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Darboux calculus
Marco Aldi and Alexander McCleary

(Communicated by Kenneth S. Berenhaut)

We introduce a formalism to analyze partially defined functions between ordered
sets. We show that our construction provides a uniform and conceptual approach
to all the main definitions encountered in elementary real analysis including
Dedekind cuts, limits and continuity.

1. Introduction

Following the pioneering work of Bolzano and Weierstrass, “(ε, δ)-definitions” are
at the heart of textbook presentations of elementary analysis; see, e.g., [Rudin
1953]. While with practice the motivated student quickly becomes proficient in this
language, it is natural to ask if fundamental notions such as limits, continuity and
integrals could perhaps be defined more conceptually.

In the present paper we develop a rather general framework, which we refer to
as Darboux calculus, whose specialization to the context of real analysis provides
a unified and conceptual approach to all the main definitions encountered in, say,
single variable calculus. Our starting point is the observation that the completeness
of the ordered set of extended real numbers R̂ = {±∞} ∪R is equivalent to the
validity of the following.

Lemma 1.1. Let O be a (partially) ordered set, let S ⊆ O be any subset and let
ψ : S → R̂ be an order-preserving function. Then the set of order-preserving
functions f :O→ R̂ whose restriction to S coincides with ψ has a maximum and a
minimum.

In particular, such an order-preserving function ψ singles out a distinguished
subset Dar(ψ)⊆O, the Darboux set of ψ , of elements on which the maximum and
minimum extensions of ψ coincide. Equivalently, Dar(ψ) can be thought of as the
subset to which ψ extends canonically. We denote this canonical extension by exψ .

The prototypical example of this construction is provided by the Darboux integral.
Let O denote the set of all bounded functions on an interval [a, b] ⊆R, let S be the

MSC2010: 06A06, 06A11, 18B35, 26A06, 97I10.
Keywords: partially ordered sets, Kan extensions, foundations of real analysis.
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362 MARCO ALDI AND ALEXANDER MCCLEARY

subset of step functions and let ψ be the function that to each step function assigns
its integral defined naively in terms of signed areas of rectangles. In this case, as
shown in Example 7.9 below, Dar(ψ) coincides with the set of Darboux integrable
functions on [a, b] and exψ is the Darboux integral.

This approach to the Darboux integral exemplifies the philosophy of this paper:
naturally occurring pairs (X , ϕ) consisting of a class X of R̂-valued functions and
an order-preserving function ϕ :X→ R̂ are of the form (Dar(ψ), exψ) for a suitable
order-preserving function ψ defined on a subset S ⊆X of functions that “obviously
belong to X ”.

For instance, let O be the set of all sequences of real numbers, let S be the
subset of sequences that are eventually constant and let ψ be the function that to
each sequence η ∈ S assigns the only value that η attains infinitely many times.
Then, as shown in as shown in Example 7.5 below, Dar(ψ) coincides with the
set of convergent (possibly to ±∞) sequences and exψ( f )= limn f (n) for every
f ∈ Dar(ψ). The advantage here is that instead of having to come up with a
clever (ε, δ)-definition of limit of a sequence we only need to prescribe the obvious
limit of an eventually constant sequence and the formalism of Darboux calculus
automatically takes care of the general case.

Similarly, let O be the set of all functions f :R→R and fix x0 ∈R. It is shown in
Example 7.6 that if S denotes the set of all functions that are constant on some open
neighborhood of x0 and ψ is the function that to each η ∈ S assigns ψ(η)= η(x0),
then Dar(ψ) is the set of functions that are continuous at x0 and exψ( f )= f (x0)

for all f ∈ Dar(ψ). Once again, given as only input the set of functions that are
obviously continuous at x0, our machinery returns the set of functions that are
continuous at x0 as output. We view this as an intuitive alternative to the standard
(ε, δ)-definition of continuity.

The statement of Lemma 1.1 holds more generally if R̂ is replaced with any
ordered set that is complete in the sense that every subset has a least upper bound
and a greatest lower bound. Furthermore, the inclusion ι : S ↪→O can be replaced
with an arbitrary embedding of ordered sets. In fact, the reader familiar with
category theory will easily recognize the maximum and minimum extensions of ψ
in Lemma 1.1 as, respectively, the right and left Kan extensions [Mac Lane 1971]
(assuming they exist) of ψ along ι. Similarly, the Darboux set of ψ can be thought
of as the equalizer of the left and right Kan extensions. Here we are implicitly using
the standard interpretation of an ordered set O as a category whose objects are
the elements x ∈O and such that Hom(x, y) consists of a single element if x ≤ y
and is empty otherwise. From the vantage point of category theory, the present
paper can be summarized as the observation that equalizers of left and right Kan
extensions arise naturally in elementary analysis. While some of our propositions
and theorems are particular instances of much more general results about left and
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right Kan extensions, we choose to give self-contained proofs in the case of ordered
sets. In this way, we hope to provide evidence of the effectiveness of Darboux
calculus as a stand-alone approach to the foundations of analysis that might be one
day used to teach the subject at the undergraduate level.

An example of the flexibility of categorical thinking in this context comes from
looking at the Yoneda embedding of an ordered set O into the set of order-preserving
functions from O to the unique (up to a unique isomorphism) nontrivial ordered
set with two elements. As it turns out, the Darboux set of the identity function
of the image of the Yoneda embedding essentially coincides with the Dedekind–
MacNeille completion of O. While the idea of understanding Dedekind cuts in
terms of presheaves is not new, see, e.g., [Taylor 1999], our emphasis is on the fact
that Darboux sets are not only effective in isolating interesting classes of R-valued
functions but can be used to construct R itself! In fact we show that with a little
more effort, the field structure of R can also be recovered from that of Q in terms of
Kan extensions. Our exposition appears to be somewhat more succinct, direct and
self-contained than previous treatments of elementary analysis based on category
theory; see, e.g., [Univalent Foundations 2013; Taylor 2010; Edalat and Lieutier
2004]. It would be interesting to carry out a detailed comparison between these
approaches and the one presented here.

The paper is organized as follows. Section 2 contains basic material on ordered
sets and order-preserving functions. In Section 3 we introduce the main concepts
used in this paper, including Darboux sets and Darboux extensions. Section 4 is
devoted to the notion of completeness defined here in terms of extensions of partially
defined order-preserving functions. As we show, our definition, which we refer to as
Darboux completeness, is in fact equivalent to the more familiar notion of Dedekind
completeness. In Sections 5–6 we discuss the Yoneda embedding and the Darboux
completion of an arbitrary ordered set. In particular in Section 5 we use Darboux
extensions to prove that completely integrally closed subgroups of automorphisms
of a complete ordered set lift to automorphisms of the completion, a result that
we use to construct the field operations on R. Our strategy here can be thought of
as a Darboux-theoretic version of the approach used in [Fuchs 1963] to establish
similar results directly at the level of Dedekind cuts. Once the real numbers are
constructed, in Section 7 we shift our attention to ordered sets of R-valued functions.
We prove that an R-valued function f has limit with respect to some filter basis F
(in the sense that each ε-neighborhood of the limit contains the image f (S) of
some S ∈ F) if and only if f is in the Darboux set of the partial function defined
by assigning to each function constant on some S ∈ F the only value that it attains
on S. This characterization of convergence with respect to a filter basis yields at
once Darboux-theoretic formulations of several (ε, δ)-definitions such as limits of
sequences, limits of functions of one real variable and continuity. After discussing
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Darboux integrability (after which the general notion of Darboux set is modeled),
we use Darboux calculus to prove a theorem which simultaneously generalizes the
usual linearity theorems for limits, continuous functions and integrals. In fact, all
the major theorems of elementary real analysis (e.g., the intermediate value theorem,
the extreme value theorem and the fundamental theorem of calculus) can be proved
conceptually using the language of Darboux calculus. We hope to come back to
this point elsewhere and ultimately provide an exhaustive and fully self-contained
treatment of elementary real analysis in the language of this paper.

2. Preliminaries on ordered sets

Definition 2.1. A (partially) ordered set is a set O together with a reflexive, anti-
symmetric, and transitive relation, which we denote by ≤.

Example 2.2. If O is an ordered set, every subset S ⊆O inherits an induced order.
For every x, y ∈ O such that x ≤ y, the interval with endpoints x and y is the
(ordered) subset [x, y] of all z ∈O such that x ≤ z ≤ y.

Example 2.3. A discrete set is an ordered set with the trivial order with respect
to which x ≤ y if and only if x = y. If O is an ordered set, we denote by |O| its
underlying discrete set.

Remark 2.4. If O is an ordered set, we denote by Oop the opposite ordered set
such that |Oop

| = |O| and x ≤ y in Oop if and only if y ≤ x in O.

Example 2.5. Given two ordered sets O1,O2, we denote by O1×O2 the ordered
set such that |O1×O2| = |O1|× |O2| with order such that (x1, x2)≤ (y1, y2) if and
only if x1 ≤ y1 and x2 ≤ y2.

Definition 2.6. Let O and P be ordered sets. The set of order-preserving functions
from O to P is

OP(O,P)= { f : |O| → |P| | f (x)≤ f (y) if x ≤ y}.

We view OP(O,P) as an ordered set such that f ≤ g if and only if f (x) ≤ g(x)
for all x ∈O. We use the shorthand notation OP(O)=OP(O,O). We also say that
f ∈ OP(O,P) is an embedding if for any x, y ∈ O, f (x) ≤ f (y) implies x ≤ y.

An isomorphism is a surjective embedding. Given an ordered set O, we denote by
Aut(O) the group of all isomorphisms in OP(O).

Definition 2.7. If O is an ordered set, we define its augmentation to be the ordered
set Ô such that

(1) |Ô| = |O| ∪ {−∞,+∞};
(2) the canonical inclusion of |O| into |Ô| defines an embedding of O into Ô;

(3) Ô = [−∞,+∞].
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Definition 2.8. Let O and P be ordered sets. A partial function ψ :O⇀ P from
O to P is an order-preserving function ψ : dom(ψ)→ P defined on an ordered
subset dom(ψ)⊆O called the domain of ψ . The ordered set im(ψ)=ψ(dom(ψ))
is called the image of ψ . An extension of ψ to O is an order-preserving function
f :O→ P whose restriction f |dom(ψ) to dom(ψ) coincides with ψ .

Example 2.9. Let O be an ordered set and let 1 be the unique (up to a unique
isomorphism) ordered set with one element. Then O is canonically identified with
OP(1,O).

Definition 2.10. Let O and P be ordered sets. A set 9 of partial functions from
O to P is compatible if for any ψ ′, ψ ′′ ∈ 9, the restrictions of ψ ′ and ψ ′′ to
dom(ψ ′)∩ dom(ψ ′′) coincide. If 9 is compatible, we define its common extension
to be the partial function ψ :O⇀ P such that

dom(ψ)=
⋃
ψ ′∈9

dom(ψ ′)

and ψ(x)= ψ ′(x) for every x ∈ dom(ψ ′) and for every ψ ′ ∈9.

Remark 2.11. Let O and P be ordered sets. If ψ is the common extension of a
compatible set 9 of partial functions from O to P, then f :O→ P is an extension
of ψ to O if and only if it is an extension of ψ ′ to O for each ψ ′ ∈9.

3. Darboux sets and Darboux extensions

Definition 3.1. Let O and P be ordered sets. A partial function ψ : O ⇀ P is
extremizable if there exist extensions lexψ , uexψ : O→ P of ψ to O such that
lexψ ≤ f ≤ uexψ for all extensions f : O→ P of ψ to O. If this is the case, we
call lexψ and uexψ the lower and upper extensions of ψ , respectively.

Remark 3.2. Let ψ :O→ P be an extremizable partial function. If x ∈ dom(ψ),
then lexψ(x)= uexψ(x). Therefore, if f :O→ P is an order-preserving function
such that lexψ ≤ f ≤ uexψ , then f is automatically an extension of ψ .

Example 3.3. Let O and P be ordered sets and let ψ :O⇀ P̂ be a partial function
such that dom(ψ) = {x}. Then ψ is extremizable. Moreover, lexψ(y) = ψ(x) if
x ≤ y and lexψ(y) = −∞ otherwise. Similarly, uexψ(y) = ψ(x) if y ≤ x and
uexψ(y)=+∞ otherwise.

Definition 3.4. Let O and P be ordered sets. For each extremizable partial function
ψ :O⇀ P, we define the Darboux set of ψ to be

Dar(ψ)= {x ∈O | lexψ(x)= uexψ(x)}.

Moreover, we denote by exψ : O ⇀ P the Darboux extension of ψ , i.e., the
restriction of uexψ (or equivalently of lexψ ) to Dar(ψ).



366 MARCO ALDI AND ALEXANDER MCCLEARY

Definition 3.5. Let O, P be ordered sets and let ψ be a partial function from O to P.
We say that x ∈O is ψ-bounded if y ≤ x ≤ z for some y, z ∈ dom(ψ). We denote
the set of ψ-bounded elements of O by B(ψ). We say that ψ is encompassing if
every element of O is ψ-bounded. Moreover, for each extremizable ψ :O⇀ P we
define the bounded Darboux set of ψ to be the subset BDar(ψ) of all ψ-bounded
elements of Dar(ψ).

Remark 3.6. Let O, P be ordered sets and let ψ be the common extension of a
compatible set 9 of partial functions from O to P. If any ψ ′ ∈9 is encompassing,
then dom(ψ ′)⊆ dom(ψ) implies that ψ is also encompassing.

Remark 3.7. Let O and P be ordered sets and let 9 be a compatible set of ex-
tremizable partial functions from O to P. If the common extension ψ of 9 is
also extremizable, then Remark 2.11 implies that f ∈ [lexψ , uexψ ] if and only if
f ∈ [lexψ ′, uexψ ′] for each ψ ′ ∈9. In particular,

{uexψ } =
⋂
ψ ′∈9

[uexψ , uexψ ′] and {lexψ } =
⋂
ψ ′∈9

[lexψ ′, lexψ ].

Remark 3.8. Let O and P be ordered sets and let ψ be an extremizable partial
function from O to P. If f :O→ P is an extension of exψ to O, then its restriction
to dom(ψ) coincides with ψ and thus lexψ ≤ f ≤ uexψ . Since by construction lexψ
and uexψ restrict to exψ on Dar(ψ), it follows that the set of extensions of exψ to O
coincides with the set of extensions of ψ to O. In particular, Dar(exψ)= Dar(ψ)
and exexψ = exψ .

Definition 3.9. Let O1, O2 and O3 be ordered sets. The partial functions ψ1 :

O1 ⇀O2 and ψ2 :O2 ⇀O3 are composable if dom(ψ2)∩ im(ψ1) is nonempty. If
this is the case, their composition is the partial function ψ2 ◦ψ1 : O1 ⇀ O3 such
that (ψ2 ◦ψ1)(x)= ψ2(ψ1(x)) for each x in

dom(ψ2 ◦ψ1)= {x ∈ dom(ψ1) | ψ1(x) ∈ dom(ψ2)}.

Proposition 3.10. Let O1, O2 and O3 be ordered sets. Let ψ1 : O1 ⇀ O2 and
ψ2 :O2 ⇀O3 be partial functions such that

(i) dom(ψ2)⊆ im(ψ1);

(ii) ψ1, ψ2 and ψ2 ◦ψ1 are extremizable.

Then

(1) lexψ2◦ψ1 ≤ lexψ2 ◦ lexψ1 ≤ uexψ2 ◦ uexψ1 ≤ uexψ2◦ψ1 ;

(2) exψ1

(
Dar(ψ2 ◦ψ1)∩Dar(ψ1)

)
⊆ Dar(ψ2);

(3) (exψ2 ◦ exψ1)(x)= exψ2◦ψ1(x) for all x ∈ Dar(ψ1)∩Dar(ψ2 ◦ψ1).
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Proof. Item (1) is a consequence of the fact that uexψ2 ◦ uexψ1 and lexψ2 ◦ lexψ1 are
extensions of ψ2 ◦ψ1 to O1. If x ∈ Dar(ψ2 ◦ψ1)∩Dar(ψ1), then (1) implies

exψ2◦ψ1(x)= lexψ2(exψ1(x))= uexψ2(exψ1(x)),

which proves (2) and (3). �

Remark 3.11. Since dom(ψ2) = O2 implies lexψ2 = ψ2 = uexψ2 , we know that
Dar(ψ2 ◦ ψ1) ⊆ Dar(ψ1) whenever the partial function ψ2 in the statement of
Proposition 3.10 is an embedding and thus exψ1(Dar(ψ2 ◦ψ1))⊆ Dar(ψ2).

Lemma 3.12. Let O, P, P ′ be ordered sets and let ψ : O ⇀ OP(P,P ′) be an
extremizable partial function. For each p∈P, let evp :OP(P,P ′)→P ′ be the order-
preserving function that to each f : P→ P ′ assigns its evaluation evp( f )= f (p)
at p. If evp ◦ψ :O⇀ P ′ is extremizable for every p ∈ P, then

evp ◦ uexψ = uexevp◦ψ and evp ◦ lexψ = lexevp◦ψ .

Proof. Using Proposition 3.10, evp ◦uexψ = uexevp ◦ uexψ ≤ uexevp◦ψ . Consider the
order-preserving function g :O→ OP(P,P ′) such that (g(x))(p)= uexevp◦ψ for
every x ∈O and for every p ∈ P. Then (g(η))(p)= uexevp◦ψ(η)= (ψ(η))(p) for
every η ∈ dom(ψ). Therefore, g ≤ uexψ and thus uexevp◦ψ = evp ◦ g ≤ evp ◦ uexψ .
Hence, evp ◦ uexψ = uexevp◦ψ . The second equality is proved in a similar way. �

Lemma 3.13. Let O, P1, P2 be ordered sets, let ψ : O ⇀ P1 × P2 be a partial
function and for i = 1, 2 let πi : P1×P2→ Pi be the (order-preserving) projection
onto the respective factor. Then ψ is extremizable if and only if πi ◦ψ : O⇀ Pi

is extremizable for each i = 1, 2. If this is the case, then πi ◦ uexψ = uexπi◦ψ and
πi ◦ lexψ = lexπi◦ψ for each i = 1, 2.

Proof. Assume that ψ is extremizable. Then πi ◦ lexψ and πi ◦ uexψ are extensions
of the partial function πi ◦ψ : O⇀ Pi (with domain dom(ψ)) for each i = 1, 2.
Furthermore, if f1 :O→P1 and f2 :O→P2 are, respectively, extensions of π1◦ψ

and π2 ◦ψ , then ( f1, f2) :O→ P1×P2 is an extension of ψ . By assumption, this
implies lexψ ≤ ( f1, f2)≤ uexψ and thus

πi ◦ lexψ ≤ fi ≤ πi ◦ uexψ

for each i = 1, 2. Hence π ◦ψi is extremizable, πi ◦uexψ = uexπi◦ψ and πi ◦ lexψ =
lexπi◦ψ for each i =1, 2. Conversely, assume that π1◦ψ and π2◦ψ are extremizable.
Then (lexπ1◦ψ , lexπ2◦ψ) and (uexπ1◦ψ , uexπ2◦ψ) are both extensions of ψ = (π1◦ψ,

π2 ◦ψ). Moreover, if f : O→ P1×P2 is any extension of ψ , then πi ◦ f is an
extension of πi ◦ψ for each i = 1, 2. Since f = (π1 ◦ f, π2 ◦ f ), this implies

(lexπ1◦ψ , lexπ2◦ψ)≤ f ≤ (uexπ1◦ψ , uexπ2◦ψ)
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and thus ψ is extremizable with lower extension equal to (lexπ1◦ψ , lexπ2◦ψ) and
upper extension equal to (uexπ1◦ψ , uexπ2◦ψ). �

Remark 3.14. Let O be a nonempty ordered set and let ∅ :O⇀O be the empty
partial function of O, i.e., the unique partial function from O to itself whose
domain is the empty set. Since the set of extensions of ∅ to O coincides with
OP(O), if ∅ is extremizable, then in particular lex∅ ≤ x ≤ uex∅ for every constant
function x : O → O. In other words, the lower and upper Darboux extensions
of the empty partial function are constant and (with a slight abuse of notation)
O = [lex∅(O), uex∅(O)].

4. Darboux-complete ordered sets

Definition 4.1. An ordered set P is Darboux complete if every partial function
from P̂ to itself is extremizable.

Example 4.2. Since by Example 3.3 each partial function f :∅̂⇀∅̂ is extremizable,
the empty ordered set ∅ is Darboux complete.

Lemma 4.3. Let S be a nonempty subset of a Darboux-complete ordered set P. If
idS : P̂⇀ P̂ is the identity function on S and J = [uexidS (−∞), lexidS (+∞)], then

(1) S ⊆ J ;

(2) J is the intersection of all intervals of P̂ that contain S.

Proof. Since P is Darboux complete, lexidS and uexidS exist. For every s ∈ S

uexidS (−∞)≤ uexidS (s)= lexidS (s)≤ lexidS (+∞),

which implies (1). If x, y ∈ P̂ are such that S ⊆ [x, y], let ψ : P̂ ⇀ P̂ be the
partial function with domain Ŝ whose restriction to S is the identity and such that
ψ(−∞)= x and ψ(+∞)= y. Then

x = uexψ(−∞)≤ uexidS (−∞)≤ lexidS (+∞)≤ lexψ(+∞)= y. �

Proposition 4.4. Let P be an ordered set. The following are equivalent:

(1) P is Darboux complete.

(2) Every partial function with codomain P̂ is extremizable.

(3) For every ordered set O, every partial function with codomain OP(O, P̂) is
extremizable.

Proof. Assume that P is Darboux complete. Let ψ be a partial function from an
ordered set O to P̂ and let x ∈O. Consider the subsets

Sx = {ψ(y) | y ≤ x and y ∈ dom(ψ)} ⊆ P̂, (1)

Sx
= {ψ(y) | x ≤ y and y ∈ dom(ψ)} ⊆ P̂ (2)



DARBOUX CALCULUS 369

together with their identity functions idSx , idSx : P̂ ⇀ P̂ . Define l, u :O→ P̂ such
that

l(x)= lexidSx
(+∞) and u(x)= uexidSx (−∞)

for all x ∈O. To see that l and u are indeed order-preserving, assume that x, y ∈O
are such that x ≤ y. Since Sx ⊆ Sy , lexidSy

is an extension of idSx and thus l is
order-preserving. Similarly, u is order-preserving because S y

⊆ Sx implies that the
restriction of lexidSx

to S y coincides with idS y . Moreover l is an extension of ψ
to O since for every x ∈ dom(ψ), Sx ⊆ [−∞, ψ(x)] and Lemma 4.3 implies

ψ(x)= lexidSx
(ψ(x))≤ l(x)≤ ψ(x).

On the other hand, ψ(y) = f (y) ≤ f (x) for any extension f of ψ to O and for
any ψ(y) ∈ Sx . Therefore, Sx ⊆ [−∞, f (x)] and thus (using again Lemma 4.3),
l(x)≤ f (x). Together with a similar argument involving u, this proves (2). Assume
that (2) holds and let O, O′ be arbitrary ordered sets. Consider the canonical
embedding α that to each partial function ψ :O′⇀ OP(O, P̂) assigns the partial
function α(ψ) :O′×O⇀ P̂ such that (α(ψ))(x ′, x)= (ψ(x ′))(x) for all (x ′, x) ∈
dom(α(ψ)) = dom(ψ)×O. The Darboux completeness of P ensures that α(ψ)
is extremizable and thus lexα(ψ) ≤ α( f )≤ uexα(ψ) for each extension f of ψ to O′.
Since the restriction of α to the subset of order-preserving functions O′→OP(O, P̂)
is an isomorphism, lexψ =α−1(lexα(ψ)) and uexψ =α−1(uexα(ψ)), which proves (3).
Example 2.9 shows that (1) is a particular case of (3), which concludes the proof. �

Remark 4.5. Let P be an ordered set. Assume P is a Darboux-complete ordered
set, and S ⊆ P is nonempty and bounded, i.e., S ⊆ [x, y] for some x, y ∈ P. Then
Lemma 4.3 implies that lexidS (+∞) and uexidS (−∞) are respectively the least
upper bound sup(S) and the greatest lower bound inf(S) of S. Therefore, P is
Dedekind complete. Conversely, suppose that the least upper bound and the greatest
lower bound of every nonempty bounded subset of P exist. Given any partial
function ψ : P̂→ P̂ , let Sx and Sx be defined as in (1) and (2) respectively. Then
the same argument as in the proof of Proposition 4.4 shows that ψ is extremizable
with lexψ(x) = sup(Sx) and uexψ(x) = inf(Sx) for all x ∈ O. Hence, P is Dar-
boux complete if and only if P is Dedekind complete. While these two notions
of completeness are equivalent, the point of view of this paper is that Darboux
completeness allows for a more direct and conceptual route to the foundations of
elementary analysis.

Corollary 4.6. Let O be an ordered set, let P be a Darboux-complete ordered set
and let N be a positive integer. Every encompassing partial function from O to PN

is extremizable.

Proof. By Lemma 3.13, it suffices to prove the N = 1 case. Let ϕ : O ⇀ P
be encompassing and let ι : P → P̂ . By assumption, for each z ∈ O there exist



370 MARCO ALDI AND ALEXANDER MCCLEARY

x, y ∈ dom(ϕ) such that x ≤ z ≤ y and thus

ϕ(x)= ι(ϕ(x))≤ lexι◦ϕ(z)≤ uexι◦ϕ(z)≤ ι(ψ(y))= ϕ(y).

Therefore, lexι◦ϕ and uexι◦ϕ have their image contained in P and thus are extensions
of ϕ to O. Moreover, lexι◦ϕ(x) ≤ f (x) ≤ uexι◦ϕ(x) for every extension f of ϕ
to O and for every x ∈ P. Hence ϕ is extremizable and lexϕ(x) = lexι◦ϕ(x),
uexϕ(x)= uexιϕ(x) for all x ∈O. �

Example 4.7. We define the free cocompletion of an ordered set O to be the ordered
set O∨ = OP(Oop, ∅̂). Let P = O∨ \ {±∞}, where ±∞ denotes the constant
function such that im(±∞)=±∞. Combining Example 4.2 with Proposition 4.4
shows that every partial function with codomain O∨ = P̂ is extremizable. Using
Proposition 4.4 again, we conclude that P is Darboux complete.

Example 4.8. Let O be an ordered set, let P be a Darboux-complete ordered set
and let S be a nonempty subset of O. Furthermore, let ψS : OP(O,P) ⇀ P̂ be
the partial function with domain the subset of functions that are constant on S and
such that ψS( f )= f (x) for every f ∈ dom(ψS) and every x ∈ S. For each x ∈ S,
evx coincides with ψS on dom(ψS) and thus evx ∈ [lexψS , uexψS ]. In particular, if
f :O→ P is in the Darboux set of ψS , then evx ◦ f = evy ◦ f for every x, y ∈ S,
i.e., f is constant on S. Hence, dom(ψS)= Dar(ψS).

Remark 4.9. Using the notation of Example 4.8, assume furthermore that O is
discrete. For every order-preserving function f :O→ P and for every y ∈ P, let
fy ∈ dom(ψS) be the function whose restriction to O \ S coincides with f and
such that fy(x) = y for all x ∈ S. In particular, if there exists y, z ∈ P such that
f (x) ∈ [y, z] for all x ∈ S, then f ∈ [ fy, fz] and thus [lexψS , uexψS ] ⊆ [y, z].
Moreover, Corollary 4.6 implies that the restriction ϕS :B(ψS)⇀P of ψS to B(ψ)
is extremizable.

5. Completely integrally closed subgroups

Proposition 5.1. Let O, O′ be ordered sets, let P be a Darboux-complete ordered
set and consider the composition of ordered functions µ :OP(P̂)×OP(P̂)→OP(P̂)
defined by setting µ(ϕ, ϕ′)= ϕ ◦ϕ′ for all ϕ, ϕ′ ∈ OP(P̂). If ψ :O⇀ OP(P̂) and
ψ ′ :O′⇀ OP(P̂) are partial functions with images in Aut(P̂), then

µ ◦ (uexψ × uexψ ′)= uexµ◦(ψ×ψ ′) and µ ◦ (lexψ × lexψ ′)= lexµ◦(ψ×ψ ′) .

Proof. Since µ◦ (uexψ × uexψ ′) is an extension of µ◦ (ψ×ψ ′) to O×O′, we have
µ◦ (uexψ × uexψ ′)≤ uexµ◦(ψ×ψ ′). On the other hand, if η ∈ dom(ψ) is fixed, then

(ψ(η))−1
◦ uexµ◦(ψ×ψ ′)(η, η′)= ψ ′(η′)
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for every η′ ∈ dom(ψ ′). Using the assumption that ψ ′ is extremizable, it follows
that

(ψ(η))−1
◦ uexµ◦(ψ×ψ ′)(η, x ′)≤ uexψ ′(x ′)

and thus

uexµ◦(ψ×ψ ′)(η, x ′)≤ ψ(η) ◦ uexψ ′(x ′)

= (µ ◦ (uexψ × uexψ ′))(η, x ′)≤ uexµ◦(ψ×ψ ′)(η, x ′)

for all (η, x ′) ∈ dom(ψ)×O′. Setting q = (uexψ ′(x ′))(p) yields

evp ◦ uexµ◦(ψ×ψ ′)(η, x)= (ψ(η))(q)= uexevq◦ψ(η)

for every p ∈ P̂ and for every η ∈ dom(ψ). Lemma 3.12 then implies

evp ◦ uexµ◦(ψ×ψ ′)(x, x ′)≤ uexevq◦ψ(x)= evq ◦ uexψ(x)

= evp ◦µ ◦ (uexψ × uexψ ′)(x, x ′)

for all p ∈ P̂ and for all (x, x ′)∈O×O′. This proves the first half of the proposition,
the second equality is proved in a similar way. �

Remark 5.2. Given any ordered set O, the ordered set OP(O) of order-preserving
functions f :O→O is a monoid with respect to composition.

Definition 5.3. Let O be an ordered set. A subgroup (that is, a submonoid closed
under inverses) A of OP(O) is completely integrally closed if for every a, a′ ∈A,
an
≤ a′ for all n ∈ N implies a ≤ idO.

Remark 5.4. Completely integrally closed subgroups are a particular instance of the
more general notion of (abstract) completely integrally closed ordered groups, which
plays a key role in the classical study [Fuchs 1963] of embeddings in Dedekind-
complete ordered groups. The remainder of this section can be thought of as an
alternate construction of these embeddings formulated in the equivalent language
of Darboux-complete ordered sets. Our main application is the self-contained
construction of the field structure on the ordered set of real numbers described in
Section 6.

Proposition 5.5. Let P be a Darboux-complete ordered set. If A is a completely
integrally closed subgroup of OP(P̂), then BDar(idA) is a subgroup of OP(P̂).

Proof. Since lexidA ◦µ and uexidA ◦µ are extensions of µ◦(idA× idA) to (OP(P̂))2,
we obtain

lexµ◦(idA×idA) ≤ lexidA ◦µ≤ uexidA ◦µ≤ uexµ◦(idA×idA) . (3)

By Proposition 5.1, we conclude that these inequalities restrict to equalities on
(Dar(idA))

2. Hence Dar(idA) is closed under composition. We conclude that
Dar(idA), which contains the submonoid A of OP(P̂), is itself a submonoid of
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OP(P̂). Given ϕ1, ϕ2 ∈ BDar(idA), by definition there exist ai , a′i ∈ A such that
ai ≤ ϕi ≤ a′i for i = 1, 2. Therefore a1 ◦ a2 ≤ ϕ1 ◦ϕ2 ≤ a′1 ◦ a′2 and thus BDar(ψ)
is also a submonoid. In order to construct inverses, consider the partial function
ψ : (OP(P̂))op ⇀OP(P̂) with domain A and such that ψ(a)= a−1 for every a ∈A.
By Proposition 5.1,

lexψ(ϕ) ◦ϕ = lexµ◦(ψ×idA)(ϕ, ϕ)≤ uexµ◦(ψ×idA)(ϕ, ϕ)

for all ϕ ∈ Dar(idA). Since im(ψ)=A,

idA ◦µ(ψ × idA)= µ(ψ × idA)

and thus, using Proposition 3.10,

lexψ(ϕ) ◦ϕ ≤ lexidA(lexµ◦(ψ×idA)(ϕ, ϕ))≤ lexidA(uexµ◦(ψ×idA)(ϕ, ϕ)). (4)

Let ϕ∈BDar(idA), a∈A such that a≤ϕ, and a′∈A such that a′≤uexµ◦(ψ×idA)(ϕ,ϕ).
Then we have

a ◦ a′ ≤ a ◦ uexµ◦(ψ×idA)(ϕ, ϕ)≤ a ◦ uexµ◦(ψ×idA)(a, ϕ)= ϕ.

Iterating the same argument with a replaced by a ◦ (a′)n−1 yields a ◦ (a′)n ≤ ϕ for
all n ∈ N. Since A is completely integrally closed, this implies a′ ≤ idP̂ . Together
with a similar argument involving lexµ◦(ψ×idA), we conclude that

lexidA(uexµ◦(ψ×idA)(ϕ, ϕ))≤ idP ≤ uexidA(lexµ◦(ψ×idA)(ϕ, ϕ)).

Therefore, applying uexidA to both sides of (4) and using Proposition 3.10 yields

idP̂ ≤ uexidA(lexµ◦(ψ×idA)(ϕ, ϕ))≤ uexidA(lexψ(ϕ)) ◦ϕ ≤ uexidA(idP̂)= idP̂ ,

where the last equality follows from the fact that idP̂ is an element of A. Hence ϕ
has a left inverse. A similar argument shows that it has right inverse and concludes
the proof. �

Corollary 5.6. Let P be a Darboux-complete ordered set and let A ⊆ OP(P̂)
be a commutative completely integrally closed subgroup. Then BDar(idA) is a
commutative group.

Proof. Let µ′ :OP(P̂)×OP(P̂)→OP(P̂) denote composition in reverse order; i.e.,
µ′(ϕ, ϕ′) = ϕ′ ◦ ϕ for all ϕ, ϕ′ ∈ OP(P̂). Since the restrictions of lexidA ◦µ

′ and
uexidA ◦µ

′ to A×A coincide with µ ◦ (idA× idA), we obtain

lexµ◦(idA×idA) ≤ lexidA ◦µ
′
≤ uexidA ◦µ

′
≤ uexµ◦(idA×idA) .

Together with (3), this implies the commutativity of the monoid Dar(idA), which
contains BDar(idA). �
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6. The Darboux completion

Remark 6.1. Let O be an ordered set. For each x ∈ O, let δx : Oop ⇀ ∅̂ be the
partial function such that dom(δx)= {x} and δx(x)=+∞. Then lexδx (y)=+∞
if and only if y ≤ x . Let us define Y (x) = lexδx for every x ∈ O. If f ∈ O∨

then f (x) = +∞ if and only if Y (x) ≤ f . Moreover, f ≤ g in O∨ if and only if
Y (x)≤ f implies Y (x)≤ g. In particular, Y (x)≤ Y (y) if and only if x ≤ y. Hence
the assignment x 7→ Y (x) defines an order-preserving embedding Y : O→ O∨

called the Yoneda embedding of O.

Proposition 6.2. Let O be an ordered set, let ϕ :O∨⇀O∨ be the identity function
of the image of the Yoneda embedding of O and let Dar(O) denote the Darboux set
of ϕ. Then

(1) lexϕ = idO∨ ;

(2) if g ∈ OP(Dar(O)) restricts to the identity on Y (O), then g = idDar(O);

(3) uexϕ(O∨)⊆ Dar(O);
(4) the empty partial function of Dar(O) is extremizable.

Proof. Since idO∨ restricts to ϕ on Y (O), we know lexϕ( f )≤ f for every f ∈O∨. On
the other hand, Y (x)≤ f implies Y (x)= lexϕ(Y (x))≤ lexϕ( f ). Using Remark 6.1,
this proves (1). Item (2) follows immediately from (1) and the definition of Dar(O).
Proposition 3.10 and (1) yield

uexϕ = uexϕ ◦ lexϕ ≤ uexϕ ◦ uexϕ ≤ uexϕ◦ϕ = uexϕ,

which readily implies (3). Since +∞ ≤ uexϕ(+∞) ≤ +∞, we have +∞ ∈
Dar(O). If −∞ 6= Dar(O), then by Remark 6.1 there exists x ∈ O such that
Y (x)≤ uexϕ(−∞). By Lemma 4.3 this implies x ≤ y for all y ∈O. Therefore, the
empty partial function of Dar(O) is extremizable, uex∅(O)=+∞ and lex∅(O) is
the function that takes the value −∞ on the complement of a set of cardinality at
most 1. �

Definition 6.3. Using the notation of Proposition 6.2 and Remark 3.14, we define
the Darboux completion of an ordered set O to be the ordered set

Dar′(O)= Dar(O) \ {lex∅(Dar(O)), uex∅(Dar(O))}.

Corollary 6.4. The Darboux completion of an ordered set is Darboux complete.

Proof. Let O be an ordered set and let ι : Dar(O)→O∨ be the inclusion. For any
partial functionψ :Dar(O)⇀Dar(O), Example 4.7 ensures that ι◦ψ is extremizable.
By Proposition 6.2, uexϕ ◦ uexι◦ψ and uexϕ ◦ lexι◦ψ are order-preserving functions
in OP(Dar(O)) that restrict to ψ on dom(ψ). On the other hand, lexι◦ψ ≤ ι ◦ g ≤
uexι◦ψ for any extension g of ψ to Dar(O). Since uexϕ ◦ι ◦ g = g, this implies
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uexϕ ◦ lexψ ′ ≤ g ≤ uexϕ ◦ uexψ ′ and thus ψ is extremizable. This concludes the
proof, since by construction Dar(O) is canonically isomorphic to D̂ar′(O). �

Remark 6.5. From now on we use the Yoneda embedding to canonically identify
O with a subset of Dar(O)⊆O∨. In particular, this provides a canonical embedding
of OP(O) into the set of partial functions Dar(O) ⇀ Dar(O).

Example 6.6. We define the set of real numbers to be the Darboux completion R of
the ordered set Q of rational numbers. Moreover, Dar(Q) is canonically identified
with the set of extended real numbers R̂= R∪ {±∞}.

Example 6.7. Let Q>0 ⊆Q be the ordered set of positive rational numbers and let
R>0=Dar′(Q>0). Extending each function in Dar′(Q>0) by+∞ to Q\Q>0 yields
a canonical embedding of R>0 into R whose image consists of real numbers that are
greater than Y (0). Moreover, the composition of this embedding with the canonical
embedding of Q>0 into Dar′(Q>0) coincides with the restriction of the canonical
embedding of Q into R. Keeping in mind the above canonical identifications, it
makes sense to write equalities such as Q>0 =Q∩R>0.

Remark 6.8. Let O be an ordered set, let P be a complete ordered set and let
ψ :Dar(O)⇀ P̂ be an embedding with domain Y (O) and inverse ψ ′ : P̂⇀Dar(O).
Since uexψ ′ ◦ uexψ restricts to the identity on Y (O), it is equal to idDar(O) by
Proposition 6.2. Therefore, uexψ : Dar(O)→ P̂ is an embedding. In particular,
it can attain the values ±∞ at most once, which implies that uexψ restricts to an
embedding f :Dar′(O)→P. By Remark 4.5 this implies that Dar′(O) also satisfies
the universal property of the Dedekind–MacNeille completion of O and is therefore
canonically isomorphic to it. In particular, this shows that our definition of R is
canonically isomorphic to the ordered set R′ of Dedekind cuts of Q. In fact, in
this case it is easy to see directly that uexψ ′ : R̂′→ R̂ is injective since it maps the
cut associated to a rational number x to Y (x) and (uexψ ′(C))−1(+∞)= C for any
irrational cut C .

Proposition 6.9. There exists a canonical embedding α : Aut(O)→ Aut(Dar(O)).
Moreover, α is a group homomorphism.

Proof. Let ϕ ∈ Aut(O). Using the convention of Remark 6.5, we may think of ϕ as
a partial function Dar(O) ⇀ Dar(O). Then by Remark 6.8

lexϕ−1 ◦ uexϕ = idDar(O) = uexϕ ◦ lexϕ−1 .

This implies that uexϕ is invertible and uexϕ ≤ lexϕ ◦ lexϕ−1 ◦ uexϕ ≤ lexϕ . There-
fore, exϕ ∈Aut(Dar(O)). Let α(ϕ)=exϕ for all ϕ∈Aut(O). Combining Remark 6.8
and Proposition 3.10, we conclude that α is an injective group homomorphism and
the proposition is proved. �



DARBOUX CALCULUS 375

Example 6.10. Addition in Q defines an embedding λ : Q→ Aut(Q) such that
(λ(r))(s) = r + s for all r, s ∈ Q. Composing with α we obtain an embedding
β :Q→ Aut(R̂). Since every (order-preserving) automorphism of R̂ necessarily
fixes ±∞, we have a canonical identification of Aut(R̂) with Aut(R). In particular,
(β(x))(±∞)=±∞ for all x ∈Q.

Proposition 6.11. R is canonically isomorphic to BDar(idβ(Q)).

Proof. Considering the embedding β constructed in Example 6.10 as a partial
function R⇀ OP(R̂) (which is extremizable by Proposition 4.4), we obtain order-
preserving functions lexβ, uexβ : R → OP(R̂). The order-preserving function
ev0 : BDar(idβ(Q))→R is surjective by Remark 6.8 since ev0 ◦ lexβ and ev0 ◦uexβ
both restrict to the identity on Q. Since lexβ ◦ev0 and uexβ ◦ev0 both restrict to the
identity on β(Q), they both equal the identity on BDar(idβ(Q)). Therefore ev0 is
invertible with inverse exβ . �

Remark 6.12. Combining Proposition 6.11 with Corollary 5.6, we conclude that
R has a canonical structure of commutative group. Alternatively, this structure can
be understood as follows. Let + be the addition operation on Q, thought of as a
partial function R×R⇀ R. Since (exβ(r))(s)= r + s for all r, s ∈Q, we obtain

lex+(x, y)≤ (exβ(x))(y)≤ uex+(x, y) (5)

for all x, y ∈ R. On the other hand, for every r ∈ Q both exβ(r)−1
◦ uex+(r,−)

and exβ(r)−1
◦ lex+(r,−) restrict to the identity of Q. By Remark 6.8, this implies

lex+(r,−) = exβ(r) = uex+(r,−) for all r ∈Q and thus lexβ(x) ≤ lex+(x,−) ≤
uex+(x,−) ≤ uexβ(x) for all x ∈ R. Hence the inequalities of (5) are actually
equalities for all x, y ∈ R.

Remark 6.13. A similar argument shows that the multiplication on Q>0 thought
of as a partial function • : R>0×R>0 ⇀ R>0 defines a partial function γ : R>0 ⇀

Aut(R>0) such that dom(γ )=Q>0 and (exγ (x))(y)= ex•(x, y) for all x, y ∈R>0.

Theorem 6.14. (R>0, ex+, ex•) is a semifield.

Proof. Let ψ : (R>0)
3 ⇀ R>0 be the partial function with domain (Q>0)

3 and such
that ψ(r, s, t) = r(s + t) for all r, s, t ∈ Q>0. Since ex•(r, ex+(s, t)) = ψ(r, s, t)
for all r, s, t ∈Q>0,

lexψ(x, y, z)≤ ex•(x, ex+(y, z))≤ uexψ(x, y, z) (6)

for all x, y, z∈R>0. On the other hand, since γ (s+t) agrees with both lexψ(−, s, t)
and uexψ(−, s, t) on Q>0 for all s, t ∈ Q>0, they also agree on R>0. Using that
(γ (s+ t))(x)= ex•(x, s+ t)= (exγ (x))(s+ t), we obtain

lex+(y, z)≤ (exγ (x))−1 lexψ(x, y, z)≤ (exγ (x))−1 uexψ(x, y, z)≤ uex+(y, z).
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Since ex•(x, ex+(y, z))= (exγ (x))(ex+(y, z)) for all x, y, z ∈ R>0, we conclude
that the inequalities of (6) are in fact equalities. It follows from the distributivity
of • over + on Q>0 that ex+(ex•(r, t), ex•(r, t)) = ψ(r, s, t) for all r, s, t ∈ Q>0.
Hence, ex• distributes over ex+ on R>0 and the theorem is proved. �

Remark 6.15. A standard argument shows that ex• can be canonically extended to
an operation · on R (which is not order-preserving) in such a way that (R, ex+, · )
is a field. With a slight abuse of notation, from now on we write + for ex+. Since
(β(x))(±∞)=±∞ for all x ∈Q, we set x + (±∞)=±∞ for all x ∈ R.

Remark 6.16. For each ordered set O, the set OP(O,R) inherits a canonical struc-
ture of R-algebra with operations defined pointwise on O. In particular, f1 ≤ f2

implies f1+ f3 ≤ f2+ f3 for any f1, f2, f3 ∈OP(O,R) and f1 f3 ≤ f2 f3 whenever
0≥ f3.

7. Limits and integrals

Definition 7.1. A filter basis on an ordered set O is a collection F of nonempty
subsets of O that is closed under finite intersections. To each filter basis F of O we
associate the partial function ψF : OP(O,R) ⇀ R̂ such that

dom(ψF )=
⋃
S∈F

dom(ψS),

where ψS is defined as in Example 4.8 and ψF ( f )=ψS( f ) for each f ∈ dom(ψS)

and for each S ∈ F.

Definition 7.2. Let O be a discrete set and let F be a filter basis on O. An order-
preserving function f :O→ R is F-convergent if there exists limF ( f ) ∈ R̂ such
that for every ε > 0 there exists S ∈ F such that f (x)∈ [limF ( f )−ε, limF ( f )+ε]
for all x ∈ S.

Theorem 7.3. Let O be a discrete set and let F be a filter basis on O. An order-
preserving function f : O → R is F-convergent if and only if f ∈ Dar(ψF ).
Moreover, exψF ( f )= limF ( f ) for all f ∈ Dar(ψF ).

Proof. Assume that f ∈ Dar(ψF ). Then by Remark 2.11 for every ε > 0 there
exist S ′,S ′′ ∈ F such that [exψF ( f ), exψS′

( f )] ⊆ [exψF ( f ), exψF ( f ) + ε] and
[exψS′′

( f ), exψF ( f )] ⊆ [exψF ( f )− ε, exψF ( f )]. Therefore, setting S = S ′∩S ′′ we
obtain

exψF ( f )− ε ≤ lexψS ( f )≤ f (x)≤ uexψS ( f )≤ exψF ( f )+ ε

for every x ∈ S. Hence f is F-convergent and limF ( f )= exψF ( f ). Conversely, if
f is F-convergent, for every ε > 0 there exists S ∈ F such that

lim
F
( f )− ε ≤ f (x)≤ lim

F
( f )+ ε
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for all x ∈ S. Using Remark 4.9, this implies

[lexψF ( f ), uexψF ( f )] ⊆ [lexψS ( f ), uexψS ( f )] ⊆ [lim
F
( f )− ε, lim

F
( f )+ ε]

for every ε > 0. Hence, f ∈ Dar(ψF ) and limF ( f )= exψF ( f ). �

Remark 7.4. In terms of the philosophy outlined in Section 1, the functions in
dom(ψF ), i.e., the functions that are constant on some element of F, are “obviously
F-convergent” and ψF is their “obvious limit”. Feeding the machinery of Darboux
calculus with this information results in a construction of general F-convergent
functions that is alternative to the (ε, δ)-definition given in Definition 7.2.

Example 7.5. Let N be the set of natural numbers with its usual order. Let O= |N|
and let F = {N\[1, n]}n∈N. Then OP(O,R) is the set of all sequences, dom(ψF ) is
the set of sequences that are eventually constant and ψF ( f ) is the function that to
such a sequence assigns its obvious limit, i.e., the only value that f attains infinitely
many times. Moreover, Dar(ψF ) is precisely the set of all convergent sequences
(including those converging to ±∞) and exψF is their limit.

Example 7.6. Let O = |R|, let x0 ∈ R and let F be the collection of all subsets
of the form [x0 − δ, x0 + δ] for some δ > 0. Then OP(O,R) is the set of all
real-valued functions of one real variable, dom(ψF ) is the subset of functions that
are constant in a neighborhood of x0 and ψF ( f ) = f (x0) for all f ∈ dom(ψF ).
Moreover, Dar(ψF ) is precisely the set of all functions that are continuous at x0

and exψF ( f )= f (x0) for all f ∈ dom(ψF ).

Example 7.7. In the notation of Example 7.6, we could also consider F to be the
collection of all subsets of the form [x0− δ, x0+ δ] \ {x0} for some δ > 0. Then
f ∈ Dar(ψF ) if and only if f has a limit at x0, in which case exψF ( f ) equals the
limit. We leave the obvious variations leading to left and right limits to the reader.

Definition 7.8. We denote by Int(O) the ordered set of all intervals with endpoints
in O with order given by [a, b] ≤ [c, d] if and only if c ≤ a ≤ b ≤ d. We write
int(O) for the collection of nonempty subsets of O of the form [x, z] \ {x, z}, for
some [x, z] ∈ Int(O) (also ordered by inclusion).

Example 7.9. For any J ∈ Int(R) let m : int(J )→ R>0 be the order-preserving
function defined by m([x, z]\{x, z})= z−x whenever x ≤ z and 0 otherwise. Given
J ∈ Int(R), let Par(J ) be the collection of partitions of J, i.e., finite collections
P ⊆ int(J ) of mutually disjoint subsets such that J \

⋃
I∈P I is finite. For each

I ∈ int(J ), letψI :OP(|J |,R)⇀ R̂ be the partial function associated to the nonempty
subset I as in Example 4.8. In particular, the set of all bounded R-valued functions
on J coincides with

O = B(ψJ )=
⋂
I∈P

B(ψI )
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for any P ∈Par(J ). Let ϕI :B(ψI )⇀R be the extremizable partial function defined
as in Remark 4.9 for each I ∈ int(J ) and let UP , LP :O→R be the order-preserving
functions defined by

UP =
∑
I∈P

m(I ) uexϕI and LP =
∑
I∈P

m(I ) lexϕI .

By Remark 4.9 it is clear that for each f ∈ O, UP( f ) coincides with the usual
upper Darboux sums of f and LP( f ) coincides with the usual lower Darboux sums
of f ; see, e.g., [Rudin 1953]. On the other hand, for each P ∈ Par(J ) consider the
partial function ϕP :O⇀ R defined by

ϕP( f )=
∑
I∈P

m(I )ϕI ( f ) (7)

for each element f of
dom(ϕP)=

⋂
I∈P

dom(ϕI ).

Since ϕP is clearly encompassing, it is also extremizable by Corollary 4.6. Moreover,

lexϕP ≤ LP ≤UP ≤ uexϕP , (8)

as each term in the above chain of inequalities restricts to ϕP on dom(ϕP). Since
each function in O attains only finitely many values, dom(ϕP) ∼= RN for some
integer N. In particular, Corollary 4.6 ensures that if ρP :O⇀ dom(ϕP) denotes
the identity function on dom(ϕP) then ρP is extremizable. Therefore

uexϕP ≤ ϕP ◦ uexρP =

∑
I∈P

m(I )(ϕI ◦ uexρP )≤
∑
I∈P

m(I ) uexϕI ◦ρP =UP . (9)

Combined with an analogous estimate for lexϕP and (8), (9) shows that uexϕP =UP

and lexϕP = LP . Since m(I ) = m(I1) + m(I2) whenever I \ (I1 ∪ I2) is finite
and I ⊆ I ′ implies ϕI ( f ) = ϕI ′( f ) for each f ∈ dom(ϕ′I ), we have for each
f ∈ dom(ϕP)∩ dom(ϕP ′)

ϕP( f )=
∑
I∈P

m(I )ϕI ( f )=
∑
I∈P

∑
I ′∈P ′

m(I∩I ′)ϕI∩I ′( f )=
∑
I ′∈P ′

m(I ′)ϕI ′( f )=ϕP ′( f ).

Let ϕ be the common extension of the compatible set {ϕP}P∈Par(J ). In particular,
dom(ϕ) is the set of step functions on J, i.e., the set of all functions on |J | that
are constant on each interval of some partition of J. Combining Remark 3.6 with
Corollary 4.6 we conclude that ϕ is encompassing and thus extremizable. By
Remark 3.7, an order-preserving function g : O→ R restricts to ϕ on dom(ϕ) if
and only if

g ∈
⋂

P∈Par(J )

[lexϕP , uexϕP ] =

⋂
P∈Par(J )

[LP ,UP ].
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Hence, lexϕ and uexϕ coincide with the lower and upper integrals of f on J,
respectively. In particular, Dar(ϕ) coincides with the set of functions on J that are
integrable in the sense of Riemann and exϕ is the Riemann integral. This is in fact
the motivating example for the philosophy of Section 1: to define the Riemann
integral it is sufficient to feed the “obvious” definition for step functions, given
by (7), into the machinery of Darboux calculus to automatically obtain the correct
general definition.

Theorem 7.10 (linearity). Let ψ : OP(O,R) ⇀ R be a partial function such that

(1) ψ is encompassing;

(2) dom(ψ) is an R-linear subspace of OP(O,R);

(3) ψ is an R-linear transformation.

Then for every f1, f2 ∈ OP(O,R) and for every nonnegative a1, a2 ∈ R

uexψ(a1 f1+ a2 f2)≤ a1 uexψ( f1)+ a2 uexψ( f2) (10)

and similarly
a1 lexψ( f1)+ a2 lexψ( f2)≤ lexψ(a1 f1+ a2 f2). (11)

Moreover
− lexψ( f )= uexψ(− f ) (12)

for every f ∈OP(O,R). In particular, Dar(ψ) is an R-linear subspace of OP(O,R)

and exψ is R-linear.

Proof. Since ψ is encompassing, it is extremizable. By the additivity of ψ , the
assignment f1 7→ uexψ( f1+ η2)−ψ(η2) coincides with ψ on dom(ψ) for each
fixed η2 ∈ dom(ψ). Therefore

uexψ( f1+ η2)≤ uexψ( f1)+ψ(η2) (13)

for every f1 ∈ OP(O,R) and for every η2 ∈ dom(ψ). In particular

uexψ( f1)+ψ(η2)= uexψ(( f1+ η2)+ (−η2))+ψ(η2)≤ uexψ( f1+ η2)

and thus the inequality in (13) is actually an equality. Therefore, for each f1 ∈

OP(O,R) the assignment f2 7→ uexψ( f1 + f2)− uexψ( f1) coincides with ψ on
dom(ψ). This proves (10) when a1 = a2 = 1. Since ψ is compatible with scalar
multiplication, a is a positive real number and the assignment f 7→ a−1 uexψ(a f )
coincides with ψ on dom(ψ). Therefore, uexψ(a f ) ≤ a uexψ( f ), which in turn
implies

a uexψ( f )= a uexψ(a−1(a f ))≤ uexψ(a f ).

As a result, a uexψ( f )= uexψ(a f ) for every positive real number a and for every
f ∈ OP(O,R). This proves (10) and (11) is proved similarly. Since ψ is odd,
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the assignments f 7→ − lexψ(− f ) and f 7→ − uexψ(− f ) both restrict to ψ on
dom(ψ) and thus

lexψ( f )≤− uexψ(− f )≤− lexψ(− f )≤ uexψ( f ) (14)

for every f ∈OP(O,R). The first inequality in (14) implies uexψ(− f )≤− lexψ( f ),
while the last inequality of (14) implies − lexψ( f )≤ uexψ(− f ) and thus (12). The
last statement is a straightforward consequence of (10)–(12). �

Example 7.11. Specializing Theorem 7.10 to Examples 7.5–7.9 we obtain the
well-known linearity theorems for limits of sequences, continuous functions, limits
of functions of real variable and integrals.
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A countable space with
an uncountable fundamental group

Jeremy Brazas and Luis Matos

(Communicated by Józef H. Przytycki)

Traditional examples of spaces that have an uncountable fundamental group
(such as the Hawaiian earring space) are path-connected compact metric spaces
with uncountably many points. We construct a T0 compact, path-connected,
locally path-connected topological space H with countably many points but with
an uncountable fundamental group. The construction of H, which we call the
“coarse Hawaiian earring” is based on the construction of the usual Hawaiian
earring space H=

⋃
n≥1 Cn where each circle Cn is replaced with a copy of the

four-point “finite circle”.

1. Introduction

Since fundamental groups are defined in terms of maps from the unit interval [0, 1],
students are often surprised to learn that spaces with finitely many points can be
path connected and have nontrivial fundamental groups. In fact, it has been known
since the 1960s that the homotopy theory of finite spaces is quite rich [McCord
1966; Stong 1966]. The algebraic topology of finite topological spaces has gained
significant interest since Peter May’s Research Experience for Undergraduates
(REU) Summer Program at the University of Chicago in 2003; see [May 2003a;
2003b; 2003c]. For more recent theory and applications of the algebraic topology
of finite spaces, we refer to [Barmak 2011; Barmak and Minian 2008; Cianci and
Ottina 2016].

While it is reasonable to expect that all finite connected spaces have finitely
generated fundamental groups, it is rather remarkable that for every finitely generated
group G one can construct a finite space X so that π1(X, x0)∼= G. In fact, every
finite simplicial complex is weakly homotopy equivalent to a finite space [McCord
1966]. In the same spirit, we consider fundamental groups of spaces with coarse
topologies.
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It is well known that there are connected, locally path-connected compact metric
space whose fundamental groups are uncountable [Cannon and Conner 2000]. Since
finite spaces can only have finitely generated fundamental groups, we must extend
our view to spaces with countably many points. We prove the following theorem.

Theorem 1. There exists a connected, locally path-connected, compact, T0 topo-
logical space H with countably many points such that π1(H, w0) is uncountable.

Since countable simplicial complexes have countable fundamental groups,
Theorem 1 shows that countable spaces need not be weakly homotopy equivalent
to countable simplicial complexes. Thus the relationship between weak homotopy
types of finite spaces and finite simplicial complexes cannot be fully generalized to
countable spaces.

To construct the space H in Theorem 1, we must consider spaces which are not
locally finite, that is, spaces which have a point such that every neighborhood of
that point contains infinitely many other points. Additionally, since our example
must be path connected, the following lemma demands that such a space cannot
have the T1 separation axiom.

Lemma 2. Every countable T1 space is totally path disconnected.

Proof. If X is countable and T1 and α : [0, 1] → X is a nonconstant path, then
{α−1(x) | x ∈ X} is a nontrivial, countable partition of [0, 1] into closed sets.
However, it is a classical result in general topology that such a partition of [0, 1] is
impossible [Sierpinski 1918]. �

Ultimately, we construct the space H by modeling the construction of the tra-
ditional Hawaiian earring space H, which is the prototypical space that fails to
be semilocally simply connected and which does not admit a traditional universal
covering space. The fundamental group of the Hawaiian earring is an uncountable
group which plays a key role in the homotopy classification of one-dimensional
Peano continua given in [Eda 2010]. Due to the similarities between H and H, we
call H the coarse Hawaiian earring.

2. Fundamental groups

Let X be a topological space with basepoint x0 ∈ X . A path in X is a continuous
function α : [0, 1]→ X . We say X is path connected if every pair of points x, y ∈ X
can be connected by a path p : [0, 1]→ X with p(0)= x and p(1)= y. All spaces
in this paper will be path connected.

We say a path p is a loop based at x0 if α(0)= α(1). Let �(X, x0) be the set of
continuous functions p : [0, 1]→ X such that p(0)= p(1)= x0. Let α− : [0, 1]→ X
be the reverse path of α defined as α−(t) = α(1− t). If α and β are paths in X



A COUNTABLE SPACE WITH AN UNCOUNTABLE FUNDAMENTAL GROUP 383

satisfying α(1)= β(0), let α ·β be the concatenation defined piecewise as

α ·β(t)=
{
α(2t), 0≤ t ≤ 1

2 ,

β(2t − 1), 1
2 ≤ t ≤ 1.

More generally, if α1, . . . , αn is a sequence of paths such that αi (1)= αi+1(0) for
i =1, . . . , n−1, let

∏n
i=1 αi be the path defined as αi on the interval [(i−1)/n, i/n].

Two loops α and β based at x0 are said to be homotopic if there is a map
H : [0, 1] × [0, 1] → X such that H(s, 0) = α(s), H(s, 1) = β(s) and H(0, t) =
H(1, t)= x0 for all s, t ∈[0, 1]. We write α'β if α and β are homotopic. Homotopy
' is an equivalence relation on the set of loops �(X, x0). The equivalence class
[α] of a loop α is called the homotopy class of α. The set of homotopy classes
π1(X, x0)=�(X, x0)/' is called the fundamental group of X at x0. It is a group
when it has multiplication [α] ∗ [β] = [α · β] and [α]−1

= [α−] is the inverse
of [α] [Munkres 2000]. A space X is simply connected if X is path connected
and π1(X, x0) is isomorphic to the trivial group. Finally, a map f : X → Y such
that f (x0)= y0 induces a well-defined homomorphism f∗ : π1(X, x0)→ π1(Y, y0)

given by f∗([α])= [ f ◦α].
Fundamental groups are often studied using maps called covering maps. For this

theory and other aspects of algebraic topology, we refer to [Munkres 2000; Spanier
1966], taking our conventions primarily from the former.

Definition 3. Let p : X̃ → X be a map. An open set U ⊆ X is evenly covered
by p if p−1(U ) ⊆ X̃ is the disjoint union

⊔
λ∈3 Vλ, where Vλ is open in X̃ and

p|Vλ : Vλ→ U is a homeomorphism for every λ ∈ 3. A covering map is a map
p : X̃→ X such that every point x ∈ X has an open neighborhood which is evenly
covered by p. The space X̃ is called a covering space of X . We call p a universal
covering map if X̃ is simply connected.

Remark 4. An alternative definition of universal covering map appears in [Spanier
1966] where a covering map p : X̃→ X is defined to be universal if it is an initial
object in the category of coverings over X , that is, if X̃ is a covering space of every
covering space of X . For general spaces (even locally path-connected compact
metric spaces) the two definitions differ. Example 18 in Chapter 2 of [Spanier
1966] describes the twin cone CH∨CH over the Hawaiian earring H (sometimes
called the Griffiths twin cone), which is a non-simply connected space whose only
covering space is itself. Thus the identity map of the twin cone is a universal
covering in the sense of [Spanier 1966] but not in the sense of [Munkres 2000]. On
the other hand, one can use the covering space theory developed in [Munkres 2000]
to confirm that the two definitions of “universal covering map” agree when X is
locally path connected and semilocally simply connected. Since we only consider
covering maps over such spaces in this paper, we will not need to worry about the
difference in the definitions.
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An important property of covering maps is that for every path α : [0, 1] → X
such that α(0)= x0 and point y ∈ p−1(x0) there is a unique path α̃y : [0, 1] → X̃
(called a lift of α) such that p ◦ α̃y = α and α̃y(0)= y.

Lemma 5 [Munkres 2000, Theorem 54.6]. A covering map p : X̃ → X such
that p(y) = x0 induces an injective homomorphism p∗ : π1(X̃ , y)→ π1(X, x0).
If α : [0, 1] → X is a loop based at x0, then [α] ∈ p∗(π1(X̃ , y)) if and only if
α̃y(1)= y.

A covering map p : X̃→ X induces a lifting correspondence map φ :π1(X, x0)→

p−1(x0) from the fundamental group of X to the fiber over x0 defined by the formula
φ([α])= α̃y(1).

Lemma 6 [Munkres 2000, Theorem 54.4]. If p : X̃→ X is a covering map, then
the lifting correspondence φ : π1(X, x0)→ p−1(x0) is surjective. If p is a universal
covering map, then p is bijective.

Example 7. Let S1
= {(x, y) | x2

+ y2
= 1} be the unit circle and b0 = (1, 0).

The exponential map ε : R→ S1, ε(t) = (cos(2π t), sin(2π t)), defined on the
real line is a covering map such that ε−1(b0) = Z is the set of integers. The
lifting correspondence for this covering map φ : π1(S1, b0) → ε−1(b0) = Z is
an isomorphism when Z is the additive group of integers. See [Munkres 2000,
Theorem 54.5] for a proof.

3. Some basic finite spaces

A finite space is a topological space X = {x1, x2, . . . , xn} with finitely many points.

Example 8. The coarse interval is the three-point space I =
{
0, 1

2 , 1
}

with topology
generated by the basic sets the sets {0}, {1}, and I (See Figure 1). In other words,
the topology of I is TI = {I, {0}, {1}, {0, 1},∅}.

The coarse interval clearly satisfies the T0 separation axiom. It is also path
connected since we can define a continuous surjection p : [0, 1] → I by

p(t)=


0, t ∈

[
0, 1

2

)
,

1
2 t = 1

2 ,

1, t ∈
( 1

2 , 1
]
,

�� ����0 1
2

1

Figure 1. The coarse interval I. A basic open set is illustrated here
as a bounded region whose interior contains the points of the set.
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b
1

b
2

b
0

b
3

Figure 2. The coarse circle S and it’s basic open sets.

and the continuous image of a path-connected space is path connected. A space
X is contractible if the identity map id : X → X is homotopic to a constant map
X→ X . Every contractible space is simply connected.

Lemma 9. The coarse interval I is contractible.

Proof. To show I is contractible we define a continuous map G : I × [0, 1] → I
such that G(x, 0)= x for x ∈ I and G(x, 1)= 1

2 . The set C =
(
{0, 1}×

[ 1
2 , 1

])
∪({ 1

2

}
×[0, 1]

)
is closed in I ×[0, 1]. Define G by

G(s, t)=


0, (s, t) ∈ {0}×

[
0, 1

2

)
,

1
2 , (s, t) ∈ C,
1, (s, t) ∈ {1}×

[
0, 1

2

)
.

This function is well-defined and continuous since {0} and {1} are open in I . �

Corollary 10. I is simply connected.

For n = 0, 1, 2, 3, let bn =
(
cos
( 1

2 nπ
)
, sin

( 1
2 nπ

))
∈ S1 be the points of the unit

circle on the coordinate axes; i.e., b0 = (1, 0), b1 = (0, 1), b2 = (−1, 0), and
b3 = (0,−1).

Example 11. The coarse circle is the four-point set S= {bi | i = 0, 1, 2, 3} with the
topology generated by the basic sets {b0, b1, b2}, {b2, b3, b0}, {b0}, and {b2} (see
Figure 2). The entire topology of S may be written as

TS = {S, {b0, b1, b2}, {b2, b3, b0}, {b0, b2}, {b0}, {b2},∅}.

Observe that the open sets U1 = {b0, b1, b2} and U2 = {b2, b3, b0} are homeo-
morphic to I when they are given the subspace topology. Since S is the union of
two path-connected subsets with nonempty intersection, S is also path connected.

Remark 12. The spaces I and S have appeared many times in the literature. The
space S is sometimes called the “finite circle”. We use the term “coarse circle”
since we are considering it within the broader context of infinite spaces with non-T1
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topologies. The space S is the smallest finite space having the same weak homotopy
type as the usual circle S1. In fact, this is a special case of a more general result on
minimal (2n+2)-point models of n-spheres (see [Barmak 2011, Chapter 3]): there
exists a space with 2n+ 2 points weakly homotopy equivalent to Sn and moreover
any finite space that is weakly homotopy equivalent to the n-sphere Sn must have
at least 2n+ 2 points.

4. The coarse line as a covering space

As indicated in Remark 12, it follows from the much more sophisticated theory in
[Stong 1966] that S has the weak homotopy type of S1. To keep the current paper
self-contained, we devote this section to a direct proof of the fact that π1(S, b0) is
isomorphic to the infinite cyclic group Z, i.e., the additive group of integers, by
constructing a map g : S1

→ S that induces an isomorphism on fundamental groups.

Example 13. The coarse line is the set L=
{ 1

4 n∈R
∣∣n∈Z

}
with the topology gener-

ated by the basis consisting of the sets An=
{ 1

2 n
}

and Bn=
{ 1

2 n, 1
4(2n+1), 1

2(n+1)
}

for each n ∈ Z (see Figure 3). Even though L is not a finite space, it is a countable
space with a T0 but non-T1 topology.

Lemma 14. L is simply connected.

Proof. The set Ln = L ∩
[
−

1
2 n, 1

2 n
]

is open in L since it is the union of the
basic sets Bk =

{1
2 k, 1

4(2k+ 1), 1
2(k+ 1)

}
, k =−n, . . . , n− 1, with the subspace

topology of L .
It follows from the classical van Kampen theorem [Munkres 2000, Theorem 70.2]

that if X =U∪V , where U, V are open in X and U, V,U∩V are simply connected,
then X is simply connected. We will apply this fact inductively to prove that Ln is
simply connected for all n ≥ 1.

Since Bk ∼= I for each k, we know Bk is simply connected for each k. Observe
that L1 = B−1 ∪ B0, where B−1 ∩ B0 = {0} is simply connected since it only
has one point. Thus L1 is simply connected by the van Kampen theorem. Now
suppose Ln is simply connected. Since Ln , Bn , and Ln ∩ Bn =

{ 1
2 n
}

are all simply
connected, Ln ∪ Bn is simply connected by the van Kampen theorem. Similarly,
since Ln ∪ Bn , B−n−1, and (Ln ∪ Bn)∩ B−k−1 =

{
−

1
2 n
}

are all simply connected,
Ln+1 = B−n−1 ∪ Ln ∪ Bn is simply connected by the van Kampen theorem. Thus
Ln is simply connected for all n ≥ 1.

−2 −
1
2

0 1
2

1

Figure 3. The basic open sets generating the topology of the coarse
line L .
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Since L is the union of the path-connected sets Ln , all of which contain 0, it
follows that L is path connected. Now suppose α : [0, 1] → L is a path such
that α(0) = α(1). Since [0, 1] is compact, the image α([0, 1]) is compact. But
{Ln | n ≥ 1} is an open cover of L such that Ln ⊆ Ln+1. Since α must have image
in a finite subcover of {Ln | n ≥ 1}, we must have α([0, 1])⊆ Ln for some n. But
Ln is simply connected, showing that α is homotopic to the constant loop at 0. This
proves π1(L , 0) is the trivial group; i.e., L is simply connected. �

Just like the usual covering map ε : R→ S1 used to compute π1(S1, b0), we
define a similar covering map in the coarse situation.

Example 15. Consider the function p : L→ S from the coarse line to the coarse
circle which is the restriction of the covering map ε :R→ S1. More directly, define
p
( 1

4 n
)
= bn mod 4. We check that the preimage of each basic open set in S can be

written as a union of basic open sets in L . Since

• p−1({b0})= Z=
⋃

k∈Z A2k ,

• p−1({b2})=
1
2 +Z=

⋃
k∈Z A2k+1,

• p−1(U1)=
⋃

k∈Z B2k ,

• p−1(U2)=
⋃

k∈Z B2k+1,

we can conclude that p is continuous.

Lemma 16. The function p : L→ S is a covering map.

Proof. We claim that the sets U1,U2 are evenly covered by p. Notice that p−1(U1)=⋃
k∈Z B2k is a disjoint union where each B2k is open. Recall that both B2k and U1

are homeomorphic to I ; specifically p|B2k : B2k→U1 is a homeomorphism. Thus
U1 is evenly covered. Similarly, p−1(U2) is the disjoint union

⋃
k∈Z B2k+1 where

each B2k+1 is open and is mapped homeomorphically on to U2 by p. �

Since p : L→ S is a covering map and L is simply connected, p is a universal
covering map. The proof of the following theorem is similar to the proof that
the lifting correspondence for ε is a group isomorphism. We remark that even
though L is not a topological group, the shift map σn : L→ L , σ(t)= t + n, is a
homeomorphism satisfying p ◦ σn = p for each n ∈ Z.

Theorem 17. The lifting correspondence φ : π1(S, b0)→ p−1(b0)= Z is a group
isomorphism where Z has the usual additive group structure.

Proof. Since p : L→ S is a covering map and L is simply connected, φ is bijective
by Lemma 6. Suppose α, β : [0, 1] → S are loops based at b0. Respectively, let
α̃0 : [0, 1]→ L and β̃0 : [0, 1]→ L be the unique lifts of α and β starting at 0. Since
α̃0(1) ∈ p−1(b0)= Z, we have φ([α])= α̃0(1)= n for some integer n. Similarly,
φ([β])= β̃0(1)= m for some integer m.
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Consider the concatenated path γ = α̃0 · (σn ◦ β̃0) : [0, 1] → L from 0 to m+ n.
Since p ◦ σn = p, we have

p ◦ γ = p ◦ (α̃0 · (σn ◦ β̃0))

= (p ◦ α̃0) · (p ◦ σn ◦ β̃0)

= (p ◦ α̃0) · (p ◦ β̃0)= α ·β,

which means that γ is a lift of α ·β starting at 0. Since lifts are unique, this means
γ = α̃·β0. It follows that φ([α][β])= φ([α ·β])= α̃·β0(1)= γ (1)= m+ n. This
proves φ is a group homomorphism. �

Both π1(S1, b0) and π1(S, b0) are isomorphic to the infinite cyclic group Z. In
fact, we can define maps which induce the isomorphism between the two funda-
mental groups.

Let f : R → L be the map defined so that f
(( 1

2 n − 1
4 ,

1
2 n + 1

4

))
=

1
2 n and

f
( 1

2 n+ 1
4

)
=

1
2 n+ 1

4 for each n ∈ Z. Notice that p ◦ f is constant on each fiber
ε−1(x), x ∈ S1. Therefore, there is an induced map g : S1

→ S such that g◦ε= p◦ f .
As mentioned at the end of the previous section, the following proposition is a

special case of more general results on weak homotopy types of finite spaces in
[Stong 1966].

Proposition 18. The induced homomorphism g∗ : π1(S1, b0) → π1(S, b0) is a
group isomorphism.

Proof. Recall that ε−1(b0) = Z and p−1(b0) = Z and notice that the restriction
to the fibers f |Z : Z→ Z is the identity map. Let i : [0, 1] → R be the inclusion
and note f ◦ i : [0, 1] → L is a path from 0 to 1. The group π1(S1, b0) is freely
generated by the homotopy class of α = ε ◦ i and π1(S, b0) is freely generated by
the homotopy class of p ◦ f ◦ i . Since g∗([ε ◦ i]) = [g ◦ ε ◦ i] = [p ◦ f ◦ i], the
homomorphism g∗ maps one free generator to the other and it follows that g∗ is an
isomorphism. �

5. The coarse Hawaiian earring

Let Cn = {(x, y)∈R2
| (x−1/n)2+ y2

= 1/n2
} be the circle of radius 1/n centered

at (1/n, 0). The Hawaiian earring is the countably infinite union H =
⋃

n≥1 Cn

of these circles over the positive integers (see Figure 4, left). We construct our
countable version of H by replacing the usual circle with the coarse circle studied
in the previous sections.

Let w0 = (0, 0), and for integers n ≥ 1 define xn = (1/n,−1/n), yn = (2/n, 0),
and zn = (1/n, 1/n). Let Dn = {w0, xn, yn, zn} and H =

⋃
n≥1 Dn . Note that H is

a countable subset of H (see Figure 4, right).
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0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

w0 ... y1y2y3

x1

x2

x3

z1

z2

z3

Figure 4. Left: the Hawaiian earring H. Right: the underlying set
of H as a subset of H. The intersection of the n-th circle Cn and
H is the four-point set Dn = {w0, xn, yn, zn}.

Proposition 19. Let B be the collection of subsets of H of the form {xn}, {zn},
{xn, yn, zn}, and Vn =

⋃
j≥n Dj ∪{xn | n ≥ 1}∪ {zn | n ≥ 1} for n ≥ 1. Then B is a

basis for a topology on H.

Proof. Since H = V1, it is clear that every element of H is contained in at least one
element of B. Suppose x ∈ B1∩ B2, where B1, B2 ∈B. We must show there exists
B3 ∈B such that x ∈ B3 ⊆ B1 ∩ B2. We complete the proof by defining B3 for all
possible cases of intersection:

(1) If one of B1 or B2 is of the form {xn} or {zn} then we may take B3 to be this
singleton.

(2) If B1 = {xm, ym, zm} and B2 = {xn, yn, zn}, then we must have n = m since
these sets are disjoint if n 6= m. Set B3 = {xm, ym, zm}.

(3) Note that Vn ⊆ Vm if n ≥ m. Thus if B1 = Vm and B2 = Vn , we may set
B3 = Vm ∩ Vn = Vmax{m,n} ∈B.

(4) If B1 = {xm, ym, zm} and B2 = Vn , then B1 ∩ B2 = {xm, zm} and we may take
B3 to be the singleton (either {xm} or {zm}) containing x . �

Definition 20. The coarse Hawaiian earring is the set H with the topology gener-
ated by the basis consisting of subsets of the form {xn}, {zn}, {xn, yn, zn}, and Vn

for n ≥ 1.

A topological space whose topology is closed under arbitrary intersection is called
an Alexandroff space [Arenas 1999]. Such spaces were introduced by P. Alexandroff
[1937] and may also appear in modern literature under the name “A-space” or
“Alexandroff-discrete space”. Regarding the coarse Hawaiian earring, notice that
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w0 ...
y1y2y3

x1

x2

x3

z1

z2

z3

Figure 5. The basic open neighborhood V5 of w0 contains all
points of H except y1, y2, y3, y4, which are shaded lighter. In
particular, V5 contains the four-point set Dn for all n ≥ 5.

for all n ≥ 2, the basic open neighborhood Vn = H\{y1, . . . , yn−1} contains all but
finitely many of the coarse circles Dj (see Figure 5). These sets form a neighborhood
base at w0 so that H is not an Alexandroff space.

Remark 21. Notice that the four-point subset Dn ⊂ H is homeomorphic to the
coarse circle S when equipped with the subspace topology inherited from H. An
explicit homeomorphism S→ Dn is given by taking b0 7→ xn , b1 7→w0, b2 7→ zn ,
and b3 7→ yn .

Proposition 22. H is a path-connected, locally path-connected, compact, T0 space
which is not T1.

Proof. Since Dn is homeomorphic to S, we know Dn is path connected for all
n ≥ 1. Moreover, since w0 ∈

⋂
n≥1 Dn and H =

⋃
n≥1 Dn , it follows that H is

path connected. To see that H is locally path connected, we check that every basic
open set is path connected. Certainly, {xn} and {zn} are path connected. Since
{xn, yn, zn} is homeomorphic to I when it is given the subspace topology of H,
this basic open set is path connected. Additionally, the subspace {w0, xn, yn} ⊆ H
is homeomorphic to I and is path connected. Therefore, since Vn is the union⋃

j≥n Dn∪
⋃

n≥1{w0, xn, yn} of sets all of which are path connected and containw0,
we can conclude that Vn is path connected. This proves H is locally path connected.

To see that H is compact let U be an open cover of H. Since the only basic open
sets containing w0 are the sets Vn , there must be a U0 ∈U such that w0 ∈ Vn ⊆U0

for some n. For i = 1, . . . , n − 1, find a set Ui ∈ U such that yi ∈ Ui . Now
{U0,U1, . . . ,Un−1} is a finite subcover of U . This proves H is compact.

To see that H is T0, we pick two points a, b ∈ H. If a = w0 and b = yn , then
a ∈ Vn+1 but b /∈ Vn+1. If a = w0 and b ∈ {xn, zn}, then b lies in the open set
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{xn, yn, zn} but a does not. If a ∈ {xn, zn} and a 6= b, then {a} is open and does
not contain b. This concludes all the possible cases of distinct pairs of points in H,
proving that H is T0.

Lastly, H is not T1 since the every open neighborhood Vn of w0 contains the
infinite set

⋃
n≥1{w0, xn, zn}. �

Since Dn ∼= S, we have by Theorem 17 that π1(Dn, w0)∼=Z for all n ≥ 1. Recall
that if A is a subspace of X , then a retraction is a map r : X → A such that the
restriction r |A : A→ A is the identity map.

Proposition 23. For each n ≥ 1, the function rn : H → Dn which is the identity on
Dn and collapses

⋃
j 6=n Dj to w0 is a retraction.

Proof. Since Dn is a subspace of H, it suffices to show rn is continuous. We have

r−1
n ({xn})= {xn}, r−1

n ({xn, yn, zn})= {xn, yn, zn},

r−1
n ({zn})= {zn}, r−1

n ({w0, xn, yn})= {xn} ∪ {yn} ∪ Vn+1 ∪
⋃
j<n

{x j , yj , z j }.

Since the pullback of each basic open set in Dn is the union of basic open sets in H,
rn is continuous. �

Corollary 24. H is not semilocally simply connected at w0.

Proof. Fix n ≥ 1. We show that Vn contains a loop α which is not null-homotopic
in H. Let α : [0, 1] → Dn be any loop based at w0 such that [α] is not the identity
element of π1(Dn, w0). Let i : Dn→ H be the inclusion map so that rn ◦ i = idDn

is the identity map. Since π1 is a functor, (rn)∗ ◦ i∗ = (rn ◦ i)∗ = idπ1(Dn,w0) is the
identity homomorphism of π1(Dn, w0). In particular, i ◦ α is a loop in H with
image in Dn ⊆ Vn such that (rn)∗([i ◦α])= [α] is not the identity of π1(Dn, w0).
Since homomorphisms preserve identity elements, [i ◦ α] cannot be the identity
element of π1(H, w0). �

Definition 25. The infinite product of a sequence of groups G1,G2, . . . is denoted
by
∏

n≥1 Gn and consists of all infinite sequences (g1, g2, . . . ) with gn ∈ Gn for
each n ≥ 1. Group multiplication and inversion are evaluated componentwise. If
Gn =Z for each n≥ 1, then the group

∏
n≥1 Z consisting of sequences (n1, n2, . . . )

of integers is called the Baer–Specker group.

Infinite products of groups have the useful property that if G is a fixed group
and fn : G→ Gn is a sequence of homomorphisms, then there is a well-defined
homomorphism f : G→

∏
n≥1 Gn given by f (g)= ( f1(g), f2(g), . . . ).

Lemma 26. The infinite product
∏

n≥1 π1(Dn, w0) is uncountable.

Proof. If each Gn is nontrivial, then Gn contains at least two elements. Therefore
the product

∏
n≥1 Gn is uncountable since the Cantor set {0, 1}N =

∏
n≥1{0, 1} can
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be injected as a subset. In particular, the Baer–Specker group is uncountable. Since
π1(Dn, w0)∼=Z for each n≥ 1, the infinite product

∏
n≥1 π1(Dn, w0) is isomorphic

to the Baer–Specker group and is therefore uncountable. �

Let λn : [0, 1] → Dn be the loop defined as

λn(t)=


w0, t ∈ {0, 1},
xn, t ∈

(
0, 1

2

)
,

yn, t = 1
2 ,

zn, t ∈
( 1

2 , 1
)
.

This function is continuous and therefore a loop in Dn . In particular, our description
of the universal covering of S in the previous section shows that the homotopy
class [λn] is a generator of the cyclic group π1(Dn, b0).

Definition 27. Suppose for each n ≥ 1 we have a continuous loop αn : [0, 1] → H
based at w0 with image in Dn . The infinite concatenation of this sequence of loops
is the loop α∞ : [0, 1] → H defined as follows: for each n ≥ 1, the restriction of
α∞ to [(n− 1)/n, n/(n+ 1)] is the path αn and α∞(1)= w0.

Lemma 28. The loop α∞ is continuous and [rn ◦α∞] = [αn] for all n ≥ 1.

Proof. Since each loop αn is continuous and each concatenation αn · αn+1 is
continuous, it is enough to show that α∞ is continuous at 1. Consider a basic open
neighborhood Vn of α∞(1)=w0. Since αi has image in Vn for each i ≥ n, we have
α∞([(n− 1)/n, 1])⊆ Vn . In particular, 1 ∈ ((n− 1)/n, 1] ⊆ f −1(Vn). This proves
that α∞ is continuous.

Notice that r1 ◦α∞ is defined to be α1 on
[
0, 1

2

]
and is constant at w0 on

[1
2 , 1

]
.

If n ≥ 2, then rn ◦ α∞ is defined as αn on [(n− 1)/n, n/(n+ 1)] and is constant
at w0 on [0, (n − 1)/n] ∪ [n/(n + 1), 1]. Thus for all n ≥ 1, we have rn ◦ α∞ is
homotopic to αn . �

Theorem 29. The fundamental group π1(H, w0) is uncountable.

Proof. We have a sequence of homomorphisms (rn)∗ : π1(H, w0)→ π1(Dn, w0) in-
duced by the retractions rn . Together, these induce a homomorphism r :π1(H,w0)→∏

n≥1π1(Dn,w0) given by

r([α])= ((r1)∗([α]), (r2)∗([α]), . . . )= ([r1 ◦α], [r2 ◦α], . . . ).

By Lemma 26, the infinite product
∏

n≥1 π1(Dn, w0) is uncountable. We claim that
r is onto.

Suppose (g1, g2, . . . ) ∈
∏

n≥1 π1(Dn, w0), where gn ∈ π1(Dn, w0). Since gn is
an element of the infinite cyclic group π1(Dn, w0) generated by [λn], we may write
gn = [λn]

mn for some integer mn ∈ Z.
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For each n ≥ 1, define the loop αn by

αn =


∏mn

i=1 λn if mn > 0,
constant at w0 if mn = 0,∏|mn |

i=1 λ
−
n if mn < 0.

Notice that αn is defined so that gn=[λn]
mn =[αn]. Let α∞ : [0, 1]→ H be the loop

based at w0 which is the infinite concatenation as in Definition 27. By Lemma 28,
we have [rn ◦α∞] = [αn] = gn for each n ≥ 1. Therefore, r([α∞])= (g1, g2, . . . ).
This proves that r is onto.

Thus, since π1(H, b0) surjects onto an uncountable group, it must also be un-
countable. �

We conclude that there is a T0 space with countably many points but which has
an uncountable fundamental group.
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Toeplitz subshifts with trivial centralizers
and positive entropy

Kostya Medynets and James P. Talisse

(Communicated by David Royal Larson)

Given a dynamical system (X,G), the centralizer C(G) denotes the group of
all homeomorphisms of X which commute with the action of G. This group is
sometimes called the automorphism group of the dynamical system (X,G). We
generalize the construction of Bułatek and Kwiatkowski (1992) to Zd -Toeplitz
systems by identifying a class of Zd -Toeplitz systems that have trivial centralizers.
We show that this class of Zd -Toeplitz systems with trivial centralizers contains
systems with positive topological entropy.

1. Introduction

Toeplitz dynamical systems were first introduced by Jacobs and Keane [1969]. They
provided a classical definition for a Toeplitz sequence over {0, 1}. Markley [1975]
studied these sequences and showed the equivalence of various definitions of them.
The orbit closure of a Toeplitz sequence is regarded as a Toeplitz flow. Markley
and Paul [1979] showed that these flows were exactly almost one-to-one extensions
of odometers, or the group of p-adic integers. See [Hewitt and Ross 1979] for a
general discussion of the group-theoretic properties of the group of p-adic integers.
For a general survey of symbolic dynamics, we refer the reader to [Kitchens 1998].
For a good survey on Z-odometers and Toeplitz flows, the reader is referred to
[Downarowicz 2005]. Recently the definition of Toeplitz flows was extended to
flows over Zd by Cortez [2006], and then to flows over general groups in [Cortez
and Petite 2008; Krieger 2010].

The centralizer of a dynamical system is the group of all homeomorphisms of the
system which commute with the group action. Sometimes called the automorphism
group of the dynamical system in the literature, the centralizer of a dynamical
system has an intricate relationship with its parent dynamical system. For example,
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in [Boyle et al. 1988], Boyle, Lind and Rudolph studied the centralizers of shifts of
finite type and showed that they are countable, residually finite and contain the free
group on two generators. Several results have been shown by Cyr and Kra [2015;
2016a; 2016b] which relate varying levels of complexity of symbolic dynamical
systems to algebraic properties of their centralizers. We notice that systems with
positive entropy tend to have very large centralizers. For example, the centralizer of
the full shift contains every finite group and the free group on two generators. On
the other hand, Donoso, Durand and Petite [Donoso et al. 2016] showed that some
classes of low complexity symbolic dynamical systems have very small centralizers,
in the sense that they consist only of powers of T. Bułatek and Kwiatkowski
[1990; 1992] studied the centralizer of a class of high-complexity Toeplitz systems.
The centralizer of multidimensional symbolic dynamical systems was studied by
Hochman [2010]. For example, he showed that the centralizer of a positive-entropy
multidimensional shift of finite type contains a copy of every finite group.

The main question this paper seeks to answer is whether there are multidimen-
sional systems with a trivial centralizer and positive entropy. Following the ideas
of [Bułatek and Kwiatkowski 1992], which developed this result in one dimension,
we establish this result with a constructive proof. We note that there are several
constructions of one-dimensional Toeplitz systems with trivial centralizers and
positive entropy; see, for example, [Donoso et al. 2017].

In Section 3 we present main facts with proofs regarding general G-odometers,
where G is a residually finite group. For the reader’s convenience, we include the
proofs, otherwise scattered across multiple sources. In particular we show that
the centralizer group of Zd-Toeplitz systems embeds into the centralizer group
of its maximal equicontinuous factor, which is a Zd-odometer, and so is Abelian.
This result was originally established in [Auslander 1963, Theorem 9] using the
techniques of enveloping semigroups. The proof we present in this note follows the
approach developed in [Olli 2013].

In Section 4, we construct a class of Zd-Toeplitz systems that have trivial cen-
tralizers. Then in Section 5, we show that this class contains systems of positive
entropy, and we provide an explicit construction of a two-dimensional Toeplitz
system of positive entropy.

2. Definitions and background

By a dynamical system we mean a pair (X,G), where X is a compact topological
space and G is a countable discrete group acting on X by homeomorphisms. The
action of a group element g ∈ G on x ∈ X will be denoted by g · x = g(x). The set
{g · x | g ∈G} is called the orbit of the point x . If every orbit of (X,G) is dense, we
call the system minimal. A system (X,G) is called equicontinuous if for all ε > 0
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there exists δ > 0 such that for all x, y ∈ X if d(x, y) < ε, then d(g · x, g · y) < δ
for all g ∈ G. Let (X,G), and (Y,G) be two minimal systems. If there exists a
continuous surjection π : X→ Y which preserves the action of G, we say that X is
an extension of Y, and that Y is a factor of X . We call π a factor map. Given two
factor maps π and π ′, we say that π is larger than π ′ if there exists a third factor map
π ′′ such that π ′ = π ′′ ◦π . As such, we can discuss the maximal factor of a system.
It is a known fact that every dynamical system has a maximal equicontinuous factor.

In this paper we are interested in symbolic dynamical systems. We start with a
finite set6 called the alphabet. Say |6|=n. The set of all bi-infinite sequences over
6 is called the full n-shift and is denoted by 6Z. In general, we denote the full d-
dimensional n-shift by 6Zd

. This set is endowed with the product topology from the
discrete topology in each coordinate. Cylinder sets in which we fix a finite number
of coordinates form a basis for the topology. For x ∈6Zd

we write x = {x(v)}v∈Zd .
We call x a Zd -array. The group Zd acts on 6Zd

, denoted by T z(x) for z ∈ Zd and
x ∈6Zd

as follows: T z(x)={x(z+v)}v∈Zd . The orbit of an array is {T v(x) |v∈Zd
}.

A closed subset X ⊆6Zd
is called a subshift if it is closed under the action of Zd.

For the sake of completeness, we note that symbolic dynamics can be studied over
general, discrete groups. In this case, let G be a discrete group. Then 6G is acted
on by the group G. While in this paper we restrict our study of symbolic dynamics
to Zd -systems, we note that many of the results can be extended to G-systems for
more general groups G.

The topological spaces discussed in this note will be topological zero-dimensional
compact metric spaces without isolated points, i.e., Cantor sets. Notice that by a
theorem of Brouwer [1910] every Cantor set is homeomorphic to the middle-thirds
Cantor set, and so all Cantor sets are homeomorphic.

3. Odometers

In this section, we will recall some basic facts about odometers and their almost
one-to-one extensions. In particular, we show that the centralizer of an odometer
is Abelian, and the centralizer of the almost one-to-one extension of an odometer
is also Abelian. These results are mostly known, but are scattered. In particular, the
proof of Lemma 3.11 appears in [Veech 1970] and the proof of Proposition 3.12
appears in [Olli 2013]. We present slightly modified proofs for clarity and the
reader’s convenience.

Definition 3.1. A group G is called residually finite if the intersection of all its
finite-index normal subgroups is trivial.

Definition 3.2. Let G be a residually finite group and G = G0 ⊇ G1 ⊇ G2 ⊇ · · ·

be nested normal subgroups such that
⋂

Gn = {0}. Let πn be the natural homo-
morphism from G/Gn onto G/Gn−1; i.e., πn(hGn) = hGn−1 for h ∈ G. The
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G-odometer, G, is the inverse limit

G = lim
←−−
(G/Gi ;πi )=

{
(gk)

∞

k=0 ∈
∏
∞

k=0 G/Gk
∣∣ πn(gn)= gn−1 for all n ≥ 1

}
.

An element g ∈ G acts on an element y = (yi )
∞

i=0 ∈ G as g · y = (g · yi )
∞

i=0.
First we prove that G embeds into G.

Lemma 3.3. Let ϕ : G → G be defined as g 7→ (gG1, gG2, . . .). Then ϕ is an
embedding.

Proof. Notice that ϕ is a homomorphism. Let g1, g2 ∈ G. Suppose

ϕ(g1)= (g1G1, g1G2, g1G3, . . .)= (g2G1, g2G2, g2G3, . . .)= ϕ(g2).

So g1Gi = g2Gi for all i . Therefore g−1
1 g2∈Gi for all i , and so g−1

1 g2∈
⋂

Gi ={0}.
Thus g1 = g2, which implies that ϕ is an embedding. �

So we have shown that G embeds into G in a natural way. In what follows,
we will identify the group G with its image ϕ(G). We now prove that (G,G) is
minimal.

Lemma 3.4. The system (G,G) is minimal.

Proof. Consider the identity element, e ∈ G. In particular, e = (G1,G2,G3, . . .).
Let y = (yi )

∞

i=0 ∈ G. So, for each n, we have yn = ȳnGn , where ȳn ∈ G is a
representative of the coset. Note

ȳn · e = ȳn(G1,G2,G3, . . . ,Gn, . . .)

= (ȳnG1, ȳnG2, ȳnG3, . . . , ȳnGn, . . .)

= (ȳ1G1, ȳ2G2, . . . , ȳnGn, . . .)= (y1, y2, . . . , yn, . . .).

So ȳn · e agrees with y in the first n coordinates. And so we can get arbitrarily
close to y as we increase n. It follows that the orbit of e is dense.

Now let a, b ∈ G. Note we can find a sequence bn of elements of G ⊂ G such
that bn · e→ ab−1, since e has a dense orbit. Then (bn · e) · b→ a so bn · b→ a.
Therefore b has a dense orbit. �

Definition 3.5 (centralizer). Let (X,G) be a dynamical system. The centralizer,
C(G), is defined as

C(G)= {ϕ ∈ Homeo(X) | gϕ = ϕg for all g ∈ G}.

That is, the centralizer of a system consists of all homeomorphisms of the system
which commute with the group action. It can be checked that this is a group under
composition.

Next we show that elements of the centralizer of an odometer act as translations
of the odometer.
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Lemma 3.6. Let ϕ ∈ C(G,G). There exists g0 ∈ G such that ϕ(x)= x · g0 for all
x ∈ G.

Proof. Set g0 = ϕ(e). Let x ∈ G. Since the orbit of e is dense, by Lemma 3.4,
there exists a sequence {gn} ⊆ G such that gn · e → x . Since ϕ is continuous,
ϕ(gn ·e)→ ϕ(x). Since gn ·e→ x , we have gn→ x . So ϕ(gn ·e)= ϕ(gn) ·ϕ(e)→
x ·ϕ(e). Therefore ϕ(x)= x ·ϕ(e)= x · g0. �

We are now ready to prove the following proposition. In the following, G is an
Abelian group.

Proposition 3.7. The centralizer C(G,G)= {ϕ : G→ G | ϕg = gϕ for all g ∈ G}
of an odometer G is isomorphic to G.

Proof. Define ψ : C(G,G) → G as ψ(ϕ) = ϕ(e) for all ϕ ∈ C(G,G). Let
ϕ1, ϕ2 ∈ C(G,G). Then

ψ(ϕ1◦ϕ2)= ϕ1◦ϕ2(e)= ϕ1(ϕ2(e))= ϕ2(e)·ϕ1(e)= ϕ1(e)·ϕ2(e)= ψ(ϕ1)ψ(ϕ2).

So ψ is a homomorphism. Let y ∈ G. Let ϕy(x) = x · y for all x ∈ G. Note,
for g ∈ G, we have ϕy(gx) = gϕy(x) so ϕy ∈ C(G,G). Also, ψ(ϕy) = y, so ψ
is onto. Suppose ψ(ϕ1) = ψ(ϕ2). Then ϕ1(e) = ϕ2(e). Using Lemma 3.6, we
get that for any x ∈ G, ϕ1(x) = x · ϕ1(e) = x · ϕ2(e) = ϕ2(x). Therefore ψ is an
isomorphism. �

We now turn our attention to almost one-to-one extensions of odometers.

Definition 3.8. We say (X,G) is an almost one-to-one extension of (Y,G) if there
is a factor map π : X → Y such that there is at least one y ∈ Y so that π−1 y
is singleton. Almost one-to-one extensions of odometers are also called Toeplitz
systems.

We make use of the following commutative diagram:

X
G
−−−→ X

π

y yπ
Y −−−→

G
Y

Sometimes the context will deem the action of G on X or Y ambiguous, so we
will use T gx to denote the action of the group element g ∈ G on x ∈ X and Sg y to
denote the action of g on y ∈ Y. In particular, π ◦ T g

= Sg
◦ π . If the context is

clear, the action of g on a point x will be denoted by g · x .
If (X,G) is a minimal almost one-to-one extension of a minimal equicontinuous

system (Y,G), then it is known that (Y,G) is the maximal equicontinuous factor
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of (X,G) [Auslander 1988]. As such, the odometer of which a Toeplitz system
(X,G) is an almost one-to-one extension is its maximal equicontinuous factor.

We will be considering almost one-to-one extensions of Zd-odometers. In this
context, we will need the following proposition.

Proposition 3.9. The centralizer C(G) of the almost one-to-one extension of a
Zd -odometer is Abelian.

To prove Proposition 3.9, we show that the centralizer of the almost one-to-one
extension of an odometer embeds into the centralizer of its maximal equicontinuous
factor, which we have already shown to be isomorphic to the odometer, which is
Abelian in the case of G = Zd.

Definition 3.10 [Veech 1970]. Given a dynamical system (X,G) and a metric d
compatible with the topology on X , two points x1, x2 ∈ X are called proximal if

inf
g∈G

d(g · x1, g · x2)= 0.

Lemma 3.11. Let (X,G) be an almost one-to-one extension of an odometer (G,G)
via the factor map π . Then points of X are proximal if and only if they are in the
same π -fiber.

Proof. Let x1, x2 ∈ X be in the same π-fiber; i.e., π(x1) = π(x2). Let y ∈ G be
such that π−1 y is a singleton. Since (G,G) is minimal, there exists a sequence
{gn} of elements in G such that limn→∞ Sgnπx1 = y and so limn→∞ Sgnπx2 = y.
Since X is compact, there is a subsequence {gk} of {gn} such that T gk x1 and T gk x2

converge. Suppose limk→∞ T gk x1 = z. Applying π , we have

π z = lim
k→∞

πT gk x1 = lim
k→∞

Sgkπx1 = y.

So we also have
lim

k→∞
πT gk x2 = lim

k→∞
Sgkπx2 = y.

Since π−1 y is a singleton, we get that limk→∞ T gk x2 = z. Now,

lim sup
k→∞

d(T gk x1, T gk x2)≤ lim sup
k→∞

(d(T gk x1, z)+ d(z, T gk x2))

≤ lim sup
k→∞

d(T gk x1, z)+ lim sup
k→∞

d(z, T gk x2)= 0.

So the points x1 and x2 are proximal.
Now suppose x1, x2 ∈ X are proximal. Then there is a sequence {gn} ⊆ G such

that limn→∞ T gn x1= limn→∞ T gn x2= z. Applying π , we have limn→∞ πT gn x1=

limn→∞ πT gn x2 = π z. So limn→∞ Sgnπx1 = limn→∞ Sgnπx2, which implies πx1

and πx2 are proximal in G. But G has no proximal points, so πx1 = πx2. �
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Finally, we prove that the centralizers of Toeplitz systems embed in the central-
izers of the underlying odometers.

Proposition 3.12. Let (X,G) be an almost one-to-one extension of a G-odometer
(Y,G). Every element ϕ ∈ C(X,G) determines ψϕ ∈ C(Y,G) such that the follow-
ing diagram commutes:

X
ϕ

−−−→ X

π

y yπ
Y −−−→

ψϕ
Y

Additionally, this relationship is an embedding; i.e., ψϕ1 = ψϕ2 ⇒ ϕ1 = ϕ2.

Proof. Let ϕ ∈ C(X,G). Let x1, x2 ∈ X be proximal. So πx1 = πx2. Since x1 and
x2 are proximal, infg∈G d(g · x1, g · x2)= 0. Thus infg∈G d(ϕ(g · x1), ϕ(g · x2))= 0,
which, by Lemma 3.11, implies that ϕ(x1), ϕ(x2) are proximal. So ϕ preserves
the proximal relationship, and so it preserves the π-fibers. Define ψϕ : Y → Y
as ψϕ = π ◦ ϕ ◦ π−1. This map is well-defined because ϕ preserves the π-fibers.
Suppose ψϕ(y1)=ψϕ(y2) for y1, y2 ∈ Y. So π ◦ϕ◦π−1(y1)=π ◦ϕ◦π

−1(y2), and
thus ϕ ◦π−1(y1) and ϕ ◦π−1(y2) are in the same π-fibers. Since ϕ preserves the
π -fibers, π−1(y1) and π−1(y2) are in the same π -fibers, and so it is clear that y1= y2.
Therefore ψϕ is one-to-one. Also, ψϕ is continuous, so it is a homeomorphism; i.e.,
ψϕ ∈ C(Y,G).

Now suppose ψϕ1 =ψϕ2 . Let y ∈ Y be such that π−1 y= {x} is a singleton. Then
ϕ1(x) = π−1(ψϕ1(y)) and ϕ2(x) = π−1(ψϕ2(y)). Since ϕi preserves π-fibers for
i ∈ {1, 2}, these are singletons. In particular, ϕ1(x)= ϕ2(x). So it is clear then that
g · ϕ1(x)= g · ϕ2(x) for all g ∈ G, and so ϕ1(g · x)= ϕ2(g · x) for all g ∈ G. But
every orbit is dense, so ϕ1 and ϕ2 agree on a dense subset of X , and hence agree
everywhere. �

Finally we prove Proposition 3.9.

Proof. We have shown in Proposition 3.12 that C(X,G) embeds into C(Y,G) and
by Proposition 3.7 C(Y,G) is Abelian, so C(X,G) is Abelian. �

4. Zd-Toeplitz systems

In this section, we study Toeplitz systems over Zd and generalize the construction
of Bułatek and Kwiatkowski. In particular, we present a class of Toeplitz systems
over Zd with a trivial centralizer and positive entropy.

Let x ∈6Zd
. Note that the topological closure of the orbit of x , O(x), is closed

and T -invariant. So (O(x), T ) is a subshift. This is called the orbit closure of x .

Definition 4.1. The centralizer of a symbolic dynamical system is called trivial if
every element of the centralizer is T g for some g ∈ Zd.
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For x ∈6Zd
, σ ∈6, and a subgroup Z ⊂ Zd, define

Per(x, Z , σ )= {w ∈ Zd
| x(w+ z)= σ for all z ∈ Z},

Per(x, Z)=
⋃
σ∈6

Per(x, Z , σ ).

We say that x ∈6Zd
is a Toeplitz array if for every v ∈ Zd, there exists a finite-

index subgroup Z ⊆ Zd (note that Z is necessarily isomorphic to Zd) such that
v ∈ Per(x, Z).

It can be shown that the orbit closure of a Toeplitz array is an almost one-to-one
extension of a Zd-odometer. For details, the reader is referred to Theorem 7 and
Proposition 21 in [Cortez 2006]. In fact, almost one-to-one extensions of odometers
are exactly those systems which are orbit closures of Toeplitz arrays. In particular,
defining a Toeplitz system as the orbit closure of a Toeplitz array is equivalent to
Definition 3.8.

Definition 4.2. Given a finite alphabet 6, a patch is a pair (P,L), where P ⊆ Zd

and L : P → 6 is a labeling of P. For the purposes of this paper, we will only
consider rectangular patches (blocks) which can be defined by d vectors parallel to
the coordinate axes.

Given a patch (P,L), we denote the coordinate closest to the origin in Cartesian
space by P[0]. Any other location in the patch is denoted by P[i], where i ∈ Zd is
a vector pointing to that location, as referenced from P[0]. A square block within
P is denoted by P[i − l, i + k], where k, l ∈ Z and is the (hyper)cube in P located
between P[i − l1̄] and P[i + k1̄], where 1̄= (1, 1, . . . , 1).

For a finite block D in d dimensions, we denote the size of D along the i-th
dimension as |D|i . Note that the left-most and bottom-most entry of D is identified
with D(0, 0, . . . , 0).

We now show how Toeplitz arrays can be constructed over an alphabet 6 bor-
rowing ideas from [Downarowicz 2005].

Let {pt,i }
∞

t=0, 1≤ i ≤ d, be d sequences of positive integers such that p0,i ≥ 2
and pt,i divides pt+1,i for all 1≤ i ≤ d . Define λt+1,i = pt+1,i/pt,i and λ0,i = p0,i

for all 1≤ i ≤ d and t ≥ 0.
Specify blocks At as follows:

(1) |At |i = pt,i .

(2) Some spaces in At are filled with elements from 6 and others are left unfilled.
The unfilled spaces are called holes.

(3) The block At+1 is the concatenation of λt+1,i copies of At along the i-th
dimension for all 1≤ i ≤ d , where some holes are filled by symbols from 6.
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(4) For every (i1, i2, . . . , id)∈Nd there exists a t≥0 such that At(i1, i2, . . . , id)∈6

and At(pt,1−i1, pt,2−i2, . . . , pt,d−id)∈6.

Denote by ωt the periodic tiling of Zd by the block At with the bottom-left corner
of At appearing at the origin. Set ω = limωt . The fourth condition assures that
ω ∈6Zd

. We will additionally assume that pt is the smallest period of ωt , which
ensures that ω is a nonperiodic Toeplitz array.

Essentially, in this construction we build finite blocks, each of which contains
multiple copies of the block built in the previous step. As we copy these blocks,
we fill in some of the holes, and leave some of them as holes. As we continue this
process forever, we will have a Toeplitz array covering Zd.

Example 4.3 (one-dimensional Toeplitz array [Downarowicz 2005]). We will
construct a Toeplitz array over Z from the alphabet 6 = {0, 1}. Let {pt } =

{2, 4, 8, 16, . . .} and so λt = 2 for all t ≥ 0. Let A0 = 0_, where the _ symbol
indicates a hole. To get A1, we copy A0 twice and fill in some of the holes. Say
A1 = 010_. The underline indicates a hole that was filled in at that step. In each
step we will have two holes. For this construction, at each step we will alternately
fill in the first hole with 0 and 1. Let the limiting sequence of this process be ω.
Continuing, we have

A2 = 0100010_,

A3 = 010001010100010_,

A4 = 0100010101000100010001010100010_,
...

ω = 0100010101000100010001010100010101000101010001000100010101000100 . . . ,

and so we have a Toeplitz array ω. The orbit closure of this point is a Toeplitz
system.

Example 4.4 (two-dimensional Toeplitz array). Again we will use the alphabet
6 = {0, 1} and we will construct a Toeplitz array over Z2. Let {pt,1} = {pt,2} =

{2, 4, 8, 16, . . .}. Then λt,1 = λt,2 = 2 for all t ≥ 0.
Let

0
1 1A0 = ,

0
1
0
1

1
1

1

0
1
0
1

1
0
1

A1 = ,

0
1
0
1

1
1

1

0
1
0
1

1
0
1

0
1
0
1

1
1

1

0

0
1
0
1

1
0
1

0 0
1
0
1

1

1
1

1

0
1
0
1

1
0
1

0
1
0
1

1
1

1

0
1
0
1

1
0
1

1A2 = .
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The black squares indicate where the holes are. Continuing this process, we will
have a coloring of the whole plane, which will be a Toeplitz array, say ω.

We call subblocks of At+1 which coincide with indices of the location of concate-
nated At blocks t-blocks. We note that ω consists of the concatenation of t-blocks
in all directions for any t , where all t-blocks agree in all locations except for where
the holes were. In Example 4.4, the thick lines in A1 indicate the 0-blocks, and the
thick lines in A2 indicate the 1-blocks.

Now we introduce a condition on constructing Toeplitz arrays which will give
rise to Toeplitz systems with a trivial centralizer.

Condition (∗). We say a Toeplitz array satisfies the condition (∗) if:

• Every t-block in At+1 is composed of either At where no hole remaining from
At is filled in or At with all holes filled.

• The perimeter of At+1 is composed of t-blocks which are all filled in.

• For every i ∈ Zd such that At [i] is a hole, there are two t-blocks B1 and B2

with B1[i] 6= B2[i].

Let e1, e2, . . . , ed be the generators of Zd. For 1 ≤ i ≤ d, let Ti denote a shift
by the vector ei . In this context, the shift action on the system can be considered
d independent shift actions; i.e., T g

= T (g1,g2,...,gd ) = T g1
1 × T g2

2 × · · ·× T gd
d .

Theorem 4.5. Let ω be a Toeplitz array satisfying the condition (∗). Then the
centralizer C(T ) of (O(ω), T ) is trivial.

Proof. Let (G, T1 × T2 × · · · × Td) be the maximal equicontinuous factor of
(O(ω), T ). Denote by π :(O(ω),T )→(G,T1×T2×·· ·×Td) the almost one-to-one
factor map. Let S ∈ C(T ). By Proposition 3.12, this determines an element
S′ ∈ C(G, T1× T2× · · ·× Td) which acts as a translation by some element h ∈ G,
by Lemma 3.6. By a result of [Hedlund 1969], we note S is determined by a block
code f of window size k ∈ N. In particular, if u ∈ O(ω) and z = S(u), then

z[i] = f (u[i − k, i + k]) for all i ∈ Zd . (1)

In particular, the automorphism determines what to put in a specific location by
looking at a block around that location in the preimage. Increasing k if necessary, we
can assume that S−1 is also determined by a block code of the same window size k.

Note G is a product odometer, so h=(h1,h2, . . . ,hd), where hi =
∑
∞

t=0 ht,i pt−1,i

for 1 ≤ i ≤ d with 0 ≤ ht,i ≤ λt,i − 1, p−1,i = 1. Each hi is an element of
the one-dimensional odometer occurring in the i-th coordinate of h. Let mt,i =∑t

j=0 h j,i p j−1,i and mt = (mt,1,mt,2, . . . ,mt,d) ∈ Zd. For each g ∈ G, denote by
Xg the preimage π−1({g}) under the factor map π . Then S(Xg)= Xg+h .

We claim that for all 1≤ i ≤ d either mt,i ≤ k or mt,i ≥ pt,i − k− 1.
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Ȧt Ȧt At

At At

Ȧt

At k
k

Figure 1. The two-dimensional case of the argument in the proof
of Theorem 4.5. Ȧt indicates At blocks with all holes filled and
the solid black and gray squares indicate holes in xt+1 and yt+1,
respectively.

Let x ∈ O(ω) and y = S(x). Suppose that x has a t-block appearing at a
location x[i]. Then by the construction of Toeplitz subshifts and almost one-to-one
extensions, y necessarily has a t-block at the location y[i−mt ]. Note that for every
t ≥ 1 the array x can be written as a concatenation of (t+1)-blocks, which are made
of t-blocks. Recall that all t-blocks are the same, except they may disagree where
the holes are located. Denote by xt+1 the d-dimensional array over the alphabet
6∪{hole} consisting of copies of the block At+1 at the locations where they appear
in x . Note that lim xt = x . Similarly, we can define yt+1, a (t+1)-block skeleton of
the array y. Note that xt+1 and yt+1 are pt+1-periodic and shifted by the vector mt+1

relative to each other. Let A denote any (t+1)-block of y. This block looks like
At+1, which in turn is the concatenation of At blocks both filled and not. Thus, we
can view both yt+1 and xt+1 as the concatenations of copies of At and copies of Ȧt ,
filled versions of At . The t-blocks in xt+1 and yt+1 appear shifted by the vector mt .

Fix t > 0 such that pt−1,i > 2k+ 1 for every i = 1, . . . , d . Fix j ∈ Zd such that
yt+1[ j] is a hole. Note that this hole would correspond to a hole in At . Then the hy-
percube xt+1[ j−k, j+k]must also contain a hole. For otherwise, xt+1[ j−k, j+k]
would be the same for every j with j ≡ i mod pt and, thus, y[ j] = S(x)[ j] =
f (x[ j − k, j + k]) would be the same for every such j . This would contradict the
last property of the condition (∗). Applying the same argument to S−1, we see that
if xt+1[ j] is a hole for some j ∈ Zd, then y[ j − k, j + k] must also contain a hole.

This argument is demonstrated for the two-dimensional case and for the forward-
looking centralizers in Figure 1.

Now, the t-blocks in the arrays xt+1 and yt+1 are shifted by the vector mt relative
to each other. At the same time, by the argument above, the filled t-blocks Ȧt in xt+1

and yt+1 must appear under each other and can be shifted by a vector of length at
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most k. Since pt is the smallest period of ωt , we conclude that for all 1≤ i ≤d either
mt,i ≤ k or mt,i ≥ pt,i−k−1. It follows that hi is an integer for every i = 1, . . . , d .
So, h = S′(0)= T h(0); i.e., S′ and T h agree on one point. Furthermore, S′ agrees
with the action of T h on the entire orbit of 0, which is dense. Therefore, S′ = T h.

Let α be in the orbit of ω in (O(ω), T ); i.e., α = T gω for some g ∈ Zd. Note

π S(α)= π S(T gω)= S′π(T gω)= S′T g(0)= T hT g(0)= πT hT gω = πT h(α).

So S(α) and T h(α) are in the same π-fiber. Since α is in the orbit of ω, it has a
unique preimage under π . Therefore S(α)= T h(α). And so S and T h agree on the
entire orbit of ω, which is dense. So S = T h. �

5. Positive-entropy Toeplitz subshift

We now construct an explicit example of a two-dimensional Toeplitz subshift which
has positive entropy. This example is constructed so that it obeys the condition (∗),
thus ensuring that it has a trivial centralizer.

Let h > 0 and choose an integer l0 such that log(l0−1)≤ h ≤ log(l0). For i ≥ 0,
let εi > 0 and {εi } be such that

∑
∞

i=0 εi < h/2.
We note that for any l and any ε > 0, there exists n ∈ N sufficiently large such

that
log(ln2

)

(n+ 2)2
≥ log(l)− ε (2)

since (n/(n+ 2))2→ 1.
Let q0 be chosen so that

log(l0
q2

0 )

(q0+ 2)2
≥ log(l0)−

ε0

2
.

Also require q2
0 ≥ l0. Define l1 = l

q2
0

0 . We notice that there are l
q2

0
0 square blocks

of side length q0 over the alphabet {0, 1, . . . , l0− 1}. We enumerate these blocks
as B(0)i for 0≤ i ≤ l1−1. Furthermore, we require that B(0)0 and B(0)1 contain every
letter from the alphabet. Let C (0)

i be the square block of side length q0+ 2 with the
block B(0)i surrounded by a 0 in the top left corner, a 1 in the bottom right corner,
and 0’s below the main diagonal and 1’s above it, as in the diagram below. We will
denote this as C (0)

i = 0B(0)i 1 for 0≤ i ≤ l1− 1:

0

...

0
0

· · · 0 1
1

...

11 · · ·

B(0)iC (0)
i = .
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For k ≥ 1, define lk = l
q2

k−1
k−1 and let qk be such that

log(lk
q2

k )

(qk + 2)2
≥ log(lk)−

εk

2
. (3)

Additionally, require that q2
k ≥ lk . Let B(k)i be all the square blocks of side length qk

over the alphabet {0, 1, . . . , lk−1} for 0≤ i ≤ lk+1−1. Require that B(k)0 and B(k)1
contain every letter from the alphabet. Let C (k)

i = 0B(k)i 1 for 0≤ i ≤ lk+1− 1.
Consider the following operation on finite blocks. Let {A1, A2, . . . , An} be

square blocks of the same side length |A| over some alphabet. Let B be a square
block over an alphabet containing {1, 2, . . . , n}. We define the block

C = {A1, A2, . . . , An} ∗ B

as C[i, j] = AB[i. j]. In particular, C will be a square block of side length |B| · |A|.
Our goal is to construct a sequence of blocks {At } that defines a system of k-blocks

and that satisfies the condition (∗). We proceed as follows: Let A(0)i = C (0)
i and

A(k)i = {A
(k−1)
0 , A(k−1)

1 , . . . , A(k−1)
lk−1 } ∗C (k)

i .

We note that since C (1)
0 and C (1)

1 have every letter of the alphabet {0, 1, . . . , l1−1},
the blocks A(1)0 and A(1)1 will have every 0-block as a subblock. Similarly, C (2)

0 and
C (2)

1 contain every letter in {0, 1, . . . , l2− 1} and so the blocks A(2)0 and A(2)1 will
contain every 1-block as a subblock. In general, we note that each block A(k)i for
i = 0, 1 has every (k−1)-block as a subblock.

We let

0

...

0
0

· · · 0 1
1

...

11 · · ·

_A0 = ,

where the side length of the square box A0 is q0 + 2, and the dash in the center
square indicates a square of side length q0 consisting of all holes. We note that A(0)i ,
i = 0, . . . , l1− 1, are 0-blocks corresponding to A0.

Inductively, define

A(k)0

A(k)0

...

A(k)0

A(k)0

A(k)0

Ak

...

Ak

A(k)1

· · ·

· · ·

. . .

· · ·

· · ·

A(k)0

Ak

...

Ak

A(k)1

A(k)1

A(k)1

...

A(k)1

A(k)1

Ak+1 = ,
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where there is a square block consisting of q2
k copies of Ak surrounded by 4qk + 4

copies of A(k)i for i = 0 or 1 on each side positioned similarly to 0’s and 1’s in A0.
Notice that A(k)0 and A(k)1 have no holes, so all the holes are contained in the middle
block of Ak blocks. Note that A(k)i , i = 0, . . . , lk−1, are the k-blocks corresponding
to the pattern Ak .

Let ω be the limiting array from the above process. Note that ω∈{0, . . . , l0−1}Z
2

and ω satisfies the condition (∗).

Proposition 5.1. The Toeplitz system (O(ω), T ) has positive entropy.

Proof. Define λk = qk+2 and pk = λ1λ2 · · · λk . Let hω be the entropy of (O(ω), T )
and let 2(n) be the number of square blocks of side length n appearing in ω. We
note that

hω = lim
n→∞

log(2(n))
n2 = lim

k→∞

log(2(pk))

p2
k

,

by switching to a subsequence.
There are lk+1 many k-blocks. We note that every block Ak contains every

(k−1)-block as a subblock. This is because the blocks C (k)
i for i = 0 or i = 1

contain every letter of the alphabet in them. This means that as we do the shuffling
process described above, the blocks A(k)i for i = 0 or i = 1 contain every single
block A(k−1)

i for 0 ≤ i ≤ lk − 1. Furthermore, since k-blocks are squares of side
length pk , there are at least as many blocks of side length pk occurring in ω as there
are k-blocks. Specifically, square blocks of length pk can occur at any position
within ω, while k-blocks only occur at specific positions. Hence we have

2(pk)≥ lk+1. (4)

So we have

hω ≥ lim sup
k→∞

log(lk+1)

p2
k

. (5)

By (3) we have
log(lk+1)

λ2
k
≥ log(lk)−

εk

2
.

It then follows by (2) that

log(lk+1)

p2
k
≥
λ2

k(log(lk)− εk/2)
p2

k
=

log(lk)− εk/2
p2

k−1
≥

log(lk)

p2
k−1
− εk .

Continuing, we have
log(lk+1)

p2
k
≥ h−

k∑
i=0

εi .

Taking the limit as k→∞, from (5), we have hω ≥ h/2> 0.
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It is a basic fact that every Toeplitz system is minimal, so this system is minimal.
It is either finite or uncountable, and since it has positive entropy, it cannot be finite.
So this is an infinite minimal Toeplitz system. �
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Associated primes of h-wheels
Corey Brooke, Molly Hoch, Sabrina Lato, Janet Striuli and Bryan Wang

(Communicated by Kenneth S. Berenhaut)

We study the associated primes of the powers of the cover ideal of h-wheels. The
main result generalizes a theorem of Kesting, Pozzi, and Striuli (2011).

Several pieces of information about an ideal I in a commutative noetherian
ring R are enclosed in its primary decomposition: Given an ideal I we can write
I =

⋂`
i=1 Qi , where the radical ideal of each ideal Qi is given by a prime ideal Pi

of the ring R. The prime ideals Pi for i = 1, . . . , ` are called associated primes of
the ideal I. The finiteness conditions imposed by a noetherian ring not only allow
the decomposition of an ideal into primary components, but also have stronger
repercussions, as shown in the following statement proved by Brodmann [1979] in
which the set Ass(R/I ) denotes the set of all the associated primes of I :

Let I be an ideal in a commutative noetherian ring; then the set
∞⋃

i=1

Ass(R/I i )

is finite. Moreover, there exists an integer m such that for all k ≥ m the equality
Ass(R/I m)= Ass(R/I k) holds.

The positive integer m identified by Brodmann’s theorem is called the index of
stability for the associated primes of I, denoted by astab(I ). Despite the simplicity
of the statement, the value of astab(I ) remains generally unknown.

Much work has been done recently for graded ideals in polynomial rings. While
a large upper bound for astab(I ) for monomial ideals was given in [Hoa 2006] in
terms of properties of the ideal itself, a lot of recent work supports the conjecture
that in a polynomial ring k[x1, . . . , xd ] the uniform bound astab(I )≤ d for every
graded ideal I ⊆ k[x1, . . . , xd ] holds; see for example [Herzog and Asloob Qureshi
2015, Theorem 4.1] for polymatroid ideals.

More cases for which the conjecture holds true come from ideals that arise from
graphs. In this paper, a graph G is given by a set of vertices VG = {x1, . . . , xd} and
a set of edges EG ; elements of EG are subsets of VG of cardinality 2. In particular,

MSC2010: primary 13F55, 05C25; secondary 05C38, 05E99.
Keywords: graph, polynomial ring, cover ideal, associated primes.
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if {xi , x j } is an edge then we say that xi and x j are adjacent vertices. Given such
a graph G, the edge ideal of G is an ideal of the polynomial ring k[x1, . . . , xd ]

generated by the monomials xi x j such that {xi , x j } ∈ EG .
The conjecture is verified for edge ideals. It follows from [Simis et al. 1994,

Theorem 5.9] that astab(I ) is equal to 1 for edge ideals of bipartite graphs. In [Chen
et al. 2002, Proposition 4.3], the authors show the conjecture, and in fact a stronger
statement, holds for edge ideals of nonbipartite graphs.

The authors of [Francisco et al. 2011] look at cover ideals of graphs (in fact the
paper deals with the more general notion of a hypergraph). We define the cover
ideal later, but in Corollary 4.9 of the paper above, the authors prove that if J is
the cover ideal of a simple graph then astab(J ) ≤ χ(G)− 1, where χ(G) is the
coloring number of the graph (which is bounded above by the number of vertices
of a graph). Further, they fully characterize prime ideals that appear as associated
primes of the second power of the cover ideal.

In line with this work, in [Kesting et al. 2011] the authors study which prime
ideals appear as associated primes of the third power of the cover ideal. They prove
that the wheel corresponds to an element of Ass(R/J 3).

In this paper we generalize the work of [Kesting et al. 2011]. Given an integer h,
we define the h-wheel and prove the following:

0.1. Theorem. Let G be graph with vertex set VG = {x1, . . . , xd} that is an
h-wheel. Denote by JG ⊆ k[x1, . . . , xd ] the cover ideal of G. Then the prime
ideal (x1, . . . , xd) belongs to Ass(R/J n) if and only if n ≥ h+ 2.

As a corollary, for every integer d ≥ 6 we deliver an ideal Id in a polynomial
ring with d variables such that astab(Id)≥ d − 3.

1. Definitions

We now introduce the notation and give the definitions used in the paper.

1.1. Given a graph G with vertex set VG={x1, . . . , xd}, we consider the polynomial
ring k[x1, . . . , xd ], which we often denote by k[VG]. If S is a subset of VG , then
the prime monomial ideal PS is the ideal generated by the variables x ∈ S. If
S = VG , then we denote PS by mG , the maximal homogeneous ideal in k[VG]. It
is worth noting that a prime monomial ideal is always generated by a subset of
the variables. In this setting, given a monomial m ∈ k[x1, . . . , xd ] we can write
m =

∏d
i=1 xαi

i , where αi ≥ 0. The support of m is the set of variables {xi | αi > 0}
and it is denoted as supp(m). We denote by ver(m) the subset of VG of vertices
labeled by the variables appearing in supp(m).
1.2. Definition. Given a graph G with vertex set VG = {x1, . . . , xd} and edge
set EG , a cover of G is a subset S of VG such that each edge in EG has a nonempty
intersection with S.
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The cover ideal JG ⊂ k[x1, . . . , xd ] is the monomial ideal generated by mono-
mials m such that ver(m) is a cover of G.

The following definition is a particular case of the definition of associated prime
given in [Eisenbud 1995, page 89].

1.3. Definition. Let I be a monomial ideal of the polynomial ring k[x1, . . . , xd ]

and let P = (xi1, . . . , xi`) be a monomial prime ideal containing I. We say that P
is an associated prime of I, and we write P ∈Ass(R/I ), if there exists a monomial
w ∈ k[x1, . . . , xd ] such that w /∈ I, xiw ∈ I for i = i1, . . . , i`, but xiw /∈ I for
i 6= i1, . . . , i`.

The monomial w is called a witness of P for the ideal I.

As shown in [Eisenbud 1995, Theorem 3.10], the associated primes of a monomial
ideal I defined in the previous definition are exactly the prime ideals that are radical
ideals in a minimal primary decomposition of I.

Let G be a connected graph with vertex set {x1, . . . , xd}. The edge ideal and
the cover ideal of G are dual to each other with respect to the Alexander duality;
see for a proof [Bruns and Herzog 1993, Chapter 5] or consult [Van Tuyl 2013]
for a quicker introduction to the subject. This fact implies that a prime ideal P is
an associated prime of the cover ideal if and only if P = (xi , x j ), where {xi , x j } is
in EG .

The following theorem extends the knowledge of associated primes to second
powers of the cover ideal [Francisco et al. 2010, Corollary 3.4].

1.4. Let G be a connected graph, let S be a subset of the vertex set VG , and let
R = k[VG]. A prime ideal PS ⊂ k[VG] belongs to Ass(R/J 2

G) if and only if the
induced subgraph generated by S is an odd cycle in G or S is an edge.

We concentrate our attention on a family of graphs called h-wheels, whose
definition is given below. First we need the following notion:

1.5. Let G be a graph with vertex set VG . Given a vertex x ∈ VG and a subset
S ⊆ VG of vertices of G, we denote by NS(x) the subset of S consisting of adjacent
vertices to x . If S is the set of all vertices in G then we use N (x) to denote the set
of all vertices adjacent to x .

1.6. Definition. A graph G with vertex set VG is an h-wheel if VG can be written
as the union of two disjoint sets, the set of rim vertices RG and the set of center
vertices CG, such that the following conditions hold:

(1) The subgraph induced by CG is the complete graph on h vertices.

(2) The subgraph induced by RG is an odd cycle.

(3) There exist x1, . . . , xk ∈ RG with k ≥ 3 such that NRG (y)= {x1, . . . , xk} for
all y ∈ CG.
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x4 x3

y3 y2

x5 x2
y1

x1

Figure 1. A 3-wheel.

(4) For every y ∈ CG, the vertex y belongs to at least two odd cycles in the
subgraph induced by y and NRG (y).

We call k the radial number for G. For each i = 1, . . . , k− 1, set `i as the length
of the path along the subgraph induced by RG from xi to xi+1, and set `k as the
length from xk to x1. The positive integers `1, . . . , `k are called the radial lengths.

In [Kesting et al. 2011], the authors studied the 1-wheel, which we call a wheel
for simplicity. Notice that given an h-wheel G and a vertex y ∈ CG, the subgraph
induced by y and RG is a wheel.

1.7. Example. Figure 1 is a representation of a 3-wheel G. We have

CG
= {y1, y2, y3}, RG

= {x1, x2, x3, x4, x5},

NRG (y1)= NRG (y2)= NRG (y3)= {x1, x2, x3}.

In the rest of the paper we rely on the following constructions.

1.8. Definition. Given a graph G and a vertex x ∈ VG , the contraction of G via x
is a new graph obtained from G by deleting x and connecting all the vertices in
N (x) to each other.

1.9. Definition. Given a graph G, let x1 and x2 be two adjacent vertices in G. A
subdivision of G via the edge {x1, x2} is a graph obtained from G by deleting the
edge {x1, x2}, adding a new vertex y, and adding two new edges {x1, y} and {x2, y}.

2. Preliminary lemmas

We now prove several lemmas that are used to prove our main result.
The first lemma describes necessary conditions for a monomial to be a witness

for a power of the cover ideal of a graph G.
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2.1. Lemma. Let G be a graph with vertex set VG , and let JG be the cover ideal of
G in the ring R = k[VG]. Let S ⊆ VG , and assume that PS ∈ Ass(R/J n

G). Let w be
a witness for PS . Then xn does not divide w for any x ∈ S.

Proof. By the definition of witness, w 6∈ J n
G .

Suppose toward contradiction that there exists x ∈ S such that xn divides w. Since
the monomial xw is in J n

G , there exist m1, . . . ,mn ∈ JG such that xw = m1 · · ·mn .
Moreover, since xn

|w, by the pigeonhole principle we know that there exists an
integer s such that 1 ≤ s ≤ n and x2 divides ms . Let m′s be the monomial ms/x .
Since ms ∈ JG , it follows that ver(ms) is a cover for G. Since supp(ms)= supp(m′s),
we know ver(ms′) is a cover for G, and it follows that m′s ∈ JG . In particular w can
be written as the product of the n monomials m1 · · ·ms−1m′s · · ·mn , which shows
that w ∈ J n

G . �

In the rest of the paper, if m=
∏d

i=1 xαi
i is a monomial in the ring k[x1, . . . , xd ],

then degm xi = αi , while the total degree of m is given by
∑d

i=1 αi and is denoted
by tot deg m.

The following corollary is an immediate consequence of the previous lemma.

2.2. Corollary. Let G be a graph with vertex set VG of cardinality larger than 2.
Let JG be the cover ideal of G in the polynomial ring k[VG]. Assume that {x1, x2}

is an edge of G and assume that mG ∈ Ass(R/J n
G). If w is a witness of mG , then

x1, x2 ∈ supp w. Moreover, degw x1+ degw x2 ≥ n.

Proof. Assume for the sake of contradiction that x2 does not divide w. Let x ∈
VG \ {x1, x2}. The monomial xw can be written as the product of n monomials
m1 · · ·mn such that mi ∈ JG for all i = 1, . . . , n. By Lemma 2.1 degw x1 ≤ n− 1,
and therefore we can conclude that there exists an i ∈ {1, . . . , n} such that x1 does
not divide mi . Since x2 does not divide w, it follows that x2 does not divide mi .
In particular, ver(mi ) cannot be a cover of G, as neither x1 nor x2 are in supp(mi ),
while {x1, x2} forms an edge.

Notice that either x1 or x2 divides mi , as mi ∈ JG for all i = 1, . . . , n, verifying
the final statement. �

In the following Kh denotes the complete graph in h vertices. Notice that every
cover of Kh contains at least h− 1 vertices.

2.3. Lemma. Let G be a graph with vertex set VG . Let JG be the cover ideal in the
polynomial ring R = k[VG]. If G contains the complete graph Kh as an induced
subgraph but G 6= Kh , then mG /∈Ass(R/J n

G) for all integers n such that n ≤ h−1.

Proof. Suppose G contains Kh as an induced subgraph. Without loss of gener-
ality we may label the vertices of Kh with the variables {x1, . . . , xh}. Towards
contradiction, assume that mG ∈Ass(R/J n

G) with n ≤ h−1, and let w be a witness.
For every monomial c ∈ JG , we have that c ∈ JKh . This implies that at least
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h − 1 variables among x1, . . . , xh belong to supp c. Therefore, if c ∈ J n
G then∑h

i=1 degc xi ≥ n(h− 1)= nh− n.
However, we know from Lemma 2.1 that for each variable xi the inequality

degw xi ≤ n− 1 holds, so that
∑h

i=1 degw xi ≤ h(n− 1)= hn− h.
If x ∈ VG and x 6= xi for i = 1, . . . , h, then xw ∈ J n

G , as w is a witness of mG ,
which yields

n(h− 1)≤
h∑

i=1

degx j w
xi =

h∑
i=1

degw xi ≤ h(n− 1).

This gives us the desired contradiction h ≤ n. �

In the following lemma, under proper assumptions, we can be more specific
about the degree formula presented in Corollary 2.2.

2.4. A monomial n ∈ k[x1, . . . , xd ] is said square-free if for all i = 1, . . . , d the
monomial x2

i does not divide n. For a graph G with cover ideal JG , given a
monomial m ∈ JG , one can always find a square-free monomial n ∈ JG such that
n divides m. In particular for a product of n monomials m = m1 · · ·mn such that
mi ∈ JG for all i = 1, . . . , n and degm x j ≤ n − 1 for all j = 1, . . . , d, we may
assume that each mi is square-free.

2.5. Lemma. Let G be a graph with vertex set VG of cardinality bigger than 4.
Let JG be the cover ideal of G in the polynomial ring k[VG]. Assume that there
are x1, x2, x3, x4 ∈ VG such that N (x2) = {x1, x3} and N (x3) = {x2, x4}. Assume
further that, for a given positive integer n, mG ∈ Ass(R/J n

G) with witness w. If
degw x1 = n− 1, then degw x2+ degw x3 = n.

Proof. Since w is a witness for the ideal J n
G , we know that degw x2+ degw x3 ≥ n

by the adjacency assumption and Corollary 2.2.
Since w is a witness for mG , we have x2w=m1 · · ·mn , where m1, . . . ,mn ∈ JG .

By Lemma 2.1, degw xi ≤ n − 1, so we may assume that the monomial mj is
square-free for all j = 1, . . . , n; see 2.4.

Suppose for contradiction that degw x2+ degw x3 ≥ n+ 1, which implies that
degx2w

x2+ degx2w
x3 ≥ n+ 2.

By Corollary 2.2, both x2, and x3 are in supp w. This implies that x2
3 divides x2w,

as degx2w
x2 ≤ n, and therefore there exist two integers i1 and i2 such that x2 and x3

belong to supp mi1 and supp mi2 . If also x1 belongs to supp mi j for some j = 1, 2,
then mi j /x2 ∈ JG , since x1x3 divides mi j /x2. Thus, in this case,

w =
x2m
x2
= m1 · · ·

mi j

x2
· · ·mn ∈ J n

G,

a contradiction, since w is a witness. Thus we may assume that x1 does not divide
mi1 and mi2 , which implies that degw x1 < n− 1, contradicting the hypothesis. �
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The careful analysis of the degrees of the witnesses allows us to draw useful
conclusions about when mG is an associated prime after contracting a vertex.

2.6. Lemma. Let G be a graph with vertex set VG . Let JG be the cover ideal
of G in the polynomial ring R = k[VG]. Assume x1, y1, y2, x2 ∈ VG such that
N (y1) = {x1, x2} and N (y2) = {y1, x2}. Assume that mG ∈ Ass(R/J n

G) for some
integer n and that there exists a witness w such that degw x1 = n− 1. Obtain G ′ by
contracting y1 and y2. Then mG ′ belongs to Ass(k[VG ′]/J n

G ′).

Proof. Set a1 = degw y1 and let a2 = degw y2. We prove that the monomial w′ =

w/(ya1
1 ya2

2 ) is a witness for the ideal mG ′ , and thus mG ′ is an element of Ass(R/J k
G ′).

First, we show by contradiction that w′ 6∈ J n
G ′ ; toward this end, suppose that

w′ = m1 · · ·mn such that mi ∈ JG ′ . For every x ∈ VG ′ ⊂ VG , we have degw′ x =
degw x ≤ n− 1, where the inequality is the content of Lemma 2.1. Therefore, by
2.4, we may assume that, for each x ∈ VG ′ , x2 does not divide mj for j = 1, . . . , n.
For 1≤ i ≤ n, define the monomial ni as

ni =


mi if x1, x2 ∈ supp mi ,

y1mi if x1 /∈ supp mi ,

y2mi if x2 /∈ supp mi .

Since mi ∈ JG ′ and {x1, x2} is an edge of the graph G ′, each mi is divisible by at least
one of x1 or x2, so that our construction of ni is well-defined. Moreover, for the same
reason, for each i such that 1≤ i ≤ n, if y1 ∈ supp ni or y2 ∈ supp ni then ni ∈ JG .

Denote by w′′ the product n1 · · · nn and set bi = degw′′ yi for i = 1, 2. There are
n− b1− b2 monomials among the ni such that y1, y2 /∈ supp ni and therefore there
are n− b1− b2 monomials among the ni such that ver(ni ) are not covers of G as
{y1, y2} is an edge in G. We may assume, by renaming the ni , that{

ni /∈ JG, i = 1, . . . , n− b1− b2,

ni ∈ JG, i = n− b1− b2+ 1, . . . , n.

Since degmi
x ≤ 1 for every x ∈VG ′ , we have degw′′ yj = n−degw′′ x j for j = 1, 2.

In particular,

bj = degw′′ yj = n− degw′′ x j = n− degw x j ≤ degw yj = ai ,

where the inequality follows from Corollary 2.2, the fact that w is a witness for mG

in Ass(R/J n
G), and the assumption that {x j , yj } is an edge of G for j = 1, 2. As

degw′′ x = degw x for all x ∈ VG ′ , we know w′′ divides w and w = ya1−b1
1 ya2−b2

2 w′′.
Notice that for each i = 1, . . . , n−b1−b2, and for each j = 1, 2, the monomial

yj ni is in JG . Since a1 + a2 = n by Lemma 2.5, ya1−b1
1 ya2−b2

2 n1 · · · nn−b1−b2 ∈

J n−b1−b2
G , so that w = ya1

1 ya2
2 w′′ = ya1−b1

1 ya2−b2
2 n1 · · · nk ∈ J n

G , a contradiction to
our assumption about w being a witness. Thus, we conclude that w′ could not have
been in J n

G ′ to begin with, completing the first section of the proof.
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Next, we show that for x ∈ VG ′ , we have xw′ ∈ J n
G ′ . But xw ∈ J n

G , and in
particular xw = m1 · · ·mn , where mi ∈ JG for 1 ≤ i ≤ n. Since a1 + a2 = n by
Lemma 2.5, and since each mi must be divisible by at least one of y1 or y2 (since
{y1, y2} ∈ EG), it must be the case that each mi contains precisely one of y1 or y2.
This implies that y1 ∈ supp mi if and only if x2 ∈ supp mi , and y2 ∈ supp mi if and
only if x1 ∈ supp mi , since ver(mi ) is a cover for G. Thus either x1 or x2 belong
to supp(mi ) for every i = 1, . . . , n. For this reason the monomials defined as

m′i =
{

mi/y1 if y1 ∈ supp mi ,

mi/y2 if y2 ∈ supp mi

have the property that ver(m′i ) is a cover for G ′ for all i = 1, . . . , n. Therefore we
have xw′ = m′1 · · ·m

′
n ∈ J n

G ′ , as desired. �

The following lemma gives instances for which a variable appears with maximal
degree in a witness.

2.7. Lemma. Let G be a graph with vertex set VG . Let JG be the cover ideal for
G in the polynomial ring R = k[VG]. Assume that there exists a positive integer n
such that mG ∈ Ass(R/J n

G) with witness w. Suppose G contains a proper induced
subgraph K that is a complete graph in n + 1 vertices with one edge {y1, y2}

removed. Then degw(y1)= n− 1.

Proof. Label the vertices in VK as y1, y2, . . . , yn+1. By Lemma 2.1, we know
degw(y1) ≤ n− 1, so it remains to show that degw(y1) ≥ n− 1. Suppose for the
sake of contradiction that degw(y1) < n− 1, and let x be a vertex of G but not a
vertex of the proper subgraph H. Since xw ∈ J n

G, we can write xw = m1 · · ·mn ,
with mi ∈ JG . This implies that for each i = 1, . . . , n, ver(mi ) is a cover of G and
therefore a cover for K .

Since degw(y1) < n− 1, suppose without loss of generality that y1 -mn−1 and
y1 -mn . Then yj ∈ supp(mi ) for 3 ≤ j ≤ n + 1 and i = n − 1, n since {y1, yj } is
an edge of H and therefore G. In particular y3 · · · yn+1 |mn−1 and y3 · · · yn+1 |mn .
Again by Lemma 2.1, we know that degw(yj ) ≤ n − 1, so yj can divide at most
n− 3 of the monomials m1, . . . ,mn−2 for 3≤ j ≤ n+ 1. Thus,

n+1∑
j=3

n−2∑
i=1

degmi
(yj )≤

n+1∑
j=3

(n− 3)= n2
− 4n+ 3.

On the other hand, each mi must cover H and so contains at least all but one of
y3, . . . , yn+1, whence

n−2∑
i=1

n+1∑
j=3

degmi
(yj )≥

n−2∑
i=1

(n− 2)= n2
− 4n+ 4,
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which is obviously a contradiction. Thus we conclude that degw(y1) = n− 1, as
desired. �

In the rest of the paper, given a finite set S, we denote by |S| its cardinality.

2.8. Lemma. Let G be an h-wheel with rim RG and center CG. Let k be its radial
number and `1, . . . , `k its radial lengths. If W is a vertex cover for G that contains
all the vertices in CG, then

|W | ≥ 1
2(|G| − h+ 1)+ h.

If W is a vertex cover for G missing one vertex from CG, then

|W | ≥ k+ h− 1+
⌊1

2(`1− 1)
⌋
+ · · ·+

⌊ 1
2(`k − 1)

⌋
.

Moreover,

k+ h− 1+
⌊ 1

2(`1− 1)
⌋
+ · · ·+

⌊1
2(`k − 1)

⌋
≥

1
2(|G| − h+ 1)+ h.

Proof. Assume that W contains CG. The vertex set W ∩ RG has to be a vertex cover
for RG. Since RG is an odd hole, the cardinality of W ∩ RG has to be at least

1
2(|R

G
| + 1)= 1

2(|G| − h+ 1).

Therefore the cardinality of W is at least

1
2(|G| − h+ 1)+ h.

Assume now that W does not contain all the center vertices. If G were a 1-wheel,
we know from [Kesting et al. 2011, Lemma 2.1] that the cover not containing the
center would have cardinality of at least

k+
⌊ 1

2(`1− 1)
⌋
+ · · ·+

⌊1
2(`k − 1)

⌋
,

which is also the number of vertices that W needs to have to cover the subgraph
induced by the 1-wheel with the center not in W. The cover W needs to contain
further the other h− 1 centers, so that the following inequality holds:

|W | ≥ k+ h− 1+
⌊1

2(`1− 1)
⌋
+ · · ·+

⌊ 1
2(`k − 1)

⌋
.

We now need to show that this value is greater than 1
2(|G| − h+ 1)+ h. Denote

by C a subgraph of G isomorphic to a 1-wheel. We know that

k+
⌊ 1

2(`1− 1)
⌋
+ · · ·+

⌊1
2(`k − 1)

⌋
≥

1
2 |C | + 1,

as shown in [Kesting et al. 2011]. This implies

k+
⌊ 1

2(`1− 1)
⌋
+ · · ·+

⌊ 1
2(`k − 1)

⌋
≥

1
2(|G| − h+ 1)+ 1,
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as |G| − h + 1 is the cardinality of a subgraph of G isomorphic to a 1-wheel. It
follows that

k+ h− 1+
⌊ 1

2(`1− 1)
⌋
+ · · ·+

⌊1
2(`k − 1)

⌋
≥

1
2(|G| − h+ 1)+ h. �

3. Main theorems

We first prove that if G is an h-wheel then mG appears as an associated prime of
low powers of the cover ideal.

3.1. Theorem. Let G be an h-wheel, and let JG be the cover ideal of G in the ring
R = k[VG]. Then mG /∈ Ass(R/J n

G) if n ≤ h+ 1.

Proof. Let y1, . . . , yh label the vertices in CG, let x1, x2, . . . , xk label the radial
vertices, and let `i be the radial lengths for i = 1, . . . , k. Denote by xi j , for
j = 1, . . . , `i−1, the vertices between xi and xi+1 if i < k and the vertices between
xk and x1 if i = k.

Because the centers and one radial vertex form a complete graph in h+1 vertices,
Lemma 2.3 implies that G /∈ Ass(R/J n) for every integer n such that n ≤ h.

We next show that G /∈ Ass(R/J h+1
G ), and to do so we consider two cases.

Case 1: Assume that there are two radial vertices, say xt and xt+1, such that
{xt , xt+1} is an edge. In this case we can conclude that G /∈ Ass(R/J h+1) by a
direct application of Lemma 2.3 since xt , xt+1, and the centers of the h-wheel G
form a complete (h+2)-graph.

Case 2: Assume that G is an h-wheel with no two radial vertices adjacent. We
know by the definition of an h-wheel that there exist an xt and an xt+1 such that the
path from xt to xt+1 is odd. By relabeling the vertices of G we may assume that
t = 1. Suppose for a contradiction that there exists a witness w for the maximal
ideal mG to be in Ass(R/J h+1). Using Lemma 2.7 with K being the induced
subgraph by CG, and the vertices x1, x2, we can conclude that the degw x1 = h.
Thus from Lemma 2.5, we have that degw x11+ degw x12 = h+ 1. Further, by an
application of Lemma 2.6, we can contract x11 and x12 to form a new graph G ′ such
that mG ′ ∈ Ass(k[VG ′]/J h+1

G ′ ). Because the path from x1 to x2 along the subgraph
induced by RG is odd, we can perform this operation until x1 is adjacent to x2 and
conclude the proof by an application of Case 1. �

3.2. Theorem. Let G be an h-wheel and let JG be the cover ideal of G in the ring
R = k[VG]. Then mG ∈ Ass(R/J h+2

G ).

Proof. Label with y1, . . . , yh the vertices in CG, and with x1, . . . , xk the radial
vertices, where k is the radial number. Let `i denote the radial lengths for i =
1, . . . , k. Label by xi j , for j = 1, . . . , `i − 1, the vertices between xi and xi+1 if
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i < k and the vertices between xk and x1 if i = k. The subgraph RG is an odd cycle.
We set d to be the size of RG. Notice that `1+ · · ·+ `k = d.

We prove that mG is in Ass(R/J h+2
G ) by providing a witness. Let w be the

monomial

w =

( ∏
i=1,...,h

yh+1
i

)( ∏
i=1,...,k

xh+1
i

)( ∏
i=1,...,k

j=1,...,`i−1

xa
i j

)
,

where a = 1 if j is odd, and a = h+ 1 if j is even.
To show that w is the desired monomial, we first prove that

tot deg(w)= hk+ h(h+ 1)+ n+ h
(⌊1

2(l1− 1)
⌋
+ · · ·+

⌊ 1
2(lk − 1)

⌋)
.

In computing the deg(w), the contribution from the variables ym and xi , for
m= 1, . . . , h and i = 1, . . . , k, is given by (h+1)h+(h+1)k. For i = 1, . . . , k−1,
between xi and xi+1, there are `i −1 vertices, and there are `k−1 vertices between
xk and x1. Given an integer s, there are

⌊ 1
2 s
⌋

even integers and
⌈1

2 s
⌉

odd integers
between 1 and s. Therefore, in computing tot deg(w), the contributions from the
variables xi j are given by

(h+ 1)
(⌊1

2(l1− 1)
⌋
+ · · ·+

⌊ 1
2(lk − 1)

⌋)
+
⌈ 1

2(l1− 1)
⌉
+ · · ·+

⌈ 1
2(lk − 1)

⌉
.

The total degree of the monomial w is therefore equal to

tot deg(w)= (h+1)k+(h+1)h+
k∑

i=1

⌈ 1
2(`i−1)

⌉
+(h+1)

k∑
i=1

⌊ 1
2(`i−1)

⌋
= (h+1)h+(h+1)k+h

k∑
i=1

⌊1
2(`i−1)

⌋
+

k∑
i=1

(⌊1
2(`i−1)

⌋
+
⌈1

2(`i−1)
⌉)

= hk+h(h+1)+k+
k∑

i=1

(`i−1)+h
k∑

i=1

⌊1
2(`i−1)

⌋
= hk+h(h+1)+

k∑
i=1

`i+h
k∑

i=1

⌊ 1
2(`i−1)

⌋
= hk+h(h+1)+d+h

k∑
i=1

⌊1
2(`i−1)

⌋
.

To prove that w does not belong to J h+2
G , we first show that

tot deg(w) < 2
( 1

2(|G| − h+ 1)+ h
)
+ h

(
k+ h− 1+

k∑
i=1

⌊1
2(`i − 1)

⌋)
. (3.2.1)
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Supposing this inequality is not satisfied, we have

2
( 1

2(|G| − h+ 1)+ h
)
+ hk+ h2

− h+ h
k∑

i=1

⌊ 1
2(`i − 1)

⌋
≤ hk+ h2

+ h+ d + h
k∑

i=1

⌊ 1
2(`i − 1)

⌋
,

which implies
h+ d ≥ 2

( 1
2(|G| − h+ 1)+ h

)
− h,

or h+ d ≥ |G| + 1. But |G| = |CG
| + h = d + h. Thus

d + h ≥ d + h+ 1,

which is impossible. Thus the inequality holds.
Now we show that this inequality implies w /∈ J h+2

G . Assume otherwise. Then
we can write w = hm1 · · ·mh+2 such that for each i = 1, . . . , h+ 2 not only the
monomial mi ∈ JG but also ver(mi ) is a minimal cover for G. The total degree of
each mi is equal to |ver(mi )|. Therefore, by Lemma 2.8, we have

tot deg(mi )≥
1
2(|C | − h+ 1)+ h

if ver(mi ) is a cover containing the vertices of CG, or

tot deg(mi )≥ k+ h− 1+
⌊ 1

2(`1− 1)
⌋
+ · · ·+

⌊ 1
2(`k − 1)

⌋
if ver(mi ) is a cover that does not contain all vertices of CG.

Notice that
∑h

i=1 degw yi = h(h+ 1). If ver(mi ) is a cover that contains all the
vertices of CG for each i = 1, . . . , h− 2 then

∑h
i=1 degw yi ≥ h(h+ 2), which is a

contradiction. In particular, there are least h monomials among the monomials mi

that correspond to covers not containing all vertices in CG. An application of
Lemma 2.8, yields the inequality

tot deg(w)= tot deg(h)+tot deg(m1)+· · ·+tot deg(mh+2)

≥ 2
( 1

2(|C |−h+1)+h
)
+h

(
k+h−1+

⌊ 1
2(l1−1)

⌋
+· · ·+

⌊ 1
2(lk−1)

⌋)
.

This contradicts inequality (3.2.1) and shows that w /∈ J h+2
G .

To finish the proof, we need to show that for every vertex x ∈ VG the monomial
xw is in J h+2

G .
For every i = 1, . . . , h, let Ci be the induced subgraph isomorphic to the 1-wheel

with center in yi . In [Kesting et al. 2011, Theorem 2.2], the authors prove that

wi = y2
i

∏
i=1,...,k

x2
i

∏
j odd

xi j

∏
j even

x2
i j (3.2.2)
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is a witness for mCi ∈ Ass(k[VCi ]/J 3
Ci
). Pick a vertex x ∈ VG . Without loss of

generality we may assume that x ∈ VC1 . Then xw1 ∈ J 3
C1

, so y3
2 · · · y

3
h xw1 ∈ J 3

G .
Define m =

∏
i=1,...,k x2

i
∏

j odd xi j
∏

j even x2
i j and notice that

w =
yh−1

1 yh+1
2 · · · yh+1

h w1 ·mh−1∏
i, j xh−1

i xh−1
i j

.

Define
mi =

y1 · · · yi−1 yi+1 · · · yh ·m∏
i, j xi xi j

for each i = 2, . . . , h. It is easy to see that ver(mi ) is a cover for G for every
i = 2, . . . , h. The following equality shows that xw ∈ J h+2

G :

xw = (y3
2 · · · y

3
h xw1)m2 · · ·mh . �

Finally we prove that if G is an h-wheel then mG is an associated prime in high
powers of the cover ideal.

3.3. Theorem. Let G be an h-wheel and let JG be the cover ideal of G in the ring
R = k[VG]. Then mG ∈ Ass(R/J n

G) for all n ≥ h+ 2.

Proof. Fix an integer n ≥ h+ 2 and let t satisfy n = h+ 2+ t . Let S be the cover
of G that has all the vertices in CG and every other vertex in RG. In particular
|S| = h+ 1

2(|R
G
| + 1).

Consider the monomial w̃ = (m)tw, where w is the witness constructed in the
proof of Theorem 3.2 and m is the squarefree monomial such that ver(m)= S. In
particular, tot deg m= h+ 1

2(|R
G
|+1)= h+ 1

2(|G|−h+1). Using the inequality
(3.2.1) we obtain

tot deg(w̃)

< t
( 1

2(|G|−h+1)+h
)
+2
(1

2(|G|−h+1)+h
)
+h

(
k+h−1+

k∑
i=1

⌊ 1
2(`1−1)

⌋)
= (n−h)

( 1
2(|G|−h+1)+h

)
+h

(
k+h−1+

k∑
i=1

⌊ 1
2(`1−1)

⌋)
.

We claim that w̃ is a witness for mG ∈ Ass(k[VG]/(J n
G)). If, toward contradiction,

w̃ ∈ J n
G , then we can write w̃ = hm1 · · ·mn such that, for each i = 1, . . . , n,

not only the monomial mi ∈ JG but also ver(mi ) is a minimal cover for G. As∑h
i=1 degw̃ yi = th+h(h+1)= (n−1)h, there are at least h covers among ver(mi )

that do not contain all of CG. This implies

tot deg(w̃)= tot deg(h)+ tot deg(m1)+ · · ·+ tot deg(mn)

≥ (n− h)
( 1

2(|G| − h+ 1)+ h
)
+ h

(
k+ h− 1+

k∑
i=1

⌊1
2(`1− 1)

⌋)
,
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contradicting the inequality above. To finish, let x ∈ VG . Then xw̃ = (m)t xw ∈

J t+h+2
G , since xw ∈ J h+2

G , as we showed in the proof of Theorem 3.2, and m ∈ JG

by assumption. �

We conclude the paper with the following:

3.4. Corollary. For every integer d there exists an ideal Id ⊂ k[x1, . . . , xd ] such
that astab(Id)= d − 3.

Proof. Consider the h-wheel with h = d − 5 such that the graph induced on RG is
a 5-cycle. Theorems 3.2 and 3.3 show that astab(Id)= d − 5+ 2= d − 3. �
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An elliptic curve analogue to the Fermat numbers
Skye Binegar, Randy Dominick,

Meagan Kenney, Jeremy Rouse and Alex Walsh

(Communicated by Bjorn Poonen)

The Fermat numbers have many notable properties, including order universality,
coprimality, and definition by a recurrence relation. We use rational points of
infinite order on elliptic curves to generate sequences that are analogous to the
Fermat numbers. We demonstrate that these sequences have many of the same
properties as the Fermat numbers, and we discuss results about the prime factors
of sequences generated by specific curves and points.

1. Introduction

In August 1640, Fermat wrote a letter to Frénicle [Fermat 1894, p. 205] recounting
his discovery that if n is not a power of 2, then 2n

+ 1 is composite. Fermat also
stated that if n is a power of 2, then 2n

+1 is prime. As examples, he listed the first
seven numbers in this sequence, Fn = 22n

+ 1, n ≥ 0, now called the sequence of
Fermat numbers.

In 1732, Euler discovered that Fermat’s observation was incorrect, and that
641 divides F5 = 4294967297. Indeed, it is now known that Fn is composite for
5≤ n ≤ 32. Very little is known about whether any Fn are prime; heuristics suggest
that only finitely many of them are prime. However, mathematicians have been
unable to prove that there are infinitely many composite Fermat numbers.

The primality of the Fermat numbers is connected with the classical problem of
constructing a regular polygon with n sides using only an unmarked straightedge
and a compass. In 1801, Gauss proved that if a positive integer n is a power
of 2 multiplied by a product of distinct Fermat primes, then a regular n-gon is
constructible with a ruler and compass. The converse of this result was proven by
Wantzel in 1837. (For a modern proof, see [Dummit and Foote 2004, p. 602].)

Elliptic curves are central objects in modern number theory and have led to
novel methods of factoring [Lenstra 1987b], proofs that numbers are prime [Atkin
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Keywords: elliptic curves, Fermat numbers, duplication formula.
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and Morain 1993], and cryptography [Koblitz 1987; Miller 1986]. They have
also played a role in a number of important theoretical developments, the most
spectacular of which is the “modular method” that led to the solution of Fermat’s
last theorem [Wiles 1995]. Other such developments include the determination of
all integer solutions to x2

+ y3
= z7 with gcd(x, y, z)= 1 [Poonen et al. 2007] and

the determination of all perfect powers in the Fibonacci sequence [Bugeaud et al.
2006]. The present paper relies on both elliptic curves and the sequence of Fermat
numbers. We work with elliptic curves in the form E : y2

= x3
+ax2

+bx+ c. We
begin with our central definition:

Definition 1. For an elliptic curve E and a point P ∈ E(Q) of infinite order, let
2k P = (mk/e2

k , nk/e3
k) denote P added to itself 2k times under the group law

on E(Q). Here mk, nk, ek ∈ Z with ek ≥ 1 and gcd(mk, ek)= gcd(nk, ek)= 1. We
define the sequence of elliptic Fermat numbers {Fk(E, P)} by Fk(E, P)= nk .

Fermat’s observation that if n is not a power of 2, then 2n
+ 1 is not prime can

be explained as follows. If b is an odd divisor of n, and q is a prime divisor of
2n/b
+1, then 2n/b

≡−1 (mod q) (so 2n/b has order 2 in F×p =Gm(Fp)). Then 2n
≡

(−1)b ≡−1 (mod q) and so q | 2n
+ 1. Since q ≤ 2n/b

+ 1< 2n
+ 1, the number

2n
+ 1 cannot be prime.
We are essentially replacing Gm with an elliptic curve E . If P ∈ E(Q) is a

point on E , p is a prime of good reduction for E , and n P = (an/b2
n, cn/b3

n), then
n P ∈ E(Fp) has order 2 if and only if the y-coordinate of n P reduces to 0 mod p,
that is, p | cn . As above, if b is an odd divisor of n and there is a prime q of good
reduction for E so that q | |cn/b|, then q | cn . It follows that cn cannot be prime
unless |cn/b| = |cn|, or all prime factors of cn/b are in S, the set of primes of bad
reduction for E .

The growth rate of the numbers cn implies that |cn/b| = |cn| for only finitely
many n. The group law on E implies that if all prime factors of cn/b are in S, then
2(n/b)P is an S-integral point, of which there are only finitely many on E (and in
some cases, none).

It follows that possibilities for cn to be prime when n has an odd divisor are
very constrained. For this reason, we choose to focus on the case where n does not
have any odd divisors, namely when n is a power of 2. This leads directly to our
definition of elliptic Fermat numbers above.

Our goal is to show that the sequence {Fk(E, P)} strongly resembles the classic
Fermat sequence. We do so by adapting properties of the classic Fermat numbers
and proving that they hold for the elliptic Fermat numbers. It is well known, for
example, that any two distinct classic Fermat numbers are relatively prime, as
Goldbach proved in a 1730 letter to Euler. The elliptic Fermat numbers have a
similar property:



AN ELLIPTIC CURVE ANALOGUE TO THE FERMAT NUMBERS 429

Theorem 2. For all k 6= `, if p is a prime that divides gcd(Fk(E, P), F`(E, P)),
then p is a prime of bad reduction for E : y2

= x3
+ ax2

+ bx + c.

The classic Fermat numbers also have the useful property that for any non-
negative integer N, 2 has order 2k+1 in (Z/NZ)× if and only if N | F0 · · · Fk and
N -F0 · · · Fk−1. This property, which we call order universality, provides a powerful
connection between order and divisibility. A close parallel applies to the elliptic
Fermat numbers:

Theorem 3. Let 1(E) be the discriminant of E and suppose that N is a positive
integer with gcd(N , 61(E))= 1. Then P has order 2k+1 in E(Z/NZ) if and only
if N | F0(E, P) · · · Fk(E, P) and N -F0(E, P) · · · Fk−1(E, P).

In the case where N = p for some odd prime p, we can make this statement
stronger. For the classic Fermat numbers, we know that 2 has order 2k+1 in F×p if
and only if p | Fk . The elliptic Fermat numbers yield the following result:

Corollary 4. For any odd prime p -61(E), P has order 2k+1 in E(Fp) if and only
if p | Fk(E, P).

This corollary plays a role in several important results in the paper.
Additionally, and quite interestingly, the classic Fermat numbers can be defined

by several different recurrence relations. In Section 4, we present the following
analogous result:

Theorem 5. Let E : y2
= x3
+ax2

+bx+ c be an elliptic curve, and let P ∈ E(Q)
be a point of infinite order. There is a sequence of integers {τk} so that

mk(E, P)=
1
τ 2

k
(m4

k−1− 2bm2
k−1e4

k−1− 8cmk−1e6
k−1+ b2e8

k−1− 4ace8
k−1), (1)

Fk(E, P)=
1
τ 3

k

(
−2amk−1mke2

k−1τ
2
k − 4bmk−1e4

k−1 F2
k−1− bmke4

k−1τ
2
k

− 8ce6
k−1 F2

k−1+ 4m3
k−1 F2

k−1− 3m2
k−1mkτ

2
k
)
, (2)

ek(E, P)=
1
τk
(2Fk−1ek−1). (3)

Unlike the various classic Fermat recurrence relations, which only depend on
previous terms, the elliptic Fermat recurrence relation we have discovered relies on
several other sequences of integers, namely mk , ek , and τk .

This equation follows naturally from the definition of Fk(E, P) and the dupli-
cation formula, which we will see in Section 2. In order to have a true recurrence
relation, however, we need a way to explicitly calculate |τk |. Luckily, we know the
following fact:

Theorem 6. The |τk | are eventually periodic, and there is an algorithm to compute
|τk | for all k.
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In Section 5, we address one of the most famous aspects of the classic Fermat
numbers: the question of their primality. Whereas the primality of the Fermat
numbers remains an open question, the following result gives conditions under
which the elliptic Fermat numbers are always composite. In this result, “the egg”
refers to the nonidentity component of the real points of the elliptic curve:

Theorem 7. For an elliptic curve E : y2
= x3
+ ax2

+ bx , assume the following:

(i) E(Q)= 〈P, T 〉, where P has infinite order and T = (0, 0) is a rational point
of order 2.

(ii) E has an egg.

(iii) T is on the egg.

(iv) T is the only integral point on the egg.

(v) P is not integral.

(vi) gcd(b,m0)= 1.

(vii) The equation x4
+ax2 y2

+by4
=±1 has no integer solutions where y 6∈ {0,±1}.

Then Fk(E, P) is composite for all k ≥ 1.

Remark. There are many theorems in the literature about the compositeness of
coordinates of rational points on elliptic curves that are in the image of an isogeny;
see for example the main theorem of [Everest et al. 2004], and Theorem 1.4 of
[Everest et al. 2008]. One feature of the result above in contrast with others is that
we give an explicit set of conditions which guarantees that Fk is composite for all k.

Remark. We wish to note that given a rank-1 curve E and a point P ∈ E(Q), there
is an algorithm that can check whether the conditions in the theorem are satisfied.
The condition that x4

+ax2 y2
+by4

= 1 has no integer solutions where y 6∈ {0,±1}
can also be checked with finitely many calculations, as this is a Thue equation.
Such an equation has finitely many solutions [Thue 1909], and the solutions can be
found effectively [Tzanakis and de Weger 1989].

There are choices of E for which all seven of the above conditions are satisfied.
For example, we can take E : y2

= x3
− 199x2

− x . Note that 1(E) is positive
and thus E has an egg [Silverman 1994, p. 420]. The only integral point on
the curve is T = (0, 0), which must be on the egg because 0 is in-between the
x-coordinates of the other two roots of the polynomial. Also, 2T = (0 : 1 : 0) and
thus T is a rational point of order 2 on E . The generating point of the curve is
P =

( 2809
9 , 89623

27

)
, and gcd(−1, 2809) = 1. Finally, Magma [Bosma et al. 1997]

can be used to solve Thue equations in order to conclude that there are no integer
solutions to x4

−199x2 y2
− y4
=±1 where y 6∈ {0,±1}. Thus this example satisfies

the conditions for the theorem, and so Fk is composite for all k.



AN ELLIPTIC CURVE ANALOGUE TO THE FERMAT NUMBERS 431

Section 6 focuses on the growth rate of the elliptic Fermat numbers. Much
like the classic Fermat numbers, the elliptic Fermat numbers grow at a doubly
exponential rate:

Theorem 8. Let Fk be the k-th elliptic Fermat number in the sequence generated
by the elliptic curve E and the point P = (m0/e2

0, n0/e3
0). If ĥ(P) denotes the

canonical height of P, then

lim
k→∞

log(Fk)

4k =
3
2 ĥ(P).

The proof is straightforward and is based on the properties of the {τk} sequence
and the theory of height functions.

Finally, in Section 7, we examine the curve E : y2
= x3

− 2x and the elliptic
Fermat sequence generated by the point P = (2, 2). It is a theorem of Lucas
that a prime divisor of the Fermat sequence is congruent to 1 mod 2n+2. Upon
examination of the factorization of the numbers in the sequence {Fn(E, P)}, we
arrive at a pleasing congruence analogue:

Theorem 9. Let E : y2
= x3
−2x and consider the point P = (2, 2) and the elliptic

Fermat sequence (Fn(E, P)). For any prime p such that p | Fn(E, P) for some n,
we have

p ≡
{

1 (mod 2n+1) if p ≡ 1 (mod 4),
−1 (mod 2n+1) if p ≡−1 (mod 4).

In addition to this congruence result, we have a partial converse that tells us
about the presence of Fermat and Mersenne primes in (Fn(E, P)):

Theorem 10. For E : y2
= x3
−2x , consider the point P = (2, 2). Let Fk = 22k

+1
be a Fermat prime and Fk 6= 5, 17. Then Fk divides Fn(E, P) for some n≤ 2k−1

−2.

Theorem 11. For E : y2
= x3
−2x , consider the point P= (2, 2). Let q=2p

−1≥31
be a Mersenne prime. Then q divides Fn(E, P) for some n ≤ p− 4 ∈ N.

2. Background

We begin with some general background on elliptic curves. For the purposes of this
paper, an elliptic curve is a nonsingular cubic curve defined over Q that has the form
y2
= x3
+ax2

+bx+c for some a, b, c∈Z. When we say E is nonsingular, we mean
that there are no singular points on the curve. We will often think of E as living in
P2 and represent it with the homogeneous equation y2z = x3

+ ax2z+ bxz2
+ cz3.

A singular point is a point P = (x : y : z) at which there is not a well-defined
tangent line. These points occur when the following equations are equal to 0:

F(x, y, z)= y2z− x3
− ax2z− bx2z− cz3,

∂F
∂x
=−3x2

− 2azx − bz2,
∂F
∂y
= 2yz, ∂F

∂z
= y2
− ax2

− 2bxz− 3cz2.
(4)
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We write E(Q) to denote the set of rational points on E along with the point
at infinity, (0 : 1 : 0). Using the following binary operation, we can give E(Q) a
group structure: for P, Q ∈ E(Q), draw a line through P and Q and let R = (x, y)
be the third intersection point of the line with the curve. Then P + Q = (x,−y).
This operation gives an abelian group structure on E(Q) with (0 : 1 : 0) as the
identity.

Any P ∈ E(Q) can be expressed in projective space as P = (m/e2
: n/e3

: 1)
= (me : n : e3) for some m, n, e ∈ Z with gcd(m, e) = gcd(n, e) = 1. From
this, there is a well-defined map from E(Q)→ E(Fp) that takes (me : n : e3)

to (me mod p : ne mod p : e3 mod p); this map is a homomorphism if E/Fp is
nonsingular. We have P ≡ (0 : 1 : 0) (mod p) if and only if p | e.

Let Qp be the field of p-adic numbers. The following sets are subgroups
of E(Qp):

E0(Qp)= {P ∈ E(Qp) | P reduces to a nonsingular point},

E1(Qp)= {P ∈ E(Qp) | P reduces to (0 : 1 : 0) mod p}.
(5)

We have E1(Qp) ⊆ E0(Qp) ⊆ E(Qp), and the index [E(Qp) : E0(Qp)] is finite
and is called the Tamagawa number of E at p.

The discriminant of an elliptic curve E is defined as

1(E)= 64a3c+ 16a2b2
+ 288abc− 64b3

− 432c2.

The set E(R) can have one or two components depending on whether or not
1(E) < 0 or 1(E) > 0 [Silverman 1994, p. 420]. We refer to the connected
component of the identity as the nose. If there is a second component, we refer to
it as the egg. For a curve with two components, let Pegg, Qegg be points on the egg,
and let Pnose, Qnose be points on the nose. Then Pegg+ Qegg and Pnose+ Qnose are
on the nose, while Pegg+ Pnose = Pnose+ Pegg is on the egg.

Since our definition of the elliptic Fermat numbers involves doubling points,
it is convenient to use the notation 2k P = (mk/e2

k , nk/e3
k). We also rely on the

duplication formula expressing the x-coordinate of 2Q in terms of that of Q. In
particular, if 2k−1 P = (xk−1, yk−1), [Silverman and Tate 1992, p. 39] gives

X (2k P)=
x4

k−1− 2bx2
k−1− 8cxk−1+ b2

− 4ac

4(x3
k−1+ ax2

k−1+ bxk−1+ c)
.

Letting 2k−1 P= (mk−1/e2
k−1, nk−1/e3

k−1), we can put this in terms of mk−1, ek−1,
and nk−1:

X (2k P)=
m4

k−1− 2bm2
k−1e4

k−1− 8cmk−1e6
k−1+ b2e8

k−1− 4ace8
k−1

4n2
k−1e2

k−1
. (6)
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We will refer to the unreduced numerator and denominator in the above equation
as A and B, respectively; i.e.,

A = m4
k−1− 2bm2

k−1e4
k−1− 8cmk−1e6

k−1+ b2e8
k−1− 4ace8

k−1, (7)

B = 4n2
k−1e2

k−1. (8)

One last aspect of elliptic curves that will prove useful in Section 7 is the concept
of complex multiplication. We say that an elliptic curve has complex multiplication
if its endomorphism ring is isomorphic to an order in an imaginary quadratic field.
In other words, E is equipped with more maps than simple integer multiplication of
a point, and composition of these maps is similar to multiplication in an imaginary
quadratic field.

Complex multiplication is relevant to our work because it allows us to count the
points on the curve over finite fields. In the final section, we will study the curve
E : y2

= x3
− 2x , and our results rely on having a good understanding of |E(Fp)|.

As a special case of Proposition 8.5.1 from [Cohen 2007, p. 566], we have the
following fact about our curve E :

Proposition 12. Let E : y2
= x3

− 2x be an elliptic curve and let p be an odd
prime. Then |E(Fp)| = p + 1 − ap(E), where ap(E) is known as the trace of
Frobenius of an elliptic curve modulo p. When p≡ 3 (mod 4), we have ap(E)= 0.
If p ≡ 1 (mod 4), then

ap(E)= 2
(

2
p

)
−a, if 2(p−1)/4

≡ 1 (mod p),
a, if 2(p−1)/4

≡−1 (mod p),
−b, if 2(p−1)/4

≡−a/b (mod p),
b, if 2(p−1)/4

≡ a/b (mod p),

where a and b are integers such that p = a2
+ b2 with a ≡−1 (mod 4).

3. Coprimality and order universality

We begin by proving Corollary 4 and then use this to prove Theorem 2, that is,
gcd(Fk(E, P), F`(E, P)) can only be a multiple of primes of bad reduction.

Proof of Corollary 4. If p -1(E), then p is a prime of good reduction for E . We
have p | Fk(E, P) if and only if 2k P reduces modulo p to a nonsingular point with
y ≡ 0 (mod p). This occurs if and only if 2k+1 P ≡ (0 : 1 : 0) (mod p) and since
2k P 6≡ (0 : 1 : 0) (mod p) it follows that the order of P ∈ E(Fp) is 2k. �

Now, we prove Theorem 2.

Proof. Suppose that p is a prime that divides gcd(Fk(E, P), F`(E, P)). If p is
a prime of good reduction for E , the previous corollary gives that p | Fk(E, P)
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implies that P ∈ E(Fp) must have order exactly 2k+1, and p | F`(E, P) implies that
P ∈ E(Fp) must have order exactly 2`+1. This is a contradiction if k 6= `. �

Note that the nonsingularity of E mod p is necessary in both of the proofs
above. If E : y2

= x3
+ x2
+ 67x + 79, then E is singular mod 43. The point

P = (10, 43) ∈ E(Q) has infinite order and 2P =
(
−

3
4 ,

43
8

)
has the property that

P and 2P (and in fact 2k P for all k ≥ 1) reduce to a singular point modulo 43,
because P 6∈ E0(Q43) and the Tamagawa number of E at 43 is 3. It follows that
Fk(E, P) is a multiple of 43 for all k.

To embark on the proof of Theorem 3, we must make sense of reducing points
on an elliptic curve modulo an arbitrary integer N, and for this reason we need
to recall some results from the theory of elliptic curves over arbitrary rings. Our
treatment comes from that of [Lenstra 1987a]. Given a commutative ring R, we say
that a finite collection of elements (ai ) is primitive if it generates R as an R-ideal.
That is, (ai ) is primitive if there exist bi ∈ R such that

∑
ai bi = 1.

Lenstra showed that there is a natural way to define a group structure on the
points on E in P2(R) provided 61(E) is a unit in R, and for any primitive m× n
matrix with entries in R whose 2× 2 subdeterminants are all zero, there exists a
linear combination of the rows that is primitive in R. This second condition holds
in any finite ring and also in any PID, and so Lenstra’s construction works in Z/NZ

if gcd(61(E), N )= 1.
Given points S = (x1 : y1 : z1) and T = (x2 : y2 : z2) in E(Z/NZ), Lenstra

described three families of polynomials in the six variables (x1, y1, z1, x2, y2, z2)
such that S + T can be given by any of (q1 : r1 : s1), (q2 : r2 : s2), (q3 : r3 : s3),
provided one of these points is primitive. Lenstra showed that the 3× 3 matrix
made with the polynomials as its entries has vanishing 2× 2 subdeterminants, and
is primitive. It follows that some linear combination (q0 : r0 : s0) of the rows gives
a formula for S + T in E(Z/NZ). This construction works not just over Z/NZ,
but also over R = Z[1/(6|1(E)|)] and gives E the structure of a group scheme
over this ring. It follows from Proposition 3.2 of Chapter IV of [Silverman 1994]
that the reduction map E(R)→ E(Z/NZ) is a homomorphism. By thinking of
a point in E(Q), namely (m/e2, n/e3) as (me : n : e3) ∈ E(R), we get that the
reduction mod N map E(Q)→ E(Z/NZ) is a homomorphism. It is worth noting
that (m/e2, n/e3) reduces to (0 : 1 : 0) modulo N if and only if e ≡ 0 (mod N ).
From this, it follows that if N = pe1

1 pe2
2 · · · p

ek
k , then the natural map

E(Z/NZ)→
k∏

i=1
E(Z/pei

i Z)

is an isomorphism. Now we prove Theorem 3.

Proof. Let P ∈ E(Q) be a point of infinite order and k a nonnegative integer.
Recall that we define 2k P = (mkek : nk : e3

k) for mk, nk, ek ∈ Z with gcd(mk, ek)=
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gcd(nk, ek)= 1. We consider first the case where N = pr is an odd prime power.
In that situation, we have that if pr

| Fk(E, P), then 2k P ≡ (x : 0 : 1) (mod pr ) and
so the order of P in E(Z/pr Z) is 2k+1. Conversely, if the order of P ∈ E(Z/pr Z)

is 2k+1, then ek+1 is a multiple of pr. However, the duplication formula shows that
ek+1 | 2nkek . Since 2k P = (mkek : nk : e3

k) has order 2 in E(Z/pr Z), it also has
order 2 in E(Z/pZ) and so p | nk , which implies that p -ek . Thus, pr

| 2nkek but
gcd(p, ek)=1 and so pr

| nk = Fk(E, P). Theorem 2 gives that N | Fk(E, P) if and
only if N |F0(E,P)F1(E,P) · · ·Fk(E,P) but N -F0(E,P)F1(E,P) · · ·Fk−1(E,P).
The desired result follows.

Now, we consider the general case. If N =
∏`

i=1 pei
i , we have the isomorphism

E(Z/NZ)∼=
∏̀
i=1

E(Z/pei
i Z).

It follows from this that P has order equal to 2k+1 in E(Z/NZ) if and only if (i) for
all prime powers pei

i the order of P in E(Z/pei
i Z) is equal to 2 j for some j ≤ k+1,

and (ii) there is a prime power pe j
j such that P ∈ E(Z/pe j

j Z) is 2k+1. Condition (i)
means that pei

i | F j−1(E, P) and condition (ii) means that pe j
j | Fk(E, P) (and hence

by Theorem 2 that p j -F`(E, P) for `< k). It follows that P ∈ E(Z/NZ) has order
2k+1 if and only if N | F0(E, P) · · · Fk(E, P) but N -F0(E, P) · · · Fk−1(E, P). �

4. Recurrence

We will now explore the recurrence relation given by Theorem 5. Before continuing,
we define the sequence {τk}. If we write 2k−1 P = (mk−1/e2

k−1, Fk−1/e3
k−1) with

mk−1, Fk−1, ek−1 ∈ Z with ek−1 ≥ 1 and gcd(mk−1, ek−1) = gcd(Fk−1, ek−1) = 1,
then let

τk(E, P)=
2Fk−1ek−1

ek
.

When the duplication formula is applied to compute the x-coordinate of 2k P, we
obtain the formula

X (2k P)=
m4

k−1− 2bm2
k−1e2

k−1− 8cmk−1e6
k−1+ (b

2
− 4ac)e8

k−1

(2Fk−1ek−1)2
=

A
B
=

mk

e2
k
.

Here (2Fk−1ek−1)
2
= B is the “unreduced” denominator of X (2k P), and e2

k is
the reduced denominator. So ek | 2Fk−1ek−1, and the number τk measures the
discrepancy between the two quantities ek and 2Fk−1ek−1, that is, the amount of
cancellation that occurs. It is clear then that τ 2

k = gcd(A, B).
We will now prove Theorem 5. For now, keep in mind that we can explicitly

calculate τk for all k; we will prove this at the end of the section. We can see that
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(3) is just a restatement of the definition of τk and (1) is just a restatement of the
duplication formula.

Lemma 13. Equation (2) is correct.

Proof. From the formulas given in [Silverman 1986, p. 58–59], we can see that

Y (2k P)=
1

2Fk−1e3
k−1e2

k

(
−2amk−1mke4

k−1− bmk−1e4
k−1e2

k

−bmke6
k−1− 2ce6

k−1e2
k +m3

k−1e2
k − 3m2

k−1mke2
k−1
)
.

Then since Y (2k P)= Fk/e3
k ,

Fk = Y (2k P) · e3
k

=
1

2Fk−1e3
k−1

(
−2amk−1mke4

k−1ek − bmk−1e4
k−1e3

k

−bmke6
k−1ek − 2ce6

k−1e3
k +m3

k−1e3
k − 3m2

k−1mke2
k−1ek

)
.

Then using the fact that ek/ek−1 = 2Fk−1/τk , we can simplify this to

Fk(E, P)=
1
τ 3

k

(
−2amk−1mke2

k−1τ
2
− 4bmk−1e4

k−1 F2
k−1

−bmke4
k−1τ

2
k − 8ce6

k−1 F2
k−1+ 4m3

k−1 F2
k−1− 3m2

k−1mkτ
2
k
)
. �

We can now see that the recurrence relation is correct, thus proving Theorem 5.
The remainder of this section will be devoted to developing a better understanding
of τk and developing an algorithm to calculate the sequence.

Ayad [1992] studied the sequences obtained by taking a point M on an elliptic
curve, and evaluated the usual division polynomials at M to compute

mM =
(
φm(M)
ψ2

m(M)
,
ωm(M)
ψ3

m(M)

)
.

Ayad [1992, Théorème A] proved that if p is a prime, then there is an integer n
such that φn(M) and ψn(M) both have positive p-adic valuation if and only if M is
singular modulo p, and moreover that in this case ψm(M) is a multiple of P for all
m ≥ 2. As a consequence of this, it follows that the only primes that can divide τk

are the primes of bad reduction. Also, applying Ayad’s theorem with M = 2k−1 P,
if p is an odd prime and p | τk , then 2k−1 P is a singular point modulo p.

We next wish to obtain more precise information about the power of a prime of
bad reduction that can divide τk . In particular, for E : y2

= x3
+ ax2

+ bx + c, we
define 1(E) = 16(−4a3c+ a2b2

+ 18abc− 4b3
− 27c2). The primes for which

this model of E has bad reduction are precisely the primes that divide 1(E). (We
do not assume that E : y2

= x3
+ ax2

+ bx + c is a global minimal model for E .)

Lemma 14. The number τ 2
k divides 1

41(E).
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Proof. Let
f (x)= x3

+ ax2
+ bx + c,

F(x)= 3x3
− ax2

− 5bx + 2ab− 27c,

φ(x)= x4
− 2bx2

− 8cx + b2
− 4ac,

8(x)=−3x2
− 2ax + a2

− 4b.

Silverman and Tate [1992, p. 62] showed that 1
161(E)= f (x)F(x)+φ(x)8(x).

Setting x = X (2k−1 P), we obtain

1
161(E)e

12
k−1

=

(
e6

k−1 f
(

mk−1

e2
k−1

))(
e6

k−1 F
(

mk−1

e2
k−1

))
+

(
e4

k−18

(
mk−1

e2
k−1

))(
e8

k−1φ

(
mk−1

e2
k−1

))
.

Recall that τ 2
k = gcd(A, B) where A and B are given by (7) and (8). Rewriting

this equation in terms of A and B gives

1
161(E)e

12
k−1 =

B
4e2

k−1

(
e6

k−1 F
(

mk−1

e2
k−1

))
+

(
e4

k−18

(
mk−1

e2
k−1

))
A.

Multiplying through by 4e2
k−1 gives that A and B both divide 1

41(E)e
14
k−1. However,

gcd(mk−1, ek−1) = 1 implies that gcd(A, ek−1) = 1 and so τ 2
k = gcd(A, B) is

relatively prime to ek−1 and so τ 2
k |
( 1

41(E)
)
, as desired. �

As stated above, Ayad’s theorem implies that if p | τk , then 2k−1 P is a singular
point modulo p. We will prove a converse to this result.

Theorem 15. Let p be an odd prime. Suppose that 2k−1 P and 2k P both reduce to
singular points mod p. Then p | τk .

Proof. Since p is odd, singular points modulo p have y-coordinate ≡ 0 (mod p)
and hence if 2k−1 P reduces to a singular point modulo p, then p | Fk−1(E, P). On
the other hand, 2k P reducing to a singular point modulo p means that p -ek and
hence p | τk = 2Fk−1ek−1/ek . �

The results above apply for odd primes. Now, we consider the parity of τk

and Fk .

Theorem 16. If 2k P 6≡ (0 : 1 : 0) (mod 2), then τk is even. If 2k−1 P ≡ 2k P ≡
(0 : 1 : 0) (mod 2), then τk is odd.

Proof. If 2k P 6≡ (0 : 1 : 0) (mod 2), then 2 -ek . Since τk(E, P) = 2Fk−1ek−1/ek ,
the numerator is even and the denominator is odd, so τk is even.
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If 2k−1 P ≡ 2k P ≡ (0 : 1 : 0) (mod 2), then ek−1 and ek are both even, while
mk−1 and mk are both odd. Considering the duplication formula

A
B
=

m4
k−1− 2bm2

k−1e2
k−1− 8cmk−1e4

k−1+ (b
2
− 4ac)e4

k−1

(2Fk−1ek−1)2
,

one sees that A is odd and B is even, and since τ 2
k = gcd(A, B), it follows that τk

is odd. �

Recalling that E1(Qp) denotes the set of points in E(Qp) that reduce to the point
at infinity modulo p, the above theorem gives that τk is even for all sufficiently
large k if and only if the order of P ∈ E(Q2)/E1(Q2) is not a power of 2, and τk is
odd for all sufficiently large k if and only if the order of P ∈ E(Q2)/E1(Q2) is a
power of 2.

While it is nice to know all of these properties, we need to know exactly what τk

is in order for the recurrence relations to be useful. In accordance with Theorem 6,
we can calculate |τk | for all k using the following algorithm. (The proof of the
correctness of the algorithm will be given later in this section.)

(1) Find and factor the discriminant 1(E).

(2) For each prime p such that p2
|1(E), complete the following:

(a) Find the smallest ` ∈ Z+ such that `P ≡ (0 : 1 : 0) (mod p).

(b) If ` is a power of 2, then ordp(τk)= 0 for all k ≥ `+ 1.

(i) Move on to the next p2
|1(E).

(c) If ` is not a power of 2, then ordp(τk)= ordp(2Fk−1).

(i) Find some r ∈Z+ such that r P = (m/e2, n/e3) with ps
| e. Choose s such

that either p2s
||1(E) or p2s+1

||1(E). Here pn
|| a means that the prime

power pn fully divides a; that is, pn
| a but pn+1 -a.

(ii) Now ordp(Y (t P)) depends only on t mod r . Find all possible values of
2k mod r and note the lowest k which generates each value.

(iii) Calculate ordp(Fk−1) for each k noted in (ii). Use this to calculate ordp(τk).
(iv) Move on to the next p2

|1(E).

(3) We now know ordp(τk) for all (but finitely many, in some cases) k for each p such
that p2

|1(E), which are all the p that could divide τk . Use this to calculate |τk |.

Note that doing the above computations in E(Q) can be challenging since the
heights of points on elliptic curves grow quickly. Instead, doing the computations in
E(Qp), which is implemented in Sage [SageMath 2017], is more straightforward.

Now we will prove that this algorithm is correct. In order to do this, we must
first prove the following theorem.
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Theorem 17. Let E : y2
= x3
+ ax2

+ bx + c be an elliptic curve. Assume Q, R ∈
E(Q) are such that

Q = (x1, y1)=

(
m1

e2
1
,

n1

e3
1

)
, p -e1,

R = (x2, y2)=

(
m2

e2
2
,

n2

e3
2

)
, pk

|| e2.

Let

Q+ R = (x3, y3)=

(
m3

e2
3
,

n3

e3
3

)
.

Then

X (Q+ R)≡ X (Q) (mod pk), Y (Q+ R)≡ Y (Q) (mod pk).

The result above follows from the fact that the natural map from E(Q) →
E(Z/pkZ) is a homomorphism in the case when p -61(E), but in light of the
algorithm above, we are primarily interested in the case where p | 61(E).

Proof. From [Silverman 1986, p. 58–59], we know that if we let

λ=
y2− y1

x2− x1
and v =

y1x2− y2x1

x2− x1
,

then we have

x3 = λ
2
− a− x1− x2 =

ax2
2 + bx2+ c− 2y1 y2+ y2

1 + 2x1x2
2 − x2

1 x2

x2
2 − 2x1x2+ x2

1
− a− x1.

Now since pk
|| e2, we can let x2 = x̃2 p−2k and y2 = ỹ2 p−3k. Plugging this in

yields

x3 =
ax̃2

2 + bx̃2 p2k
+ cp4k

− 2y1 ỹ2 pk
+ y2

1 p4k
+ 2x1 x̃2

2 − x2
1 x̃2 p2k

x̃2
2 − 2x1 x̃2 p2k + x2

1 p4k
− a− x1. (9)

Reducing mod pk and mod p2k gives us

x3 ≡ x1 (mod pk), (10)

x3 ≡ x1−
2y1 ỹ2 pk

x̃2
2

(mod p2k). (11)

Now that we have shown that x3 ≡ x1 (mod pk), we just need to show that y3 ≡

y1 (mod pk). Since x3 ≡ x1 (mod pk), we can write x3 = x1 + r pk. And again
using the definitions of λ and v given above, we have

y3 =−λx3− v =
−n1m1e3

2+ n1m2e2
1e2− n1e2

1e3
2r pk
+ n2e5

1r pk

m1e3
1e3

2−m2e5
1e2

.
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Once again, since pk
|| e2, we can let e2 = ẽ2 pk. Then

y3 =
−n1m1ẽ3

2 p2k
+ n1m2e2

1ẽ2− n1e2
1ẽ3

2r p3k
+ n2e5

1r

m1e3
1ẽ3

2 p2k −m2e5
1ẽ2

.

Reducing mod pk gives us

y3 ≡
−n1

e3
1

−
n2r

m2ẽ2
(mod pk). (12)

Now from (11), we know

r ≡−
2y1 ỹ2

x̃2
2

(mod pk).

Simple algebra allows us to see that

r ≡
−2n1n2ẽ2

m2
2e3

1

(mod pk).

Plugging this into (12), we get

y3 ≡
−n1

e3
1

−
n2

m2ẽ2
·
−2n1n2ẽ2

m2
2e3

1

(mod pk)

≡
−n1

e3
1

+
2n1(m3

2+ am2
2e2

2+ bme4
2+ ce6

2)

m3
2e3

1

(mod pk).

And since e2 ≡ 0 (mod pk), we have

y3 ≡
−n1

e3
1

+
2n1m3

2

m3
2e3

1

(mod pk)≡ y1 (mod pk), (13)

completing the proof. �

Now we prove that the algorithm to calculate τk is correct.

Proof. From Lemma 14, we can conclude that for any p dividing τk , we must
have p2

|1(E). So we only need to consider primes p which satisfy this condition.
We now break this problem into two cases based on the smallest ` ∈ Z+ so that
`P ≡ (0 : 1 : 0) (mod p).

Case I: If ` is a power of 2, then there exists d ∈ Z+ such that 2d P ≡ (0 : 1 : 0)
(mod p). First, if p> 2, then for k ≥ d+1, we have p -Fk and since ek is a multiple
of ek−1, but ek is a divisor of 2Fk−1ek−1, it follows that ordp(ek−1)= ordp(ek) and
so p -τk . If p = 2, the desired result follows from Theorem 16.

Case II: If ` is not a power of 2, then 2k P 6≡ (0 : 1 : 0) (mod p) for any k. This
implies that p -ek for any k and hence ordp(τk) = ordp(2Fk−1). Choose s such
that either p2s

||1(E) or p2s+1
||1(E). Now, we can find some r ∈ Z+ such that
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r P = (m/e2, n/e3) with ps
| e. Then r P ≡ (0 : 1 : 0) (mod ps). Using Theorem 17,

we can see that j P + r P ≡ j P (mod ps) and conclude that ordp(Y (t P)) depends
only on t mod r . Then, since 2k mod r will repeat, we can use a finite number of
calculations to determine ordp(Y (2k P))= ordp(Fk) for all k ≥ 1. �

5. Primality

In this section, we prove Theorem 7. This theorem states the following. Suppose that
E : y2

= x3
+ax2

+bx is an elliptic curve of rank 1 generated by P with x-coordinate
m0/e2

0 and the torsion subgroup of E(Q)∼= Z/2Z generated by T = (0, 0), which
lies on the egg and is the only integral point on the egg. Let Fk(E, P) denote the
sequence of elliptic Fermat numbers. Suppose that gcd(b,m0)= 1, and suppose that
the Thue equation x4

+ax2 y2
+by4

=±1 has no integer solutions with y 6∈ {0,±1}.
Then all the elliptic Fermat numbers Fk(E, P) are composite.

We start by proving two lemmas that will be useful in the proof of Theorem 7.

Lemma 18. Assume that E(Q) ∼= Z× Z/2Z and E(Q) = 〈P, T 〉, where P is a
generator of E(Q) and T is a rational point of order 2. Assume that:

(i) E has an egg.

(ii) T is on the egg.

(iii) T is the only integral point on the egg.

(iv) P is not integral.

Then T is the only integral point on E.

Proof. Every point in E(Q) is of the form m P or m P+T. If P is on the nose, then
we have that for any m 6= 0, m P is on the nose, and m P is not integral because P
is not integral. We also have that m P + T is on the egg and thus is not integral
because T is the only integral point on the egg by assumption. If P is on the egg,
then let P ′= P+T. Then P ′ is on the nose, and the proof is the same as before. �

Lemma 19. Let E be an elliptic curve of the form y2
= x3
+ax2

+bx and suppose
gcd(m0, b)= 1. Then gcd(mk, b)= 1 for all k.

Proof. We use induction. The base case gcd(m0, b)= 1 is true by assumption. Now
assume that gcd(mk−1, b)= 1. Since c = 0, from our recurrence relations, we can
see that

mk =
m4

k−1− 2bm2
k−1e4

k−1+ b2e8
k−1

τ 2
k

.

Now since b divides the terms −2bm2
k−1e4

k−1 and b2e8
k−1 in the numerator but is

coprime to the term m4
k−1, we know b is coprime to the numerator. Dividing by τ 2

k
will not change this. Thus gcd(mk, b)= 1 for all k. �
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With these two lemmas, we can now prove Theorem 7.

Proof of Theorem 7. Let 2k P = (mk/e2
k , Fk/e3

k) and let 2k P+T = (mT /e2
T , nT /e3

T ).
Using the formulas for adding points given in [Silverman 1986, p. 58–59], we see

X (2k P + T )=
be2

k

mk
, Y (2k P + T )=

−bFkek

m2
k

. (14)

By the assumption that gcd(b,m0)= 1 and by Lemma 19, we know gcd(b,mk)= 1.
And since gcd(mk, ek)= 1, the first equation in (14) must be in lowest terms. This
gives eT =

√
|mk | and nT =−bFkek/

√
|mk |. We find from this that

−
nT eT

bek
=
(bFkek/

√
|mk |)
√
|mk |

bek
= Fk .

Note that if p is a prime and p | ek then 2k P ≡ (0 : 1 : 0) (mod p), in which
case 2k P + T ≡ T (mod p). And since T is not the point at infinity, 2k−1 P + T 6≡
(0 : 1 : 0) (mod p). Therefore p -eT . Hence gcd(ek, eT ) = 1. Since eT =

√
|mk |

and gcd(b,mk)= 1, we get the factorization

Fk =

(
−

nT

bek

)
eT ,

where both factors are integers. Therefore Fk is composite as long as

nT

bek
=−

Fk
√
|mk |
6= ±1.

If we assume that Fk =±
√
|mk |, then 2k P = (mk/e2

k , Fk/e3
k) being a point on E

gives |mk | = F2
k = m3

k + am2
ke2

k + bmke4
k , which yields m2

k + amke2
k + be4

k = ±1.
But by assumption, this equation has no solutions where ek 6∈ {0,±1}. Therefore
Fk is composite for all k ≥ 1. �

6. Growth rate

In this section, we will discuss the growth rate of the elliptic Fermat numbers and
prove Theorem 8. In order to do so, we need a few more tools. The first new
definition we need is the height of a point.

Definition 20. The height of a point P = (m/e2, n/e3) on an elliptic curve is
defined as

h(P)= log(max(|m|, e2)).

The height of a point gives us a way to express how “complicated” the coordinates
of the point are. We also need to make use of the canonical height.
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Definition 21. The canonical height of a point P on an elliptic curve is defined as

ĥ(P)= lim
k→∞

h(2k P)
4k .

Note that Theorem 8 can be summarized as saying that Fk is approximately equal
to e4k

·(3/2)ĥ(P). So the elliptic Fermat sequences grow doubly exponentially, like
the classic Fermat sequence, albeit much more quickly. The proof is as follows:

Proof of Theorem 8. First, recall that |Fk | = |τk+1|ek+1/(2ek). This relates the
y-coordinate of 2k P to the x-coordinate. We then have

lim
k→∞

log(|Fk(E, P)|)
4k = lim

k→∞

log(|τk+1|ek+1/(2ek))

4k

= lim
k→∞

1
2 log(e2

k+1)

4k − lim
k→∞

1
2 log(e2

k)

4k + lim
k→∞

log
( 1

2 |τk+1|
)

4k

= 2 lim
k→∞

log(e2
k+1)

4k+1 −
1
2 lim

k→∞

log(e2
k)

4k + 0

= 2ĥ(P)− 1
2 ĥ(P)= 3

2 ĥ(P). �

7. Elliptic Fermat numbers for the curve y2 = x3− 2x

In this section, we apply the hitherto developed theory of elliptic Fermat numbers to
examine properties of the curve E : y2

= x3
− 2x and the point P = (2, 2) ∈ E(Q).

We begin with some remarks on E and the point P. Recall that E is equipped with
complex multiplication and so Proposition 12 gives a formula for |E(Fp)| for all p.
Elliptic curves with complex multiplication are the key to the elliptic curve primality
proving algorithm of Atkin, Goldwasser, Kilian and Morain, and elliptic curve
algorithms to prove primality of Fermat numbers and other special sequences have
been considered previously in [Gross 2005; Denomme and Savin 2008; Tsumura
2011; Abatzoglou et al. 2016]. The last remark we make is about the elliptic Fermat
sequence {Fn(E, P)} and the appearance of Fermat primes and Mersenne primes,
i.e, primes of the form 2p

− 1 for a prime p, in the factorization of Fk(E, P).
Table 1 provides factorizations of the first five elliptic Fermat numbers for E at P,

with known Fermat and Mersenne primes in bold. (The primes p6, p7 have 16 digits
each, and p8 and p9 have 18 digits each.) In fact, every odd prime factor dividing
Fn(E, P) for n ≥ 2 will have a congruence that is either Mersenne-like or Fermat-
like. We now present the proof of Theorem 9, beginning with the congruence result
for a prime divisor p≡−1 (mod 4), which yields a tidy Mersenne-like congruence.

Proof of Theorem 9 for p ≡ 3 (mod 4). By Theorem 3, p | Fn(E, P) tells us that
P has order 2n+1 in E(Fp). Then by Lagrange’s theorem and Proposition 12,
2n+1
| |E(Fp)| = p+ 1, and so p ≡−1 (mod 2n+1). �
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n Fn(E, P)

0 2
1 −3 · 7
2 31 · 113 · 257
3 −2113 · 2593 · 46271 · 101281 · 623013889
4 127 · 65537 · 33303551 · 70639871 · 364024274689 · p6 · p7 · p8 · p9

Table 1. Factorizations of the first five elliptic Fermat numbers
for E at P .

Proving the congruence in the case of a prime divisor of an elliptic Fermat
number congruent to 1 modulo 4 will require multiple steps. We will eventually
show that such a prime divisor of Fn(E, P) is congruent to 1 modulo 2n, but we
begin by showing an initial congruence result:

Lemma 22. Let E : y2
= x3

− 2x be an elliptic curve, P = (2, 2) a point of
infinite order and Fn(E, P) the n-th elliptic Fermat number associated to E at the
point P. Then for any odd prime divisor p ≡ 1 (mod 4) of Fn(E, P), n ≥ 3, we
have p ≡ 1 (mod max(2b(n+1)/2c, 8)).

Proof. If p ≡ 1 (mod 4), then p = a2
+ b2, where a ≡ −1 (mod 4). Recall that

Proposition 12 gives a formula for the value of |E(Fp)| which depends on the
quartic character of 2 modulo p. Let us first consider the case where 2 is a fourth
power. Then |E(Fp)| = p+ 1− 2a.

Like the proof of the previous theorem, we use Lagrange’s theorem to show that
2n+1
| E(Fp)= a2

+b2
+1−2a = (a−1)2+b2. So (a−1)2+b2

≡ 0 (mod 2n+1).
Then a−1≡ b≡ 0 (mod 2b(n+1)/2c), giving p= a2

+b2
≡ 12
+02 (mod 2b(n+1)/2c).

A symmetric argument follows when 2 is a quadratic residue but not a fourth power.
In this situation we arrive at the equation (a+ 1)2+ b2

≡ 0 (mod 2n+1); however,
the result is precisely the same.

To conclude, we rule out the case where 2 is not a quadratic residue modulo p.
This would imply |E(Fp)| = p+ 1± 2b. The same algebraic manipulation leads
to a similar situation where a2

+ (b ∓ 1)2 ≡ 0 (mod 2n+1), but this means b ≡
±1 (mod 2b(n+1)/2c); however, b is the even part of the two-square representation
of p. So it cannot be the case that 2 is not a quadratic residue modulo 8, which
happens only when p ≡ 5 (mod 8). �

Because of the lemma, we have p ≡ 1 (mod 8), and so we can make sense
of
√

2 and i modulo p. We now define the recklessly notated action i on E(Fp)

as i(x, y) 7→ (−x, iy), where the point (−x, iy) uses i as the square root of −1
modulo p. This action makes E(Fp) into a Z[i]-module. We will prove one last
lemma concerning the action of (1+ i) before moving on to the full congruence.
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Lemma 23. Let E : y2
= x3

− 2x be an elliptic curve, P = (2, 2) a point of
infinite order and Fn(E, P) the n-th elliptic Fermat number associated to E at the
point P. Then for any odd prime factor p≡ 1 (mod 4) of Fn(E, P), n ≥ 3, we have
(1+ i)2n+2 P = 0 in E(Fp) and (1+ i)2n P 6= 0.

Proof. Note that (1+ i)k P = 2kik P. Recall that P has order 2n+1, so

(1+ i)2(n+1)P = (2i)n+1 P = in+1(2n+1 P)= in+1
· 0= 0.

It suffices to show that (1+ i)x P 6= 0 for x ≤ 2n. Suppose not, and (1+ i)x P = 0.
Then certainly (1+ i)2n P = in2n P = 0. The action of in−1 makes no difference on
the identity. This implies that 2n P = 0, contradicting order universality since P
has order 2n+1. �

With this last lemma proven, we are ready to introduce the Fermat-like congruence
in full regalia and finish Theorem 9.

Proof of Theorem 9 for p ≡ 1 (mod 4). As a consequence of the lemma above, we
have that either (1+ i)2n+2 P = 0 or (1+ i)2n+1 P = 0. We are able to bolster the
(2n+ 1)-case by introducing a new point Q = (−i(

√
2− 2), (2− 2i)(

√
2− 1)). It

is routine point addition to see that (1+ i)Q = (2, 2)= P. In either case we have
(1+ i)2n+3 Q = 0 and (1+ i)2n+1 Q 6= 0.

Consider the Z[i]-module homomorphism φ :Z[i]→ E(Fp) given by φ(x)= x Q.
The image of φ is Z[i]Q={(a+bi)Q | a, b∈Z}, the orbit of Z[i] on Q. By the first
isomorphism theorem, Z[i]Q is isomorphic to Z[i]/ ker(φ). Since (1+ i)2n+1

6∈

ker(φ) and (1+ i)2n+3
∈ ker(φ), and (1+ i) is an irreducible ideal in Z[i], we know

the kernel is either the ideal ((1+ i)2n+2) or ((1+ i)2n+3); hence Z[i]/ ker(φ) is a
group of size 2k, where k = 2n+ 2 or k = 2n+ 3.

Like the previous congruence results, we use Lagrange’s theorem to assert
2k
| |E(Fp)| and through the same reasoning as before, we arrive at

p ≡ 1 (mod 2bk/2c = 2n+1). �

We now present the proofs of Theorems 10 and 11, which give us information
about sufficiently large Fermat and Mersenne primes dividing the elliptic Fermat
sequence {Fn(E, P)}. First, we provide two lemmas.

Lemma 24. Let p ≡±1 (mod 2n) be an odd prime. Let ζ` denote a primitive `-th
root of unity in some extension of Fp. Then ζ2k + ζ−1

2k exists in Fp for all k ≤ n.

Proof. If p ≡ 1 (mod 2k), then clearly there is a primitive 2k-th root of unity in Fp.
If p ≡ 3 (mod 4), then we employ methods from Galois theory. First, because

p ≡−1 (mod 2k), we have p2
≡ 1 (mod 2k). Then there is a primitive 2k-th root

of unity in Fp2 . Then we have that α = ζ2k + ζ−1
2k is in Fp if and only if σ(α)= α,

where σ(x)= x p is the Frobenius endomorphism.
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This says that α ∈ Fp if and only if

α p
= (ζ2k + ζ−1

2k )
p
= ζ

p
2k + ζ

−p
2k = ζ2k + ζ−1

2k .

We may write this equality as ζ 2p
2k + ζ

p+1
2k + ζ

−p+1
2k + 1 = 0. This factors into

(ζ
p

2k −ζ2k )(ζ
p

2k −ζ
−1
2k )= 0. Then the equality holds if and only if ζ p

2k = ζ2k , meaning
p ≡ 1 (mod 2k), or ζ p

2k = ζ
−1
2k ; hence p ≡−1 (mod 2k). �

Lemma 25. Let p be a Fermat or Mersenne prime that is at least 31. Then there
exists a Q ∈ E(Fp) such that 2Q = P.

Proof. From [Silverman and Tate 1992, p. 76], for E we have its isogenous curve
E ′ : y2

= x3
+ 8x and two homomorphisms, φ : E→ E ′ and ψ : E ′→ E given by

φ(x, y)=


(

y2

x2 ,
y(x2
+ 2)

x2

)
if (x, y) 6= (0 : 0 : 1), (0 : 1 : 0),

(0 : 1 : 0) otherwise,

ψ(x, y)=


(

y2

4x2 ,
y(x2
− 8)

8x2

)
if (x, y) 6= (0 : 0 : 1), (0 : 1 : 0),

(0 : 1 : 0) otherwise.

The maps hold the special property φ ◦ ψ(S) = 2S. The advantage of this
framework is that we are able to break point-halving, a degree-4 affair, into solving
two degree-2 problems. Another fact from [Silverman and Tate 1992, p. 85] is that
P = (x, y) ∈ ψ(E ′(Q)) if and only if x is a square.

We now use this to show there is a Q ∈ E(Fp) such that 2Q = P. For brevity, let
z=

√
2+
√

2, and we define the following ascending chain of fields: Q, K =Q(
√

2)
and L = K (z). Here K is the minimal subfield where P has a ψ preimage Q1 in E ′,
and L is the minimal subfield where that preimage has its own φ preimage Q in E .
It is a quick check in Magma to verify that in E(L), P is divisible by 2. It then
remains to verify that the elements

√
2 and z =

√
2+
√

2 are in Fp.
First, we have that since 2 has order p, which is odd, there exists hk ∈ F×p such

that (hk)
2k
= 2. So any 2-power root of 2 is sure to exist.

For z =
√

2+
√

2 itself, we use Lemma 24 and p ≡±1 (mod 16) to show that
we have an element z = ζ16+ ζ

−1
16 ∈ Fp, so we have all the necessary elements of

L in E(Fp) to show there exists a Q ∈ E(Fp) such that 2Q = P. �

These two lemmas will allow us to sharpen the threshold to search for Fermat
and Mersenne primes in the elliptic Fermat sequence. We now prove Theorem 10.

Proof. First, it is a quick computation in Magma to verify that for p= 5, 17, P does
not have a 2-power order in E(Fp), and so by Corollary 4, we have that 5 and 17
do not divide any elliptic Fermat number generated by P.
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We rely on Proposition 12 and Lagrange’s theorem. For a classical Fermat prime
Fn 6= 5, 17, we have that 2 is a fourth power in Z/FnZ. We can see this because for
a generator g of Z/FnZ, we have 2= gk, additionally, we have g p−1

= g22n

= 1. We
will show that k ≡ 0 (mod 4). This is because 2 has order 2n+1

∈ (Z/FnZ)×, and
so 22n+1

= (gk)2
n+1
= 1. Therefore, 22n

| k(2n+1), finally giving 22n
−n−1
| k, which

is a multiple of 4 for n ≥ 3.
Since 2 is a fourth power in Fp, we know that E : y2

= x3
−2x is isomorphic to the

curve E ′ : y2
= x3
− x . From [Denomme and Savin 2008], we also have E ′(Fp)∼=

Z[i]/(1+ i)2
n
. Moreover, Z[i]/(1+ i)2

n
= Z[i]/22n−1 ∼= (Z/22n−1

Z)× (Z/22n−1
Z),

from which we can deduce that E(Fp)∼= (Z/22n−1
Z)× (Z/22n−1

Z). Thus the order
of P is a divisor of 22n−1

.
By Lemma 25, we know there exists some Q ∈ E(Fp) such that 2Q = P. In light

of this we can tighten this initial upper bound by noting that all elements have order
dividing 22n−1

, and so 22n−1
−1 P = 22n−1

−1(2Q)= 22n−1
Q = 0. We conclude that P

has order dividing 22n−1
−1 and so p must divide Fk(E, P) for some k ≤ 2n−1

− 2
by Corollary 4. �

It remains to discuss the appearance of a Mersenne prime in the elliptic Fermat
sequence. We prove Theorem 11.

Proof. The method we take to show this bound begins with the fact that |E(Fq)| =

q+1= 2p. Additionally, we have E(Fq)∼=Z/mZ×Z/mnZ, where q ≡ 1 (mod m).
We have that E(Fq) contains all three points of order 2 because these are (0, 0) and
(±
√

2, 0) and
√

2∈Fq since q≡ 7 (mod 8). Combining this with q≡−1 (mod 2p)

we have E(Fq) ∼= Z/2Z × Z/2p−1Z. So the order of any point in E(Fp) must
divide 2p−1. It suffices to exhibit a point R such that 4R = P, so that 2p−3 P =
2p−322 R = 2p−1 R = 0.

Continuing the methodology first used in the proof of Lemma 25, we will show
that such an R is in E(Fq) so that 2R = Q, where Q ∈ E(L) is the point found in
Lemma 25 . To do this, we extend the fields from Lemma 25 and create

M = L(
√

z(2+ z)) and N = M(
√√

2(z− 1)).

Again, one may check in Magma that indeed P is divisible by 4 in E(N ), so we
just need to check for the existence of necessary elements.

We have already shown there is an element z such that z2
= 2+

√
2, but we

further assert that in Fq , 2+
√

2 has odd order, and thus all 2-power roots exist.
This is quick to see because (2+

√
2)(q−1)/2

= (z2)(q−1)/2
= zq−1

= 1.
We now find

√
z(2+ z), which amounts to finding square roots of z and 2+ z.

By the above, we already have a square root of z, so we just need to show the
existence of the square root of 2+ z. This is simple if we let w = ζ32+ ζ

−1
32 in Fp,

which we know to exist if q ≡−1 (mod 32). Then w2
= 2+ z.
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It remains to find
√√

2(z− 1). Again it suffices to just find a square root of
z− 1. To show such a root exists, consider

(z− 1)(−z− 1)=−z2
+ 1= 1−

√
2= (−1)(1+

√
2).

Note that z = 4
√

2
√
(1+
√

2), and that 1+
√

2 is a square because 4
√

2 and z are
squares, but −1 is not a square modulo q since q ≡−1 (mod 4), so (z−1)(−z−1)
is not a square. This implies that exactly one of (z− 1) and (−z− 1) is a square.
So we choose the appropriate z′ such that z′− 1 is a square and we are done.

Since all adjoined elements exist in Fq , we are good to construct points R such
that 4R = 2Q = P. Similar to Theorem 10, this implies that we can tighten the
condition that |P| | 2p−1 further by |P| | 2p−3, and so by Corollary 4, p must divide
Fk(E, P) for some k ≤ p− 4. �
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Nilpotent orbits for Borel subgroups of SO5(k)
Madeleine Burkhart and David Vella

(Communicated by Kenneth S. Berenhaut)

Let G be a quasisimple algebraic group defined over an algebraically closed
field k and B a Borel subgroup of G acting on the nilradical n of its Lie algebra b
via the adjoint representation. It is known that B has only finitely many orbits in
only five cases: when G is type An for n≤4, and when G is type B2. We elaborate
on this work in the case when G = SO5(k) (type B2) by finding the defining
equations of each orbit. We use these equations to determine the dimension of the
orbits and the closure ordering on the set of orbits. The other four cases, when G
is type An , can be approached the same way and are treated in a separate paper.

1. Introduction

Before specializing to G = SO5(k), we make some general remarks in order to
provide context and some motivation for our work. Let k be an algebraically
closed field and G a quasisimple algebraic group over k. Fix a maximal torus T
of G, and let 8 denote the root system of G relative to T (8 is irreducible since
G is quasisimple). Fix a set 1 of simple roots in 8, with corresponding set of
positive roots 8+, and let B = T U (U is the unipotent radical of B) be the Borel
subgroup of G determined by 8+. Write the one-dimensional unipotent root group
corresponding to a root α as Uα . Denote the Lie algebra of G by g, that of T by h,
and that of B by b. Then the nilradical n= n(b) of b is in fact the Lie algebra of U,
and we have decompositions b= h⊕n, and n=

⊕
α∈8+ gα as vector spaces, where

gα is the root space of g corresponding to α and is also the Lie algebra of Uα . There
is a corresponding decomposition of U ≈

∏
α∈8+ Uα as algebraic varieties over k.

In particular, U is generated as a group by the root groups U = 〈Uα | α ∈8
+
〉, a

fact we use repeatedly in our calculations in Section 2 below.
G acts on g via the adjoint representation, and the orbits of this action have been

intensely studied, partly because there are connections between the nilpotent orbit
theory and the representation theory of G. It is known that there are only finitely
many nilpotent G-orbits (a nilpotent orbit means the orbit of a nilpotent element
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of g). There are combinatorial indexing sets for these nilpotent orbits, and there are
formulas to compute the dimension of each orbit. Also, it is known which orbits
are in the Zariski closure of any given orbit (the closure ordering). Therefore, it
is well understood how all the nilpotent orbits fit together to form a larger object,
called the nullcone N of g, which is the union of the nilpotent orbits. For details of
this classical theory, see [Collingwood and McGovern 1993] for the characteristic-0
case and [Carter 1985; Jantzen 2004] more generally.

The notion of a support variety of a module is one example of a connection
between nilpotent G-orbits and representation theory, when the characteristic of k is
p> 0. In this case recall that there is a p-th power map x 7→ x [p] on g that makes g
into a restricted Lie algebra, and there is a Frobenius map F :G→G, whose kernel is
denoted by G1, which is an infinitesimal group scheme whose rational representation
theory coincides with the representation theory of g. Similarly, denote the kernel of
F : B→ B by B1. By results of [Friedlander and Parshall 1986], the cohomology
variety of G1 (the maximal ideal spectrum of the even-degree cohomology ring
H 2•(G1, k)) identifies naturally with a subvariety N1 = {x ∈N | x [p] = 0} of the
nullcone N of g, and furthermore, for any finite-dimensional g-module M, there is
an important subvariety of N1 called the support variety of M, denoted by Vg(M)
or VG1(M). If M is a rational G-module, then VG1(M) is G-stable in N1 and is
therefore a union of nilpotent G-orbits.

Aspects of the representation theory of G1 are determined by this support variety
(for example, M is a projective module if and only if VG1(M)= {0}), so one would
like to be able to compute these support varieties, and knowing they are unions of
nilpotent G-orbits may be useful.

If H is a closed subgroup of G and M is a rational H -module, denote the rational
G-module induced from M by M |GH . Now let X (T ) be the character group of T, and
for λ ∈ X (T ), we also use the symbol λ to denote the one-dimensional T -module
on which T acts via λ : t · v = λ(t)v for all t ∈ T. This rational T -module extends
to a rational B-module by trivial U -action, also denoted by λ. The modules λ|GB
are (the duals of) the well-known Weyl modules of G. Another important class of
modules are those of the form Z(λ)= λ|G1

B1
, sometimes called baby Verma modules.

(The name comes from the fact that there is an alternate definition of Z(λ) which
is analogous to the definition of a Verma module for g, while the adjective “baby”
can be interpreted as alluding to the infinitesimal subgroups in our definition using
induction, or to the fact that the Z(λ) are finite-dimensional and the usual Verma
modules are not.)

One of the goals of the paper [Nakano et al. 2002, Theorem 6.21] was to calculate
the support varieties VG1(λ|

G
B ) in order to prove the “Jantzen conjecture”. A central

strategy of that paper is to compare VG1(λ|
G
B ) to VG1(Z(λ)). Of course, Z(λ) is

not a G-module (only a G1-module), so one would not expect VG1(Z(λ)) to be a
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G-stable subset of N1. However, it turns out that this variety is stable under the
action of B and therefore VG1(Z(λ)) is a union of nilpotent B-orbits [Nakano et al.
2002, Proposition 7.1.1].

That nilpotent B-orbits (as well as nilpotent G-orbits) have a connection to the
representation theory of G provides a motivation for studying nilpotent B-orbits.
Even without this explicit motivation, it is interesting to try to generalize what is
known about nilpotent G-orbits to nilpotent B-orbits. However, the case of nilpotent
B-orbits is not nearly as tidy as that of nilpotent G-orbits. One important difference
is that most of the time there are infinitely many nilpotent B-orbits. Thus, finding
a nice indexing set for the orbits could be difficult. In general, we would expect
an indexing set to have a continuous piece as well as a discrete piece, as certain
infinite families of orbits might be described by continuous parameters.

In this paper, our focus is on the case G = SO5(k), which is one of the five cases
where there are finitely many nilpotent B-orbits. For each of the orbits, we find the
polynomial defining equations of the orbit. From these calculations, it is easy to
determine both the dimension of each orbit as well as the closure ordering for the
set of orbits.

2. Nilpotent B-Orbits in SO5(k)

Throughout this section we assume the characteristic of k is either 0 or a prime
p 6= 2. The following proposition is a basic fact about algebraic group actions. A
proof can be found in [Borel 1991; Humphreys 1975].

Proposition 1. Let G be an algebraic group acting morphically on a nonempty
variety V. Then each orbit is a locally closed, smooth variety, and its boundary is a
union of orbits of strictly lower dimension.

Thus, the orbit G · x is open and dense in its closure G · x , and hence has the
same dimension as its closure.

We study the action of a Borel subgroup B of G = SO5(k) on the nilradical n of
its Lie algebra b⊆ so5(k), via the adjoint representation. Our main results consist
of finding the defining equations of each nilpotent B-orbit, which will exhibit each
orbit explicitly as an intersection of an open set and a closed set. From there it
will be an easy matter to determine the closure of each orbit, and thereby find the
dimension of each orbit, as well as to determine which orbits comprise the boundary
of a given orbit. That is, we will find the partial order determined by the orbit
closures, which is defined as G · x � G · y if and only if G · x ⊆ G · y.

Let f be a polynomial. We use the standard notation that the zero set of f
is written as Z( f ) and that Z( f, g) = Z( f ) ∩ Z(g) is the set of common zeros
of polynomials f and g. If we have a finite set of polynomials f1, . . . , fr , then
Z( f1, f2, . . . , fr ) is a Zariski-closed set, that is, it is an affine variety. The notation
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V ( f ) denotes the complement of Z( f ), the set of elements that are not zeros of f ,
and so V ( f ) is a Zariski-open set. A locally closed set is an intersection of an open
set and a closed set, and in this section the orbits will turn out to be locally closed sets
of the form V = Z( f1, f2, . . . , fr )∩V (g1)∩V (g2)∩· · ·∩V (gt) for polynomials fi

and g j 6= 0 for all j . Observe that the closure of V is then Z( f1, f2, . . . , fr ) and
V is open and dense in this closure, whence dim V = dim Z( f1, f2, . . . , fr ).

If Uγ is a root group of G, then Uγ (t) denotes the image of t under the standard
isomorphism kadd ≈Uγ . In classical groups, the adjoint action on the Lie algebra
is simply conjugation of matrices. The matrix ei j is the matrix with a 1 in the
i j position and 0 everywhere else. Now g= so5(k), and we take T to be the set of
diagonal matrices in G. More precisely, a typical element of the torus T has the
form

T (s, t)= diag(1, s, t, s−1, t−1)=


1 0 0 0 0
0 s 0 0 0
0 0 t 0 0
0 0 0 s−1 0
0 0 0 0 t−1


for s and t nonzero in k.

For root systems we use the standard notation one finds in [Humphreys 1972;
Bourbaki 2002]. In type B2, the simple roots are 1= {α1, α2} and 8+ = {α1, α2,
α1+α2, α1+2α2}, so n ≈ k4 as an affine variety and vector space. The root vectors
in n are the matrices

xα1 = e23− e54,

xα2 = e15− e31,

xα1+α2 = e14− e21,

xα1+2α2 = e25− e34.

Now each root space has a coordinate function, which we denote by a capital X
with the same subscript as the root space. In other words, a typical element of n
has the form of a linear combination of the four root vectors, x = a1xα1 + a2xα2 +

a3xα1+α2 + a4xα1+2α2 , which we can write in coordinate form as (a1, a2, a3, a4)

(showing explicitly n≈ k4), and the coordinate function just selects the appropriate
coordinate; so Xα1(x)= a1 and Xα1+2α2(x)= a4, for example. Thus, the B-orbits
in which we are interested are locally closed sets in n or k4 which are defined
by polynomials in the four variables of the polynomial ring k[Xα1 , Xα2, Xα1+α2 ,
Xα1+2α2].

To begin the calculations, let’s determine the B-orbit of the highest root vector
xα1+2α2 . Since the highest root vector has the highest weight of the adjoint represen-
tation, it is a maximal vector — it is fixed by U, the unipotent radical of B, and sent
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to a multiple of itself by the torus T. It follows that B · xα1+2α2 = T ·U · xα1+2α2 =

T ·xα1+2α2 ⊆ gα1+2α2 . Thus, we need only compute the T -orbit of this weight vector,
which is easy by direct calculation. Abbreviating the root vector by x , we have

T (s, t) · x = T (s, t)xT (s, t)−1

=


1 0 0 0 0
0 s 0 0 0
0 0 t 0 0
0 0 0 s−1 0
0 0 0 0 t−1




0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0




1 0 0 0 0
0 s−1 0 0 0
0 0 t−1 0 0
0 0 0 s 0
0 0 0 0 t



=


0 0 0 0 0
0 0 0 0 st
0 0 0 −st 0
0 0 0 0 0
0 0 0 0 0

= st x .

In particular, taking s = 1, we obtain all elements of the form t x , t 6= 0, as part
of this orbit. Since 0 is in an orbit by itself, this shows the orbit is precisely the
set of all nonzero multiples of x . In terms of linear combinations of root vectors, or
coordinates in n≈ k4, this says an element (a1, a2, a3, a4) belongs to the orbit B · x
if and only if a1= a2= a3= 0 and a4 6= 0. In other words, this shows that the orbit is

B · x = B · xα1+2α2 = Z(Xα1, Xα2, Xα1+α2)∩ V (Xα1+2α2).

These are the defining equations of this orbit. Clearly, its closure is B · x =
Z(Xα1, Xα2, Xα1+α2), the intersection of three coordinate hyperspaces in n ≈ k4,
which is precisely the axis of the fourth coordinate Xα1+2α2 . In particular, it is obvi-
ous that this orbit is one-dimensional (it is dense in the highest root space gα1+2α2 .)

In order to save space, we will eschew writing out the matrices from this point
on, in favor of writing elements of n as linear combinations of root vectors (or as
ordered quadruples in k4), and elements of B as products of elements in T and
elements of the four one-dimensional root groups Uα for α ∈8+. Thus, the above
calculation could be more compactly written as

T (s, t)U · x = T (s, t) · x = st x,

leaving the reader to check the actual matrix calculation. In subsequent calculations,
it will be helpful to remember how the unipotent root groups act on weight vectors
in rational G-modules:

Lemma 2 [Humphreys 1975, Proposition 27.2]. Let α ∈ 8, and let v ∈ Vλ be a
weight vector in any rational G-module. Then each element u ∈ Uα acts on v as
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follows: u · v = v+
∑

k>0vλ+kα, where vλ+kα is a weight vector of weight λ+ kα,
and k is a positive integer.

Next, consider the orbit of the root vector x = xα1+α2 for the highest short root
α1+α2. If γ is a positive root, then by Lemma 2, Uγ (r) · x = x +w, where w is a
sum of root vectors for roots of the form (α1+α2)+ kγ for some k > 0, but there
are no roots of this form unless k = 1 and γ = α2. It follows that w = 0 for all
positive roots γ except γ = α2. In particular, Uα1 , Uα1+α2 , and Uα1+2α2 all fix the
vector x , whence U · x = Uα2 · x . Therefore, we have B · x = T U · x = T Uα2 · x .
Now take arbitrary elements T (s, t) ∈ T and Uα2(r) and compute directly

T (s, t)Uα2(r) · x = sx + rst xα1+2α2 . (1)

It follows, since s 6= 0, that the x = xα1+α2-coordinate is nonzero, while it is clear
that for all r ∈ k and s, t ∈ k−{0} that the xα1- and xα2-coordinates are 0, whence

B · x = T ·Uα2 · x ⊆ Z(Xα1, Xα2)∩ V (Xα1+α2).

To check the reverse containment, we start with an arbitrary element of the
locally closed set on the right, and find an element of B that carries x to that
element. So let y 6= 0 and z ∈ k be arbitrary. Then the element (0, 0, y, z) =
yx + zxα1+2α2 is an arbitrary element of our locally closed set. But substitute the
element T (y, 1)Uα2(z/y) directly into (1) to obtain

T (y, 1)Uα2

(
z
y

)
· x = yx + y · 1 ·

z
y

xα1+2α2 = (0, 0, y, z).

This shows the reverse containment and so proves the orbit is B ·x = B ·xα1+α2 =

Z(Xα1, Xα2) ∩ V (Xα1+α2).
Next consider the orbit of x = xα2 . By Lemma 2, we only need consider the

action of Uα1 and Uα1+α2 . By direct calculation, we have

T (p, q)Uα1(s)Uα1+α2(r) · x = qx + psxα1+α2 − pqr xα1+2α2

= (0, q, ps,−pqr). (2)

Since q 6= 0, this shows B · x ⊆ Z(Xα1)∩ V (Xα2). To see we have equality we
again start with an arbitrary element (0, w, y, z) ∈ Z(Xα1)∩ V (Xα2) (so w 6= 0),
and exhibit an element of B which carries x = (0, 1, 0, 0) to it. One such element
is T (1, w)Uα1(y)Uα1+α2(−z/w). Indeed by (2) we obtain

T (1, w)Uα1(y)Uα1+α2

(
−

z
w

)
· x = wx + yxα1+α2 + zxα1+2α2 = (0, w, y, z).

We have shown that B · x = B · xα2 = Z(Xα1)∩ V (Xα2).
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Next consider the orbit of x = xα1 . By Lemma 2, the U -orbit of x is the same as
the Uα2-orbit. Thus, direct calculation yields

T (s, t)Uα2(r) · x =
s
t

x − rsxα1+α2 −
r2st

2
xα1+2α2 =

(
s
t
, 0,−rs,−

r2st
2

)
. (3)

Note that because of the 2 in the denominator, we must avoid characteristic-2
fields. Since s/t 6= 0, this shows B · x ⊆ Z(Xα2)∩ V (Xα1). However, unlike the
above orbits, we do not have an equality in this case due to algebraic dependence
relations among the coordinates.

Indeed, define w, y, z by equating(
s
t
, 0,−rs,−

r2st
2

)
= (w, 0, y, z),

and observe that y2
+ 2wz = 0 for every element of this form. This shows that,

in fact, B · x ⊆ Z(Xα2, X2
α1+α2

+ 2Xα1 Xα1+2α2)∩ V (Xα1). We now claim we have
an equality. Indeed an arbitrary element of this locally closed set has the form
(w, 0, y, z) with y2

+ 2wz = 0 and w 6= 0 But it follows from (3) that

T (w, 1)Uα2

(
−

y
w

)
· x = wx + yxα1+α2 −

y2

2w
xα1+2α2

=

(
w, 0, y,−

y2

2w

)
= (w, 0, y, z),

where the last equality follows because y2
+ 2wz = 0. This shows that B · x =

B · xα1 = Z(Xα2, X2
α1+α2

+ 2Xα1 Xα1+2α2)∩ V (Xα1).
So far we have determined the orbits of the four root vectors, but taken together

they do not exhaust all of n. The remaining orbits can be taken to be orbits of certain
sums of root vectors. For example, consider the element x = xα1 + xα1+2α2 . All the
root groups Uγ of U fix x except for Uα2 by Lemma 2. By direct computation we
have

T (s, t)Uα2(r)·x =
s
t

xα1−rsxa1+α2+st
(

1−
r2

2

)
xα1+2α2 =

(
s
t
, 0, rs, st

(
1−

r2

2

))
.

Now s/t 6= 0, so the orbit is contained in Z(Xα2)∩ V (Xα1). But also

X2
α1+α2

+ 2Xα1 Xα1+2α2 = (−rs)2+ 2
s
t

(
st
(

1−
r2

2

))
= 2s2

6= 0.

So B ·x ⊆ Z(Xα2)∩V (Xα1)∩V (X2
α1+α2
+2Xα1 Xα1+2α2). We now prove the reverse

containment. Note that an arbitrary element of this locally closed set has the form
(w, 0, y, z) with w 6= 0, and y2

+ 2wz 6= 0. Since k is not of characteristic 2, the
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element 1
2(y

2
+ 2wz) exists and is nonzero in k, and since k is algebraically closed,

its square root exists in k and is also nonzero. Now by direct calculation we have

T
(√

y2
+ 2wz

2
,

1
w

√
y2
+ 2wz

2

)
Uα2

(
−y

√
2

y2+ 2wz

)
· x = (w, 0, y, z).

This proves B·x= B·(xα1+xα1+α2)= Z(Xα2)∩V (Xα1)∩V (X2
α1+α2
+2Xα1 Xα1+2α2).

The last orbit we need to consider is the orbit of x = xα1 + xα2 . Only Uα1+2α2

fixes x , so we need to see how all three of the other root groups act. By direct
matrix calculation we have

T (s, t)Uα1(a)Uα2(b)Uα1+α2(c) · x =
(

s
t
, t, (a− b)s,−st

(
b2

2
+ c

))
. (4)

Since s, t 6= 0, we have B · x ⊆ V (Xα1)∩ V (Xα2). We now show the reverse
containment. Let (w, u, y, z) ∈ V (Xα1)∩ V (Xα2) be arbitrary (so w, u 6= 0). Then
using (4), we have

T (wu, u)Uα1

(
y
wu

)
Uα2(0)Uα1+α2

(
−

z
wu2

)
· x = (w, u, y, z).

This shows B · x = V (Xα1) ∩ V (Xα2) is an open, dense orbit in n, called the
regular orbit. We are nearly finished with the proof of our main result:

Theorem 3. Let G = SO5(k), where k is algebraically closed and not of character-
istic 2, and let B be a Borel subgroup acting on n via the adjoint action. Then B
has just seven orbits as indicated in the following table along with their defining
equations. The dimensions of these orbits are also indicated in the table, and the
closure order is indicated by the Hasse diagram in Figure 1.

element x of n defining equations for B · x dim B · x

0 Z(Xα1, Xα2, Xα1+α2, Xα1+2α2) 0
xα1+2α2 Z(Xα1, Xα2, Xα1+α2)∩ V (Xα1+2α2) 1
xα1+α2 Z(Xα1, Xα2)∩ V (Xα1+α2) 2

xα1 Z(Xα2, X2
α1+α2

+ 2Xα1 Xα1+2α2)∩ V (Xα1) 2
xα2 Z(Xα1)∩ V (α2) 3

xα1 + xα1+2α2 Z(Xα2)∩ V (Xα1)∩ V (X2
α1+α2

+ 2Xα1 Xα1+2α2) 3
xα1 + xα2 V (Xα1)∩ V (Xα2) 4

In the Hasse diagram of the closure ordering in Figure 1, each orbit is indicated
by its representative element from the first column of the table.

Proof. We have already verified the entries in the first two columns of the table.
Note that the orbit closures are just the closed sets from the defining equations.
For example, since B · xα1+α2 = Z(Xα1, Xα2) ∩ V (Xα1+α2), we have B · xα1+α2
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xα1 + xα2

xα1 + xα1+2α2

xα1

xα2

xα1+α2

xα1+2α2

0

Figure 1. The closure order for nilpotent B-orbits in type B2.

= Z(Xα1, Xα2). Using the closures, we can easily determine the dimensions in
the third column as well as the closure ordering. Note that for polynomials fi

in r variables, the dimension of Z( f1, f2, . . . , fk) is just r − k provided that the
fi are all algebraically independent. It should be clear that we found all the
algebraic dependencies when we worked out the defining equations, so that the fi

are algebraically independent in the closed sets in the second column of the table.
Thus, since r = dim n= 4, the dimensions in the third column are equal to 4− k,
where k is the number of polynomials whose zero sets define the orbit closure.

The only nontrivial containment for the closure ordering is B · xa1+2α2 ⊆ B · xα1 ,
which happens if and only if B · xα1+2α2 ⊆ B · xα1 . So take an arbitrary element
x ∈ B · xα1+2α2 = Z(Xα1, Xα2, Xα1+α2). Then, since both Xα1 = 0 and Xα1+α2 = 0,
it follows that both X2

α1+α2
= 0 and Xα1 Xα1+2α2 = 0 when evaluated at x . Therefore,

X2
α1+α2
+2Xα1 Xα1+2α2=0 as well, so x ∈ Z(Xα2, X2

α1+α2
+2Xα1 Xα1+2α2)= B · xα1 ,

showing the desired containment. The other containments shown in the Hasse
diagram follow similarly.

All that remains to show is that we have exhausted all the nilpotent orbits in n.
So let n =wxα1+ xxα2+ yxα1+α2+ zxα1+2α2 = (w, x, y, z) be an arbitrary element
of n. We must show n lies in one of these seven orbits. We will distinguish cases
according to how many and which of the four coordinates are 0. If both w and x
are nonzero, then n is in V (Xα1)∩ V (Xα2)= B · (xα1 + xα2), the regular orbit. So
it only remains to consider cases when one or both of w, x are 0. First, suppose
w = 0 but x 6= 0. Then n = (0, x, y, z) ∈ Z(Xα1)∩V (Xα2)= B · xα2 . On the other
hand, suppose w 6= 0 and x = 0, so n = (w, 0, y, z) ∈ Z(Xα2)∩ V (Xα1). But then
n ∈ B · (xα1 + xα1+2α2) or n ∈ B · xα1 , depending on whether or not y2

+ 2wz = 0.
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Lastly, we consider cases where w = 0 = x . In this case, n = (0, 0, y, z) ∈
Z(Xα1)∩ Z(Xα2). If y 6= 0, then n ∈ Z(Xα1, Xα2)∩ V (Xα1+α2) = B · xα1+α2 . On
the other hand, if y = 0, then n = (0, 0, 0, z), which belongs to either B · 0 or
B · xα1+2α2 , depending on whether or not z = 0. This covers all possible cases, and
in each case, n was in one of the above-mentioned orbits, whence the union of the
seven orbits is all of n. �

3. Conclusions

The result that there are only finitely many nilpotent B-orbits for SO5(k) can be
phrased in terms of a general concept for algebraic group actions called modality
(see [Popov and Röhrle 1997] for example).

Let G be an arbitrary algebraic group acting morphically on a nonempty variety V.
The modality of the action is

mod(G, V )=max
Z

min
z∈Z

codimZ (G0
· z), (5)

where Z runs through all irreducible G0-invariant subvarieties of V. Here, G0 is the
connected component of the identity in G. Informally, the modality is the maximum
number of (continuous) parameters on which a family of G-orbits may depend.

Although we are mainly interested in nilpotent orbits for a Borel subgroup B
of G, much of the literature is written in terms of the more general case of orbits for
a parabolic subgroup P, which is any closed subgroup containing a Borel subgroup.
If P is parabolic, denote its Lie algebra by p, and the nilradical of p by n(p). Then
P acts on n(p) via the adjoint representation, and the modality of P is defined to be
mod(P, n(p)). Thus the modality of P is 0 precisely when there are only finitely
many nilpotent P-orbits in n(p).

When P = G, the nilradical of g is trivial since g is simple, so the modality of
G is trivially 0. At the other extreme, the modality of B is almost never 0. So
one consequence of Theorem 3 is that if p 6= 2, then B has modality 0 in type B2.
Of course, this is a well-known result. Based on earlier work in [Bürgstein and
Hesselink 1987], in [Kashin 1990] all the Borel subgroups of modality 0 were
determined in characteristic 0:

Theorem 4 [Kashin 1990]. Let G be quasisimple over k, where k has character-
istic 0, and suppose B is a Borel subgroup of G. The number of orbits of B on n

is finite (that is, B has modality 0) if and only if G is type An for n ≤ 4, or G is
type B2.

Aside from the consequences of this theorem for our investigation on nilpotent
B-orbits, Kashin’s result launched an investigation into the modality of parabolic
subgroups in general. For example, see [Röhrle 1996; 1999; Popov 1997; Popov
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and Röhrle 1997; Hille and Röhrle 1999; Brüstle et al. 1999]. In fact, Theorem 1.1
in [Hille and Röhrle 1999] shows there is a strong connection between the modality
of a parabolic subgroup and the length of a descending central series of Ru(P), the
unipotent radical of P , also called the nilpotency class of Ru(P). Using this theorem,
one can easily recover Kashin’s original theorem, with the added benefit that the
proof is valid in good prime characteristics for G as well as for characteristic 0. In
type A, all primes are good, and in type B, all primes are good except p = 2.

In a previous version of this paper, using similar techniques as here, we showed
directly that there are finitely many nilpotent B-orbits for G of types A1, A2, A3

and A4 without any restrictions on p, and used that information to determine the
dimensions of the orbits and the closure ordering. A referee pointed out to us that
the closure orderings for the four type-A cases were already discussed in [Brüstle
et al. 1999], making a lot of our work seem redundant. Note that the techniques
used in that paper are quite different than ours — they are much more sophisticated
than our matrix calculations. Their approach has some advantages, such as both
being more elegant than our approach and also being closer in spirit to the way
nilpotent G-orbits are classified. A possible advantage of our techniques, though, is
that they yield the explicit polynomial defining equations of each orbit. It may be
an advantage to knowing these defining equations in applying this work, perhaps
to computing support varieties of baby Verma modules as discussed in Section 1,
or perhaps for other applications. For this reason, we have uploaded our type-A
calculations [Burkhart and Vella 2017] on the arXiv so that despite the overlap with
[Brüstle et al. 1999], our tables for these orbits are publicly available. Here we
conclude by simply reminding the reader how many orbits there are in each case:
two orbits in type A1, five orbits in type A2, 16 orbits in type A3, and 61 orbits in
type A4. For the details of the defining equations, etc., consult [Burkhart and Vella
2017], and for the dimensions of each orbit and the Hasse diagrams of the closure
order in these cases, valid for all characteristics, consult either [Brüstle et al. 1999]
or [Burkhart and Vella 2017].
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Homophonic quotients of linguistic free groups
German, Korean, and Turkish

Herbert Gangl, Gizem Karaali and Woohyung Lee

(Communicated by Kenneth S. Berenhaut)

The homophonic quotient groups for French and English (i.e., the quotient of
the free group generated by the French/English alphabet determined by rela-
tions representing standard pronunciation rules) were explicitly characterized by
Mestre et al. (1993). We apply the same methodology to three different language
systems: German, Korean, and Turkish. We argue that our results point to some
interesting differences between these three languages (or at least their current
script systems).

1. Introduction

Mestre et al. [1993] explicitly characterized the homophonic quotient groups
for French and English (i.e., the quotient of the free group generated by the
French/English alphabet determined by relations representing standard pronun-
ciation rules). Some references mention an analogous characterization for Japanese,
but that result does not seem to be easily accessible.

In this paper we apply the same methodology to three different language sys-
tems: German, Korean, and Turkish. The analysis for German was circulated in
unpublished form for a while; the Korean and the Turkish analyses are new. As we
suggest in the final section of this paper, our results may point to some interesting
differences between these three languages (or at least their current script systems).

The paper is organized in a straightforward manner, with each numbered section
presenting the analysis for one language. In particular Section 2 presents our results
for German, Section 3 presents our results for Korean, and Section 4 presents our
results for Turkish. A final section brings together these analyses and offers some
thoughts on what we might gain from this comparative study.
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2. German

In their phonetically calibrated paper [Mestre et al. 1993], Mestre, Schoof, Wash-
ington, and Zagier showed that the homophonic quotient of the free group on the
26 letters of the alphabet is trivial for both the French and the English languages.
As already foreshadowed in that paper, we obtain the same answer for the German
language.

Let G be the quotient of the free group on 26 letters a, b, c,. . . , z by the rela-
tions A = B provided there are words A and B in the German language whose
pronunciations agree.

We justify the term “agree” by invoking standard dictionaries like [Duden 1986;
1990], whose name “Duden” has become synonymous with the official norm, as
well as its online version http://www.duden.de/suchen/dudenonline. Alternatively,
for most of the pairs of words below, we can use an automatic phonetic converter
such as the one at http://familientagebuch.de/rainer/2007/38.html#4.

Theorem 1. The group G is trivial.

Proof. We successively eliminate letters using specific properties of spoken German.
For homophonicity we need to distinguish in particular between long and short
vowels as well as between voiced and unvoiced consonants.

Vowels (methods of idempotents, see [Mestre et al. 1993], and of vanishing with ‘h’).

(a) For instance, ‘aa’, ‘ah’ and ‘a’ may often be pronounced alike, in particular
they often have the same length, like “Waage” [scales] and “wage” [(I) dare] or
“Wahl” [choice] and “Wal” [whale].

(e) Similarly, ‘ee’, ‘eh’ and sometimes ‘e’ can sound the same: “Meer” [the sea]
and “mehr” [more].

(o) Both ‘oo’ and ‘oh’ are often used within words, and can both be pronounced
like a single ‘o’ (“Boot” [boat] and “bot” [(he) offered], and “hohle” [hollow (pl.)]
vs. “hole” [(I) fetch]).

We note that for ‘i’ and ‘u’ the corresponding identifications do not work; e.g., while
both ‘ie’ and ‘ih’ indicate a long ‘i’, the former can never occur at the beginning of
a word where it is instead replaced by the second one (“ihnen” [(to) them], “ihr”
[her]), and ‘ii’ in a word (like “liieren” [(to) liaise]) is pronounced with a glottal
stop between the ‘i’s. Similarly, the ‘uu’ in words like “Kontinuum” or “Trauung”
indeed comes across as two ‘u’s, and there aren’t any words with a ‘uu’ that would
sound like a long ‘u’, say. Hence we need to treat these two vowels separately.

Consonants.

(g/b/n) (voiceless in the end) At the end of a word, a voiced consonant is pronounced
in the same way as the corresponding unvoiced one (like “Bug” [(nautical) bow]

http://www.duden.de/suchen/dudenonline
http://familientagebuch.de/rainer/2007/38.html#4
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and “buk” [(he) baked], or “Alb” and “Alp” [both for nightmare]). Similarly,
an ‘nn’ at times sounds like a single ‘n’ (“Mann” [man] and “man” [one/you
(pronoun)]).

(v/w) (WVF?) The consonant ‘v’ is typically pronounced in one of two ways: like
‘f’ or like ‘w’, depending mostly on the etymological origin of the word (“viel”
[many] vs. “fiel” [(he) fell] and “vage” [vague] vs. “wage” [(I) dare]).

(l/r/f/p/s) (idempotents) By combining certain consonants we can further minimize
the influence of a single contributing consonant, so while it is hard to find the same
sounds for ‘ll’ and ‘l’ at the end of a word, one can add a ‘t’ to it and succeed
(“hallt” [(it) reverberates/echoes] vs. “Halt” [halt]). Similar comments apply to
‘rr’ and ‘r’ (“starrt” [(he) stares] vs. “Start” [start]), for ‘ff’ and ‘f’ (“schafft” [(he)
manages] vs. “Schaft” [shaft]), as well as ‘pp’ and ‘p’ (“klappst” [(you) flap/fold]
vs. ‘klapst’ [(he) claps lightly]; alternatively, “schnippst” and “schnipst”, both from
schnipsen [(to) clip]). Furthermore, “fasst” [(he) catches] and “fast” [almost] are
homophonic.

(t/d) (little ‘dt’ for ‘tt’) A related case is the combination ‘th’ which also often
ensures that a preceding vowel is pronounced as a short one: e.g., “Zithern” [zithers]
and “zittern” [(to) tremble] are pronounced the same way; another means to the
same end is the use of ‘dt’ in place of ‘tt’, giving, e.g., that “Stadt” [city] and “statt”
[instead of] are homophonic.

(m) A variant of the idempotent method, using also the voiced/unvoiced consonant
at the end of a word, is “hemmt” [hinders] vs. “Hemd” [shirt].

(c) (departing of the ‘c’) Other constructs that make sure that a vowel is short are
to follow it up with a ‘ck’ rather than a ‘k’; for example, the words “packt” [(he)
packs] and “Pakt” [(a) pact] sound alike. Note, however, that in a very similar
setting the words “hackt” [(he) hacks] and “hakt” [(he) hooks] are pronounced
differently, as the latter ‘a’ then denotes a long vowel.

(z) A further peculiarity is the pronunciation of ‘z’, typically equivalent to the
combination ‘t-s’ (with obvious exceptions for loanwords like “Jazz” where the
educated citizen will make an attempt to sound more anglophonic), so we can
identify the genitive “Kitts” of “Kitt” [glue] with “Kitz” [fawn].

(x) In the same vein as ‘z’, the letter ‘x’ is pronounced ‘k-s’ which is also the
pronunciation of ‘chs’ (i.e., when ‘ch’ precedes ‘s’ it often becomes ‘k’), so we
find “lax” [lax] to be homophonic to “Lachs” [salmon].

The remaining letters ‘k’, ‘u’, ‘i’, ‘y’, ‘j’ and ‘q’ are somewhat harder to trivialize,
but modulo the above this is doable, albeit by using loanwords from different
languages (English, Italian, Hungarian).
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(k) The English word “Clip” for office equipment is often used and is homophonic
to “klipp” (e.g., from “klipp und klar” [in no uncertain terms]).

(u) The Italian word “ciao” has been assimilated as “tschau”, both terms being
used.

(i) The word “roien” [(to) row] is homophonic to “reuen” [(to) rue], the former being
used mainly in “Niederdeutsch”, i.e., in the north of Germany. Alternatively, the
loanword (from the English language) “beaten” [(to) make beat music] is acceptable
according to [Duden 1990], and it is homophonic to “bieten” [(to) offer].

(y) The word “toi” from the saying “toi, toi, toi” [break a leg] sounds like “Toy”
[sex toy]. Alternatively, a “Bayer” [Bavarian] can be spelled “Baier”. (We could
also invoke the ambiguous spellings of “Yoghurt” and “Joghurt”. For yet another
possibility, the Hungarian word “Gulyas” [goulash] has been assimilated also as
“Gulasch”.)

(j) As to ‘j’, we use the word “Yak” [yak] (from the Tibetan “gyag”) and its
similarity to “Jacke” [jacket], which are not homophonic as such, but their respective
diminutives “Yäkchen” and “Jäckchen” (note the ensuing umlaut for either case)
are.

(q) Finally, for the quite rare letter ‘q’, we can use the French word “clique” (which
has been adapted into German with a short ‘i’), whose pronunciation agrees with
that of “klicke” [(I) click]. Another possibility is to note that the letter “Q” itself
can be used as a word (say, as the Q in a game of Scrabble) and is homophonic to
“Kuh” [cow].

In the table below we successively eliminate the letters on the left using the
homophonic ambiguity displayed on their right, completing the proof of the theorem:

a Waage — wage s fasst — fast
h Wahl — Wal t Zittern — Zithern
e Meer — mehr d Stadt — statt
o Boot — bot m hemmt — Hemd
g Bug — buk c packt — Pakt
b Alb — Alp z Kitz — Kitts
n Mann — man x lax — Lachs
v viel — fiel k klipp — Clip
w wage — vage u tschau — ciao
l gewallt — Gewalt i roien — reuen
r starrt — Start y Toy — toi
f schafft — Schaft j Jäckchen — Yäkchen
p klappst — klapst q Clique — klicke □
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Generalizations. One can also try to include the umlaute ‘ä’, ‘ö’, ‘ü’, and the
“sharp s” ß into these investigations. The result remains the same. Our suggestion
for the corresponding trivializations are the following: For ‘ä’ we invoke that in
combination with ‘u’ the diphthongs ‘äu’ and ‘eu’ sound alike, for instance in the
words “häutig” [of a skinny texture] and “heutig” [contemporarily]; alternatively,
we can use that a long ‘ä’ can sound like the ‘ai’ for certain loanwords from the
English language, for example in “Fähre” [ferry] and “faire” [fair]. For ‘ö’ we use
that certain words are spelled with both the original French ‘eu’ and the assimilated
German ‘ö’, like “Frisör” and “Friseur”. Furthermore, the pronunciation of ‘ü’
is often the same as that of ‘y’, like in the Greek letter “My” [mu] and “müh”
[(I) labor], or, a far better one due to Martin Brandenburg, “Mythen” [myths] and
“mühten” [(they) labored]. Finally, a ‘sharp s’ at the end of a word is typically
preceded by a long vowel, and hence it is not difficult to construct word pairs like
“aß” [(I) ate] and “Aas” [(rotten) carcass]:

ä häutig — heutig
ö Frisör — Friseur
ü müh – My
ß aß — Aas

3. Korean

What differentiates Korean from the languages discussed in [Mestre et al. 1993] is
the number of alphabets and some fundamental grammar structures. Nevertheless,
there exist many rules regarding homophones, so the first natural assumption would
be that the resulting quotient group shouldn’t have too many elements. It turns out
that this is indeed the case.

Here we note that this mathematical analysis of Korean does not describe the
entire structure of the Korean language. It takes the phonetic aspect of the language
and restructures the alphabets into a free group with a very specific and somewhat
restrictive equivalence relation. Using such a structure, we inevitably lose a lot of
information about the Korean language, but are, however, rewarded with a unique
finite group that characterizes it.

Now, let us begin with describing some necessary concepts about the Korean
language.

3.1. Some basics of Korean. Korean characters, like English, consist of vowels
and consonants. The alphabet contains 19 consonants and 21 vowels. The exact
list is shown below in Table 1.

Because of the complications arising from the unique structure of Korean, from
here on, each of the above symbols in the table will be called a character. To show
why such clarification is crucial, let us take a look at a Korean word that stands for
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consonants ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎ

vowels ㅏㅐㅑㅐㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣ

Table 1. Korean characters [KLI].

“number”. It is written as 수. This word is composed of a single letter, and that
letter is composed of a consonant and a vowel, which are, in this case,ㅅ andㅜ.
These letters form the bases of Korean words, as no single consonant or vowel is
ever used alone without the other. However, this is not the end.

To add to the already complex structure, a single letter can be made up of
multiple consonants and a vowel, up to three consonants and one vowel. Denoting
vowels and consonants as v and c in respective order, the possible combinations are
{c+v, c+v+c, c+v+c+c}. Henceforth, expressions of the form c+v+· · · will
be called ordered decompositions. The fact that these are the only combinations,
however, effectively erases the need to distinguish between letters and combinations
of characters. We present the needed argument below.

Theorem 2. Ordered decomposition uniquely encodes any formal composition of
Korean letters or words. Equivalently, the formal expression of a Korean word is
uniquely encoded in the ordered decomposition.

Proof. A letter in Korean is always given as one of c+v, c+v+c, or c+v+c+c.
In particular, it always begins with c + v, and hence identifying each c + v in the
ordered decomposition allows us to retrieve the unique formal expression of the
corresponding Korean word. □

Now that we’ve established some basics we will examine the homophonic struc-
ture of the quotient group G of the free group on 40 Korean characters, given by
the equivalence relation A = B whenever A and B have the same pronunciation in
Korean. We will use a standard pronunciation guide such as [KLI] for reference.
Also we will use 1 to denote the empty word as we analyze the group structure of
Korean.

3.2. Triviality of consonants. We first show that all consonants are trivial. We do
this in three steps.

3.2.1. ㅇ is trivial. To show this, let us take a look at the word안일하다 [to be idle].
안일하다 has exactly the same pronunciation as아닐하다 [KLI]. Just by looking
at the two words, 하다 is present on both sides, so it can be canceled out. Now
the equivalence relation is betweenㅇ+ㅏ+ㄴ+ㅇ+ㅣ+ㄹ andㅇ+ㅏ+ㄴ+ㅣ+ㄹ.
Clearly after canceling out,ㅇ= 1, and henceㅇ is trivial.

3.2.2. ㄱ=ㄲ=ㅋ, ㄷ=ㅅ=ㅆ=ㅈ=ㅊ=ㅌ, ㅂ=ㅍ. To show the above equiv-
alence relations, let us examine words containing letters of the form c+v+c. First,
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we will examine the words 부엌 [kitchen] and 밖 [outside]. By the equivalence
relation defined above, 부엌=부억 and 밖=박. By rewriting these relations in
ordered decomposition, ㅂ+ㅜ+ㅇ+ㅓ+ㅋ=ㅂ+ㅜ+ㅇ+ㅓ+ㄱ and ㅂ+ㅏ+ㄲ=

ㅂ+ㅏ+ㄱ. Now it is clear that ㄱ=ㅋ and ㄱ=ㄲ. By the transitive property
ㅋ=ㄲ=ㄱ.

For the second part we can examine the equivalence relations,낫 [scythe] =낟,
낮 [day] =낟, 낯 [face] =낟, 밭 [field] =받. Clearlyㄷ=ㅅ=ㅈ=ㅊ=ㅌ. Proving
ㄷ=ㅆ is a bit more difficult as there are no single-letter words in Korean ending
inㅆ. To prove this we need to look at the two-letter word불소 [fluorine]. By the
equivalence relation불소=불쏘, we clearly haveㅅ=ㅆ. Since we already know
ㅅ=ㄷ, by the transitive property,ㄷ=ㅆ, thus concluding our proof of the second
equivalence relation.

For the last equivalence relation, we can look at짚 [hay] =집, and can conclude
thatㅂ =ㅍ.

By proving these relations, we’ve reduced the set of consonants to {ㄱ,ㄴ,ㄷ,ㄸ,
ㄹ,ㅁ,ㅂ,ㅃ,ㅉ,ㅎ}.

3.2.3. Consonants are trivial. To further reduce the set of consonants let us look
at the equivalence relation앞마당 [lawn] =암마당. This shows thatㅁ =ㅍ, and
ㅍ =ㅂ, soㅁ =ㅂ. Additionally,있는 [existing] =인는, and soㄴ =ㅆ =ㄷ.
Also,국물 [soup] =궁물, and놓는 [lay down] =논는, soㄱ is trivial andㄷ =

ㄴ =ㅎ. Observe that숱하다 [to be in abundance] =수타다, which shows thatㅎ
is also trivial. Since ㄷ = ㅎ and ㅎ is trivial, ㄷ is also trivial. Now, there only
remain five nontrivial consonants, {ㄸ,ㄹ,ㅂ,ㅃ,ㅉ}.

Let’s look at the equivalence relation 웃다 [smile] = 욷따, which in ordered
decomposition isㅇ+ㅜ +ㅅ+ㄷ+ㅏ =ㅇ+ㅜ +ㄷ+ㄸ+ㅏ. We knowㅇ,ㅅ =ㄷ

are trivial, soㅜ +ㅏ =ㅜ +ㄸ+ㅏ. Henceㄸ = 1 and soㄸ is also trivial. 약지
[ring finger] =약찌; henceㅉ =ㅈ =ㄷ = 1 andㅉ is trivial. 막론 [whether] =

망논, which can be rewritten as ㅁ+ㅏ+ㄱ+ㄹ+ㅗ+ㄴ = ㅁ+ㅏ+ㅇ+ㄴ+ㅗ+ㄴ,
and since ㄱ,ㄴ = ㄷ are both trivial, ㅁ+ㅏ+ㄹ+ㅗ = ㅁ+ㅏ+ㅗ, and so ㄹ is
trivial. 국밥 [soup and rice] =국빱 implies thatㅂ =ㅃ. There remains only one
nontrivial consonant,ㅂ.

Lastly we need to examine a word with a letter of the form c + v + c + c. 넓다
[wide] = 널따, and we know that ㄴ,ㄹ,ㄷ,ㄸ are all trivial. So, after canceling
both sides, we haveㅓ+ㅂ+ㅏ =ㅓ+ㅏ, and soㅂ is trivial. Hence we’ve proved
the triviality of all Korean consonants.

3.3. Vowels have two nontrivial elements: vowels = {ㅏ,ㅗ}. While in examining
consonants we only needed to look at a single equivalence relation, vowels are not
so easy. There are multiple equivalence relations between three or more vowels, so
we need to sort through these relations to see how they can be reduced. Furthermore,
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many words in the Korean language have reduced forms, where a letter of the form
ㅇ+v is merged with the previous letter, as witnessed in되어=돼. For our analysis
of Korean, we will also take such reductions as equivalence relations.

Let us begin examining the vowels by the equality 가지어 [have] = 가져 =

가저. All consonants are trivial, so we can simply look at ㅏ+ㅣ+ㅓ = ㅏ+ㅕ
= ㅏ+ㅓ. From this we can conclude that ㅣ is trivial and ㅓ = ㅕ. Also, 통계
[statistics] =통게 implies thatㅖ =ㅔ, and희미 [faint] =히미 impliesㅢ =ㅣ.
Since ㅣ is trivial, ㅢ is trivial, and 금괴 [gold bar] = 금궤 [metal box] implies
ㅚ =ㅞ. 누이다 =뉘다 (to lay down) implies위 can be identified with우+이,
so by the triviality of ㅣ, we have ㅟ = ㅜ. 되어 = 돼 implies ㅚ+ㅓ = ㅗ+ㅓ
=ㅙ =ㅗ+ㅐ, 싸이다 = 쌔다 implies ㅏ+ㅣ =ㅏ = ㅐ, and 트이다 =틔다 =

티다 implies thatㅡ is also trivial. Continuing we have미아 =먀 impliesㅏ=ㅑ

and 쏘이다 = 쐬다 implies ㅗ+ㅣ = ㅗ = ㅚ. Also, ㅚ = ㅞ, so ㅗ = ㅚ = ㅞ.
Lastly, there are consonants whose pronunciations are defined as the combination
of two other consonants, such asㅛ=ㅣ+ㅗ.

Listing these rules that do not overlap into an easily decipherable form we get:

(1) ㅣis trivial. (9) ㅡ +ㅣ=ㅣ⇐⇒ㅡ = 1.

(2) ㅓ=ㅕ. (10) ㅣ+ㅏ=ㅑ⇐⇒ㅏ=ㅑ.

(3) ㅖ=ㅔ. (11) ㅗ +ㅣ=ㅚ⇐⇒ㅗ =ㅚ.

(4) ㅢ =ㅣ. (12) ㅢ =ㅔ⇐⇒ㅔ= 1.

(5) ㅚ =ㅞ. (13) ㅗ +ㅐ=ㅙ.

(6) ㅟ =ㅜ+ㅣ⇐⇒ㅟ =ㅜ. (14) ㅝ =ㅜ +ㅓ.

(7) ㅚ +ㅓ=ㅙ. (15) ㅛ =ㅣ+ㅗ .

(8) ㅏ+ㅣ=ㅐ⇐⇒ㅏ=ㅐ. (16) ㅠ =ㅣ+ㅜ .

Just by looking at these rules, we can reduce the set {ㅏ,ㅐ,ㅑ,ㅐ,ㅓ,ㅔ,ㅕ,
ㅖ, ㅗ, ㅘ, ㅙ, ㅚ, ㅛ, ㅜ, ㅝ, ㅞ, ㅟ, ㅠ, ㅡ, ㅢ, ㅣ} of vowels into {ㅏ, ㅓ, ㅗ, ㅘ,
ㅙ,ㅛ,ㅜ,ㅝ,ㅞ,ㅠ}.

Now we outline the rest of the process:

• (13) and (8) combine to show thatㅗ +ㅐ=ㅗ +ㅏ=ㅘ=ㅙ, implyingㅘ=ㅙ.

• (5) and (11) combine to show thatㅗ =ㅞ =ㅜ +ㅔ, and since (12) states that
ㅔ is trivial,ㅗ =ㅜ.

• As a direct result of ㅗ = ㅜ, (14), (13), (11), (7) and (1), we have ㅝ
=ㅜ +ㅓ =ㅗ +ㅓ=ㅗ +ㅣ+ㅓ=ㅚ +ㅓ=ㅙ=ㅗ +ㅐ. Soㅝ =ㅙ =ㅘ.

• (1) and (15) together show thatㅗ =ㅛ .

• Since ㅠ =ㅣ+ ㅜ and we’ve concluded that ㅗ = ㅜ, we have ㅠ =ㅣ+ ㅜ
=ㅣ+ㅗ =ㅗ .
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• Recall that from (7) and (13), we haveㅚ +ㅓ=ㅙ =ㅗ +ㅐ. However,ㅚ =

ㅗ +ㅣ=ㅗ, soㅗ +ㅓ =ㅗ+ㅐ, and by cancelingㅗ, we have thatㅓ=ㅐ.

• (8) states thatㅏ=ㅐ, so with the above result,ㅏ=ㅓ.

• Sinceㅘ =ㅗ+ㅏ, we haveㅘ is generated byㅗ andㅏ.

Conclusion. The homophonic quotient of the Korean language can be written in
terms of two generators {ㅏ,ㅗ }.

In some sense, we have identified the two most fundamental characters in Korean
as their pronunciations are not discarded in any Korean word they appear in. Fur-
thermore because we have allowed for the equivalence of words and their reduced
forms, it is unlikely that the set of distinct Korean characters under homophonic
quotients can be further reduced. However, distinctions between pronunciations of
certain vowels are becoming more obscure; hence it is possible that after appro-
priately adjusting the formal pronunciation rules to accommodate such trends, the
homophonic quotient group of Korean is further reduced.

4. Turkish

In this section we determine the homophonic quotient group for Turkish. There are
several Turkic languages, and alphabets encoding them have many commonalities.
We will exclusively focus on the modern Turkish alphabet.

4.1. The sounds of Turkish. The modern Turkish alphabet was introduced in 1928
along with a wide-reaching literacy campaign. The Latin-based script was developed
to replace the use of the Arabic script, and contains a total of 29 letters (8 vowels
and 21 consonants) as seen in Table 2.

This set of letters was specifically selected to represent the sounds present in
the spoken language of the time, taking the Istanbul dialect as the standard. Each
letter is supposed to represent a unique sound of the spoken language (except the
so-called “soft g”, ğ, which tends to extend the vowel before it and blends it to the
following vowel if there is one, but is otherwise completely silent; see [Logacev
et al. 2014] for more on the “soft g”). For more on the sound system of modern
Turkish, see [Yavuz and Balci 2011].

To this day the modern Turkish script retains most of its phonetic representative-
ness [Kopkalli-Yavuz 2010]. Indeed many hold that there are no homophones in

consonants b c ç d f g ğ h j k l m n p r s ş t v y z

vowels a e ı i o ö u ü

Table 2. Letters of the modern Turkish script (only lowercase
letters are given).



472 HERBERT GANGL, GIZEM KARAALI AND WOOHYUNG LEE

Turkish; see for instance [Raman and Weekes 2005], where Turkish is described as
a “completely transparent writing system” with “invariant and context-independent
one-to-one mappings between orthography and phonology”.

This suggests that the free group generated by the 29 sound representatives
will not shrink much if at all when we try introducing homophonic equivalences.
Nonetheless there are indeed some relations we might use if we consider “how
words are actually pronounced by real live people”.1

4.2. The “soft g” disappears. As noted above the “soft g” is often not a distinctly
pronounced consonant but instead helps to accentuate or blend the surrounding
vowels. Most native speakers would agree that we can identify the following
encodings of the male name meaning “Khan”:

Kaan = Kağan.

Thus in the quotient group we would identify the “soft g” with identity.

4.3. Other disappearing acts: ‘h’ and ‘t’. The standard pronunciation of the word
“dershane” [classroom] overlaps with the pronunciation of “dersane”, thus allowing
us to conclude that ‘h’ too is trivial in the quotient. Similarly the double ‘t’s
in the words “Hacettepe” and “Anıttepe” [two location names in Ankara] are
most commonly pronounced as if they were written as “Hacetepe” and “Anıtepe”
respectively. Thus we can identify ‘tt’ with ‘t’, trivializing ‘t’.

4.4. Vowel confusion: the transformations of ‘a’ and ‘e’ into ‘ı’ and ‘i’ and two
final disappearing acts. The Turkish language captures the phrase “let me look”
in the single word “bakayım”. The native speaker pronounces the latter in the same
way that she would read the letter collection “bakıyım”. This allows us to identify
a = ı. Similarly the phrase “içecek” [drink] is pronounced the same way that one
would read “içicek” and so we identify e = i.

Finally the word “ağabey” [older brother] has an almost universally accepted
informal spelling, “abi”, representing the way people actually pronounce the word.
Together with the sound equivalence of “ağa” [master, land owner] and “ağ” [net-
work], this gives us two additional trivializations, of ‘a’ and ‘y’.

Putting the above reductions together we conclude that the homophonic quotient
group for Turkish is a free group on 22 generators:

b , c , ç , d , e (= i) , f , g , j , k , l , m , n , o , ö , p , r , s , ş , u , ü , v , z
1In his MathSciNet review (MR1273406), James Wiegold notes that the authors of [Mestre

et al. 1993] “have [perhaps deliberately?] neglected all considerations of how words are actually
pronounced by real live people.” Clearly if we were to take into consideration each native speaker’s
distinct pronunciation patterns, the homophonic quotients problem would become quite intractable.
However we will indeed introduce some of this complication into our analysis of Turkish. This may
be justified by the fact that there is deemed to be a standard spoken Turkish, and it is indeed distinct
from most formal descriptions of the orthography/phonology correspondence for the language.
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5. Final words: bringing the three threads together

In this paper we investigated three different languages and their writing systems.
We believe that our results offer an interesting example of applied algebra. We
explored how the writing system of a modern language and its correspondence
with the sounds of that language can be encoded in group theory. Other algebraic
structures have been identified in various symmetrical constructions of nature such
as crystals, as well as in a range of sociological and anthropological contexts such
as the kinship structure of the Warlpiri of Australia.2

It is important to note that our methods do not address the full phonetic structure of
any single language. Our work only pertains to the relationship between orthography
and phonology of a language, that is, the extent to which a single symbol may
represent a multiplicity of sounds of a given language. A simplistic interpretation
of our method would suggest that if the generating set for the resulting quotient
group is small, there are, on average, more sounds represented by a single symbol.

We should also note that the complexity of the resulting group may be correlated
not directly with the complexity of the sound system of a given language but perhaps
more with the maturity of the particular writing system associated to it. Languages
evolve, and oral traditions evolve much faster than written ones. Thus a young
script like modern Turkish might be naturally more representative of the phonetical
structure of the language and equivalently offer fewer homophones than a script
which is more mature, such as the Korean one, which in turn may offer fewer
homophones than an even older script such as the German one.
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Effective moments of Dirichlet L-functions
in Galois orbits

Rizwanur Khan, Ruoyun Lei and Djordje Milićević
(Communicated by Stephan Garcia)

Khan, Milićević, and Ngo evaluated the second moment of L-functions associated
to certain Galois orbits of primitive Dirichlet characters to modulus a large
power of any fixed odd prime p. Their results depend on p-adic Diophantine
approximation and are ineffective, in the sense of computability. We obtain an
effective asymptotic for this second moment in the case of p = 3, 5, 7.

1. Introduction

Dirichlet L-functions, introduced by Dirichlet in 1837, are the first generalization of
the Riemann zeta function. They are extremely important in number theory, being
used, for example, to study the number of primes in arithmetic progressions and the
class number of certain number fields (via Dirichlet’s class number formula). Given
a primitive Dirichlet character χ with modulus q (see [Davenport 2000] for further
background), the associated L-function is defined for Re(s) > 1 by the absolutely
convergent series

L(s, χ)=
∑
n≥1

χ(n)
ns . (1-1)

This has an Euler product

L(s, χ)=
∏

p

(
1−

χ(p)
ps

)−1

and analytically continues to an entire function with functional equation

3(s, χ) :=
(
π

q

)−(s+κ)/2
0

(
s+ κ

2

)
L(s, χ)=

τ(χ)

iκq1/23(1− s, χ̄),

where τ(χ) is the Gauss sum and

κ :=

{
0 if χ(−1)= 1,
1 if χ(−1)=−1.

(1-2)

MSC2010: 11M20.
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As is typically the case, the line of symmetry Re(s)= 1
2 of the functional equation

is where the L-function is most difficult to understand. Since the values at s = 1
2 of

L-functions often encode important arithmetic information, it is natural to consider
the central values L

( 1
2 , χ

)
. From the adelic point of view, these may be considered

as finite-place-twist analogs of the archimedean twist ζ
( 1

2 + i t
)
, which is of classical

interest in analytic number theory. For example, it is conjectured that the central
value L

( 1
2 , χ

)
is never zero, but only partial results exist in this direction [Bui 2012;

Khan and Ngo 2016; Soundararajan 2000]. As another example, an analog of the
Lindelöf conjecture asserts that L

( 1
2 , χ

)
� qε for any ε > 0, but again only partial

results exist [Burgess 1963; Conrey and Iwaniec 2000; Milićević 2016]. (Here and
henceforth, ε will always be used to denote an arbitrarily small positive constant,
but may not be the same from one occurrence to the next. All implicit constants
may depend on ε.)

Given the lack of “closed-form formulas” that would directly shed light on
the values of individual L

( 1
2 , χ

)
, one often thinks of L-functions as embedded in

families and of the central value L
(1

2 , χ
)

as a random variable whose distribution
we are trying to understand. From probability theory, we know that one way to
understand the distribution of a random variable is to find its moments. For example,
given a large sample of test scores, the first moment tells us the average score, the
second moment is related to the variance of the scores, and if, as is often the case
for test scores, their distribution follows the bell curve, then the n-th moment of the
observed scores should correspond to that of the (rescaled) normal distribution. This
philosophy about computing moments is in fact a typical starting point in solving
problems about nonvanishing and size in families of L-functions. We remark on
the side that numerics, partial theoretical results including the known moments, as
well as analogs over function fields support a general conjecture that families of
L-functions exhibit random behavior in a suitable sense; see, for example, [Katz
and Sarnak 1999].

The moments problem is to evaluate asymptotically (as q→∞)∑∗

χ mod q

L
( 1

2 , χ
)n

for all n ∈ N, as well as ∑∗

χ mod q

∣∣L( 1
2 , χ

)∣∣n
for even values of n, where

∑
∗ means that the summation is restricted to the

primitive characters. The evaluation of the first and second moments (n = 1, 2) is
classical and due to Paley [1931]. The third and fourth moments (n= 3, 4) are quite
recent. The third moment was obtained by Zacharias [2017] for prime values of q .
The fourth moment was first obtained by Heath-Brown [1981] for values of q with a
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restricted number of prime factors and by Soundararajan [2007] for all values of q ,
and an asymptotic with a power savings error term was given by Young [2011] for
prime values of q; see also [Blomer and Milićević 2015] for factorable q (including
prime powers). No asymptotic is known for the fifth moment or higher (n ≥ 5).

In this paper we are interested in moments over natural subsets of the primitive
Dirichlet characters mod q, where q is of a special form. Working over a smaller
set gets us closer to the true asymptotic features of individual L-functions, but of
course it also means that there are fewer “harmonics” available to average over, so
the evaluation of the moments becomes more difficult. We now proceed to describe
our set of characters.

Let ξ be a primitive φ(q)-th root of unity, where φ is the Euler totient function,
and let Q(ξ) be the corresponding cyclotomic field, which is Galois over Q. The
group G =Gal(Q(ξ)/Q) acts on the set of primitive Dirichlet characters modulo q
as follows. For σ ∈G, we define χσ to be that character for which χσ (n)=σ(χ(n))
for all (n, q)= 1. The action under G partitions the set of characters into orbits O,
which we usually refer to as Galois orbits. Thus, from an algebraic perspective,
any two characters in a single orbit O are indistinguishable.

Several works have studied the average values of L-functions over these orbits
[Chinta 2002; Greenberg 1985; Khan et al. 2016; Rohrlich 1984]. For the rest of
the paper, we specialize to moduli of the form

q = pk,

where p is a fixed odd prime (thus q →∞ is equivalent to k →∞). For such
moduli, the orbits under the action of G are easy to describe. We have that χ1 and
χ2 belong to the same orbit if and only if χ1 and χ2 have the same order in the
group of characters mod q . The possible orders are l = pk−1d for d | (p− 1), and
the primitive characters of order l form an orbit O of cardinality φ(l); see Table 1
for an example. These facts are justified in [Khan et al. 2016].

In the course of studying nonvanishing of Dirichlet L-functions within the
Galois orbits described above, Ngo and two of us proved in [Khan et al. 2016,
Theorem 1.2b] the following asymptotic for the second moment (as k→∞): for
any given orbit O and ε > 0, we have

1
|O|

∑
χ∈O

∣∣L( 1
2 , χ

)∣∣2 = p− 1
p

(log q +C)+ O(q−1/4+ε), (1-3)

where

C =
0′
( 1

4(1+ 2κ)
)

0
( 1

4(1+ 2κ)
) + 2γ + 2

log p
p− 1

− logπ,

log is the natural logarithm, γ = 0.57721 . . . is the Euler constant, and κ is defined
in (1-2). The implicit constant in the error term of (1-3) is ineffective. This means



478 RIZWANUR KHAN, RUOYUN LEI AND DJORDJE MILIĆEVIĆ

n mod 9 1 2 4 5 7 8 primitive? order orbit

χ0(n) 1 1 1 1 1 1 1 {χ0}

χ1(n) 1 ξ ξ 2 ξ 5 ξ 4
−1 X 3 · 2 {χ1, χ5}

χ2(n) 1 ξ 2 ξ 4 ξ 4 ξ 2 1 X 3 · 1 {χ2, χ4}

χ3(n) 1 −1 1 −1 1 −1 2 {χ3}

χ4(n) 1 ξ 4 ξ 2 ξ 2 ξ 4 1 X 3 · 1 {χ2, χ4}

χ5(n) 1 ξ 5 ξ 4 ξ ξ 2
−1 X 3 · 2 {χ1, χ5}

Table 1. Four of the six characters modulo 9 = 32 are primitive.
They fall into two Galois orbits, the orbit {χ2, χ4} consisting of
characters of order 3 ·1= 3, of size φ(3)= 2, and the orbit {χ1, χ5}

consisting of characters of order 3 · 2= 6, of size φ(6)= 2.

that the error term is ≤ C ′q−1/4+ε for some constant C ′ = C ′(p, ε), but we have
no way of computing C ′ given the values of p and ε. In turn, this means that there
is a constant k0 such that for all k > k0, the main term of (1-3) dominates the error
term, but there is no way to give an explicit value for k0. In other words, we do not
know how large k must be before the given main term is a useful estimate of the
second moment. This ineffectivity is a side effect of the fact that the argument for
(1-3) given in [Khan et al. 2016] hinges crucially on Roth’s theorem in Diophantine
approximation (more precisely, on the p-adic version of Roth’s theorem due to
Ridout [1958]), which is well known to be ineffective. The goal of this paper
is to remedy this situation for natural towers of characters to powers of several
primes p.

Theorem 1.1. Let p= 3, 5 or 7. For every q = pk (k ≥ 1) and every Galois orbit O
of characters modulo q, we have

1
|O|

∑
χ∈O

∣∣L( 1
2 , χ

)∣∣2 = p− 1
p

(log q +C)+ O(q−λp+ε),

where λ3 =
1
2 and λ5 = λ7 =

1
6 . The implicit constant is computable.

Our argument differs from that of [Khan et al. 2016] in that we do not appeal to
Roth’s theorem. The present argument yields the fully effective Theorem 1.1 (with
computable bounds on the error term), and in fact in (5-11) we provide an explicit
version with a specific constant depending on ε > 0. Given the power saving error
term, it should be possible to extend our main theorem to include a mollifier. This
would give an effective version of the nonvanishing result given in [Khan et al.
2016, Theorem 1.2b], but only for p= 3, 5, 7 and with possibly smaller proportions
of nonvanishing.
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In the statement of Theorem 1.1 and for the rest of the paper, the asymptotic
notations f � g and f = O(g) mean that | f | ≤Cg for some constant C > 0, which
may depend on ε > 0, but is always computable for any given value of ε.

2. Preliminaries

We first state a result which follows directly from [Khan et al. 2016, Lemma 2.3].
This illustrates an orthogonality property within orbits.

Lemma 2.1. Suppose q = pk for an odd prime p and k ≥ 1, O is a Galois orbit
of primitive Dirichlet characters mod q, and n and m are integers coprime to p.
Clearly, 1

|O|

∣∣∑
χ∈O χ(n)χ̄(m)

∣∣≤ 1. But if

n p−1
6≡ m p−1 mod pk−1,

then
1
|O|

∑
χ∈O

χ(n)χ̄(m)= 0.

Next we state a standard result from analytic number theory, called the ap-
proximate functional equation. The approximate functional equation expresses
the L-function at the central point, where (1-1) does not converge, in terms of
essentially finite sums of the form resembling a truncated version of Dirichlet series
like (1-1). This is standard so we do not reproduce the entire proof.

Lemma 2.2. For a primitive Dirichlet character χ modulo q , let κ ∈ {0, 1} be such
that χ(−1)= (−1)κ , and let

V (x)=
1

2π i

∫
(2)

0
( 1

2(s+ κ)+
1
4

)2

0
( 1

2κ +
1
4

)2 (πx)−s ds
s
. (2-1)

We have
V (x)�N min{1, x−N

} (2-2)

for any x, N > 0, and∣∣L( 1
2 , χ

)∣∣2 = 2
∑

nm≥1

χ(n)χ̄(m)
(nm)1/2

V
(

nm
q

)
. (2-3)

Proof. See [Khan et al. 2016, Lemma 2.1]. For the estimate (2-2), shift the line
of integration to Re(s) = N if x > 1, and to Re(s) = −1

4 if x ≤ 1. The shift left
crosses a simple pole at s = 0, with residue 1. �

By the decay property (2-2), the range of summation in the sum (2-3) is essentially
nm<q1+ε. Note that the sum is restricted to (nm, p)=1, for otherwise the character
values vanish.
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We conclude the preliminaries section with two known results in elementary
number theory. The first of these, Hensel’s lemma, describes solutions to polynomial
congruences modulo prime powers. In Lemma 2.3, we have taken the first statement
from [Rosen 1984, Theorem 4.15(i)], and the second one follows by induction on k.

Lemma 2.3 (Hensel’s lemma). Suppose that f (x) is a polynomial with integer
coefficients, k is an integer with k ≥ 2, and p is a prime.

(1) If r is a solution of the congruence f (x) ≡ 0 (mod pk−1) such that f ′(r) 6≡
0 (mod p), then there is a unique integer t , 0≤ t < p, such that f (r+tpk−1)≡

0 (mod pk).

(2) If r is a solution of the congruence f (x) ≡ 0 (mod p) such that f ′(r) 6≡
0 (mod p), then there is a unique integer t , 0≤ t< pk , such that t≡ r (mod p)
and f (t)≡ 0 (mod pk).

The second number-theoretic result we record is concerned with the number of
ways certain definite quadratic forms such as n2

+m2 in two integers n, m can take
the same value.

Lemma 2.4. Let q(n,m) be any of n2
+m2, n2

+nm+m2, or n2
−nm+m2. Then,

for every ε > 0,

rq(N ) := #{(n,m) ∈ Z2
: q(n,m)= N } �ε N ε .

For q0(n,m) = n2
+m2, the estimate rq0(N )�ε N ε follows from the famous

theorem of Gauss for the number of representations of a positive integer N as the
sum of two squares [Rosen 1984, Theorem 14.13]: if N has a canonical prime
power factorization as N = 2m pe1

1 · · · p
es
s q f1

1 · · · q
ft

t , where primes pi are of the
form 4k+ 1 and primes q j are of the form 4k+ 3, then

rq0(N )= 4(e1+ 1)(e2+ 1) · · · (es + 1)

if all f j are even, and rq0(N )= 0 otherwise. In particular, rq0(N ) is bounded by the
number of divisors τ(N ) as rq0(N )≤ 4τ(N ); hence rq0(N )�ε N ε by the standard
divisor bound; see, for example, [Stopple 2003, Section 3.5; Iwaniec and Kowalski
2004, (12.82)].

Gauss’ formula for rq0(N ) can be proved using the arithmetic of the ring of
Gaussian integers Z[i]. This is a Euclidean domain (relative to the usual norm),
and hence a unique factorization domain, in which 2 is the sole ramified prime,
rational primes of the form 4k + 1 split as the product of two distinct conjugate
Gaussian primes, and rational primes of the form 4k + 3 remain as Gaussian
primes [Rosen 1984, Theorem 14.12]. A similar argument could be made for
q1(n,m) = n2

+ nm +m2 and q2(n,m) = n2
− nm +m2 by using the arithmetic

of the ring of Eisenstein integers Z[ω], where ω = −1
2 + i

√
3

2 is a primitive cube
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root of unity, and by distinguishing between primes of the form 6k+ 1 and 6k+ 5.
In each of these cases, unique factorization allows for very pretty formulas for
rq(N ); however, this is ultimately not so important if all we need is the upper bound
of Lemma 2.4. To make this clear, we provide a streamlined argument that applies
in more general situations.

Proof. Note that, if N = n2
+m2

= (n +mi)(n −mi), then (n +mi) | N in the
ring Z[i]. Similarly, if N = n2

−nm+m2
= (n+mω)(n+mω2), then (n+mω) | N

in Z[ω], and if N = n2
+ nm + m2

= (n − mω)(n − mω2), then (n − mω) | N
in Z[ω]. Therefore, writing F = Q(i) if q(n,m) = n2

+ m2 and F = Q(ω) if
q(n,m)= n2

± nm+m2, we have

rq(N )� τF (N ).

Here, τF (N ) denotes the number of ideal divisors of the ideal (N )= NOF in the
ring of integers OF of F, and the absolute implied constant accounts for the finite
group of units, which, in this case, are all roots of unity. Therefore the desired
estimate follows from the divisor bound

τF (n)�ε Nnε (2-4)

in terms of the absolute ideal norm, which is valid in any number field F (with a
constant possibly depending on F).

The estimate (2-4) can be proved for any number field F along the same lines as
over Q [Stopple 2003, Section 3.5]. It is clear that

τF (p
α)= α+ 1≤ (Npα)ε =Npεα

for all prime powers pα with α ≥ 1 and sufficiently large Np (say, Np≥ e1/ε). A
similar inequality holds, by allowing for a larger (but fixed once and for all for
a given F) implied constant, for powers of the finitely many prime ideals with
Np< 21/ε. The estimate (2-4) follows by multiplicativity. �

3. The diagonal contribution

Writing the sum in (2-3) as the sum of terms with n = m plus the sum of terms
with n 6= m, we get

1
|O|

∑
χ∈O

∣∣L( 1
2 , χ

)∣∣2 = 1
|O|

∑
χ∈O

(
2
∑
n≥1

(n,p)=1

1
n

V
(

n2

q

))

+
1
|O|

∑
χ∈O

(
2
∑

nm≥1
n 6=m

χ(n)χ̄(m)

(nm)
1
2

V
(

nm
q

))
. (3-1)

The first sum above is the “diagonal” and it forms the main term of Theorem 1.1.
This is not surprising because there are no character values in the sum, so the sum
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over characters on the outside cannot produce any cancellation. By [Khan et al.
2016, Section 3.3] we have

1
|O|

∑
χ∈O

(
2
∑
n≥1

(n,p)=1

1
n

V
(

n2

q

))
=

p− 1
p

(log q +C)+ O(q−1/2+ε).

We recall that this argument uses the integral representation (2-1) and contour
shifting and is fully effective.

Now it remains to bound the off-diagonal sum of (3-1). This will be the dominant
part of the error term in Theorem 1.1.

4. The off-diagonal contribution

Applying Lemma 2.1 and (2-2), we get

1
|O|

∑
χ∈O

(
2
∑

nm≥1
n 6=m

χ(n)χ̄(m)
(nm)1/2

V
(

nm
q

))
�

∑
nm<q1+ε

(nm,p)=1,n 6=m
n p−1
≡m p−1 mod pk−1

1
(nm)1/2

+ q−100.

We will analyze this sum in dyadic intervals

N ≤ n < 2N , M ≤ m < 2M,
where

N M < q1+ε . (4-1)

Since there are at most qε such dyadic intervals, the task is reduced to bounding

Sp = Sp(N ,M) :=
1

(N M)1/2
∑

N≤n<2N
M≤m<2M

(nm,p)=1,n 6=m
n p−1
≡m p−1 mod pk−1

1;

for a proof of Theorem 1.1, we require the bound Sp � q−λp+ε in the range
(4-1). Let us first note a “trivial” bound (this argument is from [Khan et al. 2016,
Section 3.3]).

Lemma 4.1. We have

Sp�min
{(

N
M

)1/2

,

(
M
N

)1/2}
+ q−1/2+ε, (4-2)

Sp�min
{

q1/2+ε

M
,

q1/2+ε

N

}
+ q−1/2+ε . (4-3)

Proof. Suppose without loss of generality that N ≤ M. For each of the N choices
of n in the sum Sp, the value of m p−1 is uniquely determined modulo pk−1, namely,
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m p−1
≡ n p−1 (mod pk−1). By Lemma 2.3(2) with f (x)= x p−1

− n p−1, for every
m0 (mod p), (m0, p) = 1, there is a unique value of m modulo pk−1 such that
m ≡ m0 (mod p) and f (m) ≡ 0 (mod pk−1). Therefore, once the value of n in
Sp has been fixed, there are at most O(1) choices for the congruence class of
m (mod pk−1), and thus there are at most O(M/q+1) choices for m itself. So the
sum Sp is bounded as

Sp�
1

(N M)1/2
· N ·

(
M
q
+ 1
)
.

This gives the bound (4-2) by using (4-1). The bound (4-3) follows from (4-2) by
using (4-1) again. �

We can see that the bound of Lemma 4.1 is sufficient as long as the sizes of N
and M are apart by a certain power of q. From this point onwards, our argument
differs from that of [Khan et al. 2016].

4.1. The case p = 3. The sum we need to bound is

S3 =
1

(N M)1/2
∑

N≤n<2N
M≤m<2M

(nm,3)=1,n 6=m
n2
≡m2 mod 3k−1

1.

The congruence condition of S3 implies that 3k−1 divides (n−m)(n+m). Since
(nm, 3)= 1, we know that n−m and n+m are not both divisible by 3 (for if they
were, their sum would be too and this would lead to a contradiction). This means
that either 3k−1 divides n−m, or 3k−1 divides n+m. We also have the condition
n 6=m. So we must have that at least one of N and M is at least as large as 3k−1/4,
lest n−m and n+m be too small to satisfy the divisibility condition. Thus by (4-3)
we get

S3� q−1/2+ε .

4.2. The case p = 5. The sum we need to bound is

S5 =
1

(N M)1/2
∑

N≤n<2N
M≤m<2M

(nm,5)=1,n 6=m
n4
≡m4 mod 5k−1

1. (4-4)

Suppose without loss of generality that M ≥ N . The congruence condition of S5

implies that 5k−1 divides (n2
−m2)(n2

+m2). Since (nm, 5) = 1, we know that
n2
−m2 and n2

+m2 are not both divisible by 5 (for if they were, their sum would
be too and this would lead to a contradiction). Thus 5k−1 divides either n2

−m2
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or n2
+m2. The subsum of S5 consisting of terms satisfying 5k−1

| (n2
−m2) is

O(q−1/2+ε) by the argument given for p = 3.
Consider the terms satisfying 5k−1

| (n2
+ m2). First note that we must have

M � q1/2 or else n2
+m2 is too small to satisfy the divisibility. Now, writing

n2
+m2

= 5k−1h,

we see that h�M2/q . By Lemma 2.4, for each choice of h, there are O(qε) choices
for n and m. So there are at most qε(M2/q) summands satisfying 5k−1

| (n2
+m2)

in (4-4). We get

S5� q−1/2+ε
+

1
(N M)1/2

M2

q1−ε � q−1/2+ε
+

(
M
N

)1/2 M
q1−ε . (4-5)

Now we consider two cases: when N and M are quite close and when they are not.
Suppose that M/N < q1/3. Then by (4-1) we have M2

� (M/N )q1+ε
� q4/3+ε.

So (4-5) becomes
S5� q−1/6+ε . (4-6)

Now suppose that M/N ≥ q1/3. Then by (4-2), we get the same bound (4-6).

4.3. The case p = 7. The sum we need to bound is

S7 =
1

(N M)1/2
∑

N≤n<2N
M≤m<2M

(nm,7)=1,n 6=m
n6
≡m6 mod 7k−1

1.

The congruence condition of S7 implies

7k−1
| (n2
−m2)(n2

+ nm+m2)(n2
− nm+m2).

Since (nm, 7)=1, we get that 7 cannot divide more than one factor on the right-hand
side. For example, if 7 | (n2

−m2) then n≡±m mod 7. So if also 7 | (n2
±nm+m2),

then 7 | (n2
±n2
+n2), which is impossible. On the other hand, if 7 | (n2

+nm+m2)

and 7 | (n2
− nm +m2), then 7 | nm, which is again impossible. So we have the

cases 7k−1
| (n2
−m2) or 7k−1

| (n2
± nm+m2). By the argument given for p = 3,

the subsum of S7 consisting of terms satisfying 7k−1
| (n2
−m2) is O(q−1/2+ε).

For the cases when 7k−1
| (n2
± nm+m2), we proceed analogously to the case

p = 5. We must have M � q1/2 or else n2
± nm+m2 is too small to be divisible

by 7k−1, and in fact n2
± nm+m2

= 7k−1h for some h� M2/q. By Lemma 2.4
(this time applied with the form n2

± nm+m2), the number of choices of (n,m) is
O(qε) for each choice of h and thus at most qε(M2/q) altogether. Therefore,

S7� q−1/2+ε
+

1
(N M)1/2

M2

q1−ε � q−1/2+ε
+

(
M
N

)1/2 M
q1−ε .
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Using this bound and (4-1) when M/N < q1/3 and (4-2) when M/N ≥ q1/3, we
obtain

S7� q−1/6+ε .

5. Effective estimates

In this section, we show how all the estimates of previous sections can be made fully
effective for any desired choice of ε > 0. We follow the exposition in Sections 2–4
and indicate explicit constants at each place. Since many of these computations are
routine, we condense some of the details but provide all the essential steps.

5.1. Preliminaries. When estimating expressions involving 0(s), we use the fol-
lowing well-known facts valid for σ = Re s > 0 and integers N ≥ 2:

0(s)= 1
s
0(s+ 1), 0(s)0

(
s+ 1

2

)
= 21−2s√π0(2s), |0(s)| ≤ 0(σ),∣∣0(σ + 1

4

)
0
(
σ + 5

4

)∣∣≤ ∣∣0(σ)0(σ + 3
2

)∣∣, |0(N )| ≤ 1
4 e2(N/e)N .

(5-1)

The first inequality in the second row follows from the convexity of log0(σ), and
the second one follows by using integral comparison to estimate

∑
n<N log n.

In Lemma 2.2, for κ = 0, we find by shifting contours to Re s = N ≥ 3 that

|V (x)| ≤
1

2π0
( 1

4

)20
( 1

2 N+ 1
4

)
0
( 1

2 N+ 5
4

) ∫ ∞
−∞

dt∣∣1
2(N+ i t)+ 1

4

∣∣|N+ i t |
·(πx)−N

≤

√
π

2π0
( 1

4

)2 ·(N+1)0(N )(2π)−N
·

8
N
· x−N <

3
4

( N
2πe

)N
· x−N ,

where the integral is split into |t | ≤ N and |t | > N and then estimated trivially.
Similarly, by shifting to Re s =− 1

4 ,

|V (x)− 1| ≤
π1/40

(1
8

)
0
( 7

8

)
2π0

(1
4

)2

∫
∞

−∞

dt∣∣1
8 +

1
2 i t
∣∣∣∣−1

4 + i t
∣∣ · x1/4 < 3x1/4,

where the integral is≤ 16
√

2 by splitting into |t | ≤ 1
2
√

2
and |t |> 1

2
√

2
and estimating

trivially. One similarly verifies that the same upper bounds hold for κ = 1. Using
the first bound for x ≥ N/(2πe) and the second one for x < N/(2πe), we obtain
for N ≥ 3

|V (x)| ≤min
{5N 1/4

2
,

3
4

( N
2πe

)N
· x−N

}
. (5-2)

Next, we make (2-4) effective. Since the group of units in an imaginary quadratic
number field such as F =Q(i) or F =Q(ω) is a cyclic group of order at most 6,
it is easy to see that rq(N ) ≤ 3 · τF (N ). For a prime ideal p with Np ≥ e1/ε, we
simply have τF (p

α) = 1+ α ≤ (Npα)ε. For the remaining primes, the function
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F(α)=Npαε/(1+α) has a minimum at α0 = 1/(ε logNp)− 1> 0 with F(α0)≥

eε logNp/Npε. Therefore, for every integral ideal n⊆OF ,

τF (n)

Nnε
≤

∏
Np≤e1/ε

(
eε

logNp

Npε

)−1

≤
ε−2π(e1/ε)

log 2
,

where π(x)= #{p ≤ x} is the classical prime-counting function, and the number
of prime ideals p with Np ≤ x is clearly ≤ 2π(x). Using the explicit estimate
π(x)≤ 2x/ log x [Stopple 2003, Section 5.2], we thus find that, for ε ≤ 1

2 ,

τF (n)≤
e4ε| log ε|e1/ε

log 2
·Nnε ≤ e(3/2)e

1/ε
·Nnε . (5-3)

5.2. Diagonal terms. Proceeding to the evaluation of the diagonal contribution
in Section 3, following [Khan et al. 2016, Section 3.3], we substitute the integral
representation for V (x) and exchange the order of summation and integration to
find that the diagonal contribution equals, for κ = 0,

1
2π i

∫
(2)
ζp(2s+ 1)

0
( 1

2 s+ 1
4

)2

0
( 1

4

)2

(
q
π

)s ds
s
.

We evaluate the integral by shifting to Re s =−1
2 + ε, collecting the residue from

the double pole at s = 0. We can use a simple estimate for ζ(s) with 0< σ ≤ 1
2 as

|(1− 21−s)ζ(s)| =
∣∣∣∣ ∞∑

n=1

(−1)n−1

ns

∣∣∣∣≤ ∞∑
n=1

|s|(2n− 1)−σ−1
≤ |s|

(
1+

1
2σ

)
≤
|s|
σ
,

by integral comparison. Further, |1−21−s
| ≥ 22/3

−1> 1
2 for σ ≤ 1

3 and |1− p−s
| ≤

min(|s| log p, 2) for p≥ 3, so that the remainder from the contour at Re s=−1
2+ε,

with ε ≤ 1
6 , is

≤
1

2π
2
2ε

1

0
( 1

4

)2

∫
∞

−∞

|2ε+ 2i t |min(|2ε+ 2i t | log p, 2)∣∣ 1
2(ε+ i t)

∣∣2 dt
|ε+ i t |

·

(
q
π

)−1/2+ε

≤
8
√
π

π0
(1

4

)2
ε
· 2 log p · (2+ | log ε|) · q−1/2+ε <

3
2

log p
| log ε|
ε
· q−1/2+ε, (5-4)

by splitting the integral into |t | ≤ ε, ε < |t | ≤ 1/ log p, and |t | > 1/ log p and
estimating trivially. It is similarly verified that this explicit estimate for the error
term in the evaluation of the diagonal contribution in Section 3 holds also when κ=1.

5.3. Off-diagonal terms. We now come to the crux of the matter, the estimation
of the off-diagonal terms in Section 4, in which p ≤ 7 and we may assume that
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0< ε ≤ λp. As a preliminary step, we find that the function G(q)= qε/ log q has
a minimum at q0 = e1/ε with G(q0)= εe, so that

log q ≤
1
εe
· qε .

For x ≥ 1 and N ≥ 2,∑
m≤x

1
m N+1/2 ≤

1
x N−1/2

(
1

N − 1
2

+
1
x

)
≤

2
x N−1/2 .

Using this, the contribution of the terms with nm > q1+ε is estimated using (5-2) as

2
∑

nm>q1+ε

1
(nm)1/2

V
(

nm
q

)

≤ 4
3
4

(
N

2πe

)N

q N
( ∑

n≤q1/2+ε

1
n1/2+N (q1+ε/n)N−1/2 +

∑
n>q1+ε

1
n1/2+N

)

≤ 3
(

N
2πe

)N q1/2

q(N−1)ε (log q1+ε
+ 2) <

4
ε

(
N

2πe

)N q1/2

q(N−2)ε

for ε ≤ 1
2 . Taking N ≥ 1/ε+ 2, the total contribution of terms with nm > q1+ε is

≤
4

ε(2πeε)1/ε+2 (1+ 3ε)1/ε+3
· q−1/2 <

1
ε3(2πe)1/ε

· q−1/2. (5-5)

The terms with nm < q1+ε can be split into at most

log q1+ε

log 2
+ 1≤ 7

6
1

log 2 · eε
qε + 1<

(1
ε

)
qε

dyadic ranges. Referring again to (5-2), the contribution of terms with nm≤ q1+ε is

≤
5
2ε

(
1
ε
+ 3
)1/4

maxSp(N ,M) <
3
ε5/4 maxSp(N ,M), (5-6)

where N M < q1+ε and Sp(N ,M) are as in Section 4.
Arguing as in the proof of Lemma 4.1, for every value of n in Sp, there are at

most six choices for m mod pk−1 and thus the total number of choices for m is at
most 42(M/q + 1). From this, we get for N ≤ M,

Sp ≤
42

(N M)1/2
N
(

M
q
+ 1
)

≤ 42
((

N
M

)1/2

+ q−1/2+ε
)
≤ 42

(
q1/2+ε/2

M
+ q−1/2+ε

)
. (5-7)
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As in Section 4.1, the subsum of Sp(N ,M) consisting of terms with pk−1
| (n2
−m2)

is empty unless M ≥ q/28, in which case their contribution is

≤ 42(28q−ε/2+ 1)q−1/2+ε < 1200 · q−1/2+ε . (5-8)

If p = 3, this is an upper bound on the full S3.
If p = 5, we must also consider the terms satisfying 5k−1

| (n2
+m2). These

occur only if M ≥ q1/2/
√

40 and n2
+m2

= 5k−1h for some 1≤ h ≤ 40M2/q . For
each h, we may bound rq(5k−1h) by (5-3) and thus obtain

S5 ≤ 1200 · q−1/2+ε
+ 120e(3/2)e

2/(5ε) 1
(N M)1/2

M2

q1−(5/2)ε .

If M/N < q1/3−2ε , then M2/(N M)1/2 ≤ (M/N )(N M)1/2 ≤ q5/6−(3/2)ε and so

S5 ≤ (1200q−1/3
+ 3 · 40e(3/2)e

2/(5ε)
)q−1/6+ε

≤ 125e(3/2)e
2/(5ε)
· q−1/6+ε . (5-9)

If, on the other hand, M/N ≥ q1/3+2ε, we have S5 ≤ 70 · q−1/6+ε by (5-7), so the
above holds anyway. The same reasoning for p = 7 yields

S7 ≤ (1200q−1/3
+ 2 · 3 · 56e(3/2)e

2/(5ε)
)q−1/6+ε

≤ 340e(3/2)e
2/(5ε)
· q−1/6+ε . (5-10)

Combining (5-4)–(5-6) and (5-8)–(5-10), we obtain Theorem 1.1 in the effective
form ∣∣∣∣ 1

|O|

∑
χ∈O

∣∣L( 1
2 , χ

)∣∣2− p− 1
p

(log q +C)
∣∣∣∣≤ c(ε)q−λp+ε, (5-11)

where, for 0< ε ≤ λp,

c(ε)≤ 3
2

log7
| logε|
ε
+

1
ε3(2πeε)1/ε

+
3,600
ε5/4 +

1,020
ε5/4 e(3/2)e

2/(5ε)
<

1,100
ε5/4 e(3/2)e

2/(5ε)
.

Indeed, it is seen directly that the function f (x)= 3
2 e(2/5)x −

(
x + 7

4

)
log x + 10 is

positive on [2, 5] and on [5, 8], and

f ′(x)≥ 3
5 e16/5(x − 7)−

(
log 8+ 1

8 x − 1
)
−

39
32 > 14x − 102> 0

for x ≥ 8, so that f (x) > 0 for all x ≥ 2. Therefore,

(2πe)−1/εε−(1/ε+7/4) <
e10

(2πe)2
· e(3/2)e

2/(5ε)
< 76e(3/2)e

2/(5ε)
,

which suffices to estimate the second summand; for the others it suffices to note
that ε1/4

| log ε| ≤ 4/e and e(3/2)e
4/5
> 28.
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National Science Foundation, grant DMS-1503629.

References
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[Milićević 2016] D. Milićević, “Sub-Weyl subconvexity for Dirichlet L-functions to prime power
moduli”, Compos. Math. 152:4 (2016), 825–875. MR

[Paley 1931] R. E. A. C. Paley, “On the k-analogues of some theorems in the theory of the Riemann
ζ -function”, Proc. London Math. Soc. (2) 32:4 (1931), 273–311. MR Zbl

[Ridout 1958] D. Ridout, “The p-adic generalization of the Thue–Siegel–Roth theorem”, Mathe-
matika 5 (1958), 40–48. MR Zbl

[Rohrlich 1984] D. E. Rohrlich, “On L-functions of elliptic curves and anticyclotomic towers”, Invent.
Math. 75:3 (1984), 383–408. MR Zbl

http://dx.doi.org/10.1007/s00039-015-0318-7
http://dx.doi.org/10.1007/s00039-015-0318-7
http://msp.org/idx/mr/3334233
http://msp.org/idx/zbl/06438343
http://dx.doi.org/10.1142/S1793042112501060
http://msp.org/idx/mr/2978845
http://msp.org/idx/zbl/1292.11093
http://dx.doi.org/10.1112/plms/s3-13.1.524
http://msp.org/idx/mr/0148626
http://msp.org/idx/zbl/0123.04404
http://dx.doi.org/10.1515/crll.2002.021
http://msp.org/idx/mr/1887886
http://msp.org/idx/zbl/1028.11040
http://dx.doi.org/10.2307/121132
http://dx.doi.org/10.2307/121132
http://msp.org/idx/mr/1779567
http://msp.org/idx/zbl/0973.11056
http://msp.org/idx/mr/1790423
http://msp.org/idx/zbl/1002.11001
http://dx.doi.org/10.1007/BF01388657
http://dx.doi.org/10.1007/BF01388657
http://msp.org/idx/mr/774530
http://msp.org/idx/zbl/0558.12005
http://dx.doi.org/10.1524/anly.1981.1.1.25
http://msp.org/idx/mr/623640
http://msp.org/idx/zbl/0479.10027
http://dx.doi.org/10.1090/coll/053
http://msp.org/idx/mr/2061214
http://msp.org/idx/zbl/1059.11001
http://dx.doi.org/10.1090/S0273-0979-99-00766-1
http://msp.org/idx/mr/1640151
http://msp.org/idx/zbl/0921.11047
http://dx.doi.org/10.2140/ant.2016.10.2081
http://msp.org/idx/mr/3582014
http://msp.org/idx/zbl/06664745
http://dx.doi.org/10.1093/imrn/rnv320
http://dx.doi.org/10.1093/imrn/rnv320
http://msp.org/idx/mr/3632072
http://dx.doi.org/10.1112/S0010437X15007381
http://dx.doi.org/10.1112/S0010437X15007381
http://msp.org/idx/mr/3484115
http://dx.doi.org/10.1112/plms/s2-32.1.273
http://dx.doi.org/10.1112/plms/s2-32.1.273
http://msp.org/idx/mr/1575993
http://msp.org/idx/zbl/0002.01601
http://dx.doi.org/10.1112/S0025579300001339
http://msp.org/idx/mr/0097382
http://msp.org/idx/zbl/0085.03501
http://dx.doi.org/10.1007/BF01388635
http://msp.org/idx/mr/735332
http://msp.org/idx/zbl/0565.14008


490 RIZWANUR KHAN, RUOYUN LEI AND DJORDJE MILIĆEVIĆ
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On the preservation of properties
by piecewise affine maps of

locally compact groups
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As shown by Cohen (1960) and Ilie and Spronk (2005), for locally compact
groups G and H, there is a one-to-one correspondence between the completely
bounded homomorphisms of their respective Fourier and Fourier–Stieltjes algebras
ϕ : A(G)→ B(H) and piecewise affine continuous maps α : Y ⊆ H → G. Using
elementary arguments, we show that several (locally compact) group-theoretic
properties, including amenability, are preserved by certain continuous piecewise
affine maps. We discuss these results in relation to Fourier algebra homomorphisms.

Piecewise affine maps are, loosely speaking, finite unions of translations of
subgroup homomorphisms. They seem to have been exclusively studied in con-
nection with their applications to abstract harmonic analysis; see for example
[Cohen 1960; Rudin 1962; Ilie 2004; Ilie and Spronk 2005; Ilie and Stokke 2008].
Our motivation in writing this paper has been to view piecewise affine maps as
weak types of “generalized homomorphisms” and to study of them, in their own
right, accordingly. Observe that most of our topologically imposed conditions are
automatically satisfied by (discrete) groups and our results are also new in this
situation.

Throughout this note, G and H are locally compact groups, and P will denote a
property of locally compact groups. If E is a coset of a closed subgroup H0 of H,
we will say that E has P when H0 has P, and we define the index of E in H to
be the index of H0 in H. As noted in [Ilie 2004], a subset E of H is a coset of
some subgroup of H exactly when E E−1 E = E , and a map α : E→ G is called
affine if for any x, y, z ∈ E , α(xy−1z)= α(x)α(y)−1α(z). Thus, the affine maps
are the natural morphisms of cosets and the affine image of a coset is also a coset.

MSC2010: primary 22D05, 43A22, 43A07, 43A30; secondary 20E99.
Keywords: locally compact group, piecewise affine map, amenability, Fourier algebra.
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Note that for any y0 ∈ E , H0 = y−1
0 E = E−1 E is a subgroup of H, and the map

defined by β(h)= α(y0)
−1α(y0h) (h ∈ H0) is a homomorphism of H0 into G when

α is an affine map; conversely, if β : H0 → G is a homomorphism and x0 ∈ G,
then α(x)= x0β(y−1

0 x) defines an affine map on E ; see [Ilie 2004, Remark 2.2].
Thus, affine maps are exactly the translates of subgroup homomorphisms. A map
α : E→G is antiaffine if for any x, y, z ∈ E , α(xy−1z)=α(z)α(y)−1α(x). Hence,
the antiaffine image of a coset is also a coset and, as with the affine case, one can
readily check that the antiaffine maps on E are precisely the translates of subgroup
antihomomorphisms on H0 = E−1 E .

We let �(H) denote the ring of sets generated by the open cosets of H. Then
every set in �(H) can be expressed as a finite union of disjoint sets in

�0(H)=
{

E0 \

( m⋃
1

Ek

)
: E0 ⊆ H an open coset,

E1, . . . , Em open subcosets of infinite index in E0

}
[Cohen 1960; Ilie 2004]. If Y = E0 \

(⋃m
1 Ek

)
∈�0(H), Ilie showed that Aff(Y ),

the coset generated by Y, is exactly E0 and that there is a finite subset F of E−1
0 E0

such that E0 = Y F [Ilie 2004]. A map α : Y → G is piecewise affine if

(†) there exist pairwise disjoint sets Y1, . . . , Yn ∈�0(H) such that Y =
⋃n

i=1 Yi

and for each i , α|Yi has an affine extension αi mapping Ei = Aff(Yi ) into G;

when each αi is antiaffine, α is piecewise antiaffine, and when each αi is affine or
antiaffine, α is mixed piecewise affine.

Notation. Whenever we say that α : Y ⊆ H → G is a (mixed) piecewise affine
map, we shall use precisely the notation found in (†).

The continuous (mixed) piecewise affine maps can be viewed as the natural
morphisms to consider on sets in the open coset ring �(H) of H. Equivalent
definitions of piecewise affine maps on nonabelian groups are found in [Ilie 2004].
We note that if α is proper, open, closed or injective then so is αi for each i=1, . . . , n
[Ilie 2004, Proposition 4.6], [Ilie and Stokke 2008, Lemma 3.3] (the same argument
works for closed maps) and [Pham 2010, proof of Theorem 6.4]. As well, if α is
continuous, then so is each αi (and the converse also holds). This is almost certainly
known but the authors were unable to locate the statement in the literature; note that
continuity of the affine extensions seems to be implicitly assumed in the definition
of a piecewise affine map in [Ilie 2004]. Nevertheless, this is easy to see: Let Fi be
a finite subset of E−1

i Ei such that Ei =Yi Fi [Ilie 2004, Lemma 4.5]. Let x ∈ Fi , say
x = u−1v where u, v ∈ Ei . Then, for each y ∈ Yi x , αi (y)= α(yx−1)αi (u)−1αi (v),
so αi is continuous on Yi x . By the pasting lemma, αi is continuous on Yi Fi = Ei .
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Since the terminology of group extensions varies in the literature, we note that
when N is a closed normal subgroup of G, we will call G an extension of G/N by N,
(whereas in [Palmer 2001], for example, G is called an extension of N by G/N ).

1. Properties preserved by mixed piecewise affine maps

One typically begins studying a property P of locally compact groups by asking if
P is preserved by closed subgroups, quotients and extensions. Phrased in terms of
homomorphic images, P is preserved by closed subgroups if whenever there exists
a continuous, injective homomorphism φ : H→G such that φ is a homeomorphism
onto φ(H) with its relative topology and G has P, then H has P. Additionally, P
is preserved by closed quotients if whenever there exists a continuous, surjective
homomorphism φ : H→ G such that φ is an open map and H has P, then G has P.
More generally, given a continuous mixed piecewise affine map α : Y ⊆ H → G,
the main purpose of this section is to address the following two questions:

(a) If α has dense image in G and H has P, when does G have P?

(b) If Y = H and α is injective (or proper) and G has P, when does H have P?

Since any homomorphism is a piecewise affine map, properties for which there
is a positive answer to (a) must be preserved by quotients and properties for which
there is a positive answer to (b) must be preserved by closed subgroups. As the
following example shows, other restrictions on P must also be imposed.

Example 1. Suppose that G contains a finite-index closed — and therefore open —
normal subgroup N. Let β : N→G/N×N be the continuous open homomorphism
defined by β(z) = (eG/N , z). Let F ⊆ G be a complete set of representatives of
distinct cosets of N and for each x ∈ F define

αx : x N → G/N × N by αx(y)= (x N, e)β(x−1 y)= (x N, x−1 y).

Then αx is an affine homeomorphism of x N onto {x N }×N, so α : G→ G/N ×N,
defined by putting α|x N =αx (x ∈ F), is a homeomorphic piecewise affine bijection.
Observe that since the inverse of an affine bijection between cosets is also affine,
α−1
: G/N × N → G is also a piecewise affine homeomorphism. Thus, if P is a

property for which there is a positive answer to either question (a) or (b) above,
G/N × N has P exactly when G has P in this situation.

In particular, if N o H is a semidirect product of a locally compact group N and
a finite group H, the identity map is a piecewise affine homeomorphism of N × H
onto N oH. However, N oH may fail to be a homomorphic image of N×H, such
as when N and H are chosen to be abelian groups with N o H nonabelian. As a
specific example, consider G =RoZ2, where Z2= {±1} acts on R via (±1)t =±t .
Then G not nilpotent or [FC]− (and fails to have any property implying either
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of these properties) [Palmer 2001, Chapter 12], but since R× Z2 is abelian, it
is both nilpotent and [FC]−. Hence, these are examples of properties P that are
preserved by both quotients and closed subgroups, yet fail to provide a positive
answer to either question (a) or (b), even when the piecewise affine maps involved
are homeomorphisms with piecewise affine inverses.

Definition 2. We say that a property P of locally compact groups is preserved by

(a) direct products with finite groups if H × F has P whenever H has P and F is
a finite group;

(b) locally compact extensions of finite groups if G has P whenever it contains a
closed (and open) normal subgroup N such that G/N is finite and N has P;

(c) finite coset unions if G has P whenever it can be written as a finite union of
closed cosets, each of which has P;

(d) P-by-compact extensions if G has P whenever it contains a compact normal
subgroup K such that G/K has P.

The meaning of the statements “P is preserved by open (closed) subgroups”, “P is
preserved by dense-range continuous homomorphisms” and “P is preserved by
dense-range continuous mixed piecewise affine maps” will be clear.

We remark that if P is preserved by direct products with finite groups and
the trivial group has P, then every finite group must have P. Also, P satisfies
condition (a) in Definition 2 whenever it satisfies condition (b), but not conversely:
since [FC]− is trivially closed under the formation of direct products and contains all
finite groups, P =[FC]− satisfies (a), but RoZ2 is not in [FC]−, so [FC]− does not
satisfy (b). Observe as well that P satisfies condition (b) in Definition 2 whenever
it satisfies condition (c). In the proof of the following lemma, which establishes
a partial converse to this last implication, we will use a theorem due to Neumann
[1954] that says that a group cannot be expressed as a finite union of cosets of
infinite index. An elegant, analytic proof of this theorem can be found in [Ilie
and Spronk 2005]. Recall that open subgroups are always closed, and finite-index
closed subgroups are always open.

Lemma 3. If P is preserved by finite-index closed (equivalently open) normal
subgroups and locally compact extensions of finite groups, then P is preserved by
finite coset unions.

Proof. Suppose that G can be expressed as a finite union of closed cosets, each with
property P. By Neumann’s theorem, G contains a finite-index closed subgroup M
such that M has P. Then N =

⋂
g∈G gMg−1, the core of M in G, is a finite-

index closed normal subgroup of G that is contained in M ; see, e.g., [Isaacs 1994,
Corollary 4.6]. Hence, N has P and G is an extension of the finite group G/N.
Therefore, G also has P. �
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If φ : H → G is an antihomomorphism, then φ̌(x) := φ(x−1)(= φ(x)−1) is a
homomorphism with the same range as φ. Therefore if P is preserved by dense-
range homomorphisms, it is also preserved by dense-range antihomomorphisms.

Proposition 4. The following statements are equivalent:

(i) P is preserved by continuous dense-range homomorphisms (i.e., quotients in
the discrete case), locally compact extensions of finite groups and finite-index
closed normal subgroups.

(ii) P is preserved by continuous dense-range mixed piecewise affine maps and
products with finite groups.

Proof. Assume that statement (i) holds, H has P, and α :Y ⊆ H→G is a continuous
mixed piecewise affine map with dense range in G. Employing the notation (†),
each of the cosets αi (Ei ) has P and G =

⋃n
i=1 αi (Ei ). By Lemma 3, G has P.

Hence (ii) holds. Suppose, conversely, that statement (ii) holds, and let N be a
finite-index closed normal subgroup of G. Then, as shown in Example 1, there is
a piecewise affine homeomorphic mapping of G/N × N onto G with piecewise
affine inverse. Hence, if N has P, then G/N × N has P, and therefore G has P. If
G has P, then G/N × N has P, whence N, as a quotient of G/N × N, has P. �

Remarks 5. If we replace the assumption that P is preserved by continuous dense-
range homomorphisms in statement (i) of Proposition 4 with the statement that P is
preserved by continuous open (closed) epimorphisms — i.e., quotients in the case of
open epimorphisms — then we can conclude that P is preserved by continuous open
(closed) surjective mixed piecewise affine maps: when α is open (closed) in the
above proof, so is each αi and therefore αi (Ei )= α(Ei ). For discrete groups, each
of these conditions is equivalent to the statement that P is preserved by quotients.

We say that G is virtually P if G contains a finite-index closed (equivalently,
open) subgroup with property P.

Proposition 6. The following statements hold:

(i) Virtually P is preserved by locally compact extensions of finite groups.

(ii) If P is preserved by finite-index closed normal subgroups, then so is virtually P.

(iii) If P is preserved by continuous dense-range homomorphisms, then so is virtu-
ally P.

(iv) If P is preserved by finite-index closed normal subgroups and locally compact
extensions of finite groups, then every virtually-P group has property P.

Proof. (i) This is obvious.

(ii) Let M be a finite-index closed subgroup of G with property P, and let N be
a finite-index closed normal subgroup of G. Then N ∩M is a finite-index closed
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subgroup of N, since — by a standard (readily verified) fact — |N : N ∩ M | ≤
|G : M |<∞. Moreover, |M : N ∩M | ≤ |G : N |<∞, so N ∩M is a finite-index
closed normal subgroup of M. Since M has P, so does N ∩ M. Hence, N is
virtually P.

(iii) Let φ : H → G be a continuous dense-range homomorphism and suppose
that M is a closed subgroup of H with finite index — say H =

⋃n
i=1hi M — with

property P. Then φ(M) has P and
n⋃

i=1

φ(hi )φ(M)=
n⋃

i=1

φ(hi M)= φ(H)= G.

Hence, G is virtually P.

(iv) A virtually-P group is a finite union of cosets with P, so this is an immediate
consequence of Lemma 3. �

We note as well that if P is preserved by open (respectively closed) subgroups,
then so is virtually P. The following, which is an immediate consequence of
Propositions 4 and 6, shows that virtually P is often preserved by mixed piecewise
affine maps.

Corollary 7. If P is preserved by continuous dense-range homomorphisms and
finite-index closed normal subgroups, then virtually P is preserved by continuous
dense-range mixed piecewise affine maps.

We were unable to find a reference for the following lemma.

Lemma 8. Let φ : H → G be a continuous (anti-)homomorphism, K = kerφ,
φK : H/K → G : x K 7→ φ(x). Then φ is proper if and only if K is compact and
φK is proper.

Proof. Suppose that K is compact and A is a compact subset of H/K . Choose a
compact subset L of H such that π(L)= A, where π :H→H/K is the quotient map
[Fell and Doran 1988, Proposition III.2.5]. Since π−1(A)= L K , which is compact,
π is proper. Hence, if K is compact and φK is proper, then φ = φK ◦π is proper.
Conversely, if φ is proper, then K = φ−1({eG}) is compact and given any compact
subset C of G, φ−1(C)= π−1(φ−1

K (C)) is compact, whence φ−1
K (C)= π(φ−1(C))

is compact. Hence, φK is proper. �

Lemma 9. A property P of locally compact groups is preserved by closed subgroups
and P-by-compact extensions if and only if

(∗) H has P whenever there exists a proper continuous (anti-)homomorphism
mapping H into a locally compact group G that has P.
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Proof. Suppose that α : H→G is a proper continuous (anti-)homomorphism where
G has P and P is preserved by closed subgroups and P-by-compact extensions.
Letting K = kerα, K is compact and αK is a continuous proper (anti-)isomorphism
of H/K onto its image by Lemma 8. Since proper maps are closed, αK is, in
fact, a topological (anti-)isomorphism of H/K onto αK (H/K ). We can conclude
that H/K has P, and therefore H has P. Conversely, if P satisfies (∗), then P is
obviously preserved by closed subgroups and, since the quotient map of G onto
G/K is proper when K is compact, it is preserved by P-by-compact extensions. �

Suppose that H has P whenever there exists a continuous mixed piecewise affine
proper mapping of H into a locally compact group G that has P and, further, that
P is preserved by the formation of direct products with finite groups. If N, a closed
finite-index normal subgroup of G, has P, then G/N ×N has P and, by Example 1,
one can define a homeomorphic piecewise affine mapping of G/N × N onto G;
hence G has P. This, together with Lemma 9, establishes “(ii) implies (i)” of the
following proposition.

Proposition 10. The following statements are equivalent:

(i) P is preserved by closed subgroups, P-by-compact extensions, and locally
compact extensions of finite groups.

(ii) P is preserved by the formation of direct products with finite groups, and H has
P whenever there exists a continuous mixed piecewise affine proper mapping
of H into a locally compact group G that has P.

Proof. We only need to show that statement (i) implies the second condition found
in statement (ii). To this end, let α : H → G be a continuous mixed piecewise
affine proper map. Using the notation (†), each αi is a proper continuous affine,
or antiaffine, mapping of Ei into G [Ilie 2004, Proposition 4.6]. Since each αi

can be obtained through translation of a continuous proper homomorphism, or
antihomomorphism, on the subgroup E−1

i Ei of H, each coset Ei has P by Lemma 9.
Since H is the union of the closed cosets Ei (i = 1, . . . , n), Lemma 3 allows us to
conclude that H has P. �

Example 11. Some examples of properties of locally compact groups that are pre-
served by open subgroups (and therefore by finite-index closed normal subgroups),
continuous dense-range homomorphisms, and locally compact extensions of finite
groups are amenability and compactness; within the class of discrete groups, torsion,
local finiteness, polynomial growth and exponential growth have these hereditary
properties. Thus, for each of these properties, virtually P and P are equivalent, and
each is preserved by continuous dense-range mixed piecewise affine maps.

Examples of some properties that are preserved by open subgroups, quotients,
and locally compact extensions of finite groups are those listed in the last paragraph
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and the properties of being an [IN]-group or a [SIN]-group. These properties are
all preserved by continuous, open mixed piecewise affine surjections.

Examples of some properties P that are preserved by closed subgroups, P-by-
compact extensions, and locally compact extensions of finite groups are amenability,
compactness and the property of being an [IN]-group. For each of these properties,
H has P whenever there exists a continuous mixed piecewise affine proper mapping
of H into G for some G with P. A reference for these assertions is [Palmer 2001,
Chapter 12].

2. Remarks concerning Fourier algebra homomorphisms

With pointwise-defined operations and a particular norm that dominates the uniform
norm, the Fourier–Stieltjes algebra B(G) is a Banach algebra of continuous complex-
valued functions on G containing the Fourier algebra A(G) as a closed ideal
[Eymard 1964]. A long-standing open problem in abstract harmonic analysis asks
for a description of every homomorphism mapping A(G) into B(H) and, as we
have already noted, piecewise affine maps have primarily been studied in relation
to this problem. A solution was obtained by Cohen [1960] in the abelian case, a
solution that was generalized by Ilie and Spronk [2005] when G is amenable and the
homomorphism is completely bounded, and Pham [2010] when the homomorphism
is norm decreasing.

Using the fact that A(G) separates points and closed sets, i.e., A(G) is a regular
algebra of continuous functions on G, and the fact that the Gelfand spectrum of
A(G)— the set of nonzero multiplicative linear functionals on A(G)— is exactly
the set of point-evaluation maps δg(u) := u(g) (g ∈ G, u ∈ A(G)), one can see that
for any homomorphism ϕ : A(G)→ B(H) there is an open subset Y of H and a
continuous map α : Y → G such that ϕ = jα, where for u ∈ A(G)

jα(u)=
{

u ◦α on Y,
0 on H\Y.

(For each h ∈ H, either δh ◦ϕ= 0 or δh ◦ϕ belongs to the Gelfand spectrum of A(G),
whence δh ◦ ϕ = δα(h) for some α(h) ∈ G. Letting Y = {h ∈ H : δh ◦ ϕ 6= 0}, one
obtains α : Y → G such that ϕ = jα.) By [Ilie 2004, Proposition 3.9], which does
not require that G be amenable or that α be piecewise affine, jα : A(G)→ B(H)
maps A(G) into A(H) exactly when α is a proper map. An easy application of
the regularity of A(G) is that a map ϕ = jα : A(G)→ B(H) is injective exactly
when α : Y ⊆ H → G has dense range. Observe as well that Y = H exactly when
δh ◦ϕ 6= 0 for each h ∈ H. These facts are used below without comment.

As preduals of von Neumann algebras, A(G) and B(H) have operator space
structures with respect to which they are completely contractive Banach algebras
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[Effros and Ruan 2000], so it makes sense to speak of completely bounded homo-
morphisms ϕ : A(G)→ B(H). If α : Y ⊆ H → G is continuous and piecewise
affine, Ilie and Spronk showed that jα is a completely bounded homomorphism of
A(G) into B(H) and, moreover, when G is amenable, every completely bounded
homomorphism ϕ : A(G) → B(H) equals jα for some continuous piecewise
affine map α : Y ⊆ H → G [Ilie and Spronk 2005, Theorem 3.7]. Thus, the
following statement is an immediate consequence of Proposition 4, Corollary 7 and
Proposition 10.

Proposition 12. Suppose that G is amenable and there exists a completely bounded
homomorphism ϕ mapping A(G) into B(H):

(i) Suppose that P is preserved by continuous dense-range homomorphisms,
locally compact extensions of finite groups, and finite-index closed normal
subgroups. If ϕ is injective and H has P, then so does G.

(ii) Suppose that P is preserved by continuous dense-range homomorphisms and
finite-index closed normal subgroups. If ϕ is injective and H is virtually P,
then so is G.

(iii) Suppose that P is preserved by closed subgroups, P-by-compact extensions
and locally compact extensions of finite groups. Suppose further that ϕ maps
A(G) into A(H) and for each h ∈ H, δh ◦ϕ 6= 0. If G has P, then so does H.

Amenability of Banach algebras is not, in general, preserved by closed subal-
gebras, much less injective homomorphisms; for example, the semigroup algebra
`1(N) is a nonamenable subalgebra of the (Connes) amenable Banach algebra `1(Z).
However, since A(H) is an amenable Banach algebra (B(H) is a Connes amenable
Banach algebra) exactly when H is virtually abelian [Forrest and Runde 2005; Runde
and Uygul 2015] and the property of being abelian is preserved by subgroups and
continuous dense-range homomorphisms, the following is an immediate corollary
of Proposition 12(ii).

Corollary 13. Suppose that G is amenable and A(H) is amenable (equivalently,
B(H) is Connes amenable). If there exists an injective completely bounded homo-
morphism ϕ mapping A(G) into A(H) or B(H), then A(G) is amenable.

We remark that by applying the main result in [Pham 2010], we obtain the same
conclusions in Proposition 12 and Corollary 13 if we drop the condition that G is
amenable and replace the assumption of the existence of a completely bounded
homomorphism with that of a norm-decreasing homomorphism.

N. Spronk [2010, Conjecture 4.8] has conjectured that when G is amenable, every
homomorphism ϕ : A(G)→ B(H) takes the form ϕ= jα for some mixed piecewise
affine map α :Y ⊆H→G. If correct, then Propositions 4, 7 and 10 would imply that
the statements of Proposition 12 and Corollary 13 hold without the assumption that



500 SERINA CAMUNGOL, MATTHEW MORISON, SKYLAR NICOL AND ROSS STOKKE

ϕ is completely bounded. Thus, the results of this note suggest a possible method
of testing the conjecture: for instance, an example of an amenable, but not virtually
abelian, group G and a virtually abelian group H for which there exists an injective
homomorphism ϕ mapping A(G) into B(H) would disprove the conjecture. On
the other hand, since the conjecture may well be correct, Proposition 12 suggests
that when G is amenable, every Fourier algebra homomorphism A(G)→ B(H)
preserves certain properties P, as described in the proposition. Explicitly, we have
the following question:

Question 14. Given a specific property P satisfying the conditions described in
one of the statements in Proposition 12, does the corresponding statement of
Proposition 12 hold if the homomorphism ϕ is not assumed to be completely
bounded? That is, can such a statement be established without necessarily verifying
the Spronk conjecture?

Any positive answer would lend evidence in support of the conjecture (and a
negative answer would disprove it). For example, since it is known that the property
of being an amenable locally compact group satisfies all of the conditions considered
in this note, Proposition 12(iii) suggests the following, which, as we now observe,
is a consequence of [Kaniuth and Ülger 2010, Theorem 5.1]: this theorem states
that a locally compact group G is amenable if and only if A(G) contains a bounded
net (ei )i converging pointwise on G to 1 (i.e., A(G) contains a “1-weak bounded
approximate identity”).

Proposition 15. Suppose there exists a homomorphism ϕ : A(G)→ A(H) such
that for each h ∈ H, δh ◦ϕ 6= 0. If G is amenable, then so is H.

Proof. Since G is amenable, A(G) has a1-weak bounded approximate identity (ei )i .
As noted above, ϕ = jα for some (continuous, proper) map α : H → G. As noted
by Pham [2010], since A(H) is semisimple, ϕ is automatically bounded, so ϕ(ei ) is
a bounded net in A(H) such that for each h ∈ H, ϕ(ei )(h)= ei (α(h))→ 1. Thus,
ϕ(ei ) is a 1-weak bounded approximate identity in A(H), whence H is amenable
by [Kaniuth and Ülger 2010, Theorem 5.1]. �

We remark that when G is amenable, A(G) actually has a bounded approximate
identity (ei )i (and the converse holds) by Leptin’s theorem, but it is not clear that
ϕ(ei ) in the proof of Proposition 15 is then a bounded approximate identity for A(H).
That is, more than Leptin’s theorem was required to prove the above proposition.
Observe that in establishing Proposition 15, we did not assume that amenability
actually satisfies any of the hereditary properties described in Propositions 10
and 12(iii), because these hereditary properties are not employed in the proof of
[Kaniuth and Ülger 2010, Theorem 5.1] (and the theory on which it depends). Since
whenever α : H→G is a proper continuous mixed piecewise affine map, ϕ= jα is a
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homomorphism of A(G) into A(H) such that, for each h∈H, δh◦ϕ 6=0, we obtain —
independent of the hereditary properties of amenability (and therefore independent
of Proposition 10) — the following immediate corollary of Proposition 15.

Corollary 16. If G is amenable and there exists a proper continuous mixed piece-
wise affine map α of H into G, then H is amenable. In particular, closed subgroups
of amenable locally compact groups are amenable.

Thus, [Kaniuth and Ülger 2010, Theorem 5.1] and the basic fact that proper
continuous group homomorphisms determine Fourier algebra homomorphisms
yield a new proof that closed subgroups of locally compact groups are amenable.
This seems interesting because although [Kaniuth and Ülger 2010, Theorem 5.1]
is certainly not at all obvious, the standard proof of this fundamental hereditary
property, which in the nondiscrete case involves the construction of a Bruhat function
for H on G (e.g., see [Pier 1984, Section 13] or [Runde 2002, Section 1.2]), is also
not at all obvious.
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Bin decompositions
Daniel Gotshall, Pamela E. Harris, Dawn Nelson,

Maria D. Vega and Cameron Voigt

(Communicated by Stephan Garcia)

It is well known that every positive integer can be expressed as a sum of
nonconsecutive Fibonacci numbers provided the Fibonacci numbers satisfy
Fn = Fn−1+ Fn−2 for n ≥ 3, F1 = 1 and F2 = 2. For any n,m ∈ N we create a
sequence called the (n,m)-bin sequence with which we can define a notion of a
legal decomposition for every positive integer. These sequences are not always
positive linear recurrences, which have been studied in the literature, yet we prove,
that like positive linear recurrences, these decompositions exist and are unique.
Moreover, our main result proves that the distribution of the number of summands
used in the (n,m)-bin legal decompositions displays Gaussian behavior.

1. Introduction

Edouard Zeckendorf [1972] proved that any positive integer can be uniquely de-
composed as a sum of nonconsecutive Fibonacci numbers provided we use the
recurrence F1 = 1, F2 = 2, and Fn = Fn−1+ Fn−2 for n ≥ 3. Since then numerous
researchers have generalized Zeckendorf’s theorem to other recurrence relations
[Miller and Wang 2014; Catral et al. 2014; Demontigny et al. 2014a; 2014b;
Koloğlu et al. 2011; Lengyel 2006]. Most work involved recurrence relations with
positive leading terms, called positive linear recurrences (PLRs), until Catral, Ford,
Harris, Miller, and Nelson [Catral et al. 2014; 2016; 2017] generalized these results
to the (s, b)-Generacci sequences and the Fibonacci quilt sequence, which are
defined by nonpositive linear recurrences, and Dorward, Ford, Fourakis, Harris,
Miller, Palsson, and Paugh [Dorward et al. 2017a; 2017b] generalized them to
the m-gonal sequences, which arise from a geometric construction via inscribed
m-gons. The main results in these studies involved determining the uniqueness
of the decompositions of nonnegative integers using the numbers in these new
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sequences, determining whether the behavior arising from the mean number of
summands in these decompositions is Gaussian, and other related results.

A way to interpret the creation of the (s, b)-Generacci sequences is to imagine an
infinite number of bins each containing b distinct positive integers. Given a number
` ∈ N, we decompose it as a sum of elements in the sequence such that the terms
satisfy (1) no two numbers in the sequence used in the decomposition appear in the
same bin, and (2) we do not use numbers in s bins to the left and right of any bin
containing a summand used in the decomposition of `. If such a decomposition of `
exists using the numbers in the sequence, we then say that ` has a legal decomposi-
tion. If every positive integer ` has a legal decomposition, then we call the sequence
of numbers satisfying this property the (s, b)-Generacci sequence. Note that the
(1, 1)-Generacci sequence gives rise to the Fibonacci sequence, as we have bins with
only one integer and we cannot use any consecutive integers in any decomposition.

Motivated by the bin construction used in the (s, b)-Generacci sequences, we
create the (n,m)-bin sequences. These sequences are defined by nonpositive
linear recurrences and depend on the positive integer parameters s, b for Generacci
sequences and n,m for bin sequences. The terms of an (n,m)-bin sequence {ax}

∞

x=0
can be pictured via
a0, . . . , an−1︸ ︷︷ ︸

n

, an, . . . , an+m−1︸ ︷︷ ︸
m︸ ︷︷ ︸

B0

,

. . . , a(n+m)k, . . . , a(n+m)k+n−1︸ ︷︷ ︸
n

, a(n+m)k+n, . . . , a(n+m)k+n+m−1︸ ︷︷ ︸
m︸ ︷︷ ︸

Bk

, . . . . (1)

Note that the first term in the sequence is indexed by 0. Notice also that there
are n terms in the first bin and m terms in the next. The number of terms in each
subsequent bin alternates between n and m. We use the notation Bk to indicate a
pair of bins of size n and m, in that order. Given a term in the sequence, ax , we can
determine which Bk contains ax and whether ax is in the n- or m-sized bin by using
the division algorithm to write x = (n+m)k+ i . If 0≤ i ≤ n− 1 then ax is in the
n-sized bin. If n≤ i ≤m+n−1 then ax is in the m-sized bin. For example, consider
the (2,3)-bin sequence and term a44. Since 44= (2+ 3)8+ 4, we know a44 ∈ B8

and since i = 4≥ 2= n, we know a44 is the third term in the m = 3-sized bin.
Before defining how we construct the sequences, we need to establish the notion

of a legal decomposition.

Definition 1.1. Let an increasing sequence of integers {ai }
∞

i=0, divided into bins of
sizes n and m be given. For any n,m ∈ N, an (n,m)-bin legal decomposition of an
integer using summands from this sequence is a decomposition in which no two
summands are from the same or adjacent bins.
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As described in [Demontigny et al. 2014a], this notion of legal decompositions
is an f -decomposition defined by the function f : N0→ N0 with

f ( j)=
{

m+ i if j ≡ i mod m+ n and 0≤ i ≤ n− 1,
i if j ≡ i mod m+ n and n ≤ i ≤ m+ n− 1.

(2)

In other words, if aj is a summand in an (n,m)-bin legal decomposition, then none
of the previous f ( j) terms (aj− f ( j), aj− f ( j)+1, . . . , aj−1) are in the decomposition.
Consider the (2,3)-bin legal decompositions. Then f : N0→ N0 is the periodic
function

{ f ( j)} = {3, 4, 2, 3, 4, 3, 4, 2, 3, 4, . . .}.

Note f (44) = 4, so if a44 is a term in an (n,m)-bin legal decomposition, then
a40, a41, a42, a43 are not in the decomposition. Notice that a42, a43 are other terms
in the 3-bin (the bin of size 3) that contains a44 and that a40, a41 are the two terms
in the previous 2-bin (the bin of size 2).

Through an immediate application of Theorems 1.2 and 1.3 from [Demontigny
et al. 2014a] we can establish that for any n,m ∈N, (n,m)-bin legal decompositions
are unique and we get Proposition 1.2.

Proposition 1.2. For each pair of n,m ∈ N there is a unique sequence such that
every positive integer has a unique (n,m)-bin legal decomposition.

With this result at hand, we can now formally define an (n,m)-bin sequence.

Definition 1.3. For each pair of n,m ∈N, an (n,m)-bin sequence is the unique se-
quence such that every positive integer has a unique (n,m)-bin legal decomposition.

Using this definition one can verify that the (2, 3)-bin sequence begins

1, 2︸︷︷︸, 3, 4, 5︸ ︷︷ ︸, 6, 9︸︷︷︸, 12, 18, 24︸ ︷︷ ︸, 30, 42︸ ︷︷ ︸, 54, 84, 114︸ ︷︷ ︸,
144, 198︸ ︷︷ ︸, 252, 396, 540︸ ︷︷ ︸, 684, 936︸ ︷︷ ︸, 1188, 1872, 2556︸ ︷︷ ︸, . . .

and that the (2, 3)-bin legal decomposition of 2018 is 2018= 1872+ 144+ 2. We
also note that we can once again recover the Fibonacci sequence, which in this case
is given by the (1, 1)-bin sequence.

In Section 2 we establish a recurrence for the (n,m)-bin sequences.

Theorem 1.4. Assume {ax}
∞

x=0 is an (n,m)-bin sequence. Then for all n,m ≥ 1
and x ≥ 2(m+ n),

ax = (m+ n+ 1)ax−(m+n)−mnax−2(m+n). (3)

We note that the recurrence above is sometimes a PLR and sometimes it is not.
For example, as noted previously, the (1, 1)-bin legal decompositions are exactly
the Zeckendorf decompositions, and use the Fibonacci numbers, which are defined
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via a PLR. However, when n = 2 and m = 1 the recurrence above is not a PLR and
we show this in the Appendix. This provides further motivation to study sequences
that are more broadly defined and do not necessarily fall under (or out of) the PLR
definition.

Our main result establishes that the number of summands used in (n,m)-bin
legal decompositions of the natural numbers follows a Gaussian distribution.

Theorem 1.5 (Gaussian behavior of summands). Let the random variable Yk denote
the number of summands in the (unique) (n,m)-bin legal decomposition of an
integer chosen uniformly at random from [0, a(n+m)k). Normalize Yk to Y ′k =
(Yk−µk)/σk , where µk and σk are the mean and variance of Yk respectively. Then

µk = Ck+ O(1), σ 2
k = C ′k+ O(1) (4)

for some positive constants

C =

√
(1+m+ n)2− 4mn− 1√
(1+m+ n)2− 4mn

, C ′ =
(m+ n)(1+m+ n)− 4mn√

(1+m+ n)2− 4mn
3 .

Moreover, Y ′k converges in distribution to the standard normal distribution as
k→∞.

As we noted earlier, the (1, 1)-bin sequence is simply the Fibonacci sequence.
In this case, the formulas for the mean and the variance given in (4) simplify to
the known formulas obtained by Lekkerkerker [1952] and Kolǒglu et al. [2011].
Lekkerkerker computed that for x ∈ [Fn, Fn+1) the mean number of summands in
a Zeckendorf decomposition is n/(φ2

+ 1)+ O(1), where φ = 1
2(1+

√
5). The

result is the same when the interval is extended to x ∈ [0, Fn). In [Koloğlu et al.
2011], the authors showed that for x ∈ [Fn, Fn+1) the variance of the number of
summands in a Zeckendorf decomposition is φn/(5(φ + 2))+ O(1). Again the
result is same when the interval is extended to x ∈ [0, Fn).

Corollary 1.6. Consider the (1, 1)-bin sequence. For x ∈ [0, a2k) the mean and
variance of the number of summands in a (1, 1)-bin legal decomposition are

µk =

√
5− 1
√

5
k+ O(1)=

1
φ2+ 1

2k+ O(1),

σ 2
k =

2

5
√

5
k+ O(1)=

φ

5(φ+ 2)
2k+ O(1).

The paper is organized as follows. Section 2 establishes needed recurrence
relations and proves Theorem 1.4, Section 3 develops helpful generating functions,
and Section 4 pulls these ideas together and contains the proof of Theorem 1.5. We
end with some directions for future research.
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2. Recurrence relations

In this section we establish recurrence relations for (n,m)-bin sequences. We will
establish Theorem 1.4 via the following two technical results. Lemma 2.1 provides a
family of recurrence relations. For example, (5) computes the first term in the n-bin,
(6) computes the remaining terms in the n-bin and the first term in the m-bin, and
(7) computes the remaining terms in the m-bin. In contrast, Theorem 1.4 provides
a single recurrence relation that can be used to compute any term regardless of its
position in the bins.

Lemma 2.1. If n,m ∈ N, then for k ≥ 1

a(m+n)(k+1) = a(m+n)k+m+n−1+a(m+n)k, (5)

a(m+n)(k+1)+i = a(m+n)(k+1)+(i−1)+a(m+n)k+n for 1≤ i ≤ n, (6)

a(m+n)(k+1)+ j = a(m+n)(k+1)+ j−1+a(m+n)(k+1) for n+1≤ j ≤ m+n−1. (7)

Proof. Using Theorems 1.2 and 1.3 in [Demontigny et al. 2014a], ax = ax−1 +

ax−1− f (x−1). If x = (m + n)(k + 1), then x − 1 = (m + n)k + m + n − 1 and
f ((m+n)k+m+n−1)=m+n−1. Hence (5), is immediate. The other equations
follow from a similar argument. �

Lemma 2.2 interweaves the family of recurrence relations to show that if the
single recurrence relation (of Theorem 1.4) is true for x ≡ 0 (mod m+ n), then it
is true for all x .

Lemma 2.2. Assume n,m ≥ 1. If

ax = (m+ n+ 1)ax−(m+n)−mnax−2(m+n) (8)

for x ≥ 2(m+ n) and x ≡ 0 (mod m+ n), then (8) is true for all x ≥ 2(m+ n).

Proof. By hypothesis,

a(m+n)k = (m+ n+ 1)a(m+n)k−(m+n)−mna(m+n)k−2(m+n).

In other words,

a(m+n)k = (m+ n+ 1)a(m+n)(k−1)−mna(m+n)(k−2).

So applying (5), we have

a(m+n)(k−1)+m+n−1+a(m+n)(k−1) = (m+n+1)[a(m+n)(k−2)+m+n−1+a(m+n)(k−2)]

−mn[a(m+n)(k−3)+m+n−1+a(m+n)(k−3)].

Thus

a(m+n)(k−1)+m+n−1− [(m+ n+ 1)a(m+n)(k−2)+m+n−1−mna(m+n)(k−3)+m+n−1]

= −a(m+n)(k−1)+ [(m+ n+ 1)a(m+n)(k−2)−mna(m+n)(k−3)].
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By hypothesis, the right-hand side of this equation is 0. Hence so is the left side
and thus (8) is true for x ≡ m+ n− 1 (mod m+ n).

Repeating a similar argument several more times shows that (8) is true for all x . �

It remains to prove that (8) is true for x ≡ 0 (mod m + n). We do this in the
following proof and thus establish Theorem 1.4.

Proof of Theorem 1.4. Assume {ax}
∞

x=0 is an (n,m)-bin sequence. As explained in
Section 1, this sequence is an f -sequence defined by the function f ( j) given in
(2). Note that the period of f ( j) is m+ n and m+ n ≥ f ( j)+ 1 for all j .

By Theorem 1.5 in [Demontigny et al. 2014a], since f ( j) is periodic, we know
that there is a single recurrence relation for our sequence, and the proof of that
theorem gives us an algorithm for computing the single recurrence relation.

Consider the m+ n subsequences of {ax}
∞

x=0 given by terms whose indices are
all in the same residue class mod m + n. We will begin by finding a recurrence
relation for each subsequence

ax =

m+n+1∑
i=1

ci ax−(m+n)i . (9)

A priori, these relations may be different for each residue class, but Lemma 2.2
tells us that all relations are in fact the same. Thus we focus on the subsequence
corresponding to the 0 residue class.

It remains to solve for the constants ci in (9). To solve for these constants
we will use linear algebra techniques; in particular we use matrices and vectors
to represent systems of equations. Each of the equations in Lemma 2.1 can be
rewritten as vectors (the starred columns are those that are indexed by multiples of
m+ n, beginning with 0, and the columns marked with ◦ are indices congruent to
m modulo m+ n):

? ◦ ? ◦

Ev0 = [1, −1, 0, . . . , 0, −1, 0, . . .],

Ev1 = [0, 1, −1, 0, . . . , 0, −1, 0, . . .],
...

Evm−1 = [0, . . . , 0, 1, −1, 0, . . . , 0, −1, 0, . . .],

Evm = [0, . . . , 0, 1, −1, 0, . . . , 0, . . . , 0, −1],
...

Evm+n−1 = [0, . . . , 0, 1, −1, 0, . . . , 0, −1].

Vector Ev0 corresponds to the recurrence relation in (5), Ev1 to Evm−1 correspond to the
recurrence relations in (7), and Evm to Evm+n−1 correspond to the recurrence relations
in (6). For all Evj the number of leading 0’s is j and the number of middle 0’s is
f (m+ n− j)− 1.
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Define T to be the transformation that shifts all coordinates to the right by
(m+ n) places.

According to the algorithm in [Demontigny et al. 2014a] the goal is to zero out
the coordinates that are not indexed by multiples of m+ n (the period). Note the
first column is indexed by 0. Our first step in this process is to define Ew1, a linear
combination of the Evj . We have

Ew1 = Ev0+ · · ·+ Evm+n−1 = [1, 0, . . . , 0, −m− 1, 0, . . . , 0, −n, 0],

where there are (m + n− 1) 0’s in the first set and (m − 1) 0’s in the second set.
We continue and use T to define Ew2:

Ew2= Ew1+n
m+n−1∑

j=m

T Evj =[1, 0, . . . , 0, −m−1, 0, . . . , 0, −n, 0, . . . , 0, −n2
],

where there are (m+ n− 1) 0’s in the first and second sets and (m− 1) 0’s in the
last set.

Note that in Ew0 = Ev0, Ew1, and Ew2, the bad coordinates (the coordinates that are
not 0 and not indexed by multiples of m+ n) are given by

Eu0 = [−1, 0 . . . , 0], Eu1 = [0, . . . , 0,−n], Eu2 = [0, . . . , 0,−n2
].

We simplify by removing the common strings of 0’s:

Eu0 = [−1, 0], Eu1 = [0,−n], Eu2 = [0,−n2
].

There exists a nontrivial solution to
∑2

j=0 λj Eu j = 0, namely λ0 = 0, λ1 = −n,
λ2 = 1. Using these values, we can write a linear combination of the Ewj in which
we succeed in zeroing out the coordinates that are not multiples of m+ n:

2∑
j=0

λj T 2− j
Ewj = [1, 0, . . . , 0, −(m+ n+ 1), 0, . . . , 0, mn, 0, . . .].

Thus (9) becomes

ax = (m+ n+ 1)ax−(m+n)−mnax−2(m+n).

Note that a priori this is only the recurrence relation for the subsequence given by
the terms whose indices are congruent to 0 (mod m + n). Fortunately, applying
Lemma 2.2, we see that this recurrence relation is the single relation for the entire
sequence. �

3. Counting summands with generating functions

In this section we provide generating functions for counting integers with a fixed
number of summands in their (n,m)-bin legal decomposition. We continue to
assume throughout that {ax}

∞

x=0 is an (n,m)-bin sequence.
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Let pk,c denote the number of integers z∈[0, a(n+m)k)whose legal decomposition
contains exactly c summands, where c ≥ 0. Then by definition

p0,c =

{
1, c = 0,
0, c > 0,

(10)

p1,c =


1, c = 0,
n+m, c = 1,
0 c > 1.

(11)

Also, for all k ≥ 0, we have pk,0 = 1 and pk,1 = k(n + m). Moreover, for all
c> k ≥ 0, we have pk,c = 0. We also have the following recurrence relation for the
values of pk,c.

Proposition 3.1. If k ≥ 2 and c ≥ 0, then

pk,c = pk−1,c+ (m+ n)pk−1,c−1− nmpk−2,c−2. (12)

Proof. The decomposition of an integer z ∈ [0, a(n+m)k) either has a summand from
the bin Bk−1 or it doesn’t. If it doesn’t then the number of integers with c summands
is pk−1,c.

If z has a summand in the bin Bk−1, then there are two possibilities: either
the summand lies in the bin of size m or it lies in the bin of size n. In what
follows we need to recall that the first sub-bin of Bk−1 has size n and the second
has size m. If the largest summand appearing in the decomposition of z is in the
sub-bin of size m then there are m ways to choose it, and since the next-largest
legal summand is less than a(n+m)(k−1), there are pk−1,c−1 ways to choose the
remaining c− 1 summands. Hence there are mpk−1,c−1 integers with c summands
and with largest summand from the m sub-bin of Bk−1. On the other hand, if
the largest summand in the decomposition of z is in the sub-bin of size n, the
quantity npk−1,c−1 over-counts by nmpk−2,c−2, because a decomposition with a
summand from the sub-bin of size n of Bk−1 and a summand from the sub-bin
of size m of Bk−2 does not give rise to an (n,m)-bin legal decomposition. Hence
pk,c = pk−1,c+ (m+ n)pk−1,c−1− nmpk−2,c−2. �

Proposition 3.2. Let F(x, y) =
∑

k≥0
∑

c≥0 pk,cxk yc be the generating function
of the pk,c arising from the (n,m)-bin legal decompositions. Then

F(x, y)=
1

1− x − (m+ n)xy+mnx2 y2 . (13)

Proof. Noting that pk,c = 0 if either k < 0 or c< 0, using explicit values of pk,c and
the recurrence relation from Proposition 3.1, after some straightforward algebra we
obtain

F(x, y)= x F(x, y)+ (m+ n)xyF(x, y)−mnx2 y2 F(x, y)+ 1

from which (13) follows. �
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Figure 1. Distributions for the number of summands in the
(n,m)-bin decomposition for a random sample of 100,000 integers
from the intervals [0,a10000(m+n)).

(n,m) predicted mean sample mean predicted variance sample variance

(1, 2) 6464.466094 6465.205230 1767.766953 1770.751318
(2, 1) 6464.466094 6465.418910 1767.766953 1774.385128
(2, 3) 7113.248654 7114.140920 1443.375673 1450.656668
(3, 2) 7113.248654 7114.202700 1443.375673 1437.312966

Table 1. Predicted means and variances versus sample means and
variances for simulations from Figure 1.

4. Gaussian behavior

To motivate the main result of this section, we point the reader to experimental
observations. Taking samples of 100,000 integers from the intervals [0, a10000(m+n)),
in Figure 1 we provide a histogram for the distribution of the number of summands
in the (n,m)-bin decomposition of these integers, when (n,m) = (1, 2), (2, 1),
(2, 3), (3, 2). In these figures we also provide the Gaussian curve computed using
each sample’s mean and variance. Furthermore, Table 1 gives the values of the
predicted means and variances as computed using Theorem 1.5, as well as the
sample means and variances, for each of the samples considered.

From these observations one might speculate that for any pair of integers n,m ∈N

the distribution of the number of summands in the (n,m)-bin legal decompositions
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of integers in the interval [0, a(n+m)k) displays Gaussian behavior. This is in fact
the statement of Theorem 1.5.

To prove Theorem 1.5 we first need the following technical results.

Lemma 4.1. For all m, n, y > 0, the following inequalities hold:

γ 2 > 1+ (m+ n)y, (14)

γ > 1, (15)

1+ (m+ n)y+ γ > 1+ (m+ n)y− γ > 0, (16)

where γ =
√
(1+ (m+ n)y)2− 4mny2.

Proof. To establish (14) and (15) we note that

γ 2
= (1+ (m+n)y)2−4mny2

= 1+2(m+n)y+ (m−n)2 y2 > 1+ (m+n)y > 1.

The first inequality in (16) is clear, while the second is true because

(1+ (m+ n)y)2 > (1+ (m+ n)y)2− 4mny2
= γ 2 > 1.

Hence 1+ (m+ n)y > γ . �

Proposition 4.2. Let gk(y) :=
∑k

c=0 pk,c yc denote the coefficient of xk in F(x, y).
Then

gk(y)=
1
γ

[(
2mny2

(1+ (m+ n)y)− γ

)k+1

−

(
2mny2

(1+ (m+ n)y)+ γ

)k+1]
,

where again γ =
√
(1+ (m+ n)y)2− 4mny2.

Proof. From Proposition 3.2 we know that

F(x, y)=
1

1− x − (m+ n)xy+mnx2 y2 =
1

mny2

(
x2
−

1+ (m+ n)y
mny2 +

1
mny2

)−1

.

In order to expand F(x, y) into a power series we will use partial fraction decom-
position, but first we must factor

x2
−

1+ (m+ n)y
mny2 +

1
mny2

into two linear factors. Using the quadratic formula yields

x2
−

1+ (m+ n)y
mny2 +

1
mny2 = (x − λ1)(x − λ2)

where
λ1 = λ1(y)=

(1+ (m+ n)y)− γ
2mny2 , (17)

λ2 = λ2(y)=
(1+ (m+ n)y)+ γ

2mny2 . (18)
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Since the discriminant is positive, by (15), we can use partial fraction decompo-
sition

F(x, y)=
1

mny2

(
x2
−

1+ (m+ n)y
mny2 +

1
mny2

)−1

=
1

mny2

(
A1

x − λ1
+

A2

x − λ2

)
.

Solving for A1, A2, we get

1= A1(x − λ2)+ A2(x − λ1).

If x = λ1, then 1= A1(λ1− λ2). Hence A1 = 1/(λ1− λ2) and

λ1− λ2 =

(
(1+ (m+ n)y)− γ

2mny2

)
−

(
(1+ (m+ n)y)+ γ

2mny2

)
=−

γ

mny2 .

Thus A1 = −mny2/γ . Similarly, if x = λ2, then 1 = A2(λ1 − λ1). So A2 =

1/(λ2− λ1)=−A1.
Thus

F(x, y)=
1

mny2

(
−A1

λ1− x
−

A2

λ1− x

)
=

1
mny2

(
−A1

λ1

∞∑
i=0

(
x
λ1

)i

−
A2

λ2

∞∑
i=0

(
x
λ2

)i)
. (19)

If gk(y) denotes the coefficient of xk in F(x, y), then using (19) we have

gk(y)=
1

mny2

(
−A1

λ1

(
1
λ1

)k

−
A2

λ2

(
1
λ2

)k)
=

1
λ1γ

(
2(mny2)

(1+ (m+ n)y)− γ

)k

+
−1
λ2γ

(
2(mny2)

(1+ (m+ n)y)+ γ

)k

. �

To complete the proof of Theorem 1.5 we make use the following result from
[Demontigny et al. 2014b].

Theorem 4.3 [Demontigny et al. 2014b, Theorem 1.8]. Let κ be a fixed positive
integer. For each n, let a discrete random variable Yn in In = {1, 2, . . . , n} have

Prob(Yn= j)=
{

pj,n/
∑n

j=1 pj,n if j ∈ In,

0 otherwise

for some positive real numbers p1,n, p2,n, . . . , pn,n . Let gn(y) :=
∑

j pj,n y j .
If gn has the form gn(y)=

∑κ
i=1qi (y)αn

i (y), where

(i) for each i ∈ {1, . . . , κ}, qi , αi : R→ R are three-times differentiable functions
which do not depend on n;
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(ii) there exists some small positive ε and some positive constant λ < 1 such that
for all y ∈ Iε = [1− ε, 1+ ε] we have |α1(y)|> 1 and |αi (y)/α1(y)|< λ < 1
for all i = 2, . . . , κ;

then the mean µn and variance σ 2
n of Yn both grow linearly with n. Specifically,

µn = Cn+ d + o(1), σ 2
n = C ′n+ d ′+ o(1),

where

C =
α′1(1)
α1(1)

, C ′=
d

dy

(
yα′1(y)
α1(y)

)∣∣∣∣
y=1
=
α1(1)[α′1(1)+α

′′

1 (1)] −α
′

1(1)
2

α1(1)2
,

d =
q ′1(1)
q1(1)

, d ′ =
d

dy

(
yq ′1(y)
q1(y)

)∣∣∣∣
y=1
=

q1(1)[q ′1(1)+ q ′′1 (1)] − q ′1(1)
2

q1(1)2
.

Moreover, if

(iii) α′1(1) 6= 0 and d
dy [yα

′

1(y)/α1(y)]|y=1 6= 0, i.e., C,C ′ > 0,

then as n→∞, Yn converges in distribution to a normal distribution.

Throughout the following proof we will simplify some calculations with the
substitutions

s = m+ n, p = mn, and β =
√
(1+m+ n)2− 4mn.

Proof of Theorem 1.5. To prove Gaussian behavior we need only show that gk(y)
satisfies the hypothesis of Theorem 4.3. Note that

gk(y)= q1(y)αk
1(y)+ q2(y)αk

2(y),

where

qi (y)=
(−1)i+12mny2(

1+(m+n)y+(−1)i
√
(1+(m+n)y)2−4mny2

)√
(1+(m+n)y)2−4mny2

and

αi (y)=
2mny2

1+ (m+ n)y+ (−1)i
√
(1+ (m+ n)y)2− 4mny2

.

Condition (i): For each i = 1, 2, the functions qi (y) and αi (y) are three-times
differentiable.

Condition (ii): Let ε be some small positive constant and assume y∈ Iε=[1−ε,1+ε].
By (16), we see that 0 < α2(y) < α1(y). Thus for some positive constant λ,
|α2(y)/α1(y)| < λ < 1. Next we show that α1(y) > 1. We begin by noting that
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py2 > 0 and
√
(1+ sy)2− 4py2 > 1 by (15). Hence

0< 4py2(py2
+
√
(1+ sy)2− 4py2− 1

)
(1+ sy)2 < 4py2(py2

+
√
(1+ sy)2− 4py2− 1

)
+ (1+ sy)2

(1+ sy)2 < 4p2 y4
+ 4py2

√
(1+ sy)2− 4py2+ (1+ sy)2− 4py2

(1+ sy)2 <
(
2py2

+
√
(1+ sy)2− 4py2

)2

1+ sy < 2py2
+
√
(1+ sy)2− 4py2

1<
2py2

1+ sy−
√
(1+ sy)2− 4py2

.

Condition (iii): First we compute C = α′1(1)/α1(1) and prove that it is not 0. Using

α1(y)=
2py2

1+ sy−
√
(1+ sy)2− 4py2

we compute

α′1(y)=
4py

1+ sy−
√
(1+ sy)2− 4py2

−
2py2

[
s− 1

2((1+ sy)2− 4py2)−1/2(2s(1+ sy)− 8py)
]

(1+ sy−
√
(1+ sy)2− 4py2)2

.

Substituting y= 1 and using a common denominator to add fractions, the numerator
of α′1(1) simplifies to

4p(1+s−β)−2p
(

s−
2s(1+s)−8p

2β

)
= 2p

(
2(1+s−β)−s+

s(1+s)−4p
β

)
=

2p
β
(1+s−β)(β−1).

Hence

C =
α′1(1)
α1(1)

=
2p(1+ s−β)(β − 1)

β(1+ s−β)2
·

1+ s−β
2p

=
β − 1
β
=

√
(1+m+ n)2− 4mn− 1√
(1+m+ n)2− 4mn

.

Note that this final value is positive (in particular not zero); see (15).
Second we compute

C ′ =
α′1(1)−α

′′

1 (1)
α1(1)

−

(
α′1(1)
α1(1)

)2
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and prove that it is not 0. Note

α′′1 (1)=
4p
(
s+ 4p−s(1+s)

β

)2

(1+ s−β)3
−

8p
(
s+ 4p−s(1+s)

β

)
(1+ s−β)2

+
4p

1− s−β
−

2p
(
(−4p+s(1+s))2

β3 +
4p−s2

β

)
(1+ s−β)2

=
4p

1+ s−β

(
4p− s− s2

−β − 4p+ 1+ 2s+ s2

β(1+ s−β)

)2

−
2p

(1+ s−β)2
4p
β3

=
4p

(1+ s−β)β2 −
8p2

(1+ s−β)2β3

and using this we find that

α′1(1)−α
′′

1 (1)
α1(1)

=

(
2p(β − 1)
β(1+ s−β)

+
4p

(1+ s−β)β2 −
8p2

(1+ s−β)2β3

)
1+ s−β

2p

=
β − 1
β
+
β − 1− s
β3 .

Finally

C ′ =
α′1(1)−α

′′

1 (1)
α1(1)

−

(
α′1(1)
α1(1)

)2

=
β − 1
β
+
β − 1− s
β3 −

(
β − 1
β

)2

(20)

=
β2
− 1− s
β3 (21)

=
s(1+ s)− 4p

β3 . (22)

By considering (21) with (14) we see that C ′ > 0.

Therefore, by satisfying the conditions of Theorem 4.3, we have completed our
proof. �

5. Directions for future research

In this paper we considered the construction of (n,m)-bin sequences. For d ∈ Z+,
one natural extension is to consider N = (n1, n2, . . . , nd) ∈ Zd

+
and define N-bin

sequences in an analogous way to that of (n,m)-bin sequences. One could then study
the N-bin decompositions of positive integers. Namely, do these decompositions
exist and are they unique? What is the behavior of the mean number of summands
used in the N-bin legal decompositions; i.e., is it Gaussian?

Another further generalization would be to consider introducing a new parameter
s ∈ N which accounts for the number of bins which must be skipped between
summands used in a legal N-bin decomposition. We call such decompositions the
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(s, N)-bin with skip decompositions. Note that when s = 1 and N = (n,m), the
(s, N)-bin with skip decompositions are exactly the (n,m)-bin decompositions and
when s ∈ Z+ and N = b ∈ Z+, the (s, N)-bin with skip decompositions are exactly
the (s, b)-Generacci decompositions. Therefore the study of the (s, N)-bin with
skip decompositions provides natural ways to generalize prior results in this area.

Appendix: Negative coefficient in linear recurrence

Proposition A.1. The (2, 3)-bin sequence is not a positive linear recurrence se-
quence (PLRS).

Proof. By (3) the recurrence relation for the (2, 3)-bin sequence is

ax = 4ax−3− 2ax−6.

This has characteristic equation y6
− 4y3

+ 2. By Eisenstein’s criterion the poly-
nomial y6

− 4y3
+ 2 is irreducible in Q[y] since there exists a prime p = 2 such

that p divides all nonleading coefficients of the polynomial, does not divide the
leading coefficient, and whose square does not divide the constant term. Thus
the polynomial y6

− 4y3
+ 2 cannot be factored into the product of nonconstant

polynomials with rational coefficients. Moreover, since this equation is irreducible
in Q[y] our recurrence relation is minimal. By applying Lemma B.1 in [Demontigny
et al. 2014a], it is enough to show that all multiples of the characteristic equation
cannot have the form

yk+6
−

k+5∑
i=0

ci yi ,

with all ci > 0.
Consider the multiple of the characteristic equation (with pk 6= 0)

k+6∑
i=0

ci yi
=

( k∑
j=0

pj y j
)
(y6
− 4y3

+ 2)=
k+6∑
i=0

(pi−6− 4pi−3+ 2pi )yi .

Thus ci = pi−6− 4pi−3+ 2pi . Note that pi = 0 when i < 0 and when i > k.
We will proceed by contradiction. Hence we assume ck+6 > 0, and ci ≤ 0

whenever i < k + 6. Let t be the smallest nonnegative integer such that pt 6= 0.
Note that 0≤ t ≤ k.

We claim that for all integers j ≥ 0 with t+3 j < k+6, we have pt+3 j < pt+3 j−3

and pt+3 j < 0. In other words the coefficients become increasingly negative. The
proof of this claim is by induction.

Base case n = 0: By the definition of t , ct = pt−6 − 4pt−3 + 2pt = 2pt . Hence
2pt = ct < 0, because pt 6= 0 and t < k+ 6. Thus pt < 0= pt−3.
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Base case n = 1: We have

ct+3 = pt−3− 4pt + 2pt+3 ≤ 0

2pt+3 ≤ 4pt

pt+3 ≤ 2pt < pt ,

where the last inequality is true because pt < 0.

Inductive step: We have

ct+3 j = pt+3 j−6− 4pt+3 j−3+ 2pt+3 j ≤ 0 (23)

2pt+3 j ≤ 4pt+3 j−3− pt+3 j−6 (24)

2pt+3 j ≤ 4pt+3 j−3− pt+3 j−3 (25)

pt+3 j ≤ 1.5pt+3 j−3 (26)

pt+3 j ≤ pt+3 j−3. (27)

Step (23) is true because t + 3 j < k + 6. Step (25) is true by the inductive
assumption. Finally step (27) is true because pt+3 j−3 < 0.

To establish our contradiction, choose j∗ such that k < t + 3 j∗ < k+ 6. Thus
we have

ct+3 j∗ = pt+3 j∗−6− 4pt+3 j∗−3+ 2pt+3 j∗ ≤ 0 (28)

pt+3 j∗−6 ≤ 4pt+3 j∗−3 (29)

pt+3 j∗−6 ≤ pt+3 j∗−3. (30)

Step (28) is true because t + 3 j∗ < k+ 6. Step (29) is true because pi = 0 when
i > k. Step (30) is true because pt+3 j∗−3 < 0. But this last line contradicts the
claim we just proved above. �
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[Koloğlu et al. 2011] M. Koloğlu, G. S. Kopp, S. J. Miller, and Y. Wang, “On the number of summands
in Zeckendorf decompositions”, Fibonacci Quart. 49:2 (2011), 116–130. MR Zbl

[Lekkerkerker 1952] C. G. Lekkerkerker, “Voorstelling van natuurlijke getallen door een som van
getallen van Fibonacci”, Simon Stevin 29 (1952), 190–195. MR Zbl

[Lengyel 2006] T. Lengyel, “A counting based proof of the generalized Zeckendorf’s theorem”,
Fibboniacci Quart. 44:4 (2006), 324–325. MR Zbl

[Miller and Wang 2014] S. J. Miller and Y. Wang, “Gaussian behavior in generalized Zeckendorf
decompositions”, pp. 159–173 in Combinatorial and additive number theory: CANT 2011 and 2012,
edited by M. B. Nathanson, Springer Proc. Math. Stat. 101, Springer, 2014. MR Zbl

[Zeckendorf 1972] E. Zeckendorf, “Représentation des nombres naturels par une somme de nombres
de Fibonacci ou de nombres de Lucas”, Bull. Soc. Roy. Sci. Liège 41 (1972), 179–182. MR Zbl

Received: 2018-04-18 Revised: 2018-07-10 Accepted: 2018-07-22

dgotshall16@saintpeters.edu Department of Mathematics, Saint Peter’s University,
Jersey City, NJ, United States

peh2@williams.edu Department of Mathematics and Statistics, Williams College,
Williamstown, MA, United States

dnelson1@saintpeters.edu Department of Mathematics, Saint Peter’s University,
Jersey City, NJ, United States

maria.vega@usma.edu Department of Mathematical Sciences, United States Military
Academy, West Point, NY, United States

cdv1218@gmail.com Department of Mathematical Sciences, United States Military
Academy, West Point, NY, United States

mathematical sciences publishers msp

http://dx.doi.org/10.2140/involve.2017.10.125
http://msp.org/idx/mr/3561734
http://msp.org/idx/zbl/1348.11015
http://dx.doi.org/10.1515/udt-2017-0002
http://msp.org/idx/mr/3666531
https://www.fq.math.ca/Papers1/49-2/KologluKoppMillerWang.pdf
https://www.fq.math.ca/Papers1/49-2/KologluKoppMillerWang.pdf
http://msp.org/idx/mr/2801798
http://msp.org/idx/zbl/1225.11021
http://msp.org/idx/mr/0058626
http://msp.org/idx/zbl/0049.03101
https://www.fq.math.ca/Papers1/44-4/quarttamas04_2006.pdf
http://msp.org/idx/mr/2335002
http://msp.org/idx/zbl/1132.11008
http://dx.doi.org/10.1007/978-1-4939-1601-6_12
http://dx.doi.org/10.1007/978-1-4939-1601-6_12
http://msp.org/idx/mr/3297078
http://msp.org/idx/zbl/1343.11022
http://msp.org/idx/mr/0308032
http://msp.org/idx/zbl/0252.10011
mailto:dgotshall16@saintpeters.edu
mailto:peh2@williams.edu
mailto:dnelson1@saintpeters.edu
mailto:maria.vega@usma.edu
mailto:cdv1218@gmail.com
http://msp.org




msp
INVOLVE 12:3 (2019)

dx.doi.org/10.2140/involve.2019.12.521

Rigidity of Ulam sets and sequences
Joshua Hinman, Borys Kuca,

Alexander Schlesinger and Arseniy Sheydvasser

(Communicated by Kenneth S. Berenhaut)

We give a number of results about families of Ulam sequences and sets, further
exploring recent work on rigidity phenomena. For Ulam sequences, using ele-
mentary methods we give an upper bound on the density and prove regularity
for various families of sequences. For Ulam sets, we consider extensions of
classification work done by Kravitz and Steinerberger.

1. Introduction and main results

Introduction. Let U (a, b) be the integer sequence that starts with two integers
0< a < b and each subsequent term is the smallest integer that can be written as
the sum of two distinct prior terms in exactly one way. Such sequences are known
as Ulam sequences, in honor of Stanisław Ulam [1964], who first introduced the
sequence U (1, 2).

Considering the simplicity of the definition, surprisingly little is known about
Ulam sequences, despite recent resurgence in interest — see [Gibbs 2015; Gibbs and
McCranie 2017; Steinerberger 2017; Kravitz and Steinerberger 2017; Kuca 2018].
However, recent numerical evidence suggests that families of Ulam sequences have
unexpected rigidity phenomena. In particular, in [Hinman et al. 2018], the authors
make the following conjecture.

Conjecture 1.1. There exist integer coefficients mi , pi , ki , ri such that for all
integers n ≥ 4,

U (1, n)=
∞⊔

i=1

[mi n+ pi , ki n+ ri ].
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While this conjecture is at present open, the authors did prove that it holds for
all terms up to 50,000n — that is, for all n ≥ 4,

U (1, n)∩[1, 50000n] = {1}∪[n, 2n]∪{2n+2}∪{4n}∪[4n+2, 5n−1]

∪{5n+1}∪[7n+3, 8n+1]∪{10n+2}∪{11n+2}

∪· · ·∪{49991n+6949}∪{49993n+6950}.

This suggests that while individual Ulam sequences may be difficult to deal with,
we may be able to get substantially better results about families of sequences. In
the present paper, we investigate various results related to the rigidity conjecture
above.

Summary of main results. We begin by revisiting the setting of Conjecture 1.1.
By considering long runs of consecutive terms in an Ulam sequence U (1, n), we
prove the following elementary result.

Theorem 1.2. Let mi , pi , ki , ri be integer coefficients as in Conjecture 1.1. Then
for all i , we have ki −mi = 0 or 1, and ri ≤ pi .

Given a set of integers K, recall that its asymptotic density is defined as the
constant

δ(K )= lim
N→∞

#(K ∩ [1, N ])
N

,

assuming that it exists. Using similar methodology as for Theorem 1.2, we also
establish an upper bound on the asymptotic density for sequences U (1, n).

Theorem 1.3. The density of U (1, n) is bounded above by (n+ 1)/(3n).

It should be noted that this is likely not a tight upper bound — asymptotically,

n+ 1
3n
≈

1
3
,

but numerical data for n ≥ 4 suggests that the actual density is ≈ 1
6 . Furthermore,

while our methods provide an upper bound, they do not provide any lower bound
on the density — unfortunately, this is not surprising, as no positive lower bound on
the density of sequences U (1, n) is known at this time.

In Section 3, we turn to a question first studied by Queneau1 [1972]: when is
the Ulam sequence regular — that is, when is the sequence of differences between
consecutive terms periodic? It was proved by Finch [1991; 1992a; 1992b] that
if an Ulam sequence contains finitely many even terms, then it is regular. It is

1Raymond Queneau is better known for his work as a French poet and novelist, but he was
interested in the role of mathematics in literature, which led him to cofound the Oulipo in 1960 [Motte
1998], together with chemical engineer and mathematician François Le Lionnais.
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conjectured that U (a, b) with a < b coprime contains finitely many even terms if
and only if

(1) a = 2, b ≥ 5,

(2) a = 4,

(3) a = 5, b = 6, or

(4) a ≥ 6 and a or b is even.

Schmerl and Spiegel [1994] proved the a = 2, b ≥ 5 case; Cassaigne and Finch
[1995] proved the case where a = 4, b ≡ 1 mod 4. It is worthwhile to note that
the proofs of these results use a limited form of rigidity similar to Conjecture 1.1;
furthermore, if some generalization of that conjecture holds for sequences U (a, b)
with a 6= 1, this would seem to give a means of proving that certain families of Ulam
sequences are all regular — if you can show that some Ulam sequence U (a, b)
with b sufficiently large has only finitely many even terms, then this will be true of
all subsequent Ulam sequences in that family. We prove a far more modest, but
nevertheless interesting result that gives a semi-algorithm for determining whether
an Ulam sequence is regular — unfortunately, it is only a semi-algorithm, as it is
not ever guaranteed to halt. Using this, we were able to establish the following.

Theorem 1.4. For integer pairs (a, b) given below, the sequence of differences
between consecutive terms of U (a, b) is eventually periodic:

(4, 11), (4, 19), (6, 7), (6, 11), (7, 8), (7, 10), (7, 12),
(7, 16), (7, 18), (7, 20), (8, 9), (8, 11), (9, 10), (9, 14),
(9, 16), (9, 20), (10, 11), (10, 13), (10, 17), (11, 12), (11, 14),
(11, 16), (11, 18), (11, 20), (12, 13), (12, 17), (13, 14).

In another direction, we also consider “Ulam-like” behavior and rigidity in higher
dimensions. Using the terminology of [Kravitz and Steinerberger 2017], we define
Ulam sets as follows.

Definition 1.5. Let |·| be a norm on Zn that increases monotonically in each coordi-
nate. A (k, n)-Ulam set U (v1, v2, . . . , vk) is a recursively defined set that contains
v1, v2, . . . , vn ∈ Zn

≥0 and each subsequent vector is the vector of smallest norm that
can be written as a sum of two distinct vectors in the set in exactly one way. We shall
say U (v1, v2, . . . , vk) is nondegenerate if vi /∈U (v1, v2, . . . , vi−1, vi+1, . . . , vk) for
every 1≤ i ≤ k.

Two remarks are necessary here: first, it may appear that the definition of Ulam
set depends on the choice of monotonically increasing norm | · |. In fact, this is
not so, as proved in [Kravitz and Steinerberger 2017]. Secondly, it may be unclear
which vector is added if there is more than one of equal norm. However, by the
above, this is irrelevant.
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Figure 1. From left to right and top to bottom: sets UA(v1, v2)

of L , column-deleted, column-deleted L , shifted column-deleted,
and exceptional type.

Contingent on some natural restrictions described in Section 4, we classify all
(3, 2)-Ulam sets, showing that they necessarily belong to one of a finite number of
different types, illustrated in Figure 1.

Theorem 1.6. Let U =U ((1, 0), (0, 1), (v1, v2)) be a nondegenerate (3, 2)-Ulam
set such that v1, v2 6= 0. Then exactly one of the following is true of either U or its
reflection about the line y = x :

(1) v1, v2 ∈ 2Z∩ [4,∞) and U is of L type.

(2) v1 ∈ 2Z, v2 ∈ (1+ 2Z)∩ [4,∞), and U is of column-deleted type.

(3) v1 ∈ 2Z∩ [4,∞), v2 = 2, and U is of column-deleted L type.

(4) v1 ∈ 2Z, v2 = 3, and U is of shifted column-deleted type.

(5) v1 = v2 = 2 and U is of exceptional type.

See Section 4 for definitions of the various types of Ulam sets. Note that this is
in a sense a higher-dimensional version of rigidity — we are varying the Ulam sets
in some parameter, and outside of some odd exceptional cases when the norm of the
vector is small, the parity of the coordinates of the added vector wholly determine
the structure of the set. We also show that there are restrictions for more general
(k, 2)-Ulam sets — in particular, in Section 5 we show that there is always a parity
restriction.

Theorem 1.7. Let U=U ((1,0), (0,1),v1,v2, . . . ,vn) be a nondegenerate (n+2, 2)-
Ulam set such that none of the vi lie on the coordinate axes. Then there exists
(w1, w2)∈Z2

≥0 such that for all (m, n)∈U , if m≥w1, n≥w2, then m=w1 mod 2,
n = w2 mod 2.
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Finally, in Section 6, we demonstrate that if the added vectors are not too small,
then the corresponding Ulam set must be periodic in following sense.

Definition 1.8. A (k, 2)-Ulam set U is eventually (m, n)-periodic if there exists
(m0, n0) such that for all (a, b) ∈ Z2

≥0 with a ≥ m0 and b ≥ n0 we have (a, b) ∈ U
if and only if (a+m, b+ n) ∈ U . We call (m, n) a period of U .

Theorem 1.9. All (4, 2)-Ulam sets U = UA(v1, v2) with vi = (xi , yi ) such that
xi , yi ≥ 4 are eventually periodic.

2. Consecutive terms in sequences U(1, n)

Our main goal for this section is to find bounds on the runs of consecutive terms in
the Ulam sequences U (1, n). As an example, we prove the following theorem.

Theorem 2.1. Let n ≥ 2 and let I be a set of 3n consecutive positive integers
greater than 2n+ 2. Then |I ∩U (1, n)| ≤ n+ 1.

As an immediate corollary, this implies a bound on the density of U (1, n).

Corollary 2.2. δ(U (1, n))≤
n+ 1

3n
.

Proof. Partition the first k integers greater than 2n+ 2 into runs of 3n consecutive
integers. Each such partition contains at most n+1 terms of U (1, n). The proportion
of Ulam numbers less than or equal to k is then no bigger than

(n+ 1)(k/(3n)+ 1)+ 2n+ 2
k

=
n+ 1

3n

(
1+

1
k

)
+

2n+ 2
k

.

In the limit, we get the desired upper bound. �

We will give an improvement on this upper bound for the special case U (1, 2) at
the end of this section. Before we prove Theorem 2.1, we give a few useful lemmas,
some of which are very useful in their own right.

Lemma 2.3. Let n ≥ 2. The first three intervals of U (1, n) are {1}, [n, 2n], and
{2n+ 2}.

Proof. Clearly, all elements of the form n+ i for 1≤ i ≤ n have the unique Ulam
representation n+ i = (n+ i − 1)+ 1. However, 2n+ 1 /∈U (1, n), because it has a
second Ulam representation n+(n+1). Finally, 2n+2=n+(n+2), which is its only
Ulam representation, and 2n+3 /∈U (1, n) since 2n+3= (2n+2)+1=n+(n+3). �

Lemma 2.4. If a, a+ k ∈U (1, n) for some 1≤ k ≤ n, then [a+ k+ n, a+ 2n] ⊂
Z \U (1, n).
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Proof. Every integer in this interval is of the form a+ k+ n+ i for 0≤ i ≤ n− k;
hence it has at least two Ulam representations: (a+k)+ (n+ i) and a+ (n+k+ i),
where we have used the fact that n + i, n + k + i ∈ [n, 2n], and hence are in the
Ulam sequence by Lemma 2.3. �

As an immediate corollary of this lemma, we get a proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that mi n + pi ,mi n + pi + 1 ∈ U (1, n). Then
(mi + 1)n+ (pi + 1) /∈U (1, n). Therefore, ki −mi = 0 or 1 and ri ≤ pi . �

Lemma 2.5. Let 1≤ k≤n. If [a, a+k]⊂U (1, n), then [a+n+1, a+k+2n−1]⊂
Z \U (1, n).

Proof. We have the partition

[a, a+ k] =
k−1⋃
i=0

[a+ i, a+ i + 1],

and so it suffices to prove the claim with k = 1, which is an immediate corollary of
Lemma 2.4. �

Lemma 2.5 shows that if there are long runs of consecutive elements in the Ulam
sequence, then there must be a longer run of consecutive elements later on that do
not belong to the Ulam sequence. With this observation in hand, we proceed to the
proof of Theorem 2.1.

Proof of Theorem 2.1. If I ∩U (1, n)=∅, we are done. Otherwise, let a > 2n+ 2
be the smallest element in I ∩U (1, n). There are two cases: either [a, a+ n− 1]
contains at least two consecutive elements u, u+ 1 ∈U (1, n), or it does not. We
consider these cases separately.

Case 1: Since we are given that [a, a + n − 1] ∩ U (1, n) contains at least two
consecutive elements, we can partition it into disjoint intervals

[a, a+ n− 1] ∩U (1, n)=
m⊔

i=1

[a+ ki , a+ li ] =

t⊔
j=1

{a+ cj }

such that ki ≤ li +1< ki+1, cj +1< cj+1, and for no i, j is cj ∈ [ki −1, li +1]. By
Lemma 2.5, [a+n+ki +1, a+ li +2n−1] ⊂ Z \U (1, n) for 1≤ i ≤m. Note that
since km ≤ n− 1 and l1 ≥ 1, we have a+ n+ km + 1≤ a+ l1+ 2n− 1, and hence
m⋃

i=1

[a+n+ki+1, a+li+2n−1] = [a+n+k1+1, a+2n+lm−1] ⊂Z \U (1, n).

Therefore,

I ∩U (1, n)⊂ ([a, a+ n+ k1])∪ ([a+ 2n+ lm, a+ 3n− 1]).



RIGIDITY OF ULAM SETS AND SEQUENCES 527

However, we claim that

|[a+ 2n+ lm, a+ 3n− 1] ∩U (1, n)|+|[a+ lm, a+ n− 1] ∩U (1, n)| ≤ n− lm .

It suffices to prove this assuming that [a + lm, a + n − 1] ∩ U (1, n) 6= ∅. Let
u1, u2, . . . , us be the Ulam numbers in [a+ lm, a+ n− 1]. If s = 1, then

a+ 2n+ lm = (a+ lm)+ 2n = u1+ (2n− (u1− a− lm)),

and as this gives two representations, it must be that a+2n+ lm /∈U (1, n). If s > 1,
then for every 1≤ i < j ≤ s, by Lemma 2.4,

[u j + n, ui + 2n] ⊂ Z \U (1, n).
Hence

[a+ 2n+ lm, us−1+ 2n] ⊂ Z \U (1, n).

Note that
|[a+ 2n+ lm, us−1+ 2n]| ≥ s

unless us−1 = a+ lm+ s−1, which is to say that [a+ lm, a+ lm+ s−1] ⊂U (1, n).
But by the definition of lm , it can only be that a + lm ∈ U (1, n) if lm = n − 1,
which is not possible since we assumed that there are at least two Ulam numbers in
[a+ lm, a+ n− 1]. As desired, we conclude that

|[a+ lm, a+ n− 1] ∩U (1, n)| + |[a+ 2n+ lm, a+ 3n− 1] ∩U (1, n)| ≤ n− lm,

and therefore

|I ∩U (1, n)| ≤ |[a+ lm, a+ n− 1] ∩U (1, n)| + |[a+ n, a+ n+ k1] ∩U (1, n)|
+ |[a+ 2n+ lm, a+ 3n− 1] ∩U (1, n)|

≤ n− lm + k1− 1

≤ n− 1.

Case 2: In this case, we are given that

[a, a+ n− 1] ∩U (1, n)=
t⊔

j=1

{a+ cj },

where cj + 1< cj+1. This implies that for k > j ,

k− j < ck − cj < n.

By Lemma 2.4, we have

[a+ ck + n, a+ cj + 2n] ⊂ Z \U (1, n),

and consequently,

[a+ c2+ n, a+ ct−1+ 2n] =
⋃

1≤i< j≤t

[a+ ck + n, a+ cj + 2n] ⊂ Z \U (1, n).
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Ergo,

|I ∩U (1, n)| = |[a, a+ n− 1] ∩U (1, n)|
+ |[a+ n, a+ c2+ n− 1] ∩U (1, n)|
+ |[a+ c2+ n, a+ ct−1+ 2n] ∩U (1, n)|
+ |[a+ ct−1+ 2n+ 1, a+ 3n− 1] ∩U (1, n)|

≤ t + c2+ n− ct−1− 1

≤ n+ 1. �

For n = 2, Corollary 2.2 gives an upper bound of 1
2 on the density. Using

similar techniques to the proof of Theorem 2.1, we can improve this upper bound
to 6

17 ≈ 0.353.

Theorem 2.6. The density of U (1, 2) is at most 6
17 .

Proof. Let a ∈U (1, n) and define I = [a, a+ 8], J = [a, a+ 16]. We claim that
either |I ∩U (1, 2)| ≤ 3 or |J ∩U (1, 2)| ≤ 6. We make use of the fact that

1, 2, 3, 4, 6, 8, 11, 13, 16 ∈U (1, 2).

If |I ∩U (1, 2)| > 3, then I = {a, a + 2, a + 5, a + 7}. Otherwise, I ∩U (1, 2)
contains a pair of elements u, u+ 1 such that u+ 1= a+ 2, a+ 3, a+ 4, a+ 6, or
a+ 8, which gives two representations; this is a contradiction.

In this case, J ∩U (1, 2)⊂ {a, a+ 2, a+ 5, a+ 7, a+ 12, a+ 14}— otherwise,
it contains an element with two representations. Consequently, |J ∩U (1, 2)| ≤ 6.
This means we can now define two sequences u1, u2, u3, . . . , L1, L2, L3, . . .

recursively — let u1 = 1 and L1 = 17, and then define ui+1 to be the smallest
element of the Ulam sequence larger than ui + L i , and

L i+1 =

{
17 if |[ui+1, ui+1,+16] ∩U (1, 2)| ≤ 6,
9 otherwise.

We can then partition the positive integers into sets of the forms [ui+1, ui+1+ L i ]

and [ui+1 + L i + 1, ui+2 − 1]. The density of U (1, 2) in any of these sets is no
more than 6

17 , and that implies that the density of U (1, 2) is bounded by 6
17 . �

3. Regular Ulam sequences

We now consider regular sequences. Let 1U (a,b) be the indicator function of U (a, b).
Given a positive integer l and a positive odd number k, define

S l
a,b(k)= {1U (a,b)(k+ 2i)}l−2

i=0.

With this terminology, we can now easily state the main theorem we want to prove.
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Theorem 3.1. Let 0< a < b be coprime integers. Let l, p, q be positive integers
such that p < q, p, q are odd, q ≥ 2l, a < b < 2l − 2, S l

a,b(p)= S l
a,b(q), and

U (a, b)∩ 2Z∩ [2l, 3q − p] =∅.
Then

U (a, b)∩ 2Z∩ [2l,∞)=∅.

Theorem 3.1 provides a semi-algorithm for determining whether a sequence is
regular — simply do a brute force search for triples (l, p, q) satisfying the conditions
of the theorem. If such a triple is found, then we conclude that U (a, b) is regular.
This gives us the following corollary.

Corollary 3.2. For integer pairs (a, b) given below, U (a, b) is regular:

(4, 11), (4, 19), (6, 7), (6, 11), (7, 8), (7, 10), (7, 12),
(7, 16), (7, 18), (7, 20), (8, 9), (8, 11), (9, 10), (9, 14),
(9, 16), (9, 20), (10, 11), (10, 13), (10, 17), (11, 12), (11, 14),
(11, 16), (11, 18), (11, 20), (12, 13), (12, 17), (13, 14).

Proof. By direct computation, we find triples (l, p, q) satisfying the conditions of
Theorem 3.1:

(a, b) (l, p, q)
(4, 11) (25, 107, 1425)
(4, 19) (41, 14745, 17305)
(6, 7) (57, 8537, 70987)
(6, 11) (89, 1032425, 1033833)
(7, 8) (71, 14331, 57089)

(a, b) (l, p, q)
(7, 10) (85, 95587, 102181)
(7, 12) (99, 79423, 80991)
(7, 16) (127, 46957, 47965)
(7, 18) (141, 196513, 198753)
(7, 20) (155, 50893, 52125)

(a, b) (l, p, q)
(8, 9) (91, 1037093, 1038533)
(8, 11) (111, 2125501, 4308725)
(9, 10) (109, 117117, 747935)
(9, 14) (145, 558073, 560377)
(9, 16) (163, 60093, 65277)
(9, 20) (199, 219761, 222929)
(10, 11) (133, 470303, 485615)
(10, 13) (157, 5804601, 5807097)
(10, 17) (205, 3919981, 3933037)

(a, b) (l, p, q)
(11, 12) (155, 140511, 142975)
(11, 14) (177, 507965, 509373)
(11, 16) (199, 394379, 400715)
(11, 18) (221, 29995, 37035)
(11, 20) (243, 46291, 54035)
(12, 13) (183, 3329465, 3330921)
(12, 17) (239, 3204117, 3211733)
(13, 14) (209, 1421023, 1427679)

�

To prove Theorem 3.1, we start with a useful lemma that establishes that if it
is false, then there is a bijective correspondence between odd Ulam numbers in
different intervals.
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Lemma 3.3. Let l, a, b be positive integers, and p < q be positive odd integers
such that q ≥ 2l, a < b < 2l − 2, S l

a,b(p)= S l
a,b(q),

U (a, b)∩ 2Z∩ [2l, 3q − p] =∅,

U (a, b)∩ 2Z∩ [2l,∞) 6=∅.

Let ũ be the smallest even number in U (a, b) greater than 3q − p. Then there is a
well-defined bijection

U (a, b)∩ (1+ 2Z)∩ [p, ũ+ p− q − 1] →U (a, b)∩ (1+ 2Z)∩ [q, ũ− 1],

u 7→ u+ q − p.

Proof. We will show that there is a well-defined bijection

φm :U (a, b)∩ (1+ 2Z)∩ [p, p+ 2m] →U (a, b)∩ (1+ 2Z)∩ [q, q + 2m],

u 7→ u+ q − p,

for all integers 0 ≤ m ≤ 1
2(ũ − q − 1). We know that S l

a,b(p) = S l
a,b(q); hence

p+ 2m′ ∈U (a, b) if and only if q + 2m′ ∈U (a, b) for all 0 ≤ m′ ≤ l − 2, which
proves the claim for m ≤ l − 2.

For all other m, we apply induction — that is, let l − 2< h ≤ 1
2(ũ− q − 1) such

that φh−1 is a bijection. We need to show that φh is bijection. This is equivalent to
proving that p+ 2h ∈U (a, b) if and only if q + 2h ∈U (a, b). Define sets

P = {(u, v) ∈U (a, b)2 | u ≡ 0 mod 2, v ≡ 1 mod 2, u+ v = p+ 2h},

Q = {(u, v) ∈U (a, b)2 | u ≡ 0 mod 2, v ≡ 1 mod 2, u+ v = q + 2h},

which enumerate the number of representations of p+ 2h and q + 2h, respectively.
If we can show that |P| = |Q|, then this will imply that p+ 2h ∈ U (a, b) if and
only if q+ 2h ∈U (a, b). However, we can construct a bijection between these two
sets by

ψ : P→ Q,

(u, v) 7→ (u, φh−1(v))= (u, v+ q − p).

This is well-defined since u+ v = p+ 2h implies v ≤ p+ 2h− 1. �

Proof of Theorem 3.1. We argue by contradiction. That is, suppose that there exist
even Ulam numbers larger than 3q − p. Let ũ be the smallest such element. We
know ũ = u1+ u2 for some u1 < u2 ∈U (a, b). Every even Ulam number less than
ũ is smaller than 2l; hence one of u1, u2 is odd — otherwise, we have

u1+ u2 < 4l ≤ 3q − p,

which is a contradiction. Since ũ is even, we conclude that u1, u2 are both odd.
Next, we show that ũ− q + p has at least two representations as the sum of two
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distinct elements of U (a, b). Note that

ũ− q + p ≥ (3q − p)− q + p = 2q > 2l,

and since ũ− q + p is even, this implies it is not in U (a, b). Consequently, it will
suffice to prove that it has at least one representation. Note that

u2 >
1
2 ũ > 1

2(3q − p) > q,

u2 ≤ ũ− 1,

so by Lemma 3.3, since u2 ∈U (a, b) it follows u2+ q − p ∈U (a, b). Therefore,
ũ+ q − p = u1+ (u2+ q − p) is a representation.

Write
ũ− q + p = v1+ v2 = v

′

1+ v
′

2,

where v1 < v2, v
′

1 < v
′

2 ∈U (a, b). Note that v2 > q, since

v2 >
1
2(ũ− q + p) > 1

2((3q − p)− q + p) > q.

Similarly, v′2 > q . From this it follows that v2, v
′

2 > 2l, and we conclude that v2, v
′

2
must be odd. Finally, note that

p < q < v2, v
′

2 ≤ ũ+ p− q − 1,

and therefore by Lemma 3.3, v2+q−p, v′2+q−p∈U (a, b), which is a contradiction
since

ũ = v1+ (v2+ q − p)= v′1+ (v
′

2+ q − p). �

4. Classification of (3, 2)-Ulam sets

Up until this point, we have only considered (2, 1)-Ulam sets; we now turn to the
problem of classifying higher-dimensional Ulam sets. The classification problem
for nondegenerate (2, 2)-Ulam sets was solved by Kravitz and Steinerberger [2017].
In particular, they showed that after a linear transformation, the Ulam set becomes
U ((1, 0), (0, 1)), illustrated in Figure 2. We shall denote this set by A.

We shall consider (3, 2)-Ulam sets that are extensions of such Ulam sets — that is,
we shall assume that two of the basis vectors are (1, 0) and (0, 1). For convenience,
we define

UA(v1, v2)=U ((1, 0), (0, 1), (v1, v2)),

W(v1,v2) = {(m, n) ∈ Z2
≥0 | m < v1 or n < v2},

L(v1,v2) = {(m, n) ∈ Z≥v1 ×Z≥v2}.

Note that if (a, b) ∈ L(v1,v2), then any representations it has have to lie in the set
W(v1,v2). We use this fact to our advantage to prove the following lemma.
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Figure 2. The (2, 2)-Ulam set A and the (3, 2)-Ulam set UA(4, 0).

Lemma 4.1. Let U=UA(v1, v2) be a nondegenerate (3, 2)-Ulam set with v1, v2 6=0.
Then the following statements hold:

(1) v1, v2 > 1 and at least one of v1, v2 is even.

(2) A∩W(v1,v2) = U ∩W(v1,v2).

(3) Every point (m, n) ∈ Z2
≥0 has at least one representation.

Proof. It was shown in [Kravitz and Steinerberger 2017] that

A= {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0} ∪ {(2m+ 1, 2n+ 1) | m, n ∈ Z≥0}.

For U to be nondegenerate, it must be that (v1, v2) /∈A, and since v1, v2 6= 0, this
implies v1, v2 > 1 and at least one of v1, v2 is even.

All representations of points in W(v1,v2) are representations by elements in U . It
follows A∩W(v1,v2) = U ∩W(v1,v2). However, this implies

(m, n)= (m− 1, 1)+ (1, n− 1)

is a representation of (m, n). �

We shall call (m, n) = (m − 1, 1)+ (1, n − 1) the standard representation of
(m, n). By Lemma 4.1, proving that (m, n) /∈UA(v1, v2) for v1, v2 6= 0 is equivalent
to proving that it has a nonstandard representation. This makes working with Ulam
sets of this form much simpler. On the other hand, if one of v1, v2 is 0, then the set
UA(v1, v2) has a copy of a (2, 1)-Ulam set on either the x- or y-axis. An example
of such a set is given in Figure 2. Some partial results about such sets are given
in [Kravitz and Steinerberger 2017], but in general describing their structure is an
open problem.

We now give five examples of possible structures of sets UA(v1, v2)with v1,v2 6=0,
which are derived from numerical observations. An illustration of each of these
five types is provided in Figure 1.
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Definition 4.2. Let U ⊂ Z2
≥0 and let (v1, v2) be a vector in U. We say U is of

L type for (v1, v2) if

U ={(v1,v2)}∪{(m,1) |m ∈Z≥0}∪{(1,m) |m ∈Z≥0}

∪{(a+2mv1,b+2mv2) | a,b,m≥ 0, a,b∈ 1+2Z, m ∈Z, (a,b)∈W(v1,v2)}.

We say U is of column-deleted type for (v1, v2) if

U = {(v1, v2)} ∪ {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0}

∪ {(2m+ 1, 2n+ 1) | m, n ∈ Z≥0, if 2m+ 1= v1+ 1 then 2n+ 1< v2}.

We say U is of column-deleted L type for (v1, v2) if

U = {(v1,v2)}∪{(m,1) |m ∈ Z≥0}∪{(1,m) |m ∈ Z≥0}

∪{(a+(m+1)v2+2,b+2m+5) | a,b,m ≥ 0, a,b,m ∈ 2Z, a <m or b= 0}.

We say that U is of shifted column-deleted type for (v1, v2) if

U = {(v1, v2)} ∪ {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0}

∪ {(m, n) | m, n ≥ 0, m < v1, m, n ∈ 1+ 2Z}

∪ {(m, n) | m, n ≥ 0, m > v1, m ∈ 2Z, n ∈ 1+ 2Z}.

We say U is of exceptional type if

U = {(v1, v2)} ∪ {(8, 8)} ∪ {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0}

∪ {(4, 2m+ 4) | m ∈ Z≥0} ∪ {(2m+ 4, 4) | m ∈ Z≥0}.

This list enumerates all the possibilities for sets UA(v1, v2) if v1, v2 6= 0.

Theorem 4.3. Let U = UA(v1, v2) be a nondegenerate (3, 2)-Ulam set such that
v1, v2 6= 0. Then exactly one of the following is true of either U or its reflection
about the line y = x :

(1) v1, v2 ∈ 2Z∩ [4,∞) and U is of L type.

(2) v1 ∈ 2Z, v2 ∈ (1+ 2Z)∩ [4,∞), and U is of column-deleted type.

(3) v1 ∈ 2Z∩ [4,∞), v2 = 2, and U is of column-deleted L type.

(4) v1 ∈ 2Z, v2 = 3, and U is of shifted column-deleted type.

(5) v1 = v2 = 2 and U is of exceptional type.

Proof. By Lemma 4.1, the given list enumerates all possibilities for v1, v2, after
accounting for a possible reflection around the line y = x . Furthermore, it is easy
to check that U ∩W(v1,v2) is of the specified type in each case — that is, it is equal
to the intersection of a set U of the desired type with W(v1,v2).
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Consider the case v1, v2 ∈ 2Z ∩ [4,∞). We shall show that U ∩W(a,b) is of
L type for all a, b ≥ 0. Note that by Lemma 4.1,

A∩W(3,3) = {(m, 1) | m ∈ Z≥0} ∪ {(1,m) | m ∈ Z≥0}

∪{(3, 2m+ 1) | m ∈ Z≥0} ∪ {(2m+ 1, 3) | m ∈ Z≥0}

= U ∩W(3,3).

It follows that if (m, n) ∈ U and m, n > 1, then m, n ∈ 1+ 2Z. This is evident if
(m, n) ∈ W(3,3) — otherwise, either (m, n)= (k+ 3, 2l + 2) or (2l + 2, k+ 3) for
some k, l ∈ Z≥0, and we have nonstandard representations

(k+ 3, 2l + 2)= (3, 2l + 1)+ (k, 1),

(2l + 2, k+ 3)= (2l + 1, 3)+ (1, k).

Furthermore, it must be that U ∩W(2v1,2v2) is of L type. To see this, it suffices to
show that

U ∩W(2v1,2v2) ∩ L(v1,v2) = {(v1, v2)},

but as we know any point in this intersection must necessarily be of the form
(2m+ 1, 2n+ 1), we have a nonstandard representation

(2m+ 1, 2n+ 1)= (v1, v2)+ (2m+ 1− v1, 2n+ 1− v2).

We now prove that U ∩W(2kv1,2kv2) is of L type by inducting on k ∈ Z — we have
proved the base case k = 1, so it suffices to assume U ∩W(2mv1,2mv2) is L type for
some m ∈ Z≥0 and prove that U ∩W(2(m+1)v1,2(m+1)v2) is L type. This amounts to
proving that

U ∩W((2m+1)v1,(2m+1)v2) ∩ L(2mv1,2mv2)

=W((2m+1)v1,(2m+1)v2) ∩ L(2mv1,2mv2) ∩ (1+ 2Z≥0)
2U

∩W((2m+2)v1,(2m+2)v2) ∩ L((2m+1)v1,(2m+1)v2)

=∅.

This is easily proven by noting that the former set cannot possibly have any non-
standard representations, whereas the latter set is nothing more than

(v1, v2)+U ∩W((2m+1)v1,(2m+1)v2) ∩ L(2mv1,2mv2).

The other cases are similar. �

5. Parity restrictions on (k, 2)-Ulam sets

Let us now consider the more general case where multiple vectors are added to
a (2, 2)-Ulam set, rather than just one. As in the previous section, we consider
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nondegenerate Ulam sets containing (1, 0), (0, 1), and so we define

UA(v1, v2, . . . , vn)=U ((1, 0), (0, 1), v1, . . . , vn).

We shall show that the parity of any element in UA(v1, v2, . . . , vn) is eventually
fixed, as long as none of the vi lie on the coordinate axes.

Theorem 5.1. Let U =UA(v1, v2, . . . , vn) be a nondegenerate (n+ 2, 2)-Ulam set
such that none of the vi lie on the coordinate axes. Then there exists a v such that
for all u ∈ U ∩ Lv, we have u = v mod 2.

To prove Theorem 5.1, we first note that if U contains a point (u1, u2) such
that (u1, u2+ 2k) ∈ U for all k ∈ Z≥0, then for all (u′1, u′2) ∈ U ∩ L(u1,u2), we have
u2 = u′2 mod 2. This is because if u′2 6= u2 mod 2,

(u′1, u′2)= (u1, u′2− 1)+ (u′1− u1, 1)

gives a nonstandard representation. It shall therefore suffice to prove the existence
of such a point. Toward this end, we give a useful lemma.

Lemma 5.2. Let U =UA(v1, v2, . . . , vn) be a nondegenerate (n+ 2, 2)-Ulam set
such that none of the vi lie on the coordinate axes. If there exists m ∈ Z>1 such
that there are infinitely many points of the form (m, n) ∈ U , then there exists a point
(u1, u2) such that (u1, u2+ 2k) ∈ U for all k ∈ Z≥0.

Proof. Let M ∈ Z>1 be the smallest m such that there are infinitely many points
of the form (m, n) ∈ U . Note that in fact M > 2, since every element (2, n) has at
least two representations. Therefore, we can define N be the largest n such that
(m, n) ∈ U , where 1< m < M .

Consider any point (M, n) ∈Z2
≥0 with n > 2N. For any representation of (M, n),

at least one of the summands must have x-coordinate 1 or M — otherwise, the
y-coordinates are too small to add up to n. If this representation is

(M, n)= (1, n′)+ (M − 1, n− n′),

then it is nonstandard if and only if n− n′ 6= 1. However, if n− n′ 6= 1, then every
point (M, n′′) with n′′ > n has a nonstandard representation, which is impossible.

On the other hand, the only other possible representation is (M, n)= (M, n−1)+
(0, 1), so we conclude that (M, n) ∈ U if and only if (M, n− 1) /∈ U . Thus if we
take

(u1, u2)=

{
(M, n) if (M, n) ∈ U,
(M, n+ 1) otherwise,

it satisfies the desired conditions. �

This is sufficient to prove Theorem 5.1.
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Proof of Theorem 5.1. We claim that there must exist some m ∈ Z>1 such that there
are infinitely many points of the form (m, n) ∈ U . Suppose otherwise — then there
must exist some strictly increasing function φ : Z>1→ Z>1 such that if (m, n) ∈ U
and m, n > 1, then n < φ(m).

Let m > 2 and n > 2φ(m). Then if

(m, n)= (m1, n1)+ (m2, n2)

is a representation of (m, n), it must be the standard representation — otherwise,
n1+ n2 < 2φ(m) < n. But this implies (m, n) ∈ U , which is a contradiction.

Consequently, we can apply Lemma 5.2. By our earlier remarks, we know
there exists a point (u1, u2) ∈ U such that for all (u′1, u′2) ∈ U ∩W(u1,u2), we have
u′2 ≡ u2 mod 2.

On the other hand, the reflection of U about the line y = x is also an Ulam
set, which we shall denote by V . It is easy to check that V also satisfies the
requirements of the theorem, and therefore must contain a point (v1, v2) such that
for all (v′1, v

′

2) ∈ V ∩W(v1,v2), we have v′2 ≡ v2 mod 2. However, this means that if
we take

v = (max{u1, v2},max{u2, v1}),

then for all u ∈ U ∩ Lv, we have u = v mod 2, as desired. �

6. Periodicity of Ulam sets

We close by considering the periodicity of Ulam sets UA(v1, v2, . . . , vn), under
the additional constraint that the added vectors are not too small — that is, all of
their components are at least 4. With this restriction, such sets become far more
manageable.

Lemma 6.1. Let U := UA(v1, v2, . . . , vn) be a (k, 2)-Ulam set such that all vi =

(xi , yi ) have xi , yi ≥ 4. Then U ⊂A∪ {v1, v2, . . . , vn}.

Proof. Since all the initial vectors have components greater than or equal to 4, all
elements of A with at least one coordinate less than 4 are also in U . In particular,
U contains all vectors of the forms (2n− 1, 3) and (3, 2n− 1) for n ≥ 1. Thus for
n ≥ 2, we have (2n,m) = (2n− 1, 3)+ (1,m − 3) is a representation of (2n,m)
as a sum of vectors in the sets — as this representation is not the standard one, we
conclude that (2n,m) /∈ U . By symmetry, we also have that (m, 2n) /∈ U for n ≥ 2.
Thus, all vectors with at least one coordinate less than 4 in U are the vectors in A
with at least one coordinate less than 4, and all other vectors are in U only if their
coordinates are both odd; hence they are in U . This proves the claim. �

In fact, we can be far more precise in our characterization of this set.



RIGIDITY OF ULAM SETS AND SEQUENCES 537

Lemma 6.2. Let U =UA(v1, v2, . . . , vn) be a (k, 2)-Ulam set such that the vectors
vi all have both components greater than or equal to 4. Let a, b≥ 1 be odd integers
such that (a, b) 6= vi for any i . Then (a, b) ∈ U if and only if (a, b)− vi /∈ U for
all i , 1≤ i ≤ n.

Proof. If (a, b)−vi = u ∈ U , then clearly u+vi is a second representation of (a, b)
outside of the standard one, and so (a, b) /∈ U . On the other hand, if (a, b) /∈ U ,
then we know there must be some nonstandard representation of it. We know that
(a, b) ∈ A; hence at least one term in this representation must come from U\A.
Since U ⊂A∪ {v1, v2, . . . , vn}, that means that one of the summands must be vi

for some i , which is to say that (a, b)− vi ∈ U , as desired. �

Note that if n = 1, Lemma 6.2 tells us precisely that U is eventually periodic,
which is consistent with the result of Section 4. On the other hand, based on
numerical evidence, it is almost certainly not true that all (k, 2)-Ulam sets are
eventually periodic. However, we are interested in whether one can build new
eventually periodic sets from existing eventually periodic sets. As an example, we
know from the results of Section 4 that adding an initial vector whose coordinates
are at least 4 to A yields another set that is eventually periodic. This leads us to
conjecture that adding an initial vector whose coordinates are sufficiently large to
an eventually periodic set yields an eventually periodic set. We prove two theorems
in this direction.

Theorem 6.3. Let U =UA(v1, v2, . . . , vn) be a nondegenerate (k, 2)-Ulam set such
that all vectors vi = (xi , yi ) have xi , yi ≥ 4 and even. Furthermore, suppose that
there exist integers m, n such for all i , there exists a j such that m− vi = vj . Then
U is eventually (m, n)-periodic, and for any other vector vn+1 = (xn+1, yn+1) with
xn+1, yn+1≥4 such that at least one of xn+1, yn+1 is odd, U ′ :=UA(v1,v2, . . . ,vn+1)

is eventually (m, n)-periodic.

Proof. Let (a, b) be a vector such that a, b > 0 are both odd. We shall show
that (a, b) ∈ U if and only if (a, b) + (m, n) ∈ U. Indeed, for all i , we have
(a, b)+ (m, n)−vi = (a, b)+vj for some j . If (a, b)∈ U , this gives a nonstandard
representation of (a, b)+ (m, n)− vi ; hence it is not in U , and so by Lemma 6.2,
it follows that (a, b)+ (m, n) ∈ U. On the other hand, if (a, b) /∈ U , then again
by Lemma 6.2, we know that (a, b) − vi ∈ U for some i , and it follows that
(a, b)+ (m, n)−vi ∈ U . But this implies (a, b)+ (m, n) /∈ U . Since by Lemma 6.1
we know that all sufficiently large vectors in U have odd coordinates, we conclude
that U is eventually (m, n)-periodic.

It remains to prove that U ′ is eventually periodic. Let (a, b) be a vector such that
a, b are both odd, and a > xi , b > yi for every 1≤ i ≤ n+ 1. If (a, b) ∈ U ′, then
(a, b)+ (m, n)− vi = (a, b)+ vj /∈ U ′ for every 1 ≤ i ≤ n, so it suffices to prove
that (a, b)+ (m, n)− vn+1 /∈ U ′ to conclude that (a, b)+ (m, n) ∈ U ′. However,
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the coordinates of (a, b)+ (m, n)− vn+1 are both integers greater than 1, and at
least one of them is even. By Lemma 6.1, this implies (a, b)+ (m, n)− vn+1 /∈U ′,
and so (a, b)+ (m, n) ∈ U ′. In the other direction, we know that if (a, b) /∈ U ′,
then (a, b)− vi ∈ U ′ for some i . If i 6= n+ 1, the proof is the same as before. If
(a, b)− vn+1 ∈U ′, then we note that (a, b)+ (m, n) /∈U ′ by parity considerations.
We thus conclude that U ′ is eventually (m, n)-periodic. �

Theorem 6.4. Let U =UA(v1, v2, . . . , vn) be a nondegenerate (k, 2)-Ulam set such
that all vectors vi = (xi , yi ) have xi , yi ≥ 4 and at least one of xi , yi is odd. Then
U is eventually periodic, with period (2, 2).

Proof. Note that if xi , yi are both odd, then (xi , yi ) ∈ A, which would contradict
the fact that U is nondegenerate. Thus all vectors vi have one even component. We
claim that if xn is even, then

U ={vn}∪UA(v1, . . . , vn−1)\({(xn+1, yn+2l) | l ∈Z≥0}∪{vi+vj |1≤ i < j ≤n}),

and if yn is even, then

U ={vn}∪UA(v1, . . . , vn−1)\({(xn+2l, yn+1) | l ∈Z≥0}∪{vi+vj |1≤ i < j ≤n}).

The base case follows from the results of Section 4. Now, note that if vn ∈ U ,
then certainly either vn + (1, 2l) or vn + (2l, 1) is a nonstandard representation, so
correspondingly (xn + 1, yn + 2l) or (xn + 2l, yn + 1) is not in U . Similarly, all
vectors vi + vj have at least two representations. It remains to prove that removing
these vectors doesn’t lead to removing representations of other points. This cannot
be — all removed vectors have both coordinates odd, and U contains all vectors
with positive odd coordinates, all of which have one standard representation that
we know has not been removed. That this is true for all the sets UA(v1, . . . , vk)

follows by induction. This concludes the proof, since it is clear that each of the sets
UA(v1, . . . , vn) is eventually periodic, with period (2, 2), by induction. �

These two results immediately imply Theorem 1.9.

Proof of Theorem 1.9. If both v1 and v2 have at least one odd coordinate, the
result follows from Theorem 6.4. Otherwise, let vi , vj be the vectors that have
both coordinates even — here, i, j need not be distinct. Then by Theorem 6.3, U is
eventually (vi+vj )-periodic. �
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