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Khan, Milićević, and Ngo evaluated the second moment of L-functions associated
to certain Galois orbits of primitive Dirichlet characters to modulus a large
power of any fixed odd prime p. Their results depend on p-adic Diophantine
approximation and are ineffective, in the sense of computability. We obtain an
effective asymptotic for this second moment in the case of p = 3, 5, 7.

1. Introduction

Dirichlet L-functions, introduced by Dirichlet in 1837, are the first generalization of
the Riemann zeta function. They are extremely important in number theory, being
used, for example, to study the number of primes in arithmetic progressions and the
class number of certain number fields (via Dirichlet’s class number formula). Given
a primitive Dirichlet character χ with modulus q (see [Davenport 2000] for further
background), the associated L-function is defined for Re(s) > 1 by the absolutely
convergent series

L(s, χ)=
∑
n≥1

χ(n)
ns . (1-1)

This has an Euler product

L(s, χ)=
∏

p

(
1−

χ(p)
ps

)−1

and analytically continues to an entire function with functional equation

3(s, χ) :=
(
π

q

)−(s+κ)/2
0

(
s+ κ

2

)
L(s, χ)=

τ(χ)

iκq1/23(1− s, χ̄),

where τ(χ) is the Gauss sum and

κ :=

{
0 if χ(−1)= 1,
1 if χ(−1)=−1.

(1-2)
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As is typically the case, the line of symmetry Re(s)= 1
2 of the functional equation

is where the L-function is most difficult to understand. Since the values at s = 1
2 of

L-functions often encode important arithmetic information, it is natural to consider
the central values L

( 1
2 , χ

)
. From the adelic point of view, these may be considered

as finite-place-twist analogs of the archimedean twist ζ
(1

2 + i t
)
, which is of classical

interest in analytic number theory. For example, it is conjectured that the central
value L

( 1
2 , χ

)
is never zero, but only partial results exist in this direction [Bui 2012;

Khan and Ngo 2016; Soundararajan 2000]. As another example, an analog of the
Lindelöf conjecture asserts that L

( 1
2 , χ

)
� qε for any ε > 0, but again only partial

results exist [Burgess 1963; Conrey and Iwaniec 2000; Milićević 2016]. (Here and
henceforth, ε will always be used to denote an arbitrarily small positive constant,
but may not be the same from one occurrence to the next. All implicit constants
may depend on ε.)

Given the lack of “closed-form formulas” that would directly shed light on
the values of individual L

( 1
2 , χ

)
, one often thinks of L-functions as embedded in

families and of the central value L
( 1

2 , χ
)

as a random variable whose distribution
we are trying to understand. From probability theory, we know that one way to
understand the distribution of a random variable is to find its moments. For example,
given a large sample of test scores, the first moment tells us the average score, the
second moment is related to the variance of the scores, and if, as is often the case
for test scores, their distribution follows the bell curve, then the n-th moment of the
observed scores should correspond to that of the (rescaled) normal distribution. This
philosophy about computing moments is in fact a typical starting point in solving
problems about nonvanishing and size in families of L-functions. We remark on
the side that numerics, partial theoretical results including the known moments, as
well as analogs over function fields support a general conjecture that families of
L-functions exhibit random behavior in a suitable sense; see, for example, [Katz
and Sarnak 1999].

The moments problem is to evaluate asymptotically (as q→∞)∑∗

χ mod q

L
(1

2 , χ
)n

for all n ∈ N, as well as ∑∗

χ mod q

∣∣L(1
2 , χ

)∣∣n
for even values of n, where

∑
∗ means that the summation is restricted to the

primitive characters. The evaluation of the first and second moments (n = 1, 2) is
classical and due to Paley [1931]. The third and fourth moments (n= 3, 4) are quite
recent. The third moment was obtained by Zacharias [2017] for prime values of q .
The fourth moment was first obtained by Heath-Brown [1981] for values of q with a
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restricted number of prime factors and by Soundararajan [2007] for all values of q ,
and an asymptotic with a power savings error term was given by Young [2011] for
prime values of q; see also [Blomer and Milićević 2015] for factorable q (including
prime powers). No asymptotic is known for the fifth moment or higher (n ≥ 5).

In this paper we are interested in moments over natural subsets of the primitive
Dirichlet characters mod q, where q is of a special form. Working over a smaller
set gets us closer to the true asymptotic features of individual L-functions, but of
course it also means that there are fewer “harmonics” available to average over, so
the evaluation of the moments becomes more difficult. We now proceed to describe
our set of characters.

Let ξ be a primitive φ(q)-th root of unity, where φ is the Euler totient function,
and let Q(ξ) be the corresponding cyclotomic field, which is Galois over Q. The
group G =Gal(Q(ξ)/Q) acts on the set of primitive Dirichlet characters modulo q
as follows. For σ ∈G, we define χσ to be that character for which χσ (n)=σ(χ(n))
for all (n, q)= 1. The action under G partitions the set of characters into orbits O,
which we usually refer to as Galois orbits. Thus, from an algebraic perspective,
any two characters in a single orbit O are indistinguishable.

Several works have studied the average values of L-functions over these orbits
[Chinta 2002; Greenberg 1985; Khan et al. 2016; Rohrlich 1984]. For the rest of
the paper, we specialize to moduli of the form

q = pk,

where p is a fixed odd prime (thus q →∞ is equivalent to k →∞). For such
moduli, the orbits under the action of G are easy to describe. We have that χ1 and
χ2 belong to the same orbit if and only if χ1 and χ2 have the same order in the
group of characters mod q . The possible orders are l = pk−1d for d | (p− 1), and
the primitive characters of order l form an orbit O of cardinality φ(l); see Table 1
for an example. These facts are justified in [Khan et al. 2016].

In the course of studying nonvanishing of Dirichlet L-functions within the
Galois orbits described above, Ngo and two of us proved in [Khan et al. 2016,
Theorem 1.2b] the following asymptotic for the second moment (as k→∞): for
any given orbit O and ε > 0, we have

1
|O|

∑
χ∈O

∣∣L( 1
2 , χ

)∣∣2 = p− 1
p

(log q +C)+ O(q−1/4+ε), (1-3)

where

C =
0′
( 1

4(1+ 2κ)
)

0
( 1

4(1+ 2κ)
) + 2γ + 2

log p
p− 1

− logπ,

log is the natural logarithm, γ = 0.57721 . . . is the Euler constant, and κ is defined
in (1-2). The implicit constant in the error term of (1-3) is ineffective. This means
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n mod 9 1 2 4 5 7 8 primitive? order orbit

χ0(n) 1 1 1 1 1 1 1 {χ0}

χ1(n) 1 ξ ξ 2 ξ 5 ξ 4
−1 X 3 · 2 {χ1, χ5}

χ2(n) 1 ξ 2 ξ 4 ξ 4 ξ 2 1 X 3 · 1 {χ2, χ4}

χ3(n) 1 −1 1 −1 1 −1 2 {χ3}

χ4(n) 1 ξ 4 ξ 2 ξ 2 ξ 4 1 X 3 · 1 {χ2, χ4}

χ5(n) 1 ξ 5 ξ 4 ξ ξ 2
−1 X 3 · 2 {χ1, χ5}

Table 1. Four of the six characters modulo 9 = 32 are primitive.
They fall into two Galois orbits, the orbit {χ2, χ4} consisting of
characters of order 3 ·1= 3, of size φ(3)= 2, and the orbit {χ1, χ5}

consisting of characters of order 3 · 2= 6, of size φ(6)= 2.

that the error term is ≤ C ′q−1/4+ε for some constant C ′ = C ′(p, ε), but we have
no way of computing C ′ given the values of p and ε. In turn, this means that there
is a constant k0 such that for all k > k0, the main term of (1-3) dominates the error
term, but there is no way to give an explicit value for k0. In other words, we do not
know how large k must be before the given main term is a useful estimate of the
second moment. This ineffectivity is a side effect of the fact that the argument for
(1-3) given in [Khan et al. 2016] hinges crucially on Roth’s theorem in Diophantine
approximation (more precisely, on the p-adic version of Roth’s theorem due to
Ridout [1958]), which is well known to be ineffective. The goal of this paper
is to remedy this situation for natural towers of characters to powers of several
primes p.

Theorem 1.1. Let p= 3, 5 or 7. For every q = pk (k ≥ 1) and every Galois orbit O
of characters modulo q, we have

1
|O|

∑
χ∈O

∣∣L( 1
2 , χ

)∣∣2 = p− 1
p

(log q +C)+ O(q−λp+ε),

where λ3 =
1
2 and λ5 = λ7 =

1
6 . The implicit constant is computable.

Our argument differs from that of [Khan et al. 2016] in that we do not appeal to
Roth’s theorem. The present argument yields the fully effective Theorem 1.1 (with
computable bounds on the error term), and in fact in (5-11) we provide an explicit
version with a specific constant depending on ε > 0. Given the power saving error
term, it should be possible to extend our main theorem to include a mollifier. This
would give an effective version of the nonvanishing result given in [Khan et al.
2016, Theorem 1.2b], but only for p= 3, 5, 7 and with possibly smaller proportions
of nonvanishing.
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In the statement of Theorem 1.1 and for the rest of the paper, the asymptotic
notations f � g and f = O(g) mean that | f | ≤Cg for some constant C > 0, which
may depend on ε > 0, but is always computable for any given value of ε.

2. Preliminaries

We first state a result which follows directly from [Khan et al. 2016, Lemma 2.3].
This illustrates an orthogonality property within orbits.

Lemma 2.1. Suppose q = pk for an odd prime p and k ≥ 1, O is a Galois orbit
of primitive Dirichlet characters mod q, and n and m are integers coprime to p.
Clearly, 1

|O|

∣∣∑
χ∈O χ(n)χ̄(m)

∣∣≤ 1. But if

n p−1
6≡ m p−1 mod pk−1,

then
1
|O|

∑
χ∈O

χ(n)χ̄(m)= 0.

Next we state a standard result from analytic number theory, called the ap-
proximate functional equation. The approximate functional equation expresses
the L-function at the central point, where (1-1) does not converge, in terms of
essentially finite sums of the form resembling a truncated version of Dirichlet series
like (1-1). This is standard so we do not reproduce the entire proof.

Lemma 2.2. For a primitive Dirichlet character χ modulo q , let κ ∈ {0, 1} be such
that χ(−1)= (−1)κ , and let

V (x)=
1

2π i

∫
(2)

0
( 1

2(s+ κ)+
1
4

)2

0
( 1

2κ +
1
4

)2 (πx)−s ds
s
. (2-1)

We have
V (x)�N min{1, x−N

} (2-2)

for any x, N > 0, and∣∣L(1
2 , χ

)∣∣2 = 2
∑

nm≥1

χ(n)χ̄(m)
(nm)1/2

V
(

nm
q

)
. (2-3)

Proof. See [Khan et al. 2016, Lemma 2.1]. For the estimate (2-2), shift the line
of integration to Re(s) = N if x > 1, and to Re(s) = −1

4 if x ≤ 1. The shift left
crosses a simple pole at s = 0, with residue 1. �

By the decay property (2-2), the range of summation in the sum (2-3) is essentially
nm<q1+ε. Note that the sum is restricted to (nm, p)=1, for otherwise the character
values vanish.
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We conclude the preliminaries section with two known results in elementary
number theory. The first of these, Hensel’s lemma, describes solutions to polynomial
congruences modulo prime powers. In Lemma 2.3, we have taken the first statement
from [Rosen 1984, Theorem 4.15(i)], and the second one follows by induction on k.

Lemma 2.3 (Hensel’s lemma). Suppose that f (x) is a polynomial with integer
coefficients, k is an integer with k ≥ 2, and p is a prime.

(1) If r is a solution of the congruence f (x) ≡ 0 (mod pk−1) such that f ′(r) 6≡
0 (mod p), then there is a unique integer t , 0≤ t < p, such that f (r+tpk−1)≡

0 (mod pk).

(2) If r is a solution of the congruence f (x) ≡ 0 (mod p) such that f ′(r) 6≡
0 (mod p), then there is a unique integer t , 0≤ t< pk , such that t≡ r (mod p)
and f (t)≡ 0 (mod pk).

The second number-theoretic result we record is concerned with the number of
ways certain definite quadratic forms such as n2

+m2 in two integers n, m can take
the same value.

Lemma 2.4. Let q(n,m) be any of n2
+m2, n2

+nm+m2, or n2
−nm+m2. Then,

for every ε > 0,

rq(N ) := #{(n,m) ∈ Z2
: q(n,m)= N } �ε N ε .

For q0(n,m) = n2
+m2, the estimate rq0(N )�ε N ε follows from the famous

theorem of Gauss for the number of representations of a positive integer N as the
sum of two squares [Rosen 1984, Theorem 14.13]: if N has a canonical prime
power factorization as N = 2m pe1

1 · · · p
es
s q f1

1 · · · q
ft

t , where primes pi are of the
form 4k+ 1 and primes q j are of the form 4k+ 3, then

rq0(N )= 4(e1+ 1)(e2+ 1) · · · (es + 1)

if all f j are even, and rq0(N )= 0 otherwise. In particular, rq0(N ) is bounded by the
number of divisors τ(N ) as rq0(N )≤ 4τ(N ); hence rq0(N )�ε N ε by the standard
divisor bound; see, for example, [Stopple 2003, Section 3.5; Iwaniec and Kowalski
2004, (12.82)].

Gauss’ formula for rq0(N ) can be proved using the arithmetic of the ring of
Gaussian integers Z[i]. This is a Euclidean domain (relative to the usual norm),
and hence a unique factorization domain, in which 2 is the sole ramified prime,
rational primes of the form 4k + 1 split as the product of two distinct conjugate
Gaussian primes, and rational primes of the form 4k + 3 remain as Gaussian
primes [Rosen 1984, Theorem 14.12]. A similar argument could be made for
q1(n,m) = n2

+ nm +m2 and q2(n,m) = n2
− nm +m2 by using the arithmetic

of the ring of Eisenstein integers Z[ω], where ω = −1
2 + i

√
3

2 is a primitive cube
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root of unity, and by distinguishing between primes of the form 6k+ 1 and 6k+ 5.
In each of these cases, unique factorization allows for very pretty formulas for
rq(N ); however, this is ultimately not so important if all we need is the upper bound
of Lemma 2.4. To make this clear, we provide a streamlined argument that applies
in more general situations.

Proof. Note that, if N = n2
+m2

= (n +mi)(n −mi), then (n +mi) | N in the
ring Z[i]. Similarly, if N = n2

−nm+m2
= (n+mω)(n+mω2), then (n+mω) | N

in Z[ω], and if N = n2
+ nm + m2

= (n − mω)(n − mω2), then (n − mω) | N
in Z[ω]. Therefore, writing F = Q(i) if q(n,m) = n2

+ m2 and F = Q(ω) if
q(n,m)= n2

± nm+m2, we have

rq(N )� τF (N ).

Here, τF (N ) denotes the number of ideal divisors of the ideal (N )= NOF in the
ring of integers OF of F, and the absolute implied constant accounts for the finite
group of units, which, in this case, are all roots of unity. Therefore the desired
estimate follows from the divisor bound

τF (n)�ε Nnε (2-4)

in terms of the absolute ideal norm, which is valid in any number field F (with a
constant possibly depending on F).

The estimate (2-4) can be proved for any number field F along the same lines as
over Q [Stopple 2003, Section 3.5]. It is clear that

τF (p
α)= α+ 1≤ (Npα)ε =Npεα

for all prime powers pα with α ≥ 1 and sufficiently large Np (say, Np≥ e1/ε). A
similar inequality holds, by allowing for a larger (but fixed once and for all for
a given F) implied constant, for powers of the finitely many prime ideals with
Np< 21/ε. The estimate (2-4) follows by multiplicativity. �

3. The diagonal contribution

Writing the sum in (2-3) as the sum of terms with n = m plus the sum of terms
with n 6= m, we get

1
|O|

∑
χ∈O

∣∣L( 1
2 , χ

)∣∣2 = 1
|O|

∑
χ∈O

(
2
∑
n≥1

(n,p)=1

1
n

V
(

n2

q

))

+
1
|O|

∑
χ∈O

(
2
∑

nm≥1
n 6=m

χ(n)χ̄(m)

(nm)
1
2

V
(

nm
q

))
. (3-1)

The first sum above is the “diagonal” and it forms the main term of Theorem 1.1.
This is not surprising because there are no character values in the sum, so the sum
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over characters on the outside cannot produce any cancellation. By [Khan et al.
2016, Section 3.3] we have

1
|O|

∑
χ∈O

(
2
∑
n≥1

(n,p)=1

1
n

V
(

n2

q

))
=

p− 1
p

(log q +C)+ O(q−1/2+ε).

We recall that this argument uses the integral representation (2-1) and contour
shifting and is fully effective.

Now it remains to bound the off-diagonal sum of (3-1). This will be the dominant
part of the error term in Theorem 1.1.

4. The off-diagonal contribution

Applying Lemma 2.1 and (2-2), we get

1
|O|

∑
χ∈O

(
2
∑

nm≥1
n 6=m

χ(n)χ̄(m)
(nm)1/2

V
(

nm
q

))
�

∑
nm<q1+ε

(nm,p)=1,n 6=m
n p−1
≡m p−1 mod pk−1

1
(nm)1/2

+ q−100.

We will analyze this sum in dyadic intervals

N ≤ n < 2N , M ≤ m < 2M,
where

N M < q1+ε . (4-1)

Since there are at most qε such dyadic intervals, the task is reduced to bounding

Sp = Sp(N ,M) :=
1

(N M)1/2
∑

N≤n<2N
M≤m<2M

(nm,p)=1,n 6=m
n p−1
≡m p−1 mod pk−1

1;

for a proof of Theorem 1.1, we require the bound Sp � q−λp+ε in the range
(4-1). Let us first note a “trivial” bound (this argument is from [Khan et al. 2016,
Section 3.3]).

Lemma 4.1. We have

Sp�min
{(

N
M

)1/2

,

(
M
N

)1/2}
+ q−1/2+ε, (4-2)

Sp�min
{

q1/2+ε

M
,

q1/2+ε

N

}
+ q−1/2+ε . (4-3)

Proof. Suppose without loss of generality that N ≤ M. For each of the N choices
of n in the sum Sp, the value of m p−1 is uniquely determined modulo pk−1, namely,
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m p−1
≡ n p−1 (mod pk−1). By Lemma 2.3(2) with f (x)= x p−1

− n p−1, for every
m0 (mod p), (m0, p) = 1, there is a unique value of m modulo pk−1 such that
m ≡ m0 (mod p) and f (m) ≡ 0 (mod pk−1). Therefore, once the value of n in
Sp has been fixed, there are at most O(1) choices for the congruence class of
m (mod pk−1), and thus there are at most O(M/q+1) choices for m itself. So the
sum Sp is bounded as

Sp�
1

(N M)1/2
· N ·

(
M
q
+ 1
)
.

This gives the bound (4-2) by using (4-1). The bound (4-3) follows from (4-2) by
using (4-1) again. �

We can see that the bound of Lemma 4.1 is sufficient as long as the sizes of N
and M are apart by a certain power of q. From this point onwards, our argument
differs from that of [Khan et al. 2016].

4.1. The case p = 3. The sum we need to bound is

S3 =
1

(N M)1/2
∑

N≤n<2N
M≤m<2M

(nm,3)=1,n 6=m
n2
≡m2 mod 3k−1

1.

The congruence condition of S3 implies that 3k−1 divides (n−m)(n+m). Since
(nm, 3)= 1, we know that n−m and n+m are not both divisible by 3 (for if they
were, their sum would be too and this would lead to a contradiction). This means
that either 3k−1 divides n−m, or 3k−1 divides n+m. We also have the condition
n 6=m. So we must have that at least one of N and M is at least as large as 3k−1/4,
lest n−m and n+m be too small to satisfy the divisibility condition. Thus by (4-3)
we get

S3� q−1/2+ε .

4.2. The case p = 5. The sum we need to bound is

S5 =
1

(N M)1/2
∑

N≤n<2N
M≤m<2M

(nm,5)=1,n 6=m
n4
≡m4 mod 5k−1

1. (4-4)

Suppose without loss of generality that M ≥ N . The congruence condition of S5

implies that 5k−1 divides (n2
−m2)(n2

+m2). Since (nm, 5) = 1, we know that
n2
−m2 and n2

+m2 are not both divisible by 5 (for if they were, their sum would
be too and this would lead to a contradiction). Thus 5k−1 divides either n2

−m2
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or n2
+m2. The subsum of S5 consisting of terms satisfying 5k−1

| (n2
−m2) is

O(q−1/2+ε) by the argument given for p = 3.
Consider the terms satisfying 5k−1

| (n2
+ m2). First note that we must have

M � q1/2 or else n2
+m2 is too small to satisfy the divisibility. Now, writing

n2
+m2

= 5k−1h,

we see that h�M2/q . By Lemma 2.4, for each choice of h, there are O(qε) choices
for n and m. So there are at most qε(M2/q) summands satisfying 5k−1

| (n2
+m2)

in (4-4). We get

S5� q−1/2+ε
+

1
(N M)1/2

M2

q1−ε � q−1/2+ε
+

(
M
N

)1/2 M
q1−ε . (4-5)

Now we consider two cases: when N and M are quite close and when they are not.
Suppose that M/N < q1/3. Then by (4-1) we have M2

� (M/N )q1+ε
� q4/3+ε.

So (4-5) becomes
S5� q−1/6+ε . (4-6)

Now suppose that M/N ≥ q1/3. Then by (4-2), we get the same bound (4-6).

4.3. The case p = 7. The sum we need to bound is

S7 =
1

(N M)1/2
∑

N≤n<2N
M≤m<2M

(nm,7)=1,n 6=m
n6
≡m6 mod 7k−1

1.

The congruence condition of S7 implies

7k−1
| (n2
−m2)(n2

+ nm+m2)(n2
− nm+m2).

Since (nm, 7)=1, we get that 7 cannot divide more than one factor on the right-hand
side. For example, if 7 | (n2

−m2) then n≡±m mod 7. So if also 7 | (n2
±nm+m2),

then 7 | (n2
±n2
+n2), which is impossible. On the other hand, if 7 | (n2

+nm+m2)

and 7 | (n2
− nm +m2), then 7 | nm, which is again impossible. So we have the

cases 7k−1
| (n2
−m2) or 7k−1

| (n2
± nm+m2). By the argument given for p = 3,

the subsum of S7 consisting of terms satisfying 7k−1
| (n2
−m2) is O(q−1/2+ε).

For the cases when 7k−1
| (n2
± nm+m2), we proceed analogously to the case

p = 5. We must have M � q1/2 or else n2
± nm+m2 is too small to be divisible

by 7k−1, and in fact n2
± nm+m2

= 7k−1h for some h� M2/q. By Lemma 2.4
(this time applied with the form n2

± nm+m2), the number of choices of (n,m) is
O(qε) for each choice of h and thus at most qε(M2/q) altogether. Therefore,

S7� q−1/2+ε
+

1
(N M)1/2

M2

q1−ε � q−1/2+ε
+

(
M
N

)1/2 M
q1−ε .
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Using this bound and (4-1) when M/N < q1/3 and (4-2) when M/N ≥ q1/3, we
obtain

S7� q−1/6+ε .

5. Effective estimates

In this section, we show how all the estimates of previous sections can be made fully
effective for any desired choice of ε > 0. We follow the exposition in Sections 2–4
and indicate explicit constants at each place. Since many of these computations are
routine, we condense some of the details but provide all the essential steps.

5.1. Preliminaries. When estimating expressions involving 0(s), we use the fol-
lowing well-known facts valid for σ = Re s > 0 and integers N ≥ 2:

0(s)= 1
s
0(s+ 1), 0(s)0

(
s+ 1

2

)
= 21−2s√π0(2s), |0(s)| ≤ 0(σ),∣∣0(σ + 1

4

)
0
(
σ + 5

4

)∣∣≤ ∣∣0(σ)0(σ + 3
2

)∣∣, |0(N )| ≤ 1
4 e2(N/e)N .

(5-1)

The first inequality in the second row follows from the convexity of log0(σ), and
the second one follows by using integral comparison to estimate

∑
n<N log n.

In Lemma 2.2, for κ = 0, we find by shifting contours to Re s = N ≥ 3 that

|V (x)| ≤
1

2π0
( 1

4

)20
( 1

2 N+ 1
4

)
0
(1

2 N+ 5
4

) ∫ ∞
−∞

dt∣∣1
2(N+ i t)+ 1

4

∣∣|N+ i t |
·(πx)−N

≤

√
π

2π0
( 1

4

)2 ·(N+1)0(N )(2π)−N
·

8
N
· x−N <

3
4

( N
2πe

)N
· x−N ,

where the integral is split into |t | ≤ N and |t | > N and then estimated trivially.
Similarly, by shifting to Re s =− 1

4 ,

|V (x)− 1| ≤
π1/40

( 1
8

)
0
( 7

8

)
2π0

( 1
4

)2

∫
∞

−∞

dt∣∣1
8 +

1
2 i t
∣∣∣∣− 1

4 + i t
∣∣ · x1/4 < 3x1/4,

where the integral is≤ 16
√

2 by splitting into |t | ≤ 1
2
√

2
and |t |> 1

2
√

2
and estimating

trivially. One similarly verifies that the same upper bounds hold for κ = 1. Using
the first bound for x ≥ N/(2πe) and the second one for x < N/(2πe), we obtain
for N ≥ 3

|V (x)| ≤min
{5N 1/4

2
,

3
4

( N
2πe

)N
· x−N

}
. (5-2)

Next, we make (2-4) effective. Since the group of units in an imaginary quadratic
number field such as F =Q(i) or F =Q(ω) is a cyclic group of order at most 6,
it is easy to see that rq(N ) ≤ 3 · τF (N ). For a prime ideal p with Np ≥ e1/ε, we
simply have τF (p

α) = 1+ α ≤ (Npα)ε. For the remaining primes, the function
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F(α)=Npαε/(1+α) has a minimum at α0 = 1/(ε logNp)− 1> 0 with F(α0)≥

eε logNp/Npε. Therefore, for every integral ideal n⊆OF ,

τF (n)

Nnε
≤

∏
Np≤e1/ε

(
eε

logNp

Npε

)−1

≤
ε−2π(e1/ε)

log 2
,

where π(x)= #{p ≤ x} is the classical prime-counting function, and the number
of prime ideals p with Np ≤ x is clearly ≤ 2π(x). Using the explicit estimate
π(x)≤ 2x/ log x [Stopple 2003, Section 5.2], we thus find that, for ε ≤ 1

2 ,

τF (n)≤
e4ε| log ε|e1/ε

log 2
·Nnε ≤ e(3/2)e

1/ε
·Nnε . (5-3)

5.2. Diagonal terms. Proceeding to the evaluation of the diagonal contribution
in Section 3, following [Khan et al. 2016, Section 3.3], we substitute the integral
representation for V (x) and exchange the order of summation and integration to
find that the diagonal contribution equals, for κ = 0,

1
2π i

∫
(2)
ζp(2s+ 1)

0
( 1

2 s+ 1
4

)2

0
( 1

4

)2

(
q
π

)s ds
s
.

We evaluate the integral by shifting to Re s =−1
2 + ε, collecting the residue from

the double pole at s = 0. We can use a simple estimate for ζ(s) with 0< σ ≤ 1
2 as

|(1− 21−s)ζ(s)| =
∣∣∣∣ ∞∑

n=1

(−1)n−1

ns

∣∣∣∣≤ ∞∑
n=1

|s|(2n− 1)−σ−1
≤ |s|

(
1+

1
2σ

)
≤
|s|
σ
,

by integral comparison. Further, |1−21−s
| ≥ 22/3

−1> 1
2 for σ ≤ 1

3 and |1− p−s
| ≤

min(|s| log p, 2) for p≥ 3, so that the remainder from the contour at Re s=−1
2+ε,

with ε ≤ 1
6 , is

≤
1

2π
2
2ε

1

0
(1

4

)2

∫
∞

−∞

|2ε+ 2i t |min(|2ε+ 2i t | log p, 2)∣∣ 1
2(ε+ i t)

∣∣2 dt
|ε+ i t |

·

(
q
π

)−1/2+ε

≤
8
√
π

π0
( 1

4

)2
ε
· 2 log p · (2+ | log ε|) · q−1/2+ε <

3
2

log p
| log ε|
ε
· q−1/2+ε, (5-4)

by splitting the integral into |t | ≤ ε, ε < |t | ≤ 1/ log p, and |t | > 1/ log p and
estimating trivially. It is similarly verified that this explicit estimate for the error
term in the evaluation of the diagonal contribution in Section 3 holds also when κ=1.

5.3. Off-diagonal terms. We now come to the crux of the matter, the estimation
of the off-diagonal terms in Section 4, in which p ≤ 7 and we may assume that
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0< ε ≤ λp. As a preliminary step, we find that the function G(q)= qε/ log q has
a minimum at q0 = e1/ε with G(q0)= εe, so that

log q ≤
1
εe
· qε .

For x ≥ 1 and N ≥ 2,∑
m≤x

1
m N+1/2 ≤

1
x N−1/2

(
1

N − 1
2

+
1
x

)
≤

2
x N−1/2 .

Using this, the contribution of the terms with nm > q1+ε is estimated using (5-2) as

2
∑

nm>q1+ε

1
(nm)1/2

V
(

nm
q

)

≤ 4
3
4

(
N

2πe

)N

q N
( ∑

n≤q1/2+ε

1
n1/2+N (q1+ε/n)N−1/2 +

∑
n>q1+ε

1
n1/2+N

)

≤ 3
(

N
2πe

)N q1/2

q(N−1)ε (log q1+ε
+ 2) <

4
ε

(
N

2πe

)N q1/2

q(N−2)ε

for ε ≤ 1
2 . Taking N ≥ 1/ε+ 2, the total contribution of terms with nm > q1+ε is

≤
4

ε(2πeε)1/ε+2 (1+ 3ε)1/ε+3
· q−1/2 <

1
ε3(2πe)1/ε

· q−1/2. (5-5)

The terms with nm < q1+ε can be split into at most

log q1+ε

log 2
+ 1≤ 7

6
1

log 2 · eε
qε + 1<

(1
ε

)
qε

dyadic ranges. Referring again to (5-2), the contribution of terms with nm≤ q1+ε is

≤
5
2ε

(
1
ε
+ 3
)1/4

maxSp(N ,M) <
3
ε5/4 maxSp(N ,M), (5-6)

where N M < q1+ε and Sp(N ,M) are as in Section 4.
Arguing as in the proof of Lemma 4.1, for every value of n in Sp, there are at

most six choices for m mod pk−1 and thus the total number of choices for m is at
most 42(M/q + 1). From this, we get for N ≤ M,

Sp ≤
42

(N M)1/2
N
(

M
q
+ 1
)

≤ 42
((

N
M

)1/2

+ q−1/2+ε
)
≤ 42

(
q1/2+ε/2

M
+ q−1/2+ε

)
. (5-7)
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As in Section 4.1, the subsum of Sp(N ,M) consisting of terms with pk−1
| (n2
−m2)

is empty unless M ≥ q/28, in which case their contribution is

≤ 42(28q−ε/2+ 1)q−1/2+ε < 1200 · q−1/2+ε . (5-8)

If p = 3, this is an upper bound on the full S3.
If p = 5, we must also consider the terms satisfying 5k−1

| (n2
+m2). These

occur only if M ≥ q1/2/
√

40 and n2
+m2

= 5k−1h for some 1≤ h ≤ 40M2/q . For
each h, we may bound rq(5k−1h) by (5-3) and thus obtain

S5 ≤ 1200 · q−1/2+ε
+ 120e(3/2)e

2/(5ε) 1
(N M)1/2

M2

q1−(5/2)ε .

If M/N < q1/3−2ε , then M2/(N M)1/2 ≤ (M/N )(N M)1/2 ≤ q5/6−(3/2)ε and so

S5 ≤ (1200q−1/3
+ 3 · 40e(3/2)e

2/(5ε)
)q−1/6+ε

≤ 125e(3/2)e
2/(5ε)
· q−1/6+ε . (5-9)

If, on the other hand, M/N ≥ q1/3+2ε, we have S5 ≤ 70 · q−1/6+ε by (5-7), so the
above holds anyway. The same reasoning for p = 7 yields

S7 ≤ (1200q−1/3
+ 2 · 3 · 56e(3/2)e

2/(5ε)
)q−1/6+ε

≤ 340e(3/2)e
2/(5ε)
· q−1/6+ε . (5-10)

Combining (5-4)–(5-6) and (5-8)–(5-10), we obtain Theorem 1.1 in the effective
form ∣∣∣∣ 1

|O|

∑
χ∈O

∣∣L( 1
2 , χ

)∣∣2− p− 1
p

(log q +C)
∣∣∣∣≤ c(ε)q−λp+ε, (5-11)

where, for 0< ε ≤ λp,

c(ε)≤ 3
2

log7
| logε|
ε
+

1
ε3(2πeε)1/ε

+
3,600
ε5/4 +

1,020
ε5/4 e(3/2)e

2/(5ε)
<

1,100
ε5/4 e(3/2)e

2/(5ε)
.

Indeed, it is seen directly that the function f (x)= 3
2 e(2/5)x −

(
x + 7

4

)
log x + 10 is

positive on [2, 5] and on [5, 8], and

f ′(x)≥ 3
5 e16/5(x − 7)−

(
log 8+ 1

8 x − 1
)
−

39
32 > 14x − 102> 0

for x ≥ 8, so that f (x) > 0 for all x ≥ 2. Therefore,

(2πe)−1/εε−(1/ε+7/4) <
e10

(2πe)2
· e(3/2)e

2/(5ε)
< 76e(3/2)e

2/(5ε)
,

which suffices to estimate the second summand; for the others it suffices to note
that ε1/4

| log ε| ≤ 4/e and e(3/2)e
4/5
> 28.
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