n; a/ and apply Lemma 3.10.
By the inequality

An

n� 1
.2a� a2/

n�1
2 �

�
An

n� 1

�2

.2a� a2/n�1;

we have

L.n;a/�
�
.1�a/M�

n .a/C2a�1
�
.M�

n .a//
2

C

�
An

n�1

�2

.2�a/.2a�a2/n�1.M�
n .a//

2
C

�
An

n�1

�2

.2a�a2/n�1M�
n .a/

C2

�
An

n�1

�2

.a�1/.2a�a2/n�1M�
n .a/�

�
An

n�1

�2

.2a�a2/n�1

D
�
.1�a/M�

n .a/C2a�1
�
.M�

n .a//
2

C

�
An

n�1

�2

.2a/
�
M�

n .a/�
1
2
.M�

n .a//
2
�
.2a�a2/n�1

C

�
An

n�1

�2

Œ2.M�
n .a//

2
�M�

n .a/�1�.2a�a2/n�1:
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Using Lemma 3.10 in the last inequality and recalling that if a 2 .1; 2/, then
M�

n .a/ <M�
n .1/D

1
2

, we further estimate

.1� a/M�
n .a/C 2a� 1> 3

2
a� 1

2
> 0;

which gives

L.n; a/�
�
.1� a/M�

n .a/C 2a� 1
�� An

n� 1

�2

.2a� a2/n�1

C

�
An

n� 1

�2

.2a/
�
M�

n .a/�
1
2
.M�

n .a//
2
�
.2a� a2/n�1

C

�
An

n� 1

�2

Œ2.M�
n .a//

2
�M�

n .a/� 1�.2a� a2/n�1:

Thus, combining terms, we obtain a lower bound

L.n;a/�

�
An

n�1

�2�
.1�a/M�

n .a/C2a�1C2aM�
n .a/�a.M�

n .a//
2

C2.M�
n .a//

2
�M�

n .a/�1
�
.2a�a2/n�1

D

�
An

n�1

�2�
aM�

n .a/C2.a�1/C.2�a/.M�
n .a//

2
�
.2a�a2/n�1;

consisting of strictly positive terms if 1< a< 2.
Consequently, we see for n> 3 and a 2 .1; 2/,

@

@a
E.n; a/ > 0:

We conclude that for a 2 .0; 2/ and n > 3, E.n; a/ is strictly increasing, thus
attaining its unique minimum at aD 0. �
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