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We use the Brauer–Manin obstruction to strong approximation on a punctured
affine cone to explain why some mod p solutions to a homogeneous Diophantine
equation of degree 2 cannot be lifted to coprime integer solutions.

1. Introduction

Let Y ⊂ P3
Q

be the quadric surface defined by the equation

X2
0 + 47X2

1 = 103X2
2 + (17× 47× 103)X2

3. (1)

One can easily check that Y is everywhere locally soluble, and so has rational points.
Being a quadric surface, Y satisfies weak approximation. In particular, if we fix a
prime p, then any smooth point on the reduction of Y at p lifts to a rational point
of Y. Given that a point on the reduction of Y is given by (x̃0, x̃1, x̃2, x̃3) ∈ F4

p satis-
fying (1), and a point of Y (Q) can be given by coprime integers (x0, x1, x2, x3)∈Z4

satisfying (1), one might be tempted to think that every Fp-solution (x̃0, x̃1, x̃2, x̃3)

can be lifted to a coprime integer solution (x0, x1, x2, x3).
However, at the end of [Bright 2011], it was remarked that Y has the following

interesting feature: if (x̃0, x̃1, x̃2, x̃3) is a solution to (1) over F17, then at most half
of the nonzero scalar multiples of (x̃0, x̃1, x̃2, x̃3) ∈ F4

17 can be lifted to coprime
4-tuples (x0, x1, x2, x3) ∈ Z4 defining a point of Y. That observation was a by-
product of the calculation of the Brauer–Manin obstruction to rational points on a
diagonal quartic surface related to Y. In this note we will interpret the observation
as a failure of strong approximation on the punctured affine cone over Y, and will
show that this failure is itself due to a Brauer–Manin obstruction.

The same phenomenon has been observed by Lindqvist [2017] in the case of the
quadric surface X2

0 − pq X2
1 − X2 X3 for p, q odd primes congruent to 1 modulo 8.

We expect that example also to be explained by a Brauer–Manin obstruction.
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Following [Colliot-Thélène and Xu 2013], for a variety X over Q, we define
X (AQ) to be the set of adelic points of X , that is, the restricted product of X (Qv)

for all places v, with respect to the subsets X (Zv). (One needs to choose a model
of X to make sense of the notation X (Zv), but since any two models agree outside
a finite set of primes, the resulting definition of X (AQ) does not depend on the
choice of model.) Similarly, define X (A∞

Q
) to be the set of adelic points of X away

from ∞, that is, the restricted product of X (Qv) for v 6= ∞ with respect to the
subsets X (Zv). Assuming that X has points over every completion of Q, we say
that X satisfies strong approximation away from∞ if the image of the diagonal
map X (Q)→ X (A∞

Q
) is dense.

If a variety X does not satisfy strong approximation, this can sometimes be
explained by a Brauer–Manin obstruction. Define

X (AQ)
Br
=
{
(Pv) ∈ X (AQ)

∣∣ ∑
v invv A(Pv)= 0 for all A ∈ Br X

}
,

and define X (A∞
Q
)Br to be the image of X (AQ)

Br under the natural projection map
X (AQ)→ X (A∞

Q
). Then X (A∞

Q
)Br is a closed subset of X (A∞

Q
) that contains

the image of X (Q). If X (A∞
Q
)Br
6= X (A∞

Q
), we say that there is a Brauer–Manin

obstruction to strong approximation away from∞ on X .
We now return to the variety Y defined above. Let X ⊂ A4

Q
be the punctured

affine cone over Y ; that is, X is the complement of the point O = (0, 0, 0, 0) in
the affine variety defined by (1). There is a natural morphism π : X → Y given
by restricting the usual quotient map A4

\ {O} → P3, so that X is realised as a
Gm-torsor over Y. To talk about integral points, we must choose a model: Let
X ⊂ A4

Z be the complement of the section (0, 0, 0, 0) in the scheme defined by (1)
over Z. If we let f ∈ Z[X0, X1, X2, X3] be the polynomial defining Y, then the
integral points of X are given by

X (Z)= {(x0, x1, x2, x3) ∈ Z4
| x0, x1, x2, x3 coprime, f (x0, x1, x2, x3)= 0}.

Theorem 1.1. The group Br X/Br Q has order 2; a generator is given by the
quaternion algebra (17, g), where g ∈ Z[X0, X1, X2, X3] is a homogeneous linear
form defining the tangent hyperplane to X at a rational point P ∈ X (Q). There is a
Brauer–Manin obstruction to strong approximation on X away from∞. Specifically,
for any smooth point Q̃ ∈ X (F17), at most half of the scalar multiples of Q̃ lift to
integer points of X .

It is interesting to compare this result with the “easy fibration method” of [Colliot-
Thélène and Xu 2013, Proposition 3.1]. We have a fibration π : X → Y, and the
base Y satisfies strong approximation. However, the fibres are isomorphic to Gm,
which drastically fails to satisfy strong approximation, so we cannot use that method
to conclude anything about strong approximation on X .
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2. Quadric surfaces

We now gather some basic facts about quadric surfaces. Any nonsingular quadric
surface Y ⊂ P3 over a field k of characteristic different from 2 may be defined by
an equation of the form xT Mx = 0, where M is an invertible 4× 4 matrix with
entries in k. We define 1Y ∈ k×/(k×)2 to be the class of the determinant of M,
which is easily seen to be invariant under linear changes of coordinates. If k̄ is an
algebraic closure of k and Y is the base change of Y to k̄, then Pic Y is isomorphic
to Z2, generated by the classes of the two families of lines on Y [Hartshorne 1977,
Example II.6.6.1].

Lemma 2.1. Let k be a field of characteristic not equal to 2, and let Y ⊂ P3
k be a

nonsingular quadric surface. Then the two families of lines on Y are defined over
the field k(

√
1Y ), and are conjugate to each other.

Proof. We may assume that the matrix M defining Y is diagonal, with entries
p, q, r, s. Following [Eisenbud and Harris 2000, Section IV.3.2], we explicitly
compute an open subvariety of the Fano scheme of lines on Y by calculating the
conditions for the line through (1 :0 :a :b) and (0 :1 :c :d) to lie in Y. The resulting
affine piece of the Fano scheme is given by

{p+ra2
+sb2

=0, rac+sbd=0, q+rc2
+sd2

=0} ⊂ A4
k = Spec k[a, b, c, d].

This is easily verified to consist of two geometric components, each a plane conic,
one contained in the plane qra = −

√
1Y d, qsb =

√
1Y c and the other in the

conjugate plane. �

Lemma 2.2. Let Y be a nonsingular quadric surface over the finite field Fq , with q
odd. Then

#Y (Fq)=

{
q2
+ 2q + 1 if 1Y ∈ (F

×
q )

2,
q2
+ 1 otherwise.

Proof. This can be computed directly, but we recall how to obtain it from the
Lefschetz trace formula for étale cohomology. Let ` be a prime not equal to p.
Let Fq be an algebraic closure of Fq , let Y be the base change of Y to Fq , and let
F : Y → Y be the Frobenius morphism. The Lefschetz trace formula states that
#Y (Fq) can be calculated as

#Y (Fq)=

4∑
i=0

(−1)i Tr(F∗|Hi (Y ,Q`)).

Because Y is smooth and projective, there are isomorphisms of Galois modules
H0(Y ,Q`)∼=Q` and H4(Y ,Q`)∼=Q`(−2); see [Milne 1980, VI.11.1]. We have
Y ∼=P1

×P1. The standard calculation of the cohomology groups of projective space
[Milne 1980, VI.5.6], and the Künneth formula [Milne 1980, Corollary VI.8.13],
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give Hi (Y ,Q`) = 0 for i odd, and show that H2(Y ,Q`) has dimension 2. This
reduces the formula to

#Y (Fq)= q2
+ 1+Tr(F∗|H2(Y ,Q`)).

Moreover, the cycle class map (arising from the Kummer sequence) gives a Galois-
equivariant injective homomorphism

Pic Y ⊗Z Q`→ H2(Y ,Q`(1)),

which by counting dimensions must be an isomorphism. If1Y is a square in Fq , then
the Galois action is trivial and we obtain (after twisting) Tr(F∗|H2(Y ,Q`))= 2q.
If1Y is not a square in Fq , then F∗ acts on Pic Y ∼=Z2 by switching the two factors,
so with trace zero. In either case we obtain the claimed number of points. (Note
that, in the first case, Y is isomorphic to P1

×P1, so we should not be surprised
that it has (q + 1)2 points.) �

3. Proof of the theorem

Firstly, we calculate the Brauer group of X ; it is convenient to do so in more
generality.

Lemma 3.1. Let k be a field of characteristic zero, let Y ⊂ P3
k be a smooth quadric

surface, and let X ⊂ A4
k be the punctured affine cone over Y. If 1Y ∈ (k×)2, then

we have Br X = Br k. Otherwise, suppose that X has a k-rational point P, and let
g be a homogeneous linear form defining the tangent hyperplane to X at P. Then
Br X/Br k has order 2, and is generated by the class of the quaternion algebra
(1Y , g). This class does not depend on the choice of P.

Proof. Let k̄ be an algebraic closure of k, and let X and Y denote the base changes
to k̄ of X and Y, respectively. By [Ford 2001, Theorem 2.2], we have Br(X)∼=Br(Y );
but Y is a rational variety, so its Brauer group is trivial. So it remains to compute
the algebraic Brauer group of X .

We claim that there are no nonconstant invertible regular functions on X . Indeed,
let C⊂A4

k be the (nonpunctured) affine cone over Y. Because C is Cohen–Macaulay
and (0, 0, 0, 0) is of codimension ≥ 2 in C , we have

k[X ] = k[C] = k[X0, X1, X2, X3]/( f ),

where f is the homogeneous polynomial defining Y. This is a graded ring and its
invertible elements must all have degree 0, and so are constant.

The Hochschild–Serre spectral sequence gives an injection Br X/Br k →
H1(k,Pic X). (Here we use k[X ]× = k× and Br X = 0.) By [Hartshorne 1977,
Exercise II.6.3], there is an exact sequence

0→ Z→ Pic Y π∗
−→ Pic X→ 0,
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where π : X→ Y is the natural projection and the first map sends 1 to the class of
a hyperplane section of Y. Using Lemma 2.1 shows that Pic X is isomorphic to Z,
with G = Gal(k(

√
1Y )/k) acting by −1. The inflation-restriction sequence shows

H1(k,Pic X)∼= H1(G,Pic X). If 1Y is a square, then this group is trivial, and we
conclude that Br X/Br k is also trivial. Otherwise G = {1, σ } has order 2, and we
have

H1(G,Pic X)∼= Ĥ−1(G,Pic X)=
ker(1+ σ)
im(1− σ)

=
Z

2Z
.

To conclude, it is sufficient to show that the algebra (1Y , g) is nontrivial in
Br X/Br k. Because the polynomial g also defines the tangent plane to Y at π(P),
the divisor (g) is equal to π∗(L + L ′), where L is a line passing through π(P) and
L ′ is its conjugate. By [Bright 2002, Proposition 4.17], this shows that (1Y , g)
is a nontrivial element of order 2 in Br X/Br k. (The reference works with a
smooth projective variety, but the proof generalises easily to any smooth X with
k[X ]× = k×.) �

We now return to the specific case where X is the punctured affine cone over
the quadric surface defined by (1). We will need to be more careful about constant
algebras than we have been up to this point. Recall that X (Z) consists of points
P = (x0, x1, x2, x3) where x0, x1, x2, x3 are coprime integers satisfying (1). Given
such a P, we define the linear form

`P = x0 X0+ 47x1 X1− 103x2 X2− (17× 47× 103)x3 X3 ∈ Z[X0, X1, X2, X3]

and the quaternion algebra AP = (17, `P)∈Br X . Note that the linear form `P does
indeed define the tangent plane to X at P, so Lemma 3.1 shows that AP represents
the unique nontrivial class in Br X/Br Q. We will now evaluate the Brauer–Manin
obstruction associated to AP .

Lemma 3.2. Fix P ∈ X (Z). Then, for any place v of Q for which 17 is a square
in Qv, we have invv AP(Q)= 0 for all Q ∈ X (Qv).

Proof. The homomorphism Br X→Br Qv given by evaluation at Q factors through
Br(X ×Q Qv), but the image of AP in this group is zero. �

Note that Lemma 3.2 applies in particular to v =∞, v = 2, v = 47 and v = 103.
For the following lemma, let Y be the model for Y over Z defined by (1), and

extend π to the natural projection X → Y .

Lemma 3.3. Fix P ∈X (Z). Let p 6=17 be a prime such that 17 is not a square in Qp,
and let Q ∈ X (Zp) be such that π(Q) 6≡ π(P) (mod p). Then invp AP(Q)= 0.

Proof. If `P(Q) is not divisible by p, then `P(Q) is a norm from the unramified
extension Qp(

√
17)/Qp and therefore we have invp AP(Q)= 0.
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Now suppose that `P(Q) is divisible by p. Denote by Ỹ the base change of Y
to Fp. Let P̃, Q̃ ∈ Ỹ (Fp) be the reductions modulo p of π(P), π(Q) respectively.
The variety Ỹ is a smooth quadric over Fp, and the tangent space TP̃ Ỹ is cut out
by the reduction modulo p of the linear form `P. By Lemma 2.1, the scheme
Ỹ ∩ {`P = 0} consists of two lines that are conjugate over Fp(

√
17). Therefore

the only point of Ỹ (Fp) at which `P vanishes is P̃. It follows that `P(Q) can only be
divisible by p if Q̃ coincides with P̃. �

Lemma 3.4. Let P, P ′ ∈ X (Z) be two points. Then AP and AP ′ lie in the same
class in Br X.

Proof. By Lemma 3.1, we already know that the difference A = AP − AP ′ lies in
Br Q. It will be enough to show that invv A = 0 for v 6= 17, for then the product
formula shows inv17 A = 0 also, and therefore A = 0.

For v for which 17 is a square in Qv, take Q to be any point of X (Qv); then
Lemma 3.2 shows invv AP(Q)= invv AP ′(Q)= 0 and therefore invv A = 0.

For p 6= 17 such that 17 is not a square in Qp, Lemma 2.2 shows that Ỹ =Y×ZFp

contains a point Q̃ that is equal neither to π(P) nor to π(P ′) modulo p. Hensel’s
lemma shows that Q̃ lifts to a point Q ∈ X (Zp). Lemma 3.3 shows invp AP(Q)=
invp AP ′(Q)= 0, so again we have invp A = 0, completing the proof. �

Lemma 3.5. Fix P ∈X (Z). For p 6=17, we have invv AP(Q)=0 for all Q∈X (Zp).

Proof. If 17 is a square in Qp, then this follows from Lemma 3.2. Otherwise,
Lemma 2.2 shows that Ỹ =Y×ZFp contains at least two points. Weak approximation
on Y then gives a point P ′ ∈X (Z) such that π(P) and π(P ′) are different modulo p.
By Lemma 3.4, the algebras AP and AP ′ lie in the same class in Br X , so it does not
matter which we use to evaluate the invariant. Lemma 3.3 then gives the result. �

It remains to evaluate the invariant at 17. In the following lemma, if Q =
(y0, y1, y2, y3) is a point of X , then λQ denotes the point (λy0, λy1, λy2, λy3).

Lemma 3.6. Fix P ∈ X (Z) and Q ∈ X (Z17). For any λ ∈ Z×17, having reduction
λ̃ ∈ F×17, we have

inv17 AP(λQ)=
{

inv17 AP(Q) if λ̃ ∈ (F×17)
2,

inv17 AP(Q)+ 1
2 otherwise.

Proof. Suppose that `P(Q) is nonzero. Because `P is homogeneous of degree 1,
we have

inv17 AP(λQ)= inv17(17, λ`P(Q))= inv17 AP(Q)+ inv17(17, λ).

But inv17(17, λ) is zero if and only if λ̃ is a square in F×17.
If `P(Q) is zero, then Lemma 2.1 shows that we have π(P) = π(Q). Using

weak approximation on Y, we can find a point P ′ ∈ X (Z) with π(P ′) 6= π(Q), and
Lemma 3.4 shows that replacing AP by A′P gives the same invariant. �
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Note that the only singular points of X ×Z F17 are those of the form (0, 0, 0, a),
and these do not lift to points of X (Z17). So the smooth points of X (F17) are
precisely those that lift to X (Z17).

Putting all these calculations together proves the following. Let U ⊂ X (A∞
Q
) be

the open subset defined as

U =
∏
p 6=17

X (Zp)×
{

Q ∈ X (Z17)
∣∣ inv17 AP(Q)= 1

2

}
.

Then U is a nonempty open subset that does not meet X (A∞
Q
)Br, showing that there

is a Brauer–Manin obstruction to strong approximation away from∞ on X . More
specifically, for any smooth point Q̃ ∈ X (F17), half of the scalar multiples of Q̃ lie
in the image of U, showing that they do not lift to integer points of X .
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