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A Scramble Squares puzzle consists of nine square pieces with half of an image
on each side. To solve the puzzle the pieces are arranged in a 3× 3 grid so that
sides of adjacent pieces form complete images. A repetition is a half-image that
appears more than once on a piece. Previous research uses a graph-theoretical
approach to establish necessary and sufficient conditions for solutions without
repetitions to 2× 2 Scramble Squares puzzles. We use a similar approach to
establish necessary and sufficient conditions for solutions with repetitions to
2× 2 Scramble Squares puzzles.

1. Introduction

Created in the 1990s by b. dazzle, inc. (http://www.b-dazzle.com/profile.asp), a
Scramble Squares puzzle consists of nine square pieces with half of an image on
each side. To solve the puzzle the pieces are arranged in a 3× 3 grid so that sides
of adjacent pieces form complete images. Figure 1 is an example of a solution to a
Scramble Squares puzzle.

Puzzle pieces can be arranged many ways. For a 3× 3 puzzle there are 9! ways
to place the pieces if all nine pieces are distinct. Each piece has four orientations,
so there is a total of 49

× 9! arrangements of the pieces with orientations.
A pattern is a complete image in the puzzle, such as the star, arrow, lightning bolt,

and text bubble in Figure 1. Each pattern consists of two pictures, each half of the
image, such as the two half-images that form the star in Figure 1. The complement
of a picture is the other half of the pattern; for example, the complement of the top
of the arrow is the bottom of the arrow in Figure 1. A repetition is a picture that
appears more than once on a piece, such as the bottom half of the star that appears
twice on a piece in the bottom row of Figure 1.
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Figure 1. A solution to a Scramble Squares puzzle.

2. Scramble Squares puzzles without repetitions

For simplicity, [Mason and Zhang 2012] considers 2× 2 Scramble Squares puzzles
without repetitions using a graph-theoretical approach inspired by research on the
Instant Insanity puzzle [de Carteblanche 1947; Grecos and Gibberd 1971; Van
Deventer 1969]. For a 2× 2 puzzle there are 4! ways to place the pieces if all
four pieces are distinct. Each piece has four orientations, so there is a total of
44
× 4! = 6144 arrangements of the pieces with orientations.
To solve 2×2 Scramble Squares puzzles without repetitions, [Mason and Zhang

2012] defines the recording graph G(P) of a puzzle P as follows. The vertices of
G(P) correspond to the pictures in the puzzle and are arranged in two rows, where
the top row represents half of each pattern and the bottom row their complements.

The edges of G(P) are directed from the vertex corresponding to a picture on a
piece to the vertex corresponding to the next picture clockwise on that piece, so
each piece contributes four edges of a color specific to that piece. Thus, a recording
graph G(P) for a 2× 2 puzzle P contains sixteen directed edges.

A B C D

Ac Bc Cc Dc

Figure 2. A 2× 2 Scramble Squares puzzle and its recording graph.
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Figure 2 shows a 2×2 Scramble Squares puzzle and its recording graph where A
represents the star, B the lightning bolt, C the arrow, and D the text bubble, while
green edges represent the top-left piece, red edges the top-right piece, blue edges
the bottom-left piece, and black edges the bottom-right piece.

A subgraph of a recording graph is pseudoconnected if it is connected after
identifying each vertex X with its complement X c. Using the recording graph,
[Mason and Zhang 2012] proves the following necessary and sufficient conditions
for solutions without repetitions to 2× 2 Scramble Squares puzzles.

Theorem 1. A subgraph G of the recording graph G(P) consisting of four edges
corresponds to a solution without repetitions to a 2×2 puzzle P if and only if it is a
pseudoconnected subgraph such that:

(1) Each edge is a different color.

(2) The in-degree of each vertex equals the out-degree of its complement.

(3) If X→ A→ Y is a directed path in G, then Y = X c.

3. Scramble Squares puzzles with repetitions

We consider 2× 2 Scramble Squares puzzles with repetitions. When the repeated
picture appears on adjacent sides of a piece, the repetition is represented by a loop
at the vertex corresponding to the repeated picture in the puzzle’s recording graph.
For a repetition to be part of a solution to a 2× 2 Scramble Squares puzzle, the
repeated picture must appear on adjacent sides of a piece, and each of these sides
must form complete images with adjacent pieces, i.e., the repetition must be in
one of the four central corners in the puzzle’s solution; otherwise, Theorem 1 still
applies. Using a similar approach, however, we prove the following necessary
and sufficient conditions for solutions with repetitions to 2× 2 Scramble Squares
puzzles.

Theorem 2. A subgraph G of the recording graph G(P) consisting of four edges,
at least one a loop, corresponds to a solution with repetitions to a 2× 2 puzzle P if
and only if it is a pseudoconnected subgraph such that:

(1) Each edge is a different color.

(2) The in-degree of each vertex equals the out-degree of its complement.

(3) If A is a repetition and Ac
→ X c

→ X is a directed path in G, then X = A
or Ac.

Proof. We first prove that a subgraph G corresponding to a solution with repetitions
has the form described above. The subgraph contains exactly four distinctly colored
edges, at least one of which is a loop, since a solution uses each of the four pieces,
at least one of which involves a repetition.
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X c
Ac

A
A

Ac

X X c
X

Figure 3. If A is a repetition and X is neither A nor Ac, then
Ac
→ X c

→ X cannot be part of a solution.

Next we prove pseudoconnectedness. In a solution to the puzzle, every pair of
pieces is either adjacent or diagonally opposite. If two pieces are adjacent, then
the pictures on their adjacent sides form a pattern, so the vertices corresponding to
pictures on these pieces are pseudoconnected in G. If two pieces are diagonally
opposite, there is a piece between them whose sides form a pattern with each, so
the vertices corresponding to pictures on this piece form a pseudoconnected path
between the vertices corresponding to pictures on the diagonally opposite pieces.
Hence G is pseudoconnected.

Every vertex in G corresponds to a picture that is matched to its complement.
Since one picture is represented by the head of a directed edge and the other by a
tail, the in-degree of each vertex equals the out-degree of its complement.

Finally, suppose that A is a repetition and that G contains a directed path X c
→ X

such that X is neither A nor Ac. Without loss of generality, let the repetition A→ A
be the top-left piece of the puzzle solution. Then the piece represented by X c

→ X
must be the bottom-right piece since neither X nor X c is Ac, which forces the
remaining pieces to be Ac

→ X and X c
→ Ac (see Figure 3). Thus, if A is a

repetition and X is neither A nor Ac, then Ac
→ X c

→ X cannot be a directed path
in G, proving the necessity of the conditions in Theorem 2.

Conversely, we now prove that a subgraph G satisfying the conditions above
corresponds to a solution with at least one repetition A represented by a loop in G.
Each possible subgraph and its corresponding puzzle solution will be shown with a
green loop at A for its repetition in the top-left piece, a red edge for the top-right
piece, a blue edge the bottom-left piece, and a black edge the bottom-right piece.

Since G has a loop at A, three edges remain, so Ac can have at most three loops,
but then the in- and out-degrees of Ac are 3 whereas the in- and out-degrees of A
are only 1, violating condition (2), so Ac cannot have three or more loops.

If Ac has two loops, then the in- and out-degrees of Ac are both at least 2. By
condition (2), A must also have in- and out-degrees at least 2, so A must also have
two loops. This subgraph and its puzzle solution are shown in Figure 4.

Now suppose G has one loop at Ac and no other vertices. To satisfy condition (2),
the remaining two edges must be in either direction between A and Ac. Without
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Figure 4. A subgraph with two loops at Ac and its puzzle solution.
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Figure 5. Subgraphs with one loop at Ac, one pattern, and their
puzzle solutions.

loss of generality, by interchanging A with Ac, the two possible such subgraphs and
their corresponding puzzle solutions are shown in Figure 5.

Next suppose G has one loop at Ac and another vertex B. By pseudoconnect-
edness, an edge must connect A or Ac to B or Bc. Without loss of generality, by
interchanging A with Ac and/or B with Bc, we may assume that the third edge is
A→ Bc. Since A has in-degree at least 1 and out-degree at least 2, Ac must have
in-degree at least 2 and out-degree at least 1 by condition (2). Therefore, Ac must
appear at least once more as the head of an edge. Likewise, since Bc has in-degree
at least 1, B must have out-degree at least 1, so B must appear at least once as a tail.
Thus, the fourth edge must be B→ Ac, yielding the subgraph and its corresponding
puzzle solution in Figure 6.

Now suppose G has an edge between A and Ac but no loop at Ac. Then Ac

must connect to another vertex B for its in- and out-degrees to equal the out- and

A

Ac

B

Bc

B
Ac

A
A

Ac

Ac A
Bc

Figure 6. A subgraph with one loop at Ac, two patterns, and its
puzzle solution.
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Figure 7. Subgraphs with an edge between A and Ac, no loop at
Ac, and their puzzle solutions.

in-degrees of A. Without loss of generality by interchanging B with Bc, we may
assume that B→ Ac and Ac

→ Bc are the remaining edges. The direction of the
edge between A and Ac yields the two possible subgraphs and their corresponding
puzzle solutions in Figure 7.

Finally suppose G has no edge between A and Ac and no loop at Ac. Then Ac

must connect to another vertex B for its in- and out-degrees to equal the out- and
in-degrees of A. By pseudoconnectedness, an edge must connect A or Ac to B
or Bc, but if A connects to B or Bc, then G will need more than four edges for the
in- and out-degrees of Ac to equal the out- and in-degrees of A. Therefore, without
loss of generality by interchanging B with Bc, we may assume that B→ Ac is an
edge. Since B has out-degree at least 1, Bc must have in-degree at least 1 to satisfy
condition (2). Similarly, since A has in- and out-degrees at least 1, Ac must also have
in- and out-degrees at least 1. Thus, Ac must be the tail of a third edge as follows:

• If the third edge is Ac
→ B, then B has in- and out-degrees at least 1, so the

fourth edge must be a loop at Bc to fulfill condition (2).

A
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Figure 8. Subgraphs with no edge between A and Ac, no loop at
Ac, and their puzzle solutions.
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• If the third edge is Ac
→ Bc, then Bc

→ B cannot be an edge because a directed
path Ac

→ Bc
→ B violates condition (3), so the fourth edge must be B→ Bc.

• If the third edge is Ac
→C , another vertex, then by condition (2), Cc must ap-

pear as the tail of an edge and Bc as a head, so the fourth edge must be Cc
→ Bc.

These three subgraphs and their puzzle solutions are shown in Figure 8, completing
our proof that the conditions in Theorem 2 are sufficient for a subgraph to correspond
to a 2× 2 Scramble Squares puzzle solution with repetitions. �

4. Future directions

Many open questions remain to be explored. For instance, these results can be
extended to 3×3 and larger Scramble Squares puzzles. Another area of exploration
is the uniqueness of solutions, i.e., finding conditions under which a puzzle solution
is unique. One could also explore the probability that an arbitrary puzzle has a
unique solution or solutions at all.
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