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The Fermat numbers have many notable properties, including order universality,
coprimality, and definition by a recurrence relation. We use rational points of
infinite order on elliptic curves to generate sequences that are analogous to the
Fermat numbers. We demonstrate that these sequences have many of the same
properties as the Fermat numbers, and we discuss results about the prime factors
of sequences generated by specific curves and points.

1. Introduction

In August 1640, Fermat wrote a letter to Frénicle [Fermat 1894, p. 205] recounting
his discovery that if n is not a power of 2, then 2n

+ 1 is composite. Fermat also
stated that if n is a power of 2, then 2n

+1 is prime. As examples, he listed the first
seven numbers in this sequence, Fn = 22n

+ 1, n ≥ 0, now called the sequence of
Fermat numbers.

In 1732, Euler discovered that Fermat’s observation was incorrect, and that
641 divides F5 = 4294967297. Indeed, it is now known that Fn is composite for
5≤ n ≤ 32. Very little is known about whether any Fn are prime; heuristics suggest
that only finitely many of them are prime. However, mathematicians have been
unable to prove that there are infinitely many composite Fermat numbers.

The primality of the Fermat numbers is connected with the classical problem of
constructing a regular polygon with n sides using only an unmarked straightedge
and a compass. In 1801, Gauss proved that if a positive integer n is a power
of 2 multiplied by a product of distinct Fermat primes, then a regular n-gon is
constructible with a ruler and compass. The converse of this result was proven by
Wantzel in 1837. (For a modern proof, see [Dummit and Foote 2004, p. 602].)

Elliptic curves are central objects in modern number theory and have led to
novel methods of factoring [Lenstra 1987b], proofs that numbers are prime [Atkin

MSC2010: primary 11G05; secondary 11B37, 11G15, 11Y11.
Keywords: elliptic curves, Fermat numbers, duplication formula.
All authors were supported by NSF grant DMS-1461189.

427

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-3
http://dx.doi.org/10.2140/involve.2019.12.427


428 S. BINEGAR, R. DOMINICK, M. KENNEY, J. ROUSE AND A. WALSH

and Morain 1993], and cryptography [Koblitz 1987; Miller 1986]. They have
also played a role in a number of important theoretical developments, the most
spectacular of which is the “modular method” that led to the solution of Fermat’s
last theorem [Wiles 1995]. Other such developments include the determination of
all integer solutions to x2

+ y3
= z7 with gcd(x, y, z)= 1 [Poonen et al. 2007] and

the determination of all perfect powers in the Fibonacci sequence [Bugeaud et al.
2006]. The present paper relies on both elliptic curves and the sequence of Fermat
numbers. We work with elliptic curves in the form E : y2

= x3
+ax2

+bx+ c. We
begin with our central definition:

Definition 1. For an elliptic curve E and a point P ∈ E(Q) of infinite order, let
2k P = (mk/e2

k , nk/e3
k) denote P added to itself 2k times under the group law

on E(Q). Here mk, nk, ek ∈ Z with ek ≥ 1 and gcd(mk, ek)= gcd(nk, ek)= 1. We
define the sequence of elliptic Fermat numbers {Fk(E, P)} by Fk(E, P)= nk .

Fermat’s observation that if n is not a power of 2, then 2n
+ 1 is not prime can

be explained as follows. If b is an odd divisor of n, and q is a prime divisor of
2n/b
+1, then 2n/b

≡−1 (mod q) (so 2n/b has order 2 in F×p =Gm(Fp)). Then 2n
≡

(−1)b ≡−1 (mod q) and so q | 2n
+ 1. Since q ≤ 2n/b

+ 1< 2n
+ 1, the number

2n
+ 1 cannot be prime.
We are essentially replacing Gm with an elliptic curve E . If P ∈ E(Q) is a

point on E , p is a prime of good reduction for E , and n P = (an/b2
n, cn/b3

n), then
n P ∈ E(Fp) has order 2 if and only if the y-coordinate of n P reduces to 0 mod p,
that is, p | cn . As above, if b is an odd divisor of n and there is a prime q of good
reduction for E so that q | |cn/b|, then q | cn . It follows that cn cannot be prime
unless |cn/b| = |cn|, or all prime factors of cn/b are in S, the set of primes of bad
reduction for E .

The growth rate of the numbers cn implies that |cn/b| = |cn| for only finitely
many n. The group law on E implies that if all prime factors of cn/b are in S, then
2(n/b)P is an S-integral point, of which there are only finitely many on E (and in
some cases, none).

It follows that possibilities for cn to be prime when n has an odd divisor are
very constrained. For this reason, we choose to focus on the case where n does not
have any odd divisors, namely when n is a power of 2. This leads directly to our
definition of elliptic Fermat numbers above.

Our goal is to show that the sequence {Fk(E, P)} strongly resembles the classic
Fermat sequence. We do so by adapting properties of the classic Fermat numbers
and proving that they hold for the elliptic Fermat numbers. It is well known, for
example, that any two distinct classic Fermat numbers are relatively prime, as
Goldbach proved in a 1730 letter to Euler. The elliptic Fermat numbers have a
similar property:
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Theorem 2. For all k 6= `, if p is a prime that divides gcd(Fk(E, P), F`(E, P)),
then p is a prime of bad reduction for E : y2

= x3
+ ax2

+ bx + c.

The classic Fermat numbers also have the useful property that for any non-
negative integer N, 2 has order 2k+1 in (Z/NZ)× if and only if N | F0 · · · Fk and
N -F0 · · · Fk−1. This property, which we call order universality, provides a powerful
connection between order and divisibility. A close parallel applies to the elliptic
Fermat numbers:

Theorem 3. Let 1(E) be the discriminant of E and suppose that N is a positive
integer with gcd(N , 61(E))= 1. Then P has order 2k+1 in E(Z/NZ) if and only
if N | F0(E, P) · · · Fk(E, P) and N -F0(E, P) · · · Fk−1(E, P).

In the case where N = p for some odd prime p, we can make this statement
stronger. For the classic Fermat numbers, we know that 2 has order 2k+1 in F×p if
and only if p | Fk . The elliptic Fermat numbers yield the following result:

Corollary 4. For any odd prime p -61(E), P has order 2k+1 in E(Fp) if and only
if p | Fk(E, P).

This corollary plays a role in several important results in the paper.
Additionally, and quite interestingly, the classic Fermat numbers can be defined

by several different recurrence relations. In Section 4, we present the following
analogous result:

Theorem 5. Let E : y2
= x3
+ax2

+bx+ c be an elliptic curve, and let P ∈ E(Q)
be a point of infinite order. There is a sequence of integers {τk} so that

mk(E, P)=
1
τ 2

k
(m4

k−1− 2bm2
k−1e4

k−1− 8cmk−1e6
k−1+ b2e8

k−1− 4ace8
k−1), (1)

Fk(E, P)=
1
τ 3

k

(
−2amk−1mke2

k−1τ
2
k − 4bmk−1e4

k−1 F2
k−1− bmke4

k−1τ
2
k

− 8ce6
k−1 F2

k−1+ 4m3
k−1 F2

k−1− 3m2
k−1mkτ

2
k
)
, (2)

ek(E, P)=
1
τk
(2Fk−1ek−1). (3)

Unlike the various classic Fermat recurrence relations, which only depend on
previous terms, the elliptic Fermat recurrence relation we have discovered relies on
several other sequences of integers, namely mk , ek , and τk .

This equation follows naturally from the definition of Fk(E, P) and the dupli-
cation formula, which we will see in Section 2. In order to have a true recurrence
relation, however, we need a way to explicitly calculate |τk |. Luckily, we know the
following fact:

Theorem 6. The |τk | are eventually periodic, and there is an algorithm to compute
|τk | for all k.
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In Section 5, we address one of the most famous aspects of the classic Fermat
numbers: the question of their primality. Whereas the primality of the Fermat
numbers remains an open question, the following result gives conditions under
which the elliptic Fermat numbers are always composite. In this result, “the egg”
refers to the nonidentity component of the real points of the elliptic curve:

Theorem 7. For an elliptic curve E : y2
= x3
+ ax2

+ bx , assume the following:

(i) E(Q)= 〈P, T 〉, where P has infinite order and T = (0, 0) is a rational point
of order 2.

(ii) E has an egg.

(iii) T is on the egg.

(iv) T is the only integral point on the egg.

(v) P is not integral.

(vi) gcd(b,m0)= 1.

(vii) The equation x4
+ax2 y2

+by4
=±1 has no integer solutions where y 6∈ {0,±1}.

Then Fk(E, P) is composite for all k ≥ 1.

Remark. There are many theorems in the literature about the compositeness of
coordinates of rational points on elliptic curves that are in the image of an isogeny;
see for example the main theorem of [Everest et al. 2004], and Theorem 1.4 of
[Everest et al. 2008]. One feature of the result above in contrast with others is that
we give an explicit set of conditions which guarantees that Fk is composite for all k.

Remark. We wish to note that given a rank-1 curve E and a point P ∈ E(Q), there
is an algorithm that can check whether the conditions in the theorem are satisfied.
The condition that x4

+ax2 y2
+by4

= 1 has no integer solutions where y 6∈ {0,±1}
can also be checked with finitely many calculations, as this is a Thue equation.
Such an equation has finitely many solutions [Thue 1909], and the solutions can be
found effectively [Tzanakis and de Weger 1989].

There are choices of E for which all seven of the above conditions are satisfied.
For example, we can take E : y2

= x3
− 199x2

− x . Note that 1(E) is positive
and thus E has an egg [Silverman 1994, p. 420]. The only integral point on
the curve is T = (0, 0), which must be on the egg because 0 is in-between the
x-coordinates of the other two roots of the polynomial. Also, 2T = (0 : 1 : 0) and
thus T is a rational point of order 2 on E . The generating point of the curve is
P =

( 2809
9 , 89623

27

)
, and gcd(−1, 2809) = 1. Finally, Magma [Bosma et al. 1997]

can be used to solve Thue equations in order to conclude that there are no integer
solutions to x4

−199x2 y2
− y4
=±1 where y 6∈ {0,±1}. Thus this example satisfies

the conditions for the theorem, and so Fk is composite for all k.
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Section 6 focuses on the growth rate of the elliptic Fermat numbers. Much
like the classic Fermat numbers, the elliptic Fermat numbers grow at a doubly
exponential rate:

Theorem 8. Let Fk be the k-th elliptic Fermat number in the sequence generated
by the elliptic curve E and the point P = (m0/e2

0, n0/e3
0). If ĥ(P) denotes the

canonical height of P, then

lim
k→∞

log(Fk)

4k =
3
2 ĥ(P).

The proof is straightforward and is based on the properties of the {τk} sequence
and the theory of height functions.

Finally, in Section 7, we examine the curve E : y2
= x3

− 2x and the elliptic
Fermat sequence generated by the point P = (2, 2). It is a theorem of Lucas
that a prime divisor of the Fermat sequence is congruent to 1 mod 2n+2. Upon
examination of the factorization of the numbers in the sequence {Fn(E, P)}, we
arrive at a pleasing congruence analogue:

Theorem 9. Let E : y2
= x3
−2x and consider the point P = (2, 2) and the elliptic

Fermat sequence (Fn(E, P)). For any prime p such that p | Fn(E, P) for some n,
we have

p ≡
{

1 (mod 2n+1) if p ≡ 1 (mod 4),
−1 (mod 2n+1) if p ≡−1 (mod 4).

In addition to this congruence result, we have a partial converse that tells us
about the presence of Fermat and Mersenne primes in (Fn(E, P)):

Theorem 10. For E : y2
= x3
−2x , consider the point P = (2, 2). Let Fk = 22k

+1
be a Fermat prime and Fk 6= 5, 17. Then Fk divides Fn(E, P) for some n≤ 2k−1

−2.

Theorem 11. For E : y2
= x3
−2x , consider the point P= (2, 2). Let q=2p

−1≥31
be a Mersenne prime. Then q divides Fn(E, P) for some n ≤ p− 4 ∈ N.

2. Background

We begin with some general background on elliptic curves. For the purposes of this
paper, an elliptic curve is a nonsingular cubic curve defined over Q that has the form
y2
= x3
+ax2

+bx+c for some a, b, c∈Z. When we say E is nonsingular, we mean
that there are no singular points on the curve. We will often think of E as living in
P2 and represent it with the homogeneous equation y2z = x3

+ ax2z+ bxz2
+ cz3.

A singular point is a point P = (x : y : z) at which there is not a well-defined
tangent line. These points occur when the following equations are equal to 0:

F(x, y, z)= y2z− x3
− ax2z− bx2z− cz3,

∂F
∂x
=−3x2

− 2azx − bz2,
∂F
∂y
= 2yz, ∂F

∂z
= y2
− ax2

− 2bxz− 3cz2.
(4)
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We write E(Q) to denote the set of rational points on E along with the point
at infinity, (0 : 1 : 0). Using the following binary operation, we can give E(Q) a
group structure: for P, Q ∈ E(Q), draw a line through P and Q and let R = (x, y)
be the third intersection point of the line with the curve. Then P + Q = (x,−y).
This operation gives an abelian group structure on E(Q) with (0 : 1 : 0) as the
identity.

Any P ∈ E(Q) can be expressed in projective space as P = (m/e2
: n/e3

: 1)
= (me : n : e3) for some m, n, e ∈ Z with gcd(m, e) = gcd(n, e) = 1. From
this, there is a well-defined map from E(Q)→ E(Fp) that takes (me : n : e3)

to (me mod p : ne mod p : e3 mod p); this map is a homomorphism if E/Fp is
nonsingular. We have P ≡ (0 : 1 : 0) (mod p) if and only if p | e.

Let Qp be the field of p-adic numbers. The following sets are subgroups
of E(Qp):

E0(Qp)= {P ∈ E(Qp) | P reduces to a nonsingular point},

E1(Qp)= {P ∈ E(Qp) | P reduces to (0 : 1 : 0) mod p}.
(5)

We have E1(Qp) ⊆ E0(Qp) ⊆ E(Qp), and the index [E(Qp) : E0(Qp)] is finite
and is called the Tamagawa number of E at p.

The discriminant of an elliptic curve E is defined as

1(E)= 64a3c+ 16a2b2
+ 288abc− 64b3

− 432c2.

The set E(R) can have one or two components depending on whether or not
1(E) < 0 or 1(E) > 0 [Silverman 1994, p. 420]. We refer to the connected
component of the identity as the nose. If there is a second component, we refer to
it as the egg. For a curve with two components, let Pegg, Qegg be points on the egg,
and let Pnose, Qnose be points on the nose. Then Pegg+ Qegg and Pnose+ Qnose are
on the nose, while Pegg+ Pnose = Pnose+ Pegg is on the egg.

Since our definition of the elliptic Fermat numbers involves doubling points,
it is convenient to use the notation 2k P = (mk/e2

k , nk/e3
k). We also rely on the

duplication formula expressing the x-coordinate of 2Q in terms of that of Q. In
particular, if 2k−1 P = (xk−1, yk−1), [Silverman and Tate 1992, p. 39] gives

X (2k P)=
x4

k−1− 2bx2
k−1− 8cxk−1+ b2

− 4ac

4(x3
k−1+ ax2

k−1+ bxk−1+ c)
.

Letting 2k−1 P= (mk−1/e2
k−1, nk−1/e3

k−1), we can put this in terms of mk−1, ek−1,
and nk−1:

X (2k P)=
m4

k−1− 2bm2
k−1e4

k−1− 8cmk−1e6
k−1+ b2e8

k−1− 4ace8
k−1

4n2
k−1e2

k−1
. (6)
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We will refer to the unreduced numerator and denominator in the above equation
as A and B, respectively; i.e.,

A = m4
k−1− 2bm2

k−1e4
k−1− 8cmk−1e6

k−1+ b2e8
k−1− 4ace8

k−1, (7)

B = 4n2
k−1e2

k−1. (8)

One last aspect of elliptic curves that will prove useful in Section 7 is the concept
of complex multiplication. We say that an elliptic curve has complex multiplication
if its endomorphism ring is isomorphic to an order in an imaginary quadratic field.
In other words, E is equipped with more maps than simple integer multiplication of
a point, and composition of these maps is similar to multiplication in an imaginary
quadratic field.

Complex multiplication is relevant to our work because it allows us to count the
points on the curve over finite fields. In the final section, we will study the curve
E : y2

= x3
− 2x , and our results rely on having a good understanding of |E(Fp)|.

As a special case of Proposition 8.5.1 from [Cohen 2007, p. 566], we have the
following fact about our curve E :

Proposition 12. Let E : y2
= x3

− 2x be an elliptic curve and let p be an odd
prime. Then |E(Fp)| = p + 1 − ap(E), where ap(E) is known as the trace of
Frobenius of an elliptic curve modulo p. When p≡ 3 (mod 4), we have ap(E)= 0.
If p ≡ 1 (mod 4), then

ap(E)= 2
(

2
p

)
−a, if 2(p−1)/4

≡ 1 (mod p),
a, if 2(p−1)/4

≡−1 (mod p),
−b, if 2(p−1)/4

≡−a/b (mod p),
b, if 2(p−1)/4

≡ a/b (mod p),

where a and b are integers such that p = a2
+ b2 with a ≡−1 (mod 4).

3. Coprimality and order universality

We begin by proving Corollary 4 and then use this to prove Theorem 2, that is,
gcd(Fk(E, P), F`(E, P)) can only be a multiple of primes of bad reduction.

Proof of Corollary 4. If p -1(E), then p is a prime of good reduction for E . We
have p | Fk(E, P) if and only if 2k P reduces modulo p to a nonsingular point with
y ≡ 0 (mod p). This occurs if and only if 2k+1 P ≡ (0 : 1 : 0) (mod p) and since
2k P 6≡ (0 : 1 : 0) (mod p) it follows that the order of P ∈ E(Fp) is 2k. �

Now, we prove Theorem 2.

Proof. Suppose that p is a prime that divides gcd(Fk(E, P), F`(E, P)). If p is
a prime of good reduction for E , the previous corollary gives that p | Fk(E, P)
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implies that P ∈ E(Fp) must have order exactly 2k+1, and p | F`(E, P) implies that
P ∈ E(Fp) must have order exactly 2`+1. This is a contradiction if k 6= `. �

Note that the nonsingularity of E mod p is necessary in both of the proofs
above. If E : y2

= x3
+ x2
+ 67x + 79, then E is singular mod 43. The point

P = (10, 43) ∈ E(Q) has infinite order and 2P =
(
−

3
4 ,

43
8

)
has the property that

P and 2P (and in fact 2k P for all k ≥ 1) reduce to a singular point modulo 43,
because P 6∈ E0(Q43) and the Tamagawa number of E at 43 is 3. It follows that
Fk(E, P) is a multiple of 43 for all k.

To embark on the proof of Theorem 3, we must make sense of reducing points
on an elliptic curve modulo an arbitrary integer N, and for this reason we need
to recall some results from the theory of elliptic curves over arbitrary rings. Our
treatment comes from that of [Lenstra 1987a]. Given a commutative ring R, we say
that a finite collection of elements (ai ) is primitive if it generates R as an R-ideal.
That is, (ai ) is primitive if there exist bi ∈ R such that

∑
ai bi = 1.

Lenstra showed that there is a natural way to define a group structure on the
points on E in P2(R) provided 61(E) is a unit in R, and for any primitive m× n
matrix with entries in R whose 2× 2 subdeterminants are all zero, there exists a
linear combination of the rows that is primitive in R. This second condition holds
in any finite ring and also in any PID, and so Lenstra’s construction works in Z/NZ

if gcd(61(E), N )= 1.
Given points S = (x1 : y1 : z1) and T = (x2 : y2 : z2) in E(Z/NZ), Lenstra

described three families of polynomials in the six variables (x1, y1, z1, x2, y2, z2)
such that S + T can be given by any of (q1 : r1 : s1), (q2 : r2 : s2), (q3 : r3 : s3),
provided one of these points is primitive. Lenstra showed that the 3× 3 matrix
made with the polynomials as its entries has vanishing 2× 2 subdeterminants, and
is primitive. It follows that some linear combination (q0 : r0 : s0) of the rows gives
a formula for S + T in E(Z/NZ). This construction works not just over Z/NZ,
but also over R = Z[1/(6|1(E)|)] and gives E the structure of a group scheme
over this ring. It follows from Proposition 3.2 of Chapter IV of [Silverman 1994]
that the reduction map E(R)→ E(Z/NZ) is a homomorphism. By thinking of
a point in E(Q), namely (m/e2, n/e3) as (me : n : e3) ∈ E(R), we get that the
reduction mod N map E(Q)→ E(Z/NZ) is a homomorphism. It is worth noting
that (m/e2, n/e3) reduces to (0 : 1 : 0) modulo N if and only if e ≡ 0 (mod N ).
From this, it follows that if N = pe1

1 pe2
2 · · · p

ek
k , then the natural map

E(Z/NZ)→
k∏

i=1
E(Z/pei

i Z)

is an isomorphism. Now we prove Theorem 3.

Proof. Let P ∈ E(Q) be a point of infinite order and k a nonnegative integer.
Recall that we define 2k P = (mkek : nk : e3

k) for mk, nk, ek ∈ Z with gcd(mk, ek)=
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gcd(nk, ek)= 1. We consider first the case where N = pr is an odd prime power.
In that situation, we have that if pr

| Fk(E, P), then 2k P ≡ (x : 0 : 1) (mod pr ) and
so the order of P in E(Z/pr Z) is 2k+1. Conversely, if the order of P ∈ E(Z/pr Z)

is 2k+1, then ek+1 is a multiple of pr. However, the duplication formula shows that
ek+1 | 2nkek . Since 2k P = (mkek : nk : e3

k) has order 2 in E(Z/pr Z), it also has
order 2 in E(Z/pZ) and so p | nk , which implies that p -ek . Thus, pr

| 2nkek but
gcd(p, ek)=1 and so pr

| nk = Fk(E, P). Theorem 2 gives that N | Fk(E, P) if and
only if N |F0(E,P)F1(E,P) · · ·Fk(E,P) but N -F0(E,P)F1(E,P) · · ·Fk−1(E,P).
The desired result follows.

Now, we consider the general case. If N =
∏`

i=1 pei
i , we have the isomorphism

E(Z/NZ)∼=
∏̀
i=1

E(Z/pei
i Z).

It follows from this that P has order equal to 2k+1 in E(Z/NZ) if and only if (i) for
all prime powers pei

i the order of P in E(Z/pei
i Z) is equal to 2 j for some j ≤ k+1,

and (ii) there is a prime power pe j
j such that P ∈ E(Z/pe j

j Z) is 2k+1. Condition (i)
means that pei

i | F j−1(E, P) and condition (ii) means that pe j
j | Fk(E, P) (and hence

by Theorem 2 that p j -F`(E, P) for `< k). It follows that P ∈ E(Z/NZ) has order
2k+1 if and only if N | F0(E, P) · · · Fk(E, P) but N -F0(E, P) · · · Fk−1(E, P). �

4. Recurrence

We will now explore the recurrence relation given by Theorem 5. Before continuing,
we define the sequence {τk}. If we write 2k−1 P = (mk−1/e2

k−1, Fk−1/e3
k−1) with

mk−1, Fk−1, ek−1 ∈ Z with ek−1 ≥ 1 and gcd(mk−1, ek−1) = gcd(Fk−1, ek−1) = 1,
then let

τk(E, P)=
2Fk−1ek−1

ek
.

When the duplication formula is applied to compute the x-coordinate of 2k P, we
obtain the formula

X (2k P)=
m4

k−1− 2bm2
k−1e2

k−1− 8cmk−1e6
k−1+ (b

2
− 4ac)e8

k−1

(2Fk−1ek−1)2
=

A
B
=

mk

e2
k
.

Here (2Fk−1ek−1)
2
= B is the “unreduced” denominator of X (2k P), and e2

k is
the reduced denominator. So ek | 2Fk−1ek−1, and the number τk measures the
discrepancy between the two quantities ek and 2Fk−1ek−1, that is, the amount of
cancellation that occurs. It is clear then that τ 2

k = gcd(A, B).
We will now prove Theorem 5. For now, keep in mind that we can explicitly

calculate τk for all k; we will prove this at the end of the section. We can see that
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(3) is just a restatement of the definition of τk and (1) is just a restatement of the
duplication formula.

Lemma 13. Equation (2) is correct.

Proof. From the formulas given in [Silverman 1986, p. 58–59], we can see that

Y (2k P)=
1

2Fk−1e3
k−1e2

k

(
−2amk−1mke4

k−1− bmk−1e4
k−1e2

k

−bmke6
k−1− 2ce6

k−1e2
k +m3

k−1e2
k − 3m2

k−1mke2
k−1
)
.

Then since Y (2k P)= Fk/e3
k ,

Fk = Y (2k P) · e3
k

=
1

2Fk−1e3
k−1

(
−2amk−1mke4

k−1ek − bmk−1e4
k−1e3

k

−bmke6
k−1ek − 2ce6

k−1e3
k +m3

k−1e3
k − 3m2

k−1mke2
k−1ek

)
.

Then using the fact that ek/ek−1 = 2Fk−1/τk , we can simplify this to

Fk(E, P)=
1
τ 3

k

(
−2amk−1mke2

k−1τ
2
− 4bmk−1e4

k−1 F2
k−1

−bmke4
k−1τ

2
k − 8ce6

k−1 F2
k−1+ 4m3

k−1 F2
k−1− 3m2

k−1mkτ
2
k
)
. �

We can now see that the recurrence relation is correct, thus proving Theorem 5.
The remainder of this section will be devoted to developing a better understanding
of τk and developing an algorithm to calculate the sequence.

Ayad [1992] studied the sequences obtained by taking a point M on an elliptic
curve, and evaluated the usual division polynomials at M to compute

mM =
(
φm(M)
ψ2

m(M)
,
ωm(M)
ψ3

m(M)

)
.

Ayad [1992, Théorème A] proved that if p is a prime, then there is an integer n
such that φn(M) and ψn(M) both have positive p-adic valuation if and only if M is
singular modulo p, and moreover that in this case ψm(M) is a multiple of P for all
m ≥ 2. As a consequence of this, it follows that the only primes that can divide τk

are the primes of bad reduction. Also, applying Ayad’s theorem with M = 2k−1 P,
if p is an odd prime and p | τk , then 2k−1 P is a singular point modulo p.

We next wish to obtain more precise information about the power of a prime of
bad reduction that can divide τk . In particular, for E : y2

= x3
+ ax2

+ bx + c, we
define 1(E) = 16(−4a3c+ a2b2

+ 18abc− 4b3
− 27c2). The primes for which

this model of E has bad reduction are precisely the primes that divide 1(E). (We
do not assume that E : y2

= x3
+ ax2

+ bx + c is a global minimal model for E .)

Lemma 14. The number τ 2
k divides 1

41(E).
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Proof. Let
f (x)= x3

+ ax2
+ bx + c,

F(x)= 3x3
− ax2

− 5bx + 2ab− 27c,

φ(x)= x4
− 2bx2

− 8cx + b2
− 4ac,

8(x)=−3x2
− 2ax + a2

− 4b.

Silverman and Tate [1992, p. 62] showed that 1
161(E)= f (x)F(x)+φ(x)8(x).

Setting x = X (2k−1 P), we obtain

1
161(E)e

12
k−1

=

(
e6

k−1 f
(

mk−1

e2
k−1

))(
e6

k−1 F
(

mk−1

e2
k−1

))
+

(
e4

k−18

(
mk−1

e2
k−1

))(
e8

k−1φ

(
mk−1

e2
k−1

))
.

Recall that τ 2
k = gcd(A, B) where A and B are given by (7) and (8). Rewriting

this equation in terms of A and B gives

1
161(E)e

12
k−1 =

B
4e2

k−1

(
e6

k−1 F
(

mk−1

e2
k−1

))
+

(
e4

k−18

(
mk−1

e2
k−1

))
A.

Multiplying through by 4e2
k−1 gives that A and B both divide 1

41(E)e
14
k−1. However,

gcd(mk−1, ek−1) = 1 implies that gcd(A, ek−1) = 1 and so τ 2
k = gcd(A, B) is

relatively prime to ek−1 and so τ 2
k |
( 1

41(E)
)
, as desired. �

As stated above, Ayad’s theorem implies that if p | τk , then 2k−1 P is a singular
point modulo p. We will prove a converse to this result.

Theorem 15. Let p be an odd prime. Suppose that 2k−1 P and 2k P both reduce to
singular points mod p. Then p | τk .

Proof. Since p is odd, singular points modulo p have y-coordinate ≡ 0 (mod p)
and hence if 2k−1 P reduces to a singular point modulo p, then p | Fk−1(E, P). On
the other hand, 2k P reducing to a singular point modulo p means that p -ek and
hence p | τk = 2Fk−1ek−1/ek . �

The results above apply for odd primes. Now, we consider the parity of τk

and Fk .

Theorem 16. If 2k P 6≡ (0 : 1 : 0) (mod 2), then τk is even. If 2k−1 P ≡ 2k P ≡
(0 : 1 : 0) (mod 2), then τk is odd.

Proof. If 2k P 6≡ (0 : 1 : 0) (mod 2), then 2-ek . Since τk(E, P) = 2Fk−1ek−1/ek ,
the numerator is even and the denominator is odd, so τk is even.



438 S. BINEGAR, R. DOMINICK, M. KENNEY, J. ROUSE AND A. WALSH

If 2k−1 P ≡ 2k P ≡ (0 : 1 : 0) (mod 2), then ek−1 and ek are both even, while
mk−1 and mk are both odd. Considering the duplication formula

A
B
=

m4
k−1− 2bm2

k−1e2
k−1− 8cmk−1e4

k−1+ (b
2
− 4ac)e4

k−1

(2Fk−1ek−1)2
,

one sees that A is odd and B is even, and since τ 2
k = gcd(A, B), it follows that τk

is odd. �

Recalling that E1(Qp) denotes the set of points in E(Qp) that reduce to the point
at infinity modulo p, the above theorem gives that τk is even for all sufficiently
large k if and only if the order of P ∈ E(Q2)/E1(Q2) is not a power of 2, and τk is
odd for all sufficiently large k if and only if the order of P ∈ E(Q2)/E1(Q2) is a
power of 2.

While it is nice to know all of these properties, we need to know exactly what τk

is in order for the recurrence relations to be useful. In accordance with Theorem 6,
we can calculate |τk | for all k using the following algorithm. (The proof of the
correctness of the algorithm will be given later in this section.)

(1) Find and factor the discriminant 1(E).

(2) For each prime p such that p2
|1(E), complete the following:

(a) Find the smallest ` ∈ Z+ such that `P ≡ (0 : 1 : 0) (mod p).

(b) If ` is a power of 2, then ordp(τk)= 0 for all k ≥ `+ 1.

(i) Move on to the next p2
|1(E).

(c) If ` is not a power of 2, then ordp(τk)= ordp(2Fk−1).

(i) Find some r ∈Z+ such that r P = (m/e2, n/e3) with ps
| e. Choose s such

that either p2s
||1(E) or p2s+1

||1(E). Here pn
|| a means that the prime

power pn fully divides a; that is, pn
| a but pn+1 -a.

(ii) Now ordp(Y (t P)) depends only on t mod r . Find all possible values of
2k mod r and note the lowest k which generates each value.

(iii) Calculate ordp(Fk−1) for each k noted in (ii). Use this to calculate ordp(τk).
(iv) Move on to the next p2

|1(E).

(3) We now know ordp(τk) for all (but finitely many, in some cases) k for each p such
that p2

|1(E), which are all the p that could divide τk . Use this to calculate |τk |.

Note that doing the above computations in E(Q) can be challenging since the
heights of points on elliptic curves grow quickly. Instead, doing the computations in
E(Qp), which is implemented in Sage [SageMath 2017], is more straightforward.

Now we will prove that this algorithm is correct. In order to do this, we must
first prove the following theorem.
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Theorem 17. Let E : y2
= x3
+ ax2

+ bx + c be an elliptic curve. Assume Q, R ∈
E(Q) are such that

Q = (x1, y1)=

(
m1

e2
1
,

n1

e3
1

)
, p -e1,

R = (x2, y2)=

(
m2

e2
2
,

n2

e3
2

)
, pk

|| e2.

Let

Q+ R = (x3, y3)=

(
m3

e2
3
,

n3

e3
3

)
.

Then

X (Q+ R)≡ X (Q) (mod pk), Y (Q+ R)≡ Y (Q) (mod pk).

The result above follows from the fact that the natural map from E(Q) →
E(Z/pkZ) is a homomorphism in the case when p -61(E), but in light of the
algorithm above, we are primarily interested in the case where p | 61(E).

Proof. From [Silverman 1986, p. 58–59], we know that if we let

λ=
y2− y1

x2− x1
and v =

y1x2− y2x1

x2− x1
,

then we have

x3 = λ
2
− a− x1− x2 =

ax2
2 + bx2+ c− 2y1 y2+ y2

1 + 2x1x2
2 − x2

1 x2

x2
2 − 2x1x2+ x2

1
− a− x1.

Now since pk
|| e2, we can let x2 = x̃2 p−2k and y2 = ỹ2 p−3k. Plugging this in

yields

x3 =
ax̃2

2 + bx̃2 p2k
+ cp4k

− 2y1 ỹ2 pk
+ y2

1 p4k
+ 2x1 x̃2

2 − x2
1 x̃2 p2k

x̃2
2 − 2x1 x̃2 p2k + x2

1 p4k
− a− x1. (9)

Reducing mod pk and mod p2k gives us

x3 ≡ x1 (mod pk), (10)

x3 ≡ x1−
2y1 ỹ2 pk

x̃2
2

(mod p2k). (11)

Now that we have shown that x3 ≡ x1 (mod pk), we just need to show that y3 ≡

y1 (mod pk). Since x3 ≡ x1 (mod pk), we can write x3 = x1 + r pk. And again
using the definitions of λ and v given above, we have

y3 =−λx3− v =
−n1m1e3

2+ n1m2e2
1e2− n1e2

1e3
2r pk
+ n2e5

1r pk

m1e3
1e3

2−m2e5
1e2

.
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Once again, since pk
|| e2, we can let e2 = ẽ2 pk. Then

y3 =
−n1m1ẽ3

2 p2k
+ n1m2e2

1ẽ2− n1e2
1ẽ3

2r p3k
+ n2e5

1r

m1e3
1ẽ3

2 p2k −m2e5
1ẽ2

.

Reducing mod pk gives us

y3 ≡
−n1

e3
1

−
n2r

m2ẽ2
(mod pk). (12)

Now from (11), we know

r ≡−
2y1 ỹ2

x̃2
2

(mod pk).

Simple algebra allows us to see that

r ≡
−2n1n2ẽ2

m2
2e3

1

(mod pk).

Plugging this into (12), we get

y3 ≡
−n1

e3
1

−
n2

m2ẽ2
·
−2n1n2ẽ2

m2
2e3

1

(mod pk)

≡
−n1

e3
1

+
2n1(m3

2+ am2
2e2

2+ bme4
2+ ce6

2)

m3
2e3

1

(mod pk).

And since e2 ≡ 0 (mod pk), we have

y3 ≡
−n1

e3
1

+
2n1m3

2

m3
2e3

1

(mod pk)≡ y1 (mod pk), (13)

completing the proof. �

Now we prove that the algorithm to calculate τk is correct.

Proof. From Lemma 14, we can conclude that for any p dividing τk , we must
have p2

|1(E). So we only need to consider primes p which satisfy this condition.
We now break this problem into two cases based on the smallest ` ∈ Z+ so that
`P ≡ (0 : 1 : 0) (mod p).

Case I: If ` is a power of 2, then there exists d ∈ Z+ such that 2d P ≡ (0 : 1 : 0)
(mod p). First, if p> 2, then for k ≥ d+1, we have p -Fk and since ek is a multiple
of ek−1, but ek is a divisor of 2Fk−1ek−1, it follows that ordp(ek−1)= ordp(ek) and
so p -τk . If p = 2, the desired result follows from Theorem 16.

Case II: If ` is not a power of 2, then 2k P 6≡ (0 : 1 : 0) (mod p) for any k. This
implies that p -ek for any k and hence ordp(τk) = ordp(2Fk−1). Choose s such
that either p2s

||1(E) or p2s+1
||1(E). Now, we can find some r ∈ Z+ such that



AN ELLIPTIC CURVE ANALOGUE TO THE FERMAT NUMBERS 441

r P = (m/e2, n/e3) with ps
| e. Then r P ≡ (0 : 1 : 0) (mod ps). Using Theorem 17,

we can see that j P + r P ≡ j P (mod ps) and conclude that ordp(Y (t P)) depends
only on t mod r . Then, since 2k mod r will repeat, we can use a finite number of
calculations to determine ordp(Y (2k P))= ordp(Fk) for all k ≥ 1. �

5. Primality

In this section, we prove Theorem 7. This theorem states the following. Suppose that
E : y2

= x3
+ax2

+bx is an elliptic curve of rank 1 generated by P with x-coordinate
m0/e2

0 and the torsion subgroup of E(Q)∼= Z/2Z generated by T = (0, 0), which
lies on the egg and is the only integral point on the egg. Let Fk(E, P) denote the
sequence of elliptic Fermat numbers. Suppose that gcd(b,m0)= 1, and suppose that
the Thue equation x4

+ax2 y2
+by4

=±1 has no integer solutions with y 6∈ {0,±1}.
Then all the elliptic Fermat numbers Fk(E, P) are composite.

We start by proving two lemmas that will be useful in the proof of Theorem 7.

Lemma 18. Assume that E(Q) ∼= Z× Z/2Z and E(Q) = 〈P, T 〉, where P is a
generator of E(Q) and T is a rational point of order 2. Assume that:

(i) E has an egg.

(ii) T is on the egg.

(iii) T is the only integral point on the egg.

(iv) P is not integral.

Then T is the only integral point on E.

Proof. Every point in E(Q) is of the form m P or m P+T. If P is on the nose, then
we have that for any m 6= 0, m P is on the nose, and m P is not integral because P
is not integral. We also have that m P + T is on the egg and thus is not integral
because T is the only integral point on the egg by assumption. If P is on the egg,
then let P ′= P+T. Then P ′ is on the nose, and the proof is the same as before. �

Lemma 19. Let E be an elliptic curve of the form y2
= x3
+ax2

+bx and suppose
gcd(m0, b)= 1. Then gcd(mk, b)= 1 for all k.

Proof. We use induction. The base case gcd(m0, b)= 1 is true by assumption. Now
assume that gcd(mk−1, b)= 1. Since c = 0, from our recurrence relations, we can
see that

mk =
m4

k−1− 2bm2
k−1e4

k−1+ b2e8
k−1

τ 2
k

.

Now since b divides the terms −2bm2
k−1e4

k−1 and b2e8
k−1 in the numerator but is

coprime to the term m4
k−1, we know b is coprime to the numerator. Dividing by τ 2

k
will not change this. Thus gcd(mk, b)= 1 for all k. �
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With these two lemmas, we can now prove Theorem 7.

Proof of Theorem 7. Let 2k P = (mk/e2
k , Fk/e3

k) and let 2k P+T = (mT /e2
T , nT /e3

T ).
Using the formulas for adding points given in [Silverman 1986, p. 58–59], we see

X (2k P + T )=
be2

k

mk
, Y (2k P + T )=

−bFkek

m2
k

. (14)

By the assumption that gcd(b,m0)= 1 and by Lemma 19, we know gcd(b,mk)= 1.
And since gcd(mk, ek)= 1, the first equation in (14) must be in lowest terms. This
gives eT =

√
|mk | and nT =−bFkek/

√
|mk |. We find from this that

−
nT eT

bek
=
(bFkek/

√
|mk |)
√
|mk |

bek
= Fk .

Note that if p is a prime and p | ek then 2k P ≡ (0 : 1 : 0) (mod p), in which
case 2k P + T ≡ T (mod p). And since T is not the point at infinity, 2k−1 P + T 6≡
(0 : 1 : 0) (mod p). Therefore p -eT . Hence gcd(ek, eT ) = 1. Since eT =

√
|mk |

and gcd(b,mk)= 1, we get the factorization

Fk =

(
−

nT

bek

)
eT ,

where both factors are integers. Therefore Fk is composite as long as

nT

bek
=−

Fk
√
|mk |
6= ±1.

If we assume that Fk =±
√
|mk |, then 2k P = (mk/e2

k , Fk/e3
k) being a point on E

gives |mk | = F2
k = m3

k + am2
ke2

k + bmke4
k , which yields m2

k + amke2
k + be4

k = ±1.
But by assumption, this equation has no solutions where ek 6∈ {0,±1}. Therefore
Fk is composite for all k ≥ 1. �

6. Growth rate

In this section, we will discuss the growth rate of the elliptic Fermat numbers and
prove Theorem 8. In order to do so, we need a few more tools. The first new
definition we need is the height of a point.

Definition 20. The height of a point P = (m/e2, n/e3) on an elliptic curve is
defined as

h(P)= log(max(|m|, e2)).

The height of a point gives us a way to express how “complicated” the coordinates
of the point are. We also need to make use of the canonical height.
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Definition 21. The canonical height of a point P on an elliptic curve is defined as

ĥ(P)= lim
k→∞

h(2k P)
4k .

Note that Theorem 8 can be summarized as saying that Fk is approximately equal
to e4k

·(3/2)ĥ(P). So the elliptic Fermat sequences grow doubly exponentially, like
the classic Fermat sequence, albeit much more quickly. The proof is as follows:

Proof of Theorem 8. First, recall that |Fk | = |τk+1|ek+1/(2ek). This relates the
y-coordinate of 2k P to the x-coordinate. We then have

lim
k→∞

log(|Fk(E, P)|)
4k = lim

k→∞

log(|τk+1|ek+1/(2ek))

4k

= lim
k→∞

1
2 log(e2

k+1)

4k − lim
k→∞

1
2 log(e2

k)

4k + lim
k→∞

log
( 1

2 |τk+1|
)

4k

= 2 lim
k→∞

log(e2
k+1)

4k+1 −
1
2 lim

k→∞

log(e2
k)

4k + 0

= 2ĥ(P)− 1
2 ĥ(P)= 3

2 ĥ(P). �

7. Elliptic Fermat numbers for the curve y2 = x3− 2x

In this section, we apply the hitherto developed theory of elliptic Fermat numbers to
examine properties of the curve E : y2

= x3
− 2x and the point P = (2, 2) ∈ E(Q).

We begin with some remarks on E and the point P. Recall that E is equipped with
complex multiplication and so Proposition 12 gives a formula for |E(Fp)| for all p.
Elliptic curves with complex multiplication are the key to the elliptic curve primality
proving algorithm of Atkin, Goldwasser, Kilian and Morain, and elliptic curve
algorithms to prove primality of Fermat numbers and other special sequences have
been considered previously in [Gross 2005; Denomme and Savin 2008; Tsumura
2011; Abatzoglou et al. 2016]. The last remark we make is about the elliptic Fermat
sequence {Fn(E, P)} and the appearance of Fermat primes and Mersenne primes,
i.e, primes of the form 2p

− 1 for a prime p, in the factorization of Fk(E, P).
Table 1 provides factorizations of the first five elliptic Fermat numbers for E at P,

with known Fermat and Mersenne primes in bold. (The primes p6, p7 have 16 digits
each, and p8 and p9 have 18 digits each.) In fact, every odd prime factor dividing
Fn(E, P) for n ≥ 2 will have a congruence that is either Mersenne-like or Fermat-
like. We now present the proof of Theorem 9, beginning with the congruence result
for a prime divisor p≡−1 (mod 4), which yields a tidy Mersenne-like congruence.

Proof of Theorem 9 for p ≡ 3 (mod 4). By Theorem 3, p | Fn(E, P) tells us that
P has order 2n+1 in E(Fp). Then by Lagrange’s theorem and Proposition 12,
2n+1
| |E(Fp)| = p+ 1, and so p ≡−1 (mod 2n+1). �
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n Fn(E, P)

0 2
1 −3 · 7
2 31 · 113 · 257
3 −2113 · 2593 · 46271 · 101281 · 623013889
4 127 · 65537 · 33303551 · 70639871 · 364024274689 · p6 · p7 · p8 · p9

Table 1. Factorizations of the first five elliptic Fermat numbers
for E at P .

Proving the congruence in the case of a prime divisor of an elliptic Fermat
number congruent to 1 modulo 4 will require multiple steps. We will eventually
show that such a prime divisor of Fn(E, P) is congruent to 1 modulo 2n, but we
begin by showing an initial congruence result:

Lemma 22. Let E : y2
= x3

− 2x be an elliptic curve, P = (2, 2) a point of
infinite order and Fn(E, P) the n-th elliptic Fermat number associated to E at the
point P. Then for any odd prime divisor p ≡ 1 (mod 4) of Fn(E, P), n ≥ 3, we
have p ≡ 1 (mod max(2b(n+1)/2c, 8)).

Proof. If p ≡ 1 (mod 4), then p = a2
+ b2, where a ≡ −1 (mod 4). Recall that

Proposition 12 gives a formula for the value of |E(Fp)| which depends on the
quartic character of 2 modulo p. Let us first consider the case where 2 is a fourth
power. Then |E(Fp)| = p+ 1− 2a.

Like the proof of the previous theorem, we use Lagrange’s theorem to show that
2n+1
| E(Fp)= a2

+b2
+1−2a = (a−1)2+b2. So (a−1)2+b2

≡ 0 (mod 2n+1).
Then a−1≡ b≡ 0 (mod 2b(n+1)/2c), giving p= a2

+b2
≡ 12
+02 (mod 2b(n+1)/2c).

A symmetric argument follows when 2 is a quadratic residue but not a fourth power.
In this situation we arrive at the equation (a+ 1)2+ b2

≡ 0 (mod 2n+1); however,
the result is precisely the same.

To conclude, we rule out the case where 2 is not a quadratic residue modulo p.
This would imply |E(Fp)| = p+ 1± 2b. The same algebraic manipulation leads
to a similar situation where a2

+ (b ∓ 1)2 ≡ 0 (mod 2n+1), but this means b ≡
±1 (mod 2b(n+1)/2c); however, b is the even part of the two-square representation
of p. So it cannot be the case that 2 is not a quadratic residue modulo 8, which
happens only when p ≡ 5 (mod 8). �

Because of the lemma, we have p ≡ 1 (mod 8), and so we can make sense
of
√

2 and i modulo p. We now define the recklessly notated action i on E(Fp)

as i(x, y) 7→ (−x, iy), where the point (−x, iy) uses i as the square root of −1
modulo p. This action makes E(Fp) into a Z[i]-module. We will prove one last
lemma concerning the action of (1+ i) before moving on to the full congruence.
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Lemma 23. Let E : y2
= x3

− 2x be an elliptic curve, P = (2, 2) a point of
infinite order and Fn(E, P) the n-th elliptic Fermat number associated to E at the
point P. Then for any odd prime factor p≡ 1 (mod 4) of Fn(E, P), n ≥ 3, we have
(1+ i)2n+2 P = 0 in E(Fp) and (1+ i)2n P 6= 0.

Proof. Note that (1+ i)k P = 2kik P. Recall that P has order 2n+1, so

(1+ i)2(n+1)P = (2i)n+1 P = in+1(2n+1 P)= in+1
· 0= 0.

It suffices to show that (1+ i)x P 6= 0 for x ≤ 2n. Suppose not, and (1+ i)x P = 0.
Then certainly (1+ i)2n P = in2n P = 0. The action of in−1 makes no difference on
the identity. This implies that 2n P = 0, contradicting order universality since P
has order 2n+1. �

With this last lemma proven, we are ready to introduce the Fermat-like congruence
in full regalia and finish Theorem 9.

Proof of Theorem 9 for p ≡ 1 (mod 4). As a consequence of the lemma above, we
have that either (1+ i)2n+2 P = 0 or (1+ i)2n+1 P = 0. We are able to bolster the
(2n+ 1)-case by introducing a new point Q = (−i(

√
2− 2), (2− 2i)(

√
2− 1)). It

is routine point addition to see that (1+ i)Q = (2, 2)= P. In either case we have
(1+ i)2n+3 Q = 0 and (1+ i)2n+1 Q 6= 0.

Consider the Z[i]-module homomorphism φ :Z[i]→ E(Fp) given by φ(x)= x Q.
The image of φ is Z[i]Q={(a+bi)Q | a, b∈Z}, the orbit of Z[i] on Q. By the first
isomorphism theorem, Z[i]Q is isomorphic to Z[i]/ ker(φ). Since (1+ i)2n+1

6∈

ker(φ) and (1+ i)2n+3
∈ ker(φ), and (1+ i) is an irreducible ideal in Z[i], we know

the kernel is either the ideal ((1+ i)2n+2) or ((1+ i)2n+3); hence Z[i]/ ker(φ) is a
group of size 2k, where k = 2n+ 2 or k = 2n+ 3.

Like the previous congruence results, we use Lagrange’s theorem to assert
2k
| |E(Fp)| and through the same reasoning as before, we arrive at

p ≡ 1 (mod 2bk/2c = 2n+1). �

We now present the proofs of Theorems 10 and 11, which give us information
about sufficiently large Fermat and Mersenne primes dividing the elliptic Fermat
sequence {Fn(E, P)}. First, we provide two lemmas.

Lemma 24. Let p ≡±1 (mod 2n) be an odd prime. Let ζ` denote a primitive `-th
root of unity in some extension of Fp. Then ζ2k + ζ−1

2k exists in Fp for all k ≤ n.

Proof. If p ≡ 1 (mod 2k), then clearly there is a primitive 2k-th root of unity in Fp.
If p ≡ 3 (mod 4), then we employ methods from Galois theory. First, because

p ≡−1 (mod 2k), we have p2
≡ 1 (mod 2k). Then there is a primitive 2k-th root

of unity in Fp2 . Then we have that α = ζ2k + ζ−1
2k is in Fp if and only if σ(α)= α,

where σ(x)= x p is the Frobenius endomorphism.
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This says that α ∈ Fp if and only if

α p
= (ζ2k + ζ−1

2k )
p
= ζ

p
2k + ζ

−p
2k = ζ2k + ζ−1

2k .

We may write this equality as ζ 2p
2k + ζ

p+1
2k + ζ

−p+1
2k + 1 = 0. This factors into

(ζ
p

2k −ζ2k )(ζ
p

2k −ζ
−1
2k )= 0. Then the equality holds if and only if ζ p

2k = ζ2k , meaning
p ≡ 1 (mod 2k), or ζ p

2k = ζ
−1
2k ; hence p ≡−1 (mod 2k). �

Lemma 25. Let p be a Fermat or Mersenne prime that is at least 31. Then there
exists a Q ∈ E(Fp) such that 2Q = P.

Proof. From [Silverman and Tate 1992, p. 76], for E we have its isogenous curve
E ′ : y2

= x3
+ 8x and two homomorphisms, φ : E→ E ′ and ψ : E ′→ E given by

φ(x, y)=


(

y2

x2 ,
y(x2
+ 2)

x2

)
if (x, y) 6= (0 : 0 : 1), (0 : 1 : 0),

(0 : 1 : 0) otherwise,

ψ(x, y)=


(

y2

4x2 ,
y(x2
− 8)

8x2

)
if (x, y) 6= (0 : 0 : 1), (0 : 1 : 0),

(0 : 1 : 0) otherwise.

The maps hold the special property φ ◦ ψ(S) = 2S. The advantage of this
framework is that we are able to break point-halving, a degree-4 affair, into solving
two degree-2 problems. Another fact from [Silverman and Tate 1992, p. 85] is that
P = (x, y) ∈ ψ(E ′(Q)) if and only if x is a square.

We now use this to show there is a Q ∈ E(Fp) such that 2Q = P. For brevity, let
z=

√
2+
√

2, and we define the following ascending chain of fields: Q, K =Q(
√

2)
and L = K (z). Here K is the minimal subfield where P has a ψ preimage Q1 in E ′,
and L is the minimal subfield where that preimage has its own φ preimage Q in E .
It is a quick check in Magma to verify that in E(L), P is divisible by 2. It then
remains to verify that the elements

√
2 and z =

√
2+
√

2 are in Fp.
First, we have that since 2 has order p, which is odd, there exists hk ∈ F×p such

that (hk)
2k
= 2. So any 2-power root of 2 is sure to exist.

For z =
√

2+
√

2 itself, we use Lemma 24 and p ≡±1 (mod 16) to show that
we have an element z = ζ16+ ζ

−1
16 ∈ Fp, so we have all the necessary elements of

L in E(Fp) to show there exists a Q ∈ E(Fp) such that 2Q = P. �

These two lemmas will allow us to sharpen the threshold to search for Fermat
and Mersenne primes in the elliptic Fermat sequence. We now prove Theorem 10.

Proof. First, it is a quick computation in Magma to verify that for p= 5, 17, P does
not have a 2-power order in E(Fp), and so by Corollary 4, we have that 5 and 17
do not divide any elliptic Fermat number generated by P.
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We rely on Proposition 12 and Lagrange’s theorem. For a classical Fermat prime
Fn 6= 5, 17, we have that 2 is a fourth power in Z/FnZ. We can see this because for
a generator g of Z/FnZ, we have 2= gk, additionally, we have g p−1

= g22n

= 1. We
will show that k ≡ 0 (mod 4). This is because 2 has order 2n+1

∈ (Z/FnZ)×, and
so 22n+1

= (gk)2
n+1
= 1. Therefore, 22n

| k(2n+1), finally giving 22n
−n−1
| k, which

is a multiple of 4 for n ≥ 3.
Since 2 is a fourth power in Fp, we know that E : y2

= x3
−2x is isomorphic to the

curve E ′ : y2
= x3
− x . From [Denomme and Savin 2008], we also have E ′(Fp)∼=

Z[i]/(1+ i)2
n
. Moreover, Z[i]/(1+ i)2

n
= Z[i]/22n−1 ∼= (Z/22n−1

Z)× (Z/22n−1
Z),

from which we can deduce that E(Fp)∼= (Z/22n−1
Z)× (Z/22n−1

Z). Thus the order
of P is a divisor of 22n−1

.
By Lemma 25, we know there exists some Q ∈ E(Fp) such that 2Q = P. In light

of this we can tighten this initial upper bound by noting that all elements have order
dividing 22n−1

, and so 22n−1
−1 P = 22n−1

−1(2Q)= 22n−1
Q = 0. We conclude that P

has order dividing 22n−1
−1 and so p must divide Fk(E, P) for some k ≤ 2n−1

− 2
by Corollary 4. �

It remains to discuss the appearance of a Mersenne prime in the elliptic Fermat
sequence. We prove Theorem 11.

Proof. The method we take to show this bound begins with the fact that |E(Fq)| =

q+1= 2p. Additionally, we have E(Fq)∼=Z/mZ×Z/mnZ, where q ≡ 1 (mod m).
We have that E(Fq) contains all three points of order 2 because these are (0, 0) and
(±
√

2, 0) and
√

2∈Fq since q≡ 7 (mod 8). Combining this with q≡−1 (mod 2p)

we have E(Fq) ∼= Z/2Z × Z/2p−1Z. So the order of any point in E(Fp) must
divide 2p−1. It suffices to exhibit a point R such that 4R = P, so that 2p−3 P =
2p−322 R = 2p−1 R = 0.

Continuing the methodology first used in the proof of Lemma 25, we will show
that such an R is in E(Fq) so that 2R = Q, where Q ∈ E(L) is the point found in
Lemma 25 . To do this, we extend the fields from Lemma 25 and create

M = L(
√

z(2+ z)) and N = M(
√√

2(z− 1)).

Again, one may check in Magma that indeed P is divisible by 4 in E(N ), so we
just need to check for the existence of necessary elements.

We have already shown there is an element z such that z2
= 2+

√
2, but we

further assert that in Fq , 2+
√

2 has odd order, and thus all 2-power roots exist.
This is quick to see because (2+

√
2)(q−1)/2

= (z2)(q−1)/2
= zq−1

= 1.
We now find

√
z(2+ z), which amounts to finding square roots of z and 2+ z.

By the above, we already have a square root of z, so we just need to show the
existence of the square root of 2+ z. This is simple if we let w = ζ32+ ζ

−1
32 in Fp,

which we know to exist if q ≡−1 (mod 32). Then w2
= 2+ z.
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It remains to find
√√

2(z− 1). Again it suffices to just find a square root of
z− 1. To show such a root exists, consider

(z− 1)(−z− 1)=−z2
+ 1= 1−

√
2= (−1)(1+

√
2).

Note that z = 4
√

2
√
(1+
√

2), and that 1+
√

2 is a square because 4
√

2 and z are
squares, but −1 is not a square modulo q since q ≡−1 (mod 4), so (z−1)(−z−1)
is not a square. This implies that exactly one of (z− 1) and (−z− 1) is a square.
So we choose the appropriate z′ such that z′− 1 is a square and we are done.

Since all adjoined elements exist in Fq , we are good to construct points R such
that 4R = 2Q = P. Similar to Theorem 10, this implies that we can tighten the
condition that |P| | 2p−1 further by |P| | 2p−3, and so by Corollary 4, p must divide
Fk(E, P) for some k ≤ p− 4. �
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