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Euler’s formula for the zeta function
at the positive even integers

Samyukta Krishnamurthy and Micah B. Milinovich
(Communicated by Filip Saidak)

We give a new proof of Euler’s formula for the values of the Riemann zeta
function at the positive even integers. The proof involves estimating a certain
integral of elementary functions two different ways and using a recurrence relation
for the Bernoulli polynomials evaluated at 1

2 .

1. Introduction

Let ζ(s) denote the Riemann zeta function and let η(s)= (1− 21−s)ζ(s). Then the
series representations

ζ(s)=
∞∑

n=1

1
ns and η(s)=

∞∑
n=1

(−1)n−1

ns

converge absolutely in the half-plane Re(s) > 1. For n ∈N, we define the Bernoulli
polynomials Bn(x) via the generating function

zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
,

and (as usual) we call Bn := Bn(0) the n-th Bernoulli number. It follows that

B2 =
1
6 , B4 =−

1
30 , B6 =

1
42 , . . . , B12 =−

691
2730 , (1-1)

and that
B2n+1 = 0 for n ∈ N. (1-2)

These and other standard properties of the Bernoulli numbers and Bernoulli polyno-
mials can be found in [Montgomery and Vaughan 2007, Appendix B]. In this note
we give an apparently new proof of Euler’s well-known result which states that

ζ(2k)=
∞∑

n=1

1
n2k = (−1)k+1 (2π)

2k B2k

2(2k)!
for k ∈ N. (1-3)

MSC2010: primary 11M06; secondary 11B68, 11B37.
Keywords: Riemann zeta function, Euler, Basel problem, Bernoulli numbers, Bernoulli polynomials.
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From (1-1) and (1-3), we see (as Euler did) that

ζ(2)= 1
6 π

2, ζ(4)= 1
90 π

4, ζ(6)= 1
945 π

6, . . . , ζ(12)= 691
638512875 π

12.

In 1734, before realizing the connection to the Bernoulli numbers, Euler derived
the values of ζ(2k) for k = 1, 2, . . . , 6. A few years later, in 1740, Euler discovered
the formula in (1-3) relating ζ(2k) to B2k for k ∈N. Some historical remarks about
Euler’s work on the Riemann zeta function and on other infinite series can be found
in [Weil 1984, Chapter 3], see also [Ayoub 1974; Kline 1983; Varadarajan 2007],
while references to numerous proofs of Euler’s formula in (1-3) can be found in
[de Amo et al. 2011].

Instead of evaluating ζ(2k) directly, our proof naturally evaluates the function
η(s) at the positive even integers. Since

Bn
( 1

2

)
=−(1− 21−n)Bn for n ≥ 0, (1-4)

we note that Euler’s result in (1-3) is equivalent to the formula

η(2k)=
∞∑

n=1

(−1)n−1

n2k = (−1)k
(2π)2k B2k

( 1
2

)
2(2k)!

for k ∈ N. (1-5)

We derive (1-5) in Section 3. Note that (1-1), (1-4), and (1-5) imply

η(2)= 1
12 π

2, η(4)= 7
720 π

4, η(6)= 31
30240 π

6, . . . , η(12)= 1414477
1307674368000 π

12.

Since our proof of (1-5) is more straightforward in the special case k= 1, we discuss
this situation separately at the end of this article.

There is a striking resemblance between Euler’s formula (1-3), relating the values
of ζ(2k) to B2k , and the formula (1-5), relating the values of η(2k) to B2k

( 1
2

)
. We

have chosen to write the expression in (1-5) in this manner for more than simply
aesthetic reasons; indeed our proof of (1-5) relies naturally on a recursive formula
for the sequence

{
B2k
( 1

2

)}∞
k=0.

2. A recursive formula for B2k
(1

2
)

The Bernoulli polynomials satisfy the inversion formula

xn
=

1
n+ 1

n∑
`=0

(n+1
`

)
B`(x)

for every integer n ≥ 0. Setting x = 1
2 and then observing that (1-2) and (1-4) imply

Bn
( 1

2

)
= 0 if n is odd, we derive the recursive formula

1
22k =

1
2k+ 1

k∑
j=0

(2k+1
2 j

)
B2 j

( 1
2

)
for k ∈ N. (2-1)
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3. Proof of (1-5)

We prove (1-5) by evaluating the integral

I2k =

∫ 1

0

x(log x)2k

(x2+ 1)2
dx for k ∈ N

in two different ways. On one hand, we show that

I2k =
(2k)!
22k+1η(2k) (3-1)

by expressing the integrand as a series and then integrating term-by-term. The
formula (3-1) actually holds for k = 0 as well, since I0 =

1
4 and it can be shown

that η(0)= 1
2 . On the other hand, using the residue theorem in a relatively standard

way, we derive the recursive formula

1
22k =

1
2k+ 1

k∑
j=0

(2k+1
2 j

)
(−1) j 4I2 j

π2 j . (3-2)

Comparing this expression to the recurrence relation for B2k
( 1

2

)
from the previous

section, we can derive our desired expression for η(2k) from (3-1) and (3-2).

Proof of (1-5). Evidently, from (2-1) and (3-2), the sequences{
B2 j

( 1
2

)}∞
j=0 and

{
(−1) j 4I2 j

π2 j

}∞
j=0

satisfy the same recursion relation. Moreover, since

4I0 = 4
∫ 1

0

x
(x2+ 1)2

dx = 1= B0
( 1

2

)
,

the initial terms in these sequences agree and therefore these sequences are equal.
Hence, from (3-1), we see that

B2k
( 1

2

)
= (−1)k

4I2k

π2k = (−1)k
2(2k)!
(2π)2k η(2k) for every k ∈ N. �

It remains to establish (3-1) and (3-2).

3.1. Relating I2k to η(2k). Integrating by parts 2k times, we derive that∫ 1

0
x2n−1(log x)2k dx =

(2k)!
(2n)2k+1 (3-3)

for positive integers k and n. Alternatively, we can prove this estimate by using
that the gamma function,

0(z)=
∫
∞

0
x z−1e−x dx for Re(z) > 0,
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satisfies the relation 0(n + 1) = n! for n ∈ N. To see this, note that the variable
change x 7→ e−t/(2n) implies∫ 1

0
x2n(log x)2k dx

x
=

1
(2n)2k+1

∫
∞

0
e−t t2k dt =

0(2k+ 1)
(2n)2k+1 =

(2k)!
(2n)2k+1 .

We now express the integrand of I2k as a series, interchange the sum and the integral,
and then use (3-3) to integrate term-by-term. Since

x
(x2+ 1)2

=−
1
2

d
dx

{
1

1+ x2

}
=−

1
2

d
dx

{ ∞∑
n=0

(−1)nx2n
}
=

∞∑
n=1

n(−1)n−1x2n−1 (3-4)

for |x |< 1, we have

I2k =

∫ 1

0

x(log x)2k

(x2+ 1)2
dx =

∫ 1

0

∞∑
n=1

n(−1)n−1x2n−1(log x)2k dx

=

∞∑
n=1

n(−1)n−1
∫ 1

0
x2n−1(log x)2k dx

=

∞∑
n=1

n(−1)n−1 (2k)!
(2n)2k+1 =

(2k)!
22k+1η(2k)

for every k ∈ N. This proves (3-1). Note that the interchange of summation and
integration is justified using Fubini’s theorem since, for every k ∈N, (3-3) implies

∞∑
n=1

∫ 1

0
|n(−1)n−1x2n−1 log2k x | dx =

∞∑
n=1

n
∫ 1

0
x2n−1(log x)2k dx

=
(2k)!
22k+1

∞∑
n=1

1
n2k <∞.

3.2. A recursive formula for I2k. Making the variable change x 7→ 1/x , it follows
that ∫ 1

0

x(log x)2k

(x2+ 1)2
dx =

∫
∞

1

x(log x)2k

(x2+ 1)2
dx,

∫ 1

0

x(log x)2k+1

(x2+ 1)2
dx =−

∫
∞

1

x(log x)2k+1

(x2+ 1)2
dx

for integers k ≥ 0. Therefore

I2k =
1
2

∫
∞

0

x(log x)2k

(x2+ 1)2
dx and

∫
∞

0

x(log x)2k+1

(x2+ 1)2
dx = 0. (3-5)
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ΓR

RR
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εε

Figure 1

Now we introduce the complex-valued function

f (z)=
z(log z)2k+1

(1+ z2)2
,

where log z denotes the branch of the logarithm in C with |z|>0 and−π2 <arg z< 3π
2 .

Note that the power of log z in the numerator of f (z) is one power higher than
the power of log x appearing in the integrand of I2k . We integrate f (z) around the
positively oriented simple closed contour (shown in Figure 1) composed of the
line segment [ε, R] along the real-axis, the semicircle 0R centered at 0 of radius R
starting at z = R passing through z = i R and ending at z =−R, the line segment
[−R,−ε] along the real-axis, and finally the semicircle 0ε centered at 0 of radius ε
starting at z =−ε passing through z = iε and ending at z = ε. Here ε and R denote
real numbers satisfying 0< ε < 1< R <∞. The only singularity of f (z) inside
this contour is a double pole at z = i . Therefore the residue theorem implies

2π i Res
z=i

f (z)=
∫ R

ε

x(log x)2k+1

(1+ x2)2
dx +

∫
0R

f (z) dz

+

∫
−ε

−R

x(log(−x)+ iπ)2k+1

(1+ x2)2
dx +

∫
0ε

f (z) dz, (3-6)

where the logarithms in the first and third integrals on the right-hand side denote
the natural logarithm. Estimating trivially, we have∣∣∣∣∫

0ε

f (z) dz
∣∣∣∣≤ length(0ε) ·max

z∈0ε
| f (z)| ≤ (πε)

(
ε(log(−ε)+π)2k+1

(1− ε2)2

)
→ 0

as ε→ 0+ and∣∣∣∣∫
0R

f (z) dz
∣∣∣∣≤ length(0R ) ·max

z∈0R

| f (z)| ≤ (πR)
(

R(log R+π)2k+1

(1− R2)2

)
→ 0

as R→+∞. It follows that

2π i Res
z=i

f (z)=
∫
∞

0

x(log x)2k+1

(1+ x2)2
dx +

∫ 0

−∞

x(log(−x)+ iπ)2k+1

(1+ x2)2
dx .
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By the second expression in (3-5), the first integral on the right-hand side equals 0.
Sending x 7→ −x , the second integral on the right-hand side equals

−

∫
∞

0

x(log x + iπ)2k+1

(1+ x2)2
dx =−

2k+1∑
`=0

(2k+1
`

)
(iπ)2k−`+1

∫
∞

0

x(log x)`

(1+ x2)2
dx .

Again by (3-5), the terms in the sum with ` odd vanish. Hence, for even `, letting
`= 2 j and using the first expression in (3-5), we have

2π i Res
z=i

f (z)=−(iπ)2k+1
k∑

j=0

(2k+1
2 j

)
(−1) j 2I2 j

π2 j . (3-7)

On the other hand, a straightforward calculation shows that

Res
z=i

f (z)= lim
z→i

d
dz

{
z(log z)2k+1

(z+ i)2

}
=−

(2k+ 1)(iπ)2k

22k+2 .

Inserting this into (3-7) and dividing by −(2k+ 1)(iπ)2k+1/2, we conclude that

1
22k =

1
2k+ 1

k∑
j=0

(2k+1
2 j

)
(−1) j 4I2 j

π2 j ,

as claimed.

3.3. Remarks on the case k =1. Historically, the Basel problem asked for a closed-
form evaluation of the sum

ζ(2)=
∞∑

n=1

1
n2 .

As mentioned in the Introduction, this problem was solved by Euler in 1734.
Therefore, there is perhaps special interest in a direct proof of the equivalent
problem of showing that

η(2)=
∞∑

n=1

(−1)n−1

n2 =
π2

12
.

In this special case, our proof above can be simplified since there is no need to
appeal to properties of the Bernoulli polynomials, the gamma function, or recursion
relations. We sketch the details of this calculation for the interested reader.

In this case, we evaluate the integral

I2 =

∫ 1

0

x(log x)2

(x2+ 1)2
dx

in two different ways. Integrating by parts twice, it can be shown that∫ 1

0
x2n−1(log x)2 dx =

1
4n3 for n ∈ N. (3-8)
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Therefore, using the series expansion in (3-4), it follows that

I2 =

∫ 1

0

x(log x)2

(x2+ 1)2
dx =

∫ 1

0

∞∑
n=1

n(−1)n−1x2n−1(log x)2 dx

=

∞∑
n=1

n(−1)n−1
∫ 1

0
x2n−1(log x)2 dx

=
1
4

∞∑
n=1

(−1)n−1

n2 =
η(2)

4
.

As in Section 3.1, the interchange of summation and integration can be justified
using Fubini’s theorem. On the other hand, making the variable change x 7→ 1/x ,
it follows that

I2 =

∫ 1

0

x(log x)2

(x2+ 1)2
dx =

∫
∞

1

x(log x)2

(x2+ 1)2
dx .

Therefore

I2 =
1
2

∫
∞

0

x(log x)2

(x2+ 1)2
dx . (3-9)

In order to evaluate this integral, we apply the residue theorem in a manner similar
to that in the previous section. We integrate the complex-valued function

f (z)=
z(log z)3

(1+ z2)2

around the positively oriented simple closed contour shown in Figure 1. As before,
log z denotes the branch of the logarithm in C with |z|> 0 and −π2 < arg z < 3π

2 ,
while ε and R denote real numbers satisfying 0<ε < 1< R<∞. Then the residue
theorem implies

2π i Res
z=i

f (z)=
∫ R

ε

x(log x)3

(1+ x2)2
dx +

∫
0R

f (z) dz

+

∫
−ε

−R

x(log(−x)+ iπ)3

(1+ x2)2
dx +

∫
0ε

f (z) dz,

where the logarithms in the first and third integrals on the right-hand side denote
the natural logarithm. As was shown in the previous section, the second and fourth
integrals on the right-hand side tend to 0 as R→+∞ and ε→ 0+, respectively.
Since the only singularity of f (z) inside this contour is a double pole at z = i
with

Res
z=i

f (z)= lim
z→i

d
dz

{
z(log z)3

(z+ i)2

}
=

3π2

16
,
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it follows that

3π3i
8
=

∫
∞

0

x(log x)3

(1+ x2)2
dx +

∫ 0

−∞

x(log(−x)+ iπ)3

(1+ x2)2
dx

=

∫
∞

0

x(log x)3

(1+ x2)2
dx −

∫
∞

0

x(log x + iπ)3

(1+ x2)2
dx .

Here we have made the variable change x 7→ −x in the second integral. Expanding
the factor (log x + iπ)3, taking imaginary parts of both sides of the equation, and
then using (3-9), we deduce that

3π3

8
= π3

∫
∞

0

x
(1+ x2)2

dx − 3π
∫
∞

0

x(log x)2

(1+ x2)2
dx = π

3

2
− 6π I2.

This implies I2 = π
2/48. Combining this with our previous observation that

I2 = η(2)/4, we conclude that η(2)= π2/12.

Acknowledgements

Milinovich is supported in part by the NSA Young Investigator Grant H98230-16-
1-0311.

References

[de Amo et al. 2011] E. de Amo, M. Díaz Carrillo, and J. Fernández-Sánchez, “Another proof of
Euler’s formula for ζ(2k)”, Proc. Amer. Math. Soc. 139:4 (2011), 1441–1444. MR Zbl

[Ayoub 1974] R. Ayoub, “Euler and the zeta function”, Amer. Math. Monthly 81 (1974), 1067–1086.
MR Zbl

[Kline 1983] M. Kline, “Euler and infinite series”, Math. Mag. 56:5 (1983), 307–314. MR Zbl

[Montgomery and Vaughan 2007] H. L. Montgomery and R. C. Vaughan, Multiplicative number
theory, I: Classical theory, Cambridge Studies in Advanced Mathematics 97, Cambridge University
Press, 2007. MR Zbl

[Varadarajan 2007] V. S. Varadarajan, “Euler and his work on infinite series”, Bull. Amer. Math. Soc.
(N.S.) 44:4 (2007), 515–539. MR Zbl

[Weil 1984] A. Weil, Number theory: an approach through history, from Hammurapi to Legendre,
Birkhäuser, Boston, MA, 1984. MR Zbl

Received: 2017-06-12 Revised: 2018-07-30 Accepted: 2018-10-28

skrishnamurt@umass.edu Department of Physics, University of Mississippi,
University, MS, United States

Current address: Department of Physics, University of Massachusetts,
Amherst, MA, United States

mbmilino@olemiss.edu Department of Mathematics, University of Mississippi,
University, MS, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1090/S0002-9939-2010-10565-8
http://dx.doi.org/10.1090/S0002-9939-2010-10565-8
http://msp.org/idx/mr/2748437
http://msp.org/idx/zbl/1223.40001
http://dx.doi.org/10.2307/2319041
http://msp.org/idx/mr/0360116
http://msp.org/idx/zbl/0293.10001
http://dx.doi.org/10.2307/2690371
http://msp.org/idx/mr/720652
http://msp.org/idx/zbl/0526.01015
http://msp.org/idx/mr/2378655
http://msp.org/idx/zbl/1142.11001
http://dx.doi.org/10.1090/S0273-0979-07-01175-5
http://msp.org/idx/mr/2338363
http://msp.org/idx/zbl/1135.01010
http://dx.doi.org/10.1007/978-0-8176-4571-7
http://msp.org/idx/mr/734177
http://msp.org/idx/zbl/0531.10001
mailto:skrishnamurt@umass.edu
mailto:mbmilino@olemiss.edu
http://msp.org


msp
INVOLVE 12:4 (2019)

dx.doi.org/10.2140/involve.2019.12.549

Descents and des-Wilf equivalence of permutations
avoiding certain nonclassical patterns

Caden Bielawa, Robert Davis, Daniel Greeson and Qinhan Zhou

(Communicated by Jim Haglund)

A frequent topic in the study of pattern avoidance is identifying when two sets
of patterns 5,5′ are Wilf equivalent, that is, when |Avn(5)| = |Avn(5

′)| for
all n. In recent work of Dokos et al. the notion of Wilf equivalence was refined
to reflect when avoidance of classical patterns preserves certain statistics. We
continue their work by examining des-Wilf equivalence when avoiding certain
nonclassical patterns.

1. Introduction

Let Sn denote the set of permutations of [n] :={1, . . . , n}, and let S=S1∪S2∪· · ·

be the set of all permutations of finite length. We write σ ∈Sn as σ = a1a2 · · · an to
indicate that σ(i)=ai . A function st :Sn→N is called a statistic, and the systematic
study of permutation statistics is generally accepted to have begun with MacMahon
[1960, Volume I, Section III, Chapter V]. Four of the most well-known statistics
are the descent, inversion, major, and excedance statistics, defined respectively by

des(σ )= |Des(σ )|,

inv(σ )= |{(i, j) ∈ [n]2 | i < j and ai > aj }|,

maj(σ )=
∑

i∈Des(σ )

i,

exc(σ )= |{i ∈ [n] | ai > i}|,

where Des(σ )= {i ∈ [n− 1] | ai > ai+1}. Given any statistic st, one may form the
generating function

F st
n (q)=

∑
σ∈Sn

qst σ .
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A famous result due to [MacMahon 1960] states that Fdes
n (q) = Fexc

n (q), and
that both are equal to the Eulerian polynomial An(q). Similarly, it is known that
F inv

n (q)= Fmaj
n (q)= [n]q ! , where

[n]q = 1+ q + · · ·+ qn−1 and [n]q ! = [n]q [n− 1]q · · · [1]q .

Let A⊆ [n], and denote by SA the set of permutations of the elements of A. The
standardization of σ =a1 · · · a|A|∈SA is the element of S|A| whose letters are in the
same relative order as those of σ ; we denote this permutation by std(σ ). Now, we say
that a permutation σ ∈Sn contains the pattern π ∈Sk if there exists a subsequence
σ ′ = ai1 · · · aik of σ such that std(σ ′) = π . If no such subsequence exists, then
we say that σ avoids the pattern π . Since we will introduce additional notions of
patterns, we may call such a pattern a classical pattern to avoid confusion. If5⊆S,
then we say σ avoids 5 if σ avoids every element of 5. The set of all permutations
of Sn avoiding 5 is denoted by Avn(5). In a mild abuse of notation, if 5= {π},
we will write Avn(π). If 5,5′ are two sets of patterns and |Avn(5)| = |Avn(5

′)|

for all n, then we say 5 and 5′ are Wilf equivalent and write 5≡5′.
These ideas may be combined by setting

F st
n (5; q)=

∑
σ∈Avn(5)

qst σ .

This allows one to say that 5,5′ are st-Wilf equivalent if F st
n (5; q)= F st

n (5
′
; q)

for all n, and write this as 5
st
≡5′. Thus, 5 and 5′ may be Wilf equivalent without

being st-Wilf equivalent. As a concrete example, 123 and 321 are clearly not
des-Wilf equivalent, even though they are Wilf equivalent. It is straightforward to
check that st-Wilf equivalence is indeed an equivalence relation on S.

Since it is generally a difficult question to determine whether two sets are
nontrivially Wilf equivalent, one should not expect it to be any easier to determine
st-Wilf equivalence. However, it is certainly possible to obtain some results; see
[Dokos et al. 2012] for results regarding F inv

n and Fmaj
n , and [Baxter 2014; Cameron

and Killpatrick 2015] for further results, including a study of enumeration strategies
for questions of this nature. In this article, we will study Fdes

n (5; q) for certain
nonclassical patterns, called mesh patterns and barred patterns. Special cases will
allow us to identify des-Wilf equivalences. We will also present several conjectural
des-Wilf equivalences and provide computational evidence for these.

2. Pattern avoidance background

Classical patterns. In order to work most efficiently, it is important to recognize
that certain Wilf equivalences are almost immediate to establish. For example, it
is obvious that |Avn(123)| = |Avn(321)|, since a1 · · · an ∈ Avn(123) if and only if
anan−1 · · · a1 ∈ Avn(321). This idea can be generalized significantly.
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Figure 1. The plot of 342516.

The plot of σ ∈Sn is the set of pairs (i, σ (i))∈R2 and will be denoted by P(σ ).
The plot of 342516 is shown in Figure 1. Let

D4 = {R0, R90, R180, R270, r−1, r0, r1, r∞},

where Rθ is counterclockwise rotation of a plot by an angle of θ degrees and
rm is reflection across a line of slope m. A couple of these rigid motions have
easy descriptions in terms of the one-line notation for permutations. If π =
a1a2 · · · ak then its reversal is πr

= ak · · · a2a1 = r∞(π), and its complement
is π c

= (k+ 1− a1)(k+ 1− a2) · · · (k+ 1− ak)= r0(π).
Note that σ ∈ Avn(π) if and only if f (σ ) ∈ Avn( f (π)) for any f ∈ D4; hence

π ≡ f (π). For this reason, the equivalences induced by the dihedral action on a
square are often referred to as the trivial Wilf equivalences.

Using these techniques, it is easy to show that 123 and 321 are trivially Wilf
equivalent, as are all of 132, 213, 231, and 312. It is less obvious, however, whether
123 and 132 are Wilf equivalent. This question was settled by independent results
due to [MacMahon 1960] and [Knuth 1969], whose combined work showed that
Avn(132) and Avn(123) are enumerated by the n-th Catalan number

Cn =
1

n+1

(2n
n

)
.

The Catalan numbers are famous for appearing in a multitude of combinatorial
situations; see [Stanley 2015] for many of them.

One of the most well-known combinatorial objects enumerated by the Catalan
numbers are Dyck paths. A Dyck path of length 2n is a lattice path in R2 starting
at (0, 0) and ending at (2n, 0), using steps (1, 1) and (1,−1), which never goes
below the x-axis. See Figure 2 for an example Dyck path of length 8.

Figure 2. A Dyck path of length 8.
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Nonclassical patterns. In this section, we will define two classes of nonclassical
patterns and describe what it means for a permutation to contain or avoid them.
The definitions of Wilf equivalence and des-Wilf equivalence then extend to these
patterns in the same way as classical patterns, so their precise definitions will be
omitted.

A mesh pattern is a pair (π,M), where π ∈ Sk and M ⊆ [0, k]2. Mesh
patterns are a vast generalization of classical patterns and were first introduced
by Brändén and Claesson [2011]. It is convenient to represent a mesh pattern
as a grid which plots π and shades in the unit squares whose bottom-left cor-
ners are the elements of M . For example, one may represent the mesh pattern
(π0,M0)= (4213, {(0, 2), (1, 0), (1, 1), (3, 3), (3, 4), (4, 3)}) as follows:

(π0,M0)= .

Containment of mesh patterns is most easily understood by an informal statement
and illustrative examples; the formal definition, given in [Brändén and Claesson
2011], shows that the intuition developed this way behaves as expected. We say
that σ ∈ Sn contains the mesh pattern (π,M) if σ contains an occurrence of π
and the shaded regions of P(π) corresponding to this occurrence contain no other
elements of P(σ ). If σ does not contain (π,M), then we say σ avoids (π,M).

For the illustrative examples, first consider σ = 612435. Notice that while 6435
is an occurrence of 4213 in σ , it is not an occurrence of the mesh pattern (π0,M0)

given above, since the shaded regions in P(σ ) dictated by M0 yield

Now consider σ ′ = 153624. In this case, 5324 is an occurrence of both 4213 and
(π0,M0) in σ ′, since the shading in this case is

In certain cases, determining which permutations avoid a mesh pattern (π,M)
with M nonempty is equivalent to determining which permutations avoid π as a
classical pattern. When this happens, we say that (π,M) has superfluous mesh, and
Tenner [2013] identified when exactly a mesh pattern has superfluous mesh. To
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do this, we first define an enclosed diagonal of (π,M) to be a triple ((i, j), ε, `)
where ε ∈ {−1, 1}, `≥ 1, and the following three properties hold:

(1) The plot of π contains the set {(i + d, j + εd) | 1≤ d < `}.

(2) The plot of π contains neither (i, j) nor (i + `, j + ε`).

(3) {(i + d, j + εd) | 0≤ d < `} ⊆ M .

Note that an enclosed diagonal may consist of a single element, as long as the
corresponding box in the mesh pattern contains no element of P(π). To illustrate,
the following three mesh patterns all have a unique enclosed diagonal:

However, none of the following five mesh patterns have any enclosed diagonals:

The following theorem gives the characterization of when a pattern has superfluous
mesh. As a result, we will not focus on any patterns with superfluous mesh, but we
will still use the theorem briefly.

Theorem 2.1 [Tenner 2013, Theorem 3.5′]. A mesh pattern has superfluous mesh
if and only if it has no enclosed diagonals.

Mesh patterns also generalize 1-barred patterns, in which a classical pattern is
allowed (but not required) to have a bar above one letter. This is a special case of
barred patterns, in which each letter is allowed to have a bar above it. The bars
above letters indicate that certain additional rules are required in order to define
containment of the pattern. We will not give the precise definition of containment
and avoidance of barred patterns in general, but will observe that if there are two or
more bars in the pattern, there is not necessarily a simple translation of the barred
pattern into a mesh pattern. In some instances, a barred pattern may be described as
a decorated mesh pattern [Úlfarsson 2011/12], but this is not always possible. To
avoid this difficulty in the statement and proof of Proposition 3.7, we will simply
describe here what it means for a permutation to avoid two specific barred patterns.

We say that σ = a1 · · · an avoids 1̄2̄43 if, whenever ai aj is an occurrence of 21,
then there are some integers k, l such that k < l < i and akalai aj is an occurrence of
1243. We also say that σ avoids 1̄324̄ if, whenever ai aj is an occurrence of 21, then
there are some integers k, l such that k < i < j < l and akai aj al is an occurrence of
1324. As an example, σ = 124635 avoids 1̄2̄43 since all occurrences of 21, which
are 43, 63, and 65, extend to an occurrence of 1243 by placing 12 before them.
However, σ contains 1̄324̄ since 63, which is an occurrence of 21, does not play
the role of 32 in any occurrence of 1324 in σ .
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3. Main results

We now have all of the tools we need to begin proving results. We begin with a
simple application of several known theorems.

Proposition 3.1. If (132,M1) and (312,M2) are mesh patterns, neither of which
contain an enclosed diagonal, then

(132,M1)
des
≡ (312,M2).

Proof. By Theorem 2.1, Avn((312,M2)) = Avn(312), so (312,M2)
des
≡ 312. It

then follows directly from [Reifegerste 2003, Remark 2.5(b)] that the number of
elements in Avn(312) with exactly k descents is

Nn,k :=
1
n

(n
k

)( n
k+1

)
.

Since the sequence {Nn,k}
n−1
k=0 is symmetric for fixed n, and since

des(σ )= n− 1− des(σ c),

we have

(312,M2)
des
≡ 312

des
≡ 132.

Again by Theorem 2.1, we have Avn(132)=Avn((132,M1)), so these two patterns
are des-Wilf equivalent as well. Connecting the equivalences, the claim follows. �

Characterizing the des-Wilf classes for mesh patterns (π,M) where π ∈S4 is
difficult, and we will not attempt to fully characterize the des-Wilf equivalence
classes of such patterns. In what follows, we merely wish to present a step toward
understanding these in more depth, but first we need two more definitions.

If A ⊆ [n], f ∈ D4, and σ ∈SA, then we let f A(σ ) denote the unique element
of SA whose standardization is f (std(σ )). We say that f A is a dihedral action
relative to A. As a simple example, if 7461 ∈S{1,4,6,7}, then std(7461)= 4231 and
R{1,4,6,7}90 (σ )= 1647.

Theorem 3.2. We have

des
≡

des
≡ .

Proof. First consider

(π1,M1)= and (π2,M2)= .
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To prove their des-Wilf equivalence, we will form a des-preserving bijection

α :Sn \Avn((π1,M1))→Sn \Avn((π2,M2)),

that is, a des-preserving bijection between permutations in Sn containing (π1,M1)

and those containing (π2,M2).
Suppose σ = a1 · · · an ∈ Sn contains (π1,M1). If σ contains (π2,M2), then

set α(σ) = σ . Otherwise, let j be the smallest index in which an occurrence of
(π1,M1) begins, and consider ai ai+1 · · · ap, where

p =min{m | m > j + 2, am > aj },

i =min{m | m ≤ j, am, am+1, . . . , aj < ap}.

Let A = {ai , ai+1, . . . , ap}, and set

R A
180(ai · · · ap)= bi · · · bp,

and further set
α(σ)= a1 · · · ai−1bi · · · bp ap+1 · · · an.

Since R A
180 is a des-preserving map, we have that for any k ∈ {1, . . . , p− 1− i},

i + k ∈ Des(σ ) if and only if p − k ∈ Des(α(σ )). Additionally, for any k ∈
{1, . . . , i−1, p, p+1, . . . , n−1}, k ∈Des(σ ) if and only if k ∈Des(α(σ )). Thus,
α is des-preserving.

To show that α is invertible, we will construct a map

β :Sn \Avn((π2,M2))→Sn \Avn((π1,M1))

and show that β ◦ α is the identity map on Sn \Avn((π1,M1)). If σ ′ = a′1 · · · a
′
n

contains (π2,M2), then we create β(σ) by first testing a construction similar to the
one from the previous paragraph. Namely, let j ′ be the smallest index in which an
occurrence of (π2,M2) begins, and consider a′i a

′

i+1 · · · a
′
p, where

p′ =min{m | m > j ′+ 2, a′m > a′j ′+1},

i ′ =min{m | m ≤ j ′, a′m, a′m+1, . . . , aj ′ < a′p}.

This time, let A′ = {a′i , a′i+1, . . . , a′p}, and set

R A′
180(a

′

i · · · a
′

p)= b′i · · · b
′

p.

If a′1 · · · a
′

i−1b′i · · · b
′

p′a
′

p′+1 · · · a
′
n contains both (π2,M2) and (π1,M1), then set

β(σ ′)= σ ′. Otherwise, set

β(σ ′)= a′1 · · · a
′

i−1b′i · · · b
′

p′ a
′

p′+1 · · · a
′

n.

The fact that β ◦ α is the identity map on Sn \Avn((π1,M1)) follows from con-
struction.
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Now consider (π2,M2) and

(π3,M3)= .

Suppose σ =a1a2 · · · an and aj aj+1aj+2ap is the first copy of (π3,M3), as identified
in the second paragraph in this proof. If ap is the only al for which l > j + 2 and
al > aj , then set α(σ) to be σ with aj+1 and ap transposed. Otherwise, choose

r =min{l | aj < al < aj+1, l > j + 2}.

Let S={ar ,ar+1, . . . ,aq}where q is the maximum index for which {ar ,ar+1, . . . ,aq}

is increasing and aj < ak < aj+1 for all k ∈ S. Set α(σ) to be σ with aj+1 and
max S transposed. By choosing the maximum of S we are guaranteeing that α is
des-preserving. By construction, α(σ) contains an occurrence of (π2,M2). Using
an argument similar to the first part of this proof, α is invertible and is therefore a
bijection. �

Recall that the Stirling numbers of the second kind, denoted by S(n, k), record
the number of ways to partition [n] into k nonempty blocks. Here, we will begin to
find useful the notation

Avdes,k
n (5)= {σ ∈ Avn(5) | des(σ )= k}.

Proposition 3.3. Let

(π,M)= .

For all n, we have

Fdes
n ((π,M); q)=

n−1∑
k=0

S(n, k+ 1)qk .

Proof. Let 6n,k denote the collection of set partitions of [n] into exactly k nonempty
blocks. We will create a bijection

f : Avdes,k
n ((π,M))→6n,k+1,

from which the conclusion follows.
First, let σ = a1 · · · an ∈Avdes,k

n ((π,M)). It follows from [Burstein and Lankham
2005/07, Theorem 4.1] that any such permutation is the concatenation of substrings

a1 < · · ·< ai0,

ai0+1 < · · ·< ai1,
...

aik+1 < · · ·< an,
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where a1 < ai j+1 > ai j+1+1 for all j . In particular, the values ai0, . . . , aik determine
the entire permutation.

Associate to σ the set partition

f (σ )= {{a1, . . . , ai0}, {ai0+1, . . . , ai1}, . . . , {aik+1, . . . , an}}.

Note that if σ =12 · · · n, then k=0, so this partition consists of only one block. Thus,
if σ has k descents, then the partition obtained has k+1 blocks. Because each choice
of the ai j determines σ , we know that f (σ ) 6= f (σ ′) whenever σ ′ ∈Avdes,k

n ((π,M))
and σ 6= σ ′. That is, f is injective.

Now we will show that f is surjective. Consider a set partition B={B1, . . . , Bk+1}

of [n] into k+ 1 blocks. We are free to write the Bi such that

Bi = {bi,1 < · · ·< bi,il } and min Bi <min Bi+1

for all i . Construct the permutation

bk+1,1bk+1,2 · · · bk+1,ik+1bk,1bk,2 · · · bk,ik · · · b1,1b1,2 · · · b1,i1 .

We claim that this permutation is an element of Avdes,k
n ((π,M)).

Any occurrence of

,

say, bαbβbγ , implies that bα ∈ Bi , bβ ∈ Bj , and bγ ∈ Bk for some i ≤ j < k. Since
the sequence of minima of the blocks is decreasing, we know that min Bk < bα < bγ .
Thus, the string

bαbβ(min Bk)bγ

is an occurrence of

.

Since the elements of the blocks strictly increase, the minima decrease, and since
there are k+1 blocks, there are k descents in the permutation. Thus f is surjective,
completing the proof. �

Example 3.4. Consider the permutation

3427156 ∈ Avdes,2
6

( )
.

Our construction in the previous proof associates to this permutation the partition

{{3, 4}, {2, 7}, {1, 5, 6}}.
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Figure 3. A Motzkin path of length 10 with 3 up-steps.

In the other direction, given the set partition

{{5}, {3, 1, 4}, {7, 2, 6}} = {{5}, {2, 6, 7}, {1, 3, 4}},

we obtain the permutation 5267134, which the reader may verify is indeed an
element of

Avdes,2
7

( )
.

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) using only
up-steps (1, 1), down-steps (1,−1), and horizontal steps (1, 0) such that the path
does not go below the x-axis. An example is shown in Figure 3. We let Mn,k

denote the set of Motzkin paths of length n with exactly k up-steps.
The next result we present was first proven in [Chen et al. 2002/03] by writing

Motzkin paths according to a “strip decomposition” and by writing permutations
according to canonical reduced decompositions. Here, we present a new, simpler
proof. To do so, we only need a few more definitions.

If i is a descent of σ = a1 · · · an , then we call ai a descent top and ai+1 a descent
bottom. Let Destop(σ ) denote the set of descent tops of σ and let Desbot(σ )
denote the set of descent bottoms of σ . A valley in σ is an element i for which
ai−1 > ai < ai+1.

Theorem 3.5 [Chen et al. 2002/03, Theorem 3.1]. Let

5= {(π4,M4), (π5,M5)},

where

(π4,M4)= , (π5,M5)= .

For all n,

Fdes
n (5; q)=

n∑
k=0

|Mn,k |qk .

Proof. We will form a bijection

µ : Avdes,k
n (5)→Mn,k .

For σ = a1 · · · an ∈ Avdes,k
n (5), let µ(σ) be the lattice path obtained by making

step ai a down-step if ai is a descent bottom, an up-step if ai is a descent top, and a
horizontal step if ai is neither.
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First, we need to check that µ is well-defined. Note that no letter of σ can be
both a descent top and a descent bottom, since this would imply σ contains an
instance of π4, which is forbidden. So, since the sets of descent tops and of descent
bottoms are disjoint, and these appear in pairs, we can be certain that the path
constructed by µ has length n and ends at (n, 0). Moreover, since a descent top
always appears before a descent bottom, at no step of the path can there have been
more down-steps than up-steps. This establishes that µ(σ) is a Motzkin path of
length n. Finally, since there are k descents, there are k descent tops, and µ(σ) will
have k up-steps. Hence, µ(σ) ∈Mn,k .

Next we will show that µ is injective. To do so, we will determine exactly the
structure of the elements in Avn(5). Notice that the descent bottoms of σ must
appear in increasing order in σ , since, otherwise, there would be an occurrence
of π4. For the same reason, the descent tops must appear in increasing order in σ .

Let σ = a1 · · · an ∈ Avdes,k
n (5) and suppose that i is neither a descent top nor

a descent bottom. Suppose for now that j is the first descent greater than i . If
aj+1 < ai < aj , then ai aj aj+1 is an occurrence of 231. Since σ avoids (π5,M5),
there must be some l for which σ has the subsequence ai alaj aj+1 and al < aj+1.
This implies that some integer i+1, i+2, . . . , l−1 is a descent, which contradicts
the fact that j is the first descent greater than i . So, it must be true that ai <aj+1<aj .
Since j is the first descent greater than i , it follows that ai ai+1 · · · aj−1aj+1 is an
increasing sequence. It follows that the subsequence of σ consisting of all letters
that are not descent tops is an increasing sequence.

Now we will show that µ is injective. If µ(σ1)=µ(σ2) for σ1, σ2 ∈Avn(5), then
Destop(σ1)= Destop(σ2) and Desbot(σ1)= Desbot(σ2), since these are identified
by the up-steps and down-steps in the Motzkin path. Our description of elements
of Avn(5) shows that once the descent-top sets and descent-bottom sets have been
identified, there is a unique σ in the avoidance class with those sets. Therefore,
σ1 = σ2, and µ is injective.

Finally, we will show that µ is surjective. Let A ∈Mn,k , and label its steps
1, . . . , n from left to right. We will construct its preimage in stages. First write down
1, . . . , n, but exclude the labels on the down-steps. Then insert the label on the
i-th down-step immediately before the label of the i-th up-step. Call the resulting
permutation σA. Using the description of elements of Avn(5) from earlier in this
proof, we see that σA ∈ Avn(5). Additionally, it is clear that µ(σA) = A by our
construction of σA and the definition of µ. Therefore, µ is surjective, completing
the proof. �

Example 3.6. Let A be the Motzkin path in Figure 3. Steps 2, 3, and 8 are up-steps,
and therefore will be descents bottoms. Steps 4, 6, and 10 are down-steps, so
these will be descent tops. The remaining numbers will be neither descent tops nor
bottoms.
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When the descent tops are removed from µ−1(A), the result will be an increas-
ing string of numbers: 1235789. The descent tops are then placed immediately
preceding the descent bottoms, to obtain 1426357(10)89.

For the final result of the section, we make two notes. First, recall that the
Eulerian polynomial An(q) is the polynomial∑

σ∈Sn

qdes(σ )
= An(q).

It should be noted that some authors, e.g., in [Stanley 1997], define the Eulerian
polynomials using qdes(σ )+1 rather than the definition given here. So, one should
take care when encountering Eulerian polynomials in the literature. Second, recall
from the end of Section 2 what it means for a permutation to contain and avoid the
barred patterns 1̄2̄43 or 1̄324̄.

Proposition 3.7. For all n,

Fdes
n (1̄2̄43; q)= Fdes

n (1̄324̄; q)=
{

1 if n = 0, 1,
An−2(q) if n ≥ 2.

Proof. We will first show that Fn(1̄2̄43; q) satisfies the right-hand side. The
conclusion is clearly true for n < 2, so we will restrict our attention to when
n ≥ 2. Choose σ = a1 · · · an ∈ Avn(1̄2̄43). Note first that a1 < a2 since, if a1 > a2,
then a1a2 would be an occurrence of u(1̄2̄43) = 21 but this cannot extend to an
occurrence of 1243.

Now, suppose a2 > 2. Setting am = min{ai | 3 ≤ i ≤ n} we have a2 > am , so
a2am is an occurrence of u(1̄2̄43) in σ . However, there is only letter to the left of
a2, so this pattern does not extend to an instance of 1243. Thus, a2 = 2. Together
with the previous paragraph, we know a1 = 1 as well. In particular, a1 < a2 < ai

for all i ≥ 3.
Now, take any occurrence ai aj of 21 in which 2< i < j . Clearly, a1a2ai aj is an

extension to 1243. This holds for any possible permutation of 3, . . . , n as the final
n− 2 letters. Since 1 and 2 are never descents of these permutations, we have

Fdes
n (1̄2̄43; q)= An−2(q),

as claimed.
Now we will show that the same formula holds for 1̄324̄. This time, assume

σ ∈ Avn(1̄324̄). If ai = 1 for some i > 1, then a1ai would be an occurrence of 21.
However, this can never extend to 1324 since there is no letter to the left of a1.
Thus, a1 = 1. An analogous argument shows an = n.

This allows a2 · · · an−1 to be any arrangement of 2, 3, . . . , n−1, since, whenever
ai aj is an occurrence of 21 for 2≤ i, j ≤ n−1, this extends to 1ai aj n. So, we have
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the bijection

a1a2 · · · an 7→ (a2− 1)(a3− 1) · · · (an−1− 1)

with elements of Sn−2. Since 1 and n are never descents in Avn(1̄324̄), this is a
des-preserving bijection. Therefore, Fdes

n (1̄2̄43; q)= An−2(q). �

4. Conjectures and further directions

In this section, we provide a few conjectures, supporting data, and additional
direction in which this work could proceed. In all cases, no closed forms for the
functions Fdes

n (5; q) are known. We refer the reader to Table 1 for all known
polynomials Fdes

n (5; q) for 4≤ n ≤ 8, since, for these choices of 5, Fdes
n (5; q)=

Fdes
n (∅; q) for n ≤ 3.

Conjecture 4.1. The following des-Wilf equivalences hold:

des
≡ and

des
≡ .

To state our next conjecture, we must discuss a particular sorting of permutations.
Let σ =a1 · · · an ∈Sn and suppose ai = n. Let 0 be the operator defined recursively
as

0(σ)= 0(a1 · · · ai−1)0(ai+1 · · · an)n.

We say that σ is West-t-stack-sortable if 0t(σ ) is the identity permutation. Note
that the 2-West-stack-sortable permutations [West 1990] are exactly those in

Avn

(
,

)
.

Conjecture 4.2. The following des-Wilf equivalence holds:{
,

}
des
≡

{
,

}
.

If this conjecture is true, then from [Bóna 2002] it follows that

Fdes
n

({
,

}
;q

)
= Fdes

n

({
,

}
;q

)

=

n−1∑
k=0

(n+k)!(2n−k−1)!
(k+1)!(n−k)!(2k+1)!(2n−2k−1)!

qk .
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5 n Fdes
n (5;q)

{ }
,

{ } 4 1+10q+11q2
+q3

5 1+20q+57q2
+26q3

+q4

6 1+35q+204q2
+252q3

+57q4
+q5

7 1+56q+581q2
+1500q3

+969q4
+120q5

+q6

8 1+84q+1414q2
+6588q3

+9117q4
+3426q5

+247q6
+q7

{ }
,

{ } 4 1+10q+11q2
+q3

5 1+20q+56q2
+26q3

+q4

6 1+35q+196q2
+241q3

+57q4
+q5

7 1+56q+546q2
+1361q3

+897q4
+120q5

+q6

8 1+84q+1302q2
+5675q3

+7739q4
+3060q5

+247q6
+q7

Table 1. The polynomials Fdes
n (5; q) for certain sets of patterns 5.

Instead of generalizing the patterns being avoided, one may generalize permuta-
tions themselves. One way to do this is to consider the colored permutations

Gr,n := {(ε, σ ) | ε ∈ Zr , σ ∈Sn}.

In this case, we say that (ε, σ ) ∈ Gr,n contains (ζ, π) ∈ Gs,m if there are elements
1 ≤ i1 < i2 < · · · < is ≤ n such that std(σi1 · · · σis ) = π and εi j = ζj for all j . If
no such choice of i j exist, then we say (ε, σ ) avoids (ζ, π). For a set of colored
permutations 5, let

Avr,n(5)= {(ε, σ ) ∈ Gr,n | (ε, σ ) avoids all (ζ, π) ∈5}.

Question 4.3. What can be said about the polynomials

F st
r,n(5; q)=

∑
(ε,σ )∈Avr,n(5)

qst(ε,σ )?

We close by noting that Gr,n is the set of elements in the wreath product Zr oSn ,
a fact which may be useful when addressing the above questions.
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The classification of involutions and
symmetric spaces of modular groups

Marc Besson and Jennifer Schaefer
(Communicated by Kenneth S. Berenhaut)

The involutions and the symmetric spaces associated to the family of modular
groups of order 2m are explored. We begin by analyzing the structure of the auto-
morphism group and by establishing which automorphisms are involutions. We
conclude by calculating the fixed-point group and symmetric spaces determined
by each involution.

1. Introduction

A first course in group theory usually provides a short introduction to the idea
of the automorphism group of a group. Students often begin by calculating the
automorphism group for a few familiar groups of small order, such as the symmetric
group S3 or the dihedral group D4. Computing the automorphism group of one of
these groups is an especially fruitful exercise as it requires a student to understand
properties of the group itself and results in students making conjectures about
the structure of automorphism groups of similar groups. Though this activity is
worthwhile on its own, knowing the structure of the automorphism group of a group
has also proven essential in a variety of areas, including the theory of symmetric
spaces.

First introduced by Élie Cartan [1926; 1927], real symmetric spaces were a special
class of homogeneous Riemannian manifolds. Berger [1957] later generalized
these spaces and gave classifications of the irreducible semisimple symmetric
spaces. Since then the theory of symmetric spaces has expanded into a field
that plays a fundamental role in numerous areas of active research, including Lie
theory, number theory, differential geometry, harmonic analysis, and physics; see
[Harish-Chandra 1984a; 1984b; 1984c; 1984d; Ōshima and Matsuki 1984; Brylinski
and Delorme 1992; Carmona and Delorme 1994; van den Ban and Schlichtkrull
1997a; 1997b; Delorme 1998] for mathematics examples and [Olshanetsky and
Perelomov 1983; Zirnbauer 1996] for physics examples. The theory of symmetric
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spaces also has many generalizations. Symmetric varieties, symmetric k-varieties,
Vinberg’s theta-groups, spherical varieties, Gelfand pairs, Bruhat–Tits buildings,
Kac–Moody symmetric spaces, and generalized symmetric spaces are among these
generalizations which have found importance in various areas of mathematics and
physics such as number theory, algebraic geometry, and representation theory.

The majority of these generalizations can be studied in the context of generalized
symmetry spaces. Generalized symmetric spaces are defined as the homogeneous
spacesG=H withG an arbitrary group andH DG� Dfg 2G j �.g/Dgg the fixed-
point group of an order-n automorphism � . Of special interest are automorphisms
of order 2, also called involutions. If G is an algebraic group defined over a field k
and � an involution defined over k, then these spaces are also called symmetric
k-varieties, first introduced in [Helminck 1994].

For involutions there is a natural embedding of the homogeneous spaces G=H
into the group G as follows. Let � W G ! G be a morphism of G given by
�.g/D g�.g/�1 for g 2G, where � is an involution of G. The map � induces an
isomorphism of the coset spaceG=H onto �.G/Dfg�.g/�1 jg 2Gg. We will take
the image QD fg�.g/�1 j g 2Gg as our definition of the generalized symmetric
space determined by .G; �/. In addition, we define the extended symmetric space
determined by .G; �/ as RD fg 2G j �.g/D g�1g. Extended symmetric spaces
play an important role in generalizing the Cartan decomposition for real reductive
groups to reductive algebraic groups defined over an arbitrary field. While for
real groups it suffices to use Q for the Cartan decomposition, in the general case
one needs the extended symmetric space R. Symmetric spaces and symmetric
k-varieties are well known for their role in many areas of mathematics, but they
are probably best known for their fundamental role in representation theory. The
generalized symmetric spaces as defined above are of importance in a number of
areas as well, including group theory, number theory, and representation theory.

Recently, involutions and symmetric spaces have been determined for dihedral
groups [Cunningham et al. 2014], dicyclic groups [Bishop et al. 2013], and semidi-
hedral groups [Schaefer and Schlechtweg 2017]. In this paper, we investigate the
involutions and symmetric spaces associated to the modular groups of order 2m.
Since all non-Abelian 2-groups of order 2m which contain a cyclic subgroup of
order 2m�1 and where m � 4 are isomorphic to a dihedral group, a generalized
quaternion group (contained in the more general class of dicyclic groups), a semidi-
hedral group, or a modular group by [Gorenstein 1968], this work completes the
study of involutions and symmetric spaces for groups of this structure. We begin
in Section 2 by analyzing the family of modular groups, Mm.2/, of order 2m for
m> 4. In Section 3, we classify the automorphisms of Mm.2/ and establish which
automorphisms are involutions. We also consider which involutions arise from inner
automorphisms. In Section 4, we describe the fixed-point group H, the generalized
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symmetric space Q, and the extended symmetric space R determined by each
involution of Mm.2/. Finally in the Appendix, we provide H, Q, and R for each
involution of M4.2/.

2. Preliminaries

Throughout this paper, we consider the modular 2-group Mm.2/, which can be
described using the following presentation from [Gorenstein 1968]:

Mm.2/D hx; y j x
2m�1

Dy2D1; yxDx2
m�2C1yi;

where m � 4 is an integer. Defined in terms of generators and relations, this
presentation is convenient for determining the automorphism group of Mm.2/ and
the fixed-point group and symmetric spaces associated with each involution.

We begin by providing some basic structural properties of Mm.2/ that are pre-
requisites for the rest of the paper. The group presentation given above clearly
shows that Mm.2/ is a non-Abelian group. The next result we state provides a
commutation relation which we will use to simplify the structure of the group’s
elements.

Lemma 1. For any integer k � 1, we have yxk D x.2
m�2C1/ky.

Using the outcome of Lemma 1 repeatedly, together with the relations x2
m�1

D

y2 D 1 and the uniqueness of a quotient and a remainder in the quotient-remainder
theorem, we have the following results.

Proposition 2. Every element of Mm.2/ has a unique presentation as xiyj, where
i and j are integers with 0� i < 2m�1 and j 2 f0; 1g.

We call the presentation given in Proposition 2 the normal form of an element of
Mm.2/ and by writing all elements of the group in their normal form, we have the
subsequent corollary.

Corollary 3. The non-Abelian group Mm.2/ has order 2m and consists of the
elements 1, x, x2, . . . , x2

m�1�1, y, xy, x2y, . . . , x2
m�1�1y.

In order to determine the automorphism group and the symmetric spaces, it will
be necessary to know the order and inverse of each group element. The next three
results establish this information.

Lemma 4. For any integer k � 1,

.xiyj /k D

�
xikCij.k�1/2

m�3

yj when k is odd;
xikCijk2

m�3

when k is even:

Proof. Suppose k � 1 is an integer and xiyj 2 Mm.2/ for 0 � i < 2m�1 and
j 2 f0; 1g. Then .xiyj /.xiyj /D x2iCij2

m�2

by Lemma 1. When k is odd,
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.xiyj /k has 1
2
.k� 1/ pairs of the form .xiyj /.xiyj /. Thus

.xiyj /k D x.2iCij2
m�2/ 1

2
.k�1/xiyj

D x.k�1/.iCij2
m�3/Ciyj D xikCij.k�1/2

m�3

yj :

When k is even, .xiyj /k has 1
2
k pairs of the form .xiyj /.xiyj /. In this case

.xiyj /k D x.2iCij2
m�2/ 1

2
k
D xikCijk2

m�3

as desired. �

Proposition 5. For any integer i with 0� i < 2m�1,

jxi j D
2m�1

gcd.i; 2m�1/
and jxiyj D

2m�1

gcd.2m�2; i C i2m�3/
:

Proof. By basic properties of cyclic groups and the fact that jxj D 2m�1,

jxi j D
2m�1

gcd.i; 2m�1/
:

Consider xiy. Then .xiy/2 D x2iCi2
m�2

by Lemma 4, and

jx2iCi2
m�2

j D
2m�1

gcd.2m�1; 2i C i2m�2/

by above. By Lagrange’s theorem, j.xiy/2j � jxiyj. Furthermore, jxiyj �
2j.xiy/2j by properties of order. Hence we have j.xiy/2j � jxiyj � 2j.xiy/2j.

Since jMm.2/j D 2
m, we know that jxiyj is a power of 2 by Lagrange’s theorem.

So either jxiyj D j.xiy/2j or jxiyj D 2j.xiy/2j. We can easily rule out the first
case, because h.xiy/2i is a proper subgroup of hxiyi, seeing as it does not contain
xiy for instance. Thus

jxiyj D 2j.xiy/2j D 2
2m�1

gcd.2m�1; 2i C i2m�2/
D

2m�1

gcd.2m�2; i C i2m�3/
: �

Proposition 6. For any integer i with 0� i < 2m�1,

.xi /�1 D x2
m�1�i and .xiy/�1 D x.2

m�1�i/.2m�2C1/y:

Proof. The result follows immediately from Lemma 1 and the relations x2
m�1

D

y2 D 1. �

The final result of this section describes which elements compose the center
of Mm.2/. Knowing the center allows us to simplify calculations in several instances.

Proposition 7. The center of Mm.2/ consists of all elements of the form xi where
0� i < 2m�1 is even. Thus Z.Mm.2// is a cyclic subgroup of order 2m�2.
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Proof. We break this proof into three cases.

Case 1: Consider x2k 2Mm.2/, where 0� k < 2m�2. Then

xx2k D x1C2k D x2kC1 D x2kx;

and by Lemma 1,

yx2k D x2k.2
m�2C1/y D xk2

m�1

x2ky D x2ky:

Thus x2k commutes with both generators and hx2i �Z.Mm.2//.

Case 2: Consider x2kC1 2Mm.2/, where 0� k < 2m�2. Using the commutation
relation of Lemma 1,

yx2kC1 D x.2kC1/.2
m�2C1/y D x2kC1x2

m�2

y ¤ x2kC1y;

as x2
m�2

is not equal to the identity. Thus x2kC1 is not central.

Case 3: Consider xiy 2 Mm.2/, where 0 � i < 2m�1. Then xxiy D xiC1y.
However,

xiyx D xix2
m�2C1y D x2

m�2

xiC1y:

These two expressions cannot be equal because x2
m�2

is not equal to the identity.
Thus elements of the form xiy are not central.

Therefore, Z.Mm.2//D hx
2i. �

Example. The center of M4.2/ is Z.M4.2//D f1; x
2; x4; x6g.

3. Automorphisms and involutions of Mm.2/

In this section, we determine the automorphism group of Mm.2/, denoted by
Aut.Mm.2//. We begin by analyzing the structure of each automorphism and
then move to proving some properties of the automorphism group as a whole. We
conclude this section by establishing which elements of Aut.Mm.2// are involutions
and what properties two automorphism must satisfy to be equivalent.

Theorem 8. A homomorphism � W Mm.2/! Mm.2/ is an automorphism if and
only if �.x/D xayb and �.y/D xc2

m�2

y where a is odd and b; c 2 f0; 1g.

Proof. Let � 2 Aut.Mm.2//. Then by properties of automorphisms, � must map x
to an element of order 2m�1 and y to an element of order 2. Thus by Proposition 5,
�.x/D xa or xay, where a is odd and �.y/D y, x2

m�2

, or x2
m�2

y. However, �
would not be injective if y mapped to x2

m�2

. Therefore, if � is an automorphism,
�.x/D xayb and �.y/D xc2

m�2

y, where a is odd and b; c 2 f0; 1g. The converse
of this statement can be proven using cases. �

Corollary 9. The automorphism group Aut.Mm.2// has order 2m.
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Proof. Since there are 2m�2 � 2 elements xayb , where a is odd and b 2 f0; 1g, and
two elements xc2

m�2

y, where c 2 f0; 1g,

jAut.Mm.2//j D 2
m�2
� 2 � 2D 2m: �

Remark. It is interesting that jAut.Mm.2//j D jMm.2/j. In the cases of dihedral
groups [Cunningham et al. 2014], generalized quaternion groups [Bishop et al.
2013], and semidihedral groups [Schaefer and Schlechtweg 2017], the order of the
automorphism group is much larger than the order of the group.

Based on the results of Theorem 8, we can represent each automorphism uniquely
as �a;b;c , where �a;b;c.x/ D xayb and �a;b;c.y/ D xc2

m�2

y, where a is odd
and b; c 2 f0; 1g. Using this notation, we see that �1;0;0 denotes the identity
automorphism. In the following theorem, we determine where �a;b;c maps an
arbitrary element xiyj 2Mm.2/.

Theorem 10. Let xiyj 2Mm.2/ for 0 � i < 2m�1 and j 2 f0; 1g and �a;b;c 2
Aut.Mm.2//, where a is odd and b; c 2 f0; 1g. Then

�a;b;c.x
iyj /D

�
xaiCabi2

m�3Ccj2m�2

yj when i is even,
xaiCab.i�1/2

m�3Ccj2m�2

ybCj when i is odd.

Proof. Let xiyj 2Mm.2/ for 0� i <2m�1 and j 2f0; 1g and �a;b;c 2Aut.Mm.2//,
where a is odd and b; c 2 f0; 1g. By Theorem 8, we have

�a;b;c.x
iyj /D .xayb/i .xc2

m�2

y/j :

In Proposition 7, we proved xc2
m�2

2Z.Mm.2//. Thus .xc2
m�2

y/j D xcj2
m�2

yj.
To understand how the term .xayb/i interacts with xcj2

m�2

yj, we split into two
cases: i even and i odd.

Case 1: Let i be even. Then by Lemma 4

�a;b;c.x
iyj /D .xayb/ixcj2

m�2

yj

D xaiCabi2
m�3

xcj2
m�2

yj

D xaiCabi2
m�3Ccj2m�2

yj :

Case 2: Let i be odd. Then by Lemma 4

�a;b;c.x
iyj /D .xayb/ixcj2

m�2

yj

D xaiCab.i�1/2
m�3

ybxcj2
m�2

yj

D xaiCab.i�1/2
m�3Ccj2m�2

ybCj : �

Conjugation by a fixed element of a group G is one of the most important
examples of an automorphism of a group. Thus it is interesting to determine which
elements of Aut.Mm.2// are inner automorphisms. Given an arbitrary group G and
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an element g 2G, we let 'g 2Aut.G/ denote conjugation by g and Inn.G/ denote
the collection of inner automorphisms of G.

Theorem 11. The inner automorphisms of Mm.2/ are �1;0;c and �.2m�2C1/;0;c ,
where c 2 f0; 1g.

Proof. Consider 'g for some g 2Mm.2/. Suppose g D xi. Then

'xi .x/D xixx2
m�1�i

D x2
m�1C1

D x;

'xi .y/D xiyx2
m�1�i

D xix.2
m�2C1/.2m�1�i/y D x�i2

m�2

y:

When �i is even, x�i2
m�2

y D y and when �i is odd, x�i2
m�2

y D x2
m�2

y. Next,
consider g D xiy. Then

'xiy.x/D .x
iy/x.yx2

m�1�i /D xi .x2
m�2C1y/.yx2

m�1�i /D x2
m�2C1;

'xiy.y/D .x
iy/y.yx2

m�1�i /D xi .x.2
m�1�i/.2m�2C1/y/D x�i2

m�2

y:

Again, when �i is even, x�i2
m�2

y D y and when �i is odd, x�i2
m�2

y D x2
m�2

y.
Conversely, consider �1;0;c 2 Aut.Mm.2//. Note that conjugation by x�c gives

x�cxxc D x;

x�cyxc D xc.2
m�2/y:

Thus, �1;0;c 2 Inn.Mm.2//. Similarly, consider �2m�2C1;0;c 2 Aut.Mm.2//. Then
conjugation by x�cy gives

.x�cy/x.yxc/D x2
m�2C1;

.x�cy/y.yxc/D xc.2
m�2/y:

Thus, �2m�2C1;0;c 2 Inn.Mm.2//. Therefore, �a;b;c is an inner automorphism of
Mm.2/ if and only if a is 1 or 2m�2C 1, b D 0, and c 2 f0; 1g. �

It follows from this result that four of the 2m automorphisms in Aut.Mm.2//

are inner automorphisms, which we knew would be the case as Inn.Mm.2// Š

Mm.2/=Z.Mm.2// and jZ.Mm.2//j D 2
m�2 [Gorenstein 1968]. In Section 4, we

will find it useful to understand the structure of the involutions arising from inner
automorphisms because it will allow us to simplify the presentation of the fixed-
point groups, the generalized symmetric spaces, and the extended symmetric spaces
in these cases.

Before we can characterize the involutions, we require the following lemmas.

Lemma 12. For any �a;b;c ; �d;e;f 2 Aut.Mm.2//, where a and d are odd and
b; c; e; f 2 f0; 1g,

�a;b;c ı�d;e;f D �adCab.d�1/2m�3Cce2m�2; bCe; cCf :
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Proof. Let �a;b;c and �d;e;f 2 Aut.Mm.2//. To determine �a;b;c ı �d;e;f , we
examine �a;b;c ı�d;e;f .x/ and �a;b;c ı�d;e;f .y/.

By Theorem 10 and d odd,

�a;b;c ı�d;e;f .x/D �a;b;c.x
dye/D xadCab.d�1/2

m�3Cce2m�2

ybCe:

Next, by Theorem 10 and f 2m�2 even,

�a;b;c ı�d;e;f .y/D �a;b;c.x
f 2m�2

y/

D xaf 2
m�2Cabf 2m�22m�3Cc2m�2

y D x.afCc/2
m�2

y:

Because a is odd, aD 2kC 1 for k 2 Z and we have

x.afCc/2
m�2

y D x..2kC1/fCc/2
m�2

y D x.fCc/2
m�2

y:

Thus �a;b;c ı�d;e;f .y/D x.cCf /2
m�2

y.
Given the images of x and y under �a;b;c ı �d;e;f , we can define the general

form of automorphism composition:

�a;b;c ı�d;e;f D �adCab.d�1/2m�3Cce2m�2; bCe; cCf : �

This result now allows to us to answer our question regarding automorphisms of
order 2. We see in the following theorem that this reduces to evaluating an equation
modulo 2m�1.

Lemma 13. Let �a;b;c 2 Aut.Mm.2//, where a is odd and b; c 2 f0; 1g. Then
.�a;b;c/

2 D �1;0;0 if and only if

a2C ab.a� 1/2m�3C bc2m�2 � 1 mod 2m�1: (1)

Proof. Consider �a;b;c 2 Aut.Mm.2//. By Lemma 12, we find that

�a;b;c ı�a;b;c D �a2Cab.a�1/2m�3Cbc2m�2;2b;2c :

Since b; c 2 f0; 1g, we have 2b � 2c � 0 mod 2 always. Thus we only need to
solve (1) to determine when �a;b;c ı�a;b;c D �1;0;0. �

Theorem 14. For m D 4, Aut.M4.2// contains 11 involutions and for integers
m� 5, Aut.Mm.2// contains 15 involutions.

Proof. Let �a;b;c 2 Aut.Mm.2//, where a is odd and b; c 2 f0; 1g, such that
.�a;b;c/

2 D �1;0;0. Then by Lemma 13, (1) holds.

Case 1: Suppose b D 0 and c D 0. Then (1) reduces to a2 � 1 mod 2m�1. There
are four elements a in Z2m�1 with a2 � 1 mod 2m�1 by [Burton 2010], namely 1,
�1, 1C 2m�2, and �1C 2m�2. Thus we have four elements of the form �a;0;0 2

Aut.Mm.2// with .�a;0;0/2 D �1;0;0. Because �1;0;0 has order 1, it follows that
there are three involutions of the form �a;0;0, where a2f�1; 1C2m�2;�1C2m�2g.



THE CLASSIFICATION OF INVOLUTIONS AND SYMMETRIC SPACES 573

Case 2: Suppose b D 0 and c D 1. Then (1) again reduces to a2 � 1 mod 2m�1

with solutions 1, �1, 1C 2m�2, and �1C 2m�2. Thus in this case we have four
involutions of the form �a;0;1, where a 2 f1;�1; 1C 2m�2;�1C 2m�2g.

Case 3: Suppose b D 1 and c D 0. Then (1) reduces to a2 C a.a � 1/2m�3 �
1 mod 2m�1, which is equivalent to a2.1C 2m�3/ � a2m�3 � 1 � 0 mod 2m�1.
Consider mD 4. Then our equation becomes 3a2� 2a� 1� 0 mod 8. It can be
shown that 1 and 5 are the only solutions. Thus the only involutions of the form
�a;1;0 when mD 4 are �1;1;0 and �5;1;0.

Now suppose m � 5. Because 1C 2m�3 is odd, our equation is equivalent to
.1C 2m�3/Œa2.1C 2m�3/� a2m�3� 1�� 0 mod 2m�1. By using the identity

.1C2m�3/Œa2.1C2m�3/�a2m�3�1�D .a.1C2m�3/�2m�4/2� .2m�4C1/2;

our original quadratic equivalence may be expressed as

.a.1C 2m�3/� 2m�4/2 � .2m�4C 1/2 mod 2m�1:

Because .2m�4C 1/2 is odd when m � 5, this congruence has four solutions by
[Burton 2010]. It can be shown that 1, 1C2m�2, �1�2m�3, and �1�2m�2�2m�3

are the solutions for a. Thus we have four involutions of the form �a;1;0, where
a 2 f1; 1C 2m�2;�1� 2m�3;�1� 2m�2� 2m�3g.

Case 4: Suppose bD 1 and cD 1. Then finally (1) reduces to a2Ca.a�1/2m�3C
2m�2 � 1 mod 2m�1, which is equivalent to

a2.1C 2m�3/� a2m�3C 2m�2� 1� 0 mod 2m�1:

Consider mD 4. Then our equation becomes 3a2� 2aC 3� 0 mod 8. It can be
shown that 3 and 7 are the only solutions. Thus the only involutions of the form
�a;1;1 when mD 4 are �3;1;1 and �7;1;1.

Now suppose m � 5. Because 1C 2m�3 is odd, our equation is equivalent to
.1C2m�3/Œa2.1C2m�3/�a2m�3C2m�2�1�� 0 mod 2m�1. Using the identity

.1C 2m�3/Œa2.1C 2m�3/� a2m�3C 2m�2� 1�

D .a.1C 2m�3/� 2m�4/2� .2m�4� 1/2;

our original quadratic equivalence may be expressed as

.a.1C 2m�3/� 2m�4/2 � .2m�4� 1/2 mod 2m�1:

Because .2m�4 � 1/2 is odd when m � 5, this congruence has four solutions by
[Burton 2010]. It can be shown that�1, �1�2m�2 , 1C2m�3, and 1C2m�2C2m�3

are the solutions for a. Thus we have four involutions of the form �a;1;1, where
a 2 f�1;�1� 2m�2; 1C 2m�3; 1C 2m�2C 2m�3g.
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Considering all cases, it follows that Aut.Mm.2// contains 11 involutions when
mD 4 and 15 involutions m� 5. �

Remark. Given that the number of involutions increases as m increases in the
cases of dihedral groups [Cunningham et al. 2014], generalized quaternion groups
[Bishop et al. 2013], and semihedral groups [Schaefer and Schlechtweg 2017], it is
a bit surprising that the number of involutions of Mm.2/ is at most 15 for all m.

Example. Consider M4.2/. Then by Theorem 14 the 11 involutions in Aut.M4.2//

are �3;0;0, �5;0;0, �7;0;0, �1;0;1, �3;0;1, �5;0;1, �7;0;1, �1;1;0, �5;1;0, �3;1;1, and
�7;1;1.

As stated earlier, it is useful to know which of these involutions arise from inner
automorphisms. Using the results of Theorems 11 and 14, it is clear that when
a D 1 or 2m�2 C 1, b D 0, and c D 0 or 1, equation (1) is satisfied. Thus, we
have the following result that characterizes which inner automorphisms are also
involutions.

Theorem 15. All three nonidentity, inner automorphisms of Mm.2/ are involutions.

Example. Consider M4.2/. It follows by Theorem 15 that the involutions in
Aut.M4.2// that arise from inner automorphisms are �1;0;1, �5;0;0, and �5;0;1.

We complete this section by determining which elements of Aut.Mm.2// are
equivalent, for equivalent involutions produce the same generalized symmetric
spaces.

Definition 16. Let G be a group and �, � 2 Aut.G/. Then � and � are said
to be isomorphic, written � � � , if and only if there exists � 2 Aut.G/ such
that ����1 D � , i.e., � and � are conjugate to each other. Two isomorphic
automorphisms are said to be in the same equivalence class.

We begin by finding the inverse of an automorphism.

Lemma 17. For any �a;b;c ; �d;e;f 2Mm.2/, where a and d are odd and b;c;e;f 2
f0;1g, we have

�d;e;f D �
�1
a;b;c

if and only if

d � .aCab2m�3/�1.1Cab2m�3�bc2m�2/ mod 2m�1; eD b and f D c:

Proof. Consider �a;b;c ; �d;e;f 2Mm.2/. It follows by Lemma 12 that

�a;b;c ı�d;e;f D �adCab.d�1/2m�3Cce2m�2; bCe; cCf D �1;0;0

if and only if

ad C ab.d � 1/2m�3C ce2m�2 � 1 mod 2m�1; b D e and c D f:
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Using the fact that b D e, the equation

ad C ab.d � 1/2m�3C ce2m�2 � 1 mod 2m�1

is equivalent to

ad C ab.d � 1/2m�3C bc2m�2 � 1 mod 2m�1:

Solving for d , we get

d � .aC ab2m�3/�1.1C ab2m�3� bc2m�2/ mod 2m�1: �

Lemma 18. For any �a;b;c ; �d;e;f 2Mm.2/, where a and d are odd and b;c;e;f 2
f0;1g, we have

�a;b;c ı�d;e;f ı�
�1
a;b;c D �˛;e;f ;

where

˛� .aCab2m�3/�1ŒadCc.e�abd/2m�2C.ab.2d�1/Cade.1�a//2m�3�

Cb.cCf /2m�2: (2)

Proof. Consider �a;b;c ; �d;e;f 2Mm.2/. Then

�a;b;c ı�d;e;f ı�
�1
a;b;c

D �adCab.d�1/2m�3Cce2m�2; bCe; cCf ı�.aCab2m�3/�1.1Cab2m�3�bc2m�2/; b; c

by Lemmas 12 and 17. Utilizing Lemma 12 again, this composition becomes
�ˇCˇ.�1/.bCe/2m�3Cb.cCf /2m�2; 2bCe; 2cCf , where

ˇ D ad C ab.d � 1/2m�3C ce2m�2;

 D .aC ab2m�3/�1.1C ab2m�3� bc2m�2/;

which is equivalent to �˛;e;f , where ˛ satisfies (2), by basic algebra and reduction
modulo 2m�1 and 2bCe�e mod 2 and 2cCf�f mod 2 by reduction modulo 2. �

Proposition 19. Two elements �d;e;f ; �p;q;r 2Aut.Mm.2// are equivalent if there
exists an �a;b;c 2 Aut.Mm.2// such that

p� .aCab2m�3/�1ŒadCc.e�abd/2m�2C.ab.2d�1/Cade.1�a//2m�3�

Cb.cCf /2m�2 mod 2m�1; (3)

q D e, and r D f .

Proof. Let �d;e;f ; �p;q;r 2 Aut.Mm.2//, where d and p are odd and e; f; p; q 2
f0; 1g. These elements are conjugate if there exists an �a;b;c 2Aut.Mm.2//, where
a is odd and b; c 2 f0; 1g, such that

�a;b;c ı�d;e;f ı�
�1
a;b;c D �p;q;r :
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Using the results of the previous theorem, this is true if and only if p satisfies (3),
q D e, and r D f . �

Example. Consider M4.2/ and the 11 involutions in Aut.M4.2//, namely �3;0;0,
�5;0;0, �7;0;0, �1;0;1, �3;0;1, �5;0;1, �7;0;1, �1;1;0, �5;1;0, �3;1;1, and �7;1;1. Take
�3;0;0. Then by Proposition 19 the only involutions �3;0;0 could be equivalent to
are �3;0;0, �5;0;0, and �7;0;0. Using d D 3, e D 0, and f D 0, the equivalence
in Proposition 19 reduces to p � .1C 2b/�1Œ3C 4bcC 2b�C 4bc mod 8. Since
b; c 2 f0; 1g, the only possible values for p are 3 and 7. Thus �3;0;0 is equivalent
to itself and �7;0;0 but not �5;0;0. We can use similar calculations to show the
remaining equivalence classes of involutions in Aut.M4.2// are f�1;0;1; �5;0;1g,
f�3;0;1g, f�7;0;1g, f�1;1;0; �5;1;0g, and f�3;1;1; �7;1;1g.

4. Fixed-point groups and symmetric spaces of Mm.2/

Recall from the Introduction that we are interested in determining the fixed-point
group H, the generalized symmetric space Q, and the extended symmetric space
R for each involution of Mm.2/ found in Theorem 14. Please note that for the
remainder of this paper the notation “�” will represent equivalence modulo 2m�1.

Let �a;b;c 2 Aut.Mm.2// be an involution. Then we know by Theorem 8 that
b D 0 or b D 1. We begin by considering the fixed-point group for an involution of
the form �a;0;c .

Theorem 20. For an involution �a;0;c2Aut.Mm.2//, where a is odd and c2 f0; 1g,
the fixed-point group is

H�a;0;c
D fxiyj j i.a� 1/C jc2m�2 � 0g;

where 0� i < 2m�1 and j 2 f0; 1g.

Proof. Let �a;0;c 2 Aut.Mm.2// be an involution. By definition, an element
xiyj 2Mm.2/ is in the fixed-point group of �a;0;c if �a;0;c.xiyj / D xiyj. By
Theorem 10, this implies

�a;0;c.x
iyj /D xaiCcj2

m�2

yj D xiyj :

For xiyj to satisfy this equation, ai C jc2m�2 � i or i.a� 1/C jc2m�2 � 0. �

We now consider involutions of the form �a;1;c .

Theorem 21. For an involution �a;1;c 2Aut.Mm.2//, where a is odd and c2f0; 1g,
the fixed-point group is

H�a;1;c
D fxiyj j i.a� 1C a2m�3/C jc2m�2 � 0 for i eveng;

where 0� i < 2m�1 and j 2 f0; 1g.
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Proof. Let �a;1;c 2Aut.Mm.2// be an involution and let xiyj 2Mm.2/. We break
this proof into two cases: i even and i odd.

Case 1: Suppose i is even. Then Theorem 10 implies

�a;1;c.x
iyj /D xaiCai2

m�3Ccj2m�2

yj D xiyj :

Thus, xiyj is fixed when ai C ai2m�3 C cj 2m�2 � i or i.a � 1C a2m�3/C
jc2m�2 � 0.

Case 2: Suppose i is odd. Then again Theorem 10 implies

�a;1;c.x
iyj /D xaiCa.i�1/2

m�3Ccj2m�2

yjC1 D xiyj :

Because j C 1¤ j , elements of the form xiyj with i odd are never in the fixed-
point group of �a;1;c . �

Example. Consider M4.2/ and four of its involutions: �3;0;0, �5;0;1, �1;1;0, and
�7;1;1. Using the results of Theorems 20 and 21, we have

H�3;0;0
D f1; x4; x4y; yg;

H�5;0;1
D f1; x2; x4; x6; xy; x3y; x5y; x7yg;

H�1;1;0
D f1; x4; x4y; yg;

H�7;1;1
D f1; x2; x4; x6g:

Theorem 22. For an involution �a;0;c 2Aut.Mm.2//, where a is odd and c2f0; 1g,
the generalized symmetric space is

Q�a;0;c
D fxi.1�a/�jc2

m�2

j 0� i < 2m�1 and j 2 f0; 1gg:

Proof. Let �a;0;c 2 Aut.Mm.2// be an involution and let xiyj 2Mm.2/. Using
Theorem 10 and Proposition 6, we have

xiyj .�a;0;c.x
iyj //�1 D xiyj .xaiCcj2

m�2

yj /�1

D xiyj .yjx�.aiCcj2
m�2//

D xi.1�a/�jc2
m�2

: �

Recall by Proposition 7 that elements of the form xi where i is even are in the
center Z.Mm.2//. Since for any involution �a;b;c the value of a is odd, we have
the following corollary:

Corollary 23. For an involution �a;0;c2Aut.Mm.2//, where a is odd and c2f0; 1g,
the generalized symmetric space satisfies Q�a;0;c

�Z.Mm.2//.

Now we will examine the generalized symmetric spaces for involutions of the
form �a;1;c .



578 MARC BESSON AND JENNIFER SCHAEFER

Theorem 24. For an involution �a;1;c 2Aut.Mm.2//, where a is odd and c2f0; 1g,
the generalized symmetric space is

Q�a;1;c
D fxa2

m�3Ci.1�a�a2m�3�a2m�2/�jc2m�2

y j i is odd g

[ fxi.1�a�a2
m�3/�jc2m�2

j i is even g;

where 0� i < 2m�1 and j 2 f0; 1g.

Proof. Let �a;1;c 2 Aut.Mm.2// and xiyj 2Mm.2/.

Case 1: Suppose i is even and j D 0. By Theorem 10 and Proposition 6,

xi .�a;1;c.x
i //�1 D xi .xaiCai2

m�3

/�1

D xi.1�a�a2
m�3/:

Case 2: Suppose i is odd and j D 0. By Theorem 10, Proposition 6, and Lemma 1,

xi .�a;1;c.x
i //�1 D xi .xaiCa.i�1/2

m�3

y/�1

D xix.�ai�a.i�1/2
m�3/.2m�2C1/y

D xi�ai2
m�2�ai�a.i�1/2m�3

y

D xa2
m�3Ci.1�a�a2m�3�a2m�2/y:

Case 3: Suppose i is even and j D 1. By Theorem 10 and Proposition 6,

xiy.�a;1;c.x
iy//�1 D xiy.xaiCai2

m�3Cc2m�2

y/�1

D xi .y2/x�ai�ai2
m�3�c2m�2

D xi�ai�ai2
m�3�c2m�2

D xi.1�a�a2
m�3/�c2m�2

:

Case 4: Suppose i is odd and j D 1. By Theorem 10, Proposition 6, and Lemma 1,

xiy.�a;1;c.x
iy//�1 D xiy.xaiCa.i�1/2

m�3Cc2m�2

/�1

D xi .x.�ai�a.i�1/2
m�3�c2m�2/.2m�2C1//y

D xi�ai2
m�2�ai�a.i�1/2m�3�c2m�2

y

D xa2
m�3Ci.1�a�a2m�3�a2m�2/�c2m�2

y: �

We now determine the extended symmetric spaces for each involution. We begin
with involutions of the form �a;0;c 2 Aut.Mm.2//.

Theorem 25. For an involution �a;0;c 2Aut.Mm.2//, where a is odd and c 2f0; 1g,
the extended symmetric space is

R�a;0;c
D fxiyj j i.aC .2m�2C 1/j /C jc2m�2 � 0g;

where 0� i < 2m�1 and j 2 f0; 1g.
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Proof. Let �a;0;c 2 Aut.Mm.2// and xiyj 2 Mm.2/. To solve the equation
�a;0;c.x

iyj /D .xiyj /�1, we solve the equivalent equation �a;0;c.xiyj /xiyj D 1.
By Theorem 10 and Lemma 1, we have

�a;0;c.x
iyj /xiyj D xaiCcj2

m�2

yjxiyj

D xaiCcj2
m�2

xi.2
m�2C1/j y2j

D xaiCcj2
m�2Ci.2m�2C1/j

D 1

when i.aC .2m�2C 1/j /C jc2m�2 � 0. �

Next we turn our attention to the extended symmetric spaces of involutions
of the form �a;1;c . As in the fixed-point group case, we find that the extended
symmetric spaces of these involutions do not contain elements of the form xiyj

for i odd.

Theorem 26. For an involution �a;1;c 2Aut.Mm.2//, where a is odd and c2f0; 1g,
the extended symmetric space is

R�a;1;c
D fxiyj j i.aC a2m�3C .2m�2C 1/j /C jc2m�2 � 0 and i is eveng;

where 0� i < 2m�1 and j 2 f0; 1g.

Proof. Let �a;1;c 2Aut.Mm.2// and xiyj 2Mm.2/. We again split into two cases:
i even and i odd.

Case 1: Suppose i is even. Using Theorem 10 and Lemma 1, we have

�a;1;c.x
iyj /xiyj D xaiCai2

m�3Ccj2m�2

yjxiyj

D xaiCai2
m�3Ccj2m�2Ci.2m�2C1/j y2j

D xaiCai2
m�3Ccj2m�2Ci.2m�2C1/j

D 1

when i.aC a2m�3C .2m�2C 1/j /C jc2m�2 � 0.

Case 2: Suppose i is odd. Using Theorem 10 and Lemma 1, we have

�a;1;c.x
iyj /xiyj D xaiCa.i�1/2

m�3Ccj2m�2

yjC1xiyj

D xaiCa.i�1/2
m�3Ccj2m�2Ci.2m�2�1/jC1

y:

An element of this form can never be equivalent to the identity. Thus, when i is
odd, xiyj …R�a;1;c

. �

Example. Consider M4.2/ and four of its involutions: �3;0;0, �5;0;1, �1;1;0, and
�7;1;1. Using the results of Theorems 22 and 24, we have

Q�3;0;0
D f1; x2; x4; x6g;

Q�5;0;1
D f1; x4g;
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Q�1;1;0
D f1; x4; x4y; yg;

Q�7;1;1
D f1; x4; x2y; x6yg:

In addition, we have

R�3;0;0
D f1; x2; x4; x6; xy; x2y; x3y; x4y; x5y; x6y; x7yg;

R�5;0;1
D f1; x4; x2y; x6yg;

R�1;1;0
D f1; x2; x4; x6; y; x2y; x4y; x6y; g;

R�7;1;1
D f1; x4; x2y; x6yg

by Theorems 25 and 26.

Remark. In general, Q � R for all arbitrary groups and all of their respective
involutions. Thus it is not a surprise that Q�a;b;c

� R�a;b;c
in these instances.

However, it is usually the case that Q ¤ R. Thus the fact that Q�7;1;1
D R�7;1;1

for M4.2/ is notable. The fixed-point group, the generalized symmetric space,
and the extended symmetric space for all involutions of M4.2/ are provided in the
Appendix.

The descriptions of H, Q, and R can be simplified when �a;b;c is an inner
automorphism. Recall from Theorem 15 that an involution arising from an inner
automorphism is of the form �1;0;1 or �2m�2C1;0;c , where c 2 f0; 1g.

Theorem 27. Let �a;0;c be an involution of Mm�1.2/ which arises from an inner
automorphism.

(1) If aD 1 and c D 1, then

H�1;0;1
D f1; x; x2; : : : ; x2

m�1�1
g;

Q�1;0;1
D f1; x2

m�2

g;

R�1;0;1
D f1; x2

m�2

; x2
m�3

y; x3�2
m�3

yg:

(2) If aD 2m�2C 1 and c D 0, then

H�
2m�2C1;0;0

D fxiyj j i is even and j 2 f0; 1gg;

Q�
2m�2C1;0;0

D f1; x2
m�2

g;

R�
2m�2C1;0;0

D f1; x2
m�2

; y; x2
m�2

yg:

(3) If aD 2m�2C 1 and c D 1, then

H�
2m�2C1;0;1

D fxiyj j i C j is even and j 2 f0; 1gg;

Q�
2m�2C1;0;1

D f1; x2
m�2

g;

R�
2m�2C1;0;1

D f1; x2
m�2

; x2
m�3

y; x3�2
m�3

yg:
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Appendix: Fixed-point groups and symmetric spaces for involutions of M4.2/

H
Q

R

�
3
;0
;0

f
1
;x
4
;y
;x
4
y
g

f
1
;x
2
;x
4
;x
6
g

f
1
;x
2
;x
4
;x
6
;x
y
;x
2
y
;x
3
y
;x
4
y
;x
5
y
;x
6
y
;x
7
y
g

�
5
;0
;0

f
1
;x
2
;x
4
;x
6
;y
;x
2
y
;x
4
y
;x
6
y
g
f
1
;x
4
g

f
1
;x
4
;y
;x
4
y
g

�
7
;0
;0

f
1
;x
4
;y
;x
4
y
g

f
1
;x
2
;x
4
;x
6
g

f
1
;x
;x
2
;x
3
;x
4
;x
5
;x
6
;x
7
;y
;x
2
y
;x
4
y
;x
6
y
g

�
1
;0
;1

f
1
;x
;x
2
;x
3
;x
4
;x
5
;x
6
;x
7
g

f
1
;x
4
g

f
1
;x
4
;x
2
y
;x
6
y
g

�
3
;0
;1

f
1
;x
4
;x
2
y
;x
6
y
g

f
1
;x
2
;x
4
;x
6
g

f
1
;x
2
;x
4
;x
6
g

�
5
;0
;1

f
1
;x
2
;x
4
;x
6
;x
y
;x
3
y
;x
5
y
;x
7
y
g
f
1
;x
4
g

f
1
;x
4
;x
2
y
;x
6
y
g

�
7
;0
;1

f
1
;x
4
;x
2
y
;x
6
y
g

f
1
;x
2
;x
4
;x
6
g

f
1
;x
;x
2
;x
3
;x
4
;x
5
;x
6
;x
7
;x
y
;x
3
y
;x
5
y
;x
7
y
g

�
1
;1
;0

f
1
;x
4
;y
;x
4
y
g

f
1
;x
4
;y
;x
4
y
g

f
1
;x
2
;x
4
;x
6
;y
;x
2
y
;x
4
y
;x
6
y
g

�
5
;1
;0

f
1
;x
4
;x
4
y
;y
g

f
1
;x
4
;y
;x
4
y
g

f
1
;x
2
;x
4
;x
6
;y
;x
2
y
;x
4
y
;x
6
y
g

�
3
;1
;1

f
1
;x
2
;x
4
;x
6
g

f
1
;x
4
;x
2
y
;x
6
y
g
f
1
;x
4
;x
2
y
;x
6
y
g

�
7
;1
;1

f
1
;x
2
;x
4
;x
6
g

f
1
;x
4
;x
2
y
;x
6
y
g
f
1
;x
4
;x
2
y
;x
6
y
g
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When is an
+ 1 the sum of two squares?

Greg Dresden, Kylie Hess, Saimon Islam, Jeremy Rouse,
Aaron Schmitt, Emily Stamm, Terrin Warren and Pan Yue

(Communicated by Kenneth S. Berenhaut)

Using Fermat’s two squares theorem and properties of cyclotomic polynomials,
we prove assertions about when numbers of the form an

+ 1 can be expressed as
the sum of two integer squares. We prove that an

+ 1 is the sum of two squares
for all n ∈N if and only if a is a square. We also prove that if a≡ 0, 1, 2 (mod 4),
n is odd, and an

+ 1 is the sum of two squares, then aδ + 1 is the sum of two
squares for all δ | n, δ > 1. Using Aurifeuillian factorization, we show that if a is
a prime and a ≡ 1 (mod 4), then there are either zero or infinitely many odd n
such that an

+ 1 is the sum of two squares. When a ≡ 3 (mod 4), we define m
to be the least positive integer such that (a + 1)/m is the sum of two squares,
and prove that if an

+ 1 is the sum of two squares for n odd, then m | n, and both
am
+ 1 and n/m are sums of two squares.

1. Introduction

Many facets of number theory revolve around investigating terms of a sequence
that are interesting. For example, if an = 2n

−1 is prime (called a Mersenne prime),
then n itself must be prime [Hardy and Wright 1979, Theorem 18, p. 15]. In this
case, the property that is interesting is primality. Ramanujan was interested in
the terms of the sequence bn = 2n

− 7 that are squares. He conjectured that the
only such terms are those with n = 3, 4, 5, 7 and 15, and it was later proved by
Nagell [1948]; a modern reference is [Stewart and Tall 2002, p. 96]. Finally, if the
Fibonacci sequence is defined by F0 = 0, F1 = 1 and Fn = Fn−1+ Fn−2 for n ≥ 2,
then Fn is prime only if n is prime or n = 4 [Hardy and Wright 1979, Theorem 179,
p. 148], and the only powers in the Fibonacci sequence are 0, 1, 8 and 144, which
was proven by Bugeaud, Mignotte, and Siksek [Bugeaud et al. 2006] using similar
tools to the proof of Fermat’s last theorem.

In this paper, we will consider a number to be interesting if it can be expressed
as the sum of two squares. The earliest work on this topic relates to Pythagorean

MSC2010: primary 11E25; secondary 11C08, 11R18.
Keywords: cyclotomic polynomials, Fermat’s two squares theorem.
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triples, which are integer solutions to a2
+ b2

= c2. Euclid supplied an infinite
family of solutions: a = m2

− n2, b = 2mn and c = m2
+ n2.

Fermat’s two squares theorem classifies which numbers can be written as the
sum of two squares. Fermat claimed to have proven this theorem in his 1640 letter
to Mersenne, but never shared the proof. The first published proof is attributed to
Euler and was completed in 1749; see [Cox 1989, p. 11].

Theorem (Fermat’s two squares theorem). A positive integer N can be written as
the sum of two squares if and only if in the prime factorization of N,

N =
k∏

i=1

pei
i ,

we have pi ≡ 3 (mod 4) only if ei is even.

In light of Fermat’s theorem, integers that can be expressed as the sum of two
squares become increasingly rare. In particular, if S(x) denotes the number of inte-
gers n ≤ x that are expressible as a sum of two squares, then Landau [1908] proved

lim
x→∞

S(x)
x/
√

ln(x)
= K ≈ 0.764.

This can be stated more colloquially as “the probability that a number n is the sum
of two squares is K/

√
ln(n).”

A lot of progress has recently been made in understanding the gaps between
prime numbers. In particular, [Zhang 2014; Maynard 2015] prove there are bounded
gaps between primes infinitely often. The analogous questions for sums of two
squares are much easier: problem A2 from the 2000 Putnam competition asked
participants to show that there are infinitely many n such that n, n+ 1 and n+ 2
are all sums of two squares.

The culmination of several papers on large gaps between primes is [Ford et al.
2018], where it is proven that there are infinitely many n such that

pn+1− pn �
log pn log log pn log log log log pn

log log log pn
,

where pn is the n-th prime. This is still quite a ways from the conjectured statement
that pn+1 − pn � log2 pn holds infinitely often. For sums of two squares, the
analogue of this conjecture is that if qn is the n-th positive integer that is a sum of
two squares, one should have qn+1− qn � log qn infinitely often. This result was
proved in [Richards 1982], and some recent work [Kalmynin 2017] has been done
on estimating the moments ∑

qn+1≤x

(qn+1− qn)
γ ,

extending [Hooley 1971].
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We are interested in which terms in sequences of the form an
+ 1 can be written

as a sum of two squares. Curtis [2014] showed that 2n
+1 is the sum of two squares

if and only if n is even or n = 3. Additionally, if n is odd and 3n
+ 1 is the sum of

two squares, then n must be the sum of two squares, and 3p
+ 1 is the sum of two

squares for all prime numbers p | n.
The focus of the present paper is to say as much as possible about when an

+ 1
is the sum of two squares for a general positive integer a. This paper is the result of
two undergraduate research teams working simultaneously and independently over
two months in the summer of 2016. The first team, from Wake Forest University,
consisted of students Hess, Stamm, and Warren, and was led by Jeremy Rouse; the
second team, from Washington and Lee University, consisted of students Islam,
Schmitt, and Yue, and was led by Greg Dresden. Remarkably, the two teams ended
up covering many of the same topics. Some of the results are unique to the Wake
Forest team, while other results were proved by both teams using different methods.

In the case that n = 2k is even, an
+ 1= (ak)2+ 12 is trivially the sum of two

squares. For this reason, we focus on cases when n is odd. Our first result is the
following.

Theorem 1.1. If a ∈ Z, then an
+1 is the sum of two squares for every n ∈N if and

only if a is a square or a =−1.

This result parallels Artin’s conjecture that an integer a is a primitive root modulo
every prime if and only if a is not a square and a 6= −1.

Example. (1) If a = 9, then 9n
+ 1= (3n)2+ 12.

(2) If a = 7, then there is some odd n such that 7n
+ 1 is not the sum of two

squares. For example, 73
+ 1 is not the sum of two squares.

For the remainder of the paper, we assume that a is a positive integer. Our next
result gives specific criteria that handle the case when a is even.

Theorem 1.2. Suppose a is even, n is odd, and an
+ 1 is the sum of two squares:

• If a+ 1 is the sum of two squares, then aδ + 1 is the sum of two squares for
all δ | n.

• If a + 1 is not the sum of two squares, then there is a unique prime number
p ≡ 3 (mod 4) such that pr

‖a+ 1 for some odd r , and n = p.

Example. (1) If a≡2 (mod 4), then a+1 is not the sum of two squares and so there
is at most one odd exponent n such that an

+1 is the sum of two squares. For example,
with a = 6, since a+ 1 = 7 is divisible by the unique prime p = 7 ≡ 3 (mod 4),
n = 7 is the only possible odd n for which an

+1 is the sum of two squares. Indeed,
67
+ 1= 4762

+ 2312.
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(2) For a ≡ 0 (mod 4), there are more options. If we let a = 20, then since
a+ 1= 3 · 7 has two prime factors congruent to 3 mod 4 that divide it to an odd
power, we conclude that 20n

+ 1 is not the sum of two squares for any odd n. On
the other hand, for a = 24, since 2477

+ 1 is the sum of two squares, we must also
have that 2411

+1, 247
+1, and 241

+1 are each the sum of two squares. In general,
the most efficient way to test if a positive integer n is a sum of two squares is to
compute its prime factorization and use Fermat’s two squares theorem.

We consider a special case when a is a multiple of 4.

Theorem 1.3. Let a = 4x , where x ≡ 3 (mod 4) and x is square-free. If n is odd,
then anx

+ 1 is not the sum of two squares.

Example. (1) Let a = 12 = 4 · 3. Then 123n
+ 1 is not the sum of two squares

for any odd n. Note that Theorem 1.2 implies that since 123
+ 1 is not the sum of

two squares, then 123n
+ 1 is not the sum of two squares for any odd n. However,

Theorem 1.3 guarantees, without any computation necessary, that 123
+1 is not the

sum of two squares.

(2) Let a = 28= 4 · 7. Then 287n
+ 1 is not the sum of two squares for any odd n.

The factorization tables for 12n
+ 1 [Brillhart et al. 2002; Wagstaff] imply that

there are sixteen exponents 1≤ n< 293 for which 12n
+1 is the sum of two squares,

which are all prime except for n = 1. The two smallest composite exponents n for
which 12n

+ 1 could possibly be the sum of two squares are n = 473= 11 · 43 and
n = 545= 5 · 109; so far, of those two, we have confirmed only that 12545

+ 1 is
the sum of two squares.

We now consider the case when a is odd. We split this into three subcases:
a ≡ 1 (mod 8), a ≡ 5 (mod 8), and a ≡ 3 (mod 4).

Theorem 1.4. Let a ≡ 1 (mod 8). If an
+ 1 is the sum of two squares for n odd,

then aδ + 1 is the sum of two squares for all δ | n.

Example. (1) Let a = 33. Since 33119
+ 1 is the sum of two squares, 331

+ 1,
337
+ 1, and 3317

+ 1 must also be sum of two squares. Since 333
+ 1 is not the

sum of two squares, we know 333n
+ 1 is not the sum of two squares for any odd n.

(2) Let a = 41. Since 42= 2 · 3 · 7 is not the sum of two squares, 411
+ 1 is not the

sum of two squares, and hence 41n
+ 1 is not the sum of two squares for any odd n.

Note that (as seen in the example with a = 41) the above theorem implies that if
a≡ 1 (mod 8) and a+1 is not the sum of two squares, then an

+1 is not the sum of
two squares for any odd n. The next theorem addresses the case that a ≡ 5 (mod 8).

Theorem 1.5. Let a ≡ 5 (mod 8). Then, an
+ 1 is never the sum of two squares for

n odd.
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Example. Since 13≡ 5 (mod 8), we know 13n
+ 1 is not the sum of two squares

for any odd n.

It follows that if a ≡ 0, 1, 2 (mod 4), n is odd, and an
+ 1 is the sum of two

squares, then aδ+1 is the sum of two squares for all δ | n. (The case when a is even
follows from Theorem 1.2, a ≡ 1 (mod 8) from Theorem 1.4, and a ≡ 5 (mod 8)
from Theorem 1.5.)

Finally, we consider a ≡ 3 (mod 4), as covered in three separate results. These
first two place considerable restrictions on the values of n for which an

+ 1 can be
a sum of two squares.

Lemma 1.6. Let a ≡ 3 (mod 4), and let m be the smallest integer such that
(a + 1)/m is the sum of two squares. If an

+ 1 is the sum of two squares, then
n ≡ m (mod 4).

Theorem 1.7. Let a ≡ 3 (mod 4), and let m be the smallest integer such that
(a + 1)/m is the sum of two squares. If an

+ 1 is a sum of two squares for some
odd n, then

• n/m is a sum of two squares, and

• am
+ 1 is the sum of two squares, and

• if δ | (n/m) and δ is the sum of two squares, then amδ
+ 1 is the sum of two

squares.

• Moreover, if anp2
+ 1 is the sum of two squares for some p ≡ 3 (mod 4), then

p | (an
+ 1).

Theorem 1.7 showcases the advantages of having two teams working indepen-
dently. When we first shared our results in late July, the Wake Forest group had only
the first two parts of the above theorem, and the Washington and Lee group had a
weaker version of the third part that was restricted to m = 1 and to δ being a prime
equivalent to 1 (mod 4). Two weeks later, both teams had improved their results,
with Wake Forest coming up with both the fourth part and the stronger version of
the third part, as seen here. The proof that resulted from this collaboration is a nice
combination of ideas from both teams.

Example. (1) Let a= 11. Then m= 3, and since 113
+1 is the sum of two squares,

if 11n
+ 1 is the sum of two squares, then 3 j

‖n, j odd.

(2) Let a = 43. Then m = 11, and since 4311
+1 is not the sum of two squares, we

conclude that 43n
+ 1 is not the sum of two squares for any odd n.

(3) If a = 4713575, then m = 21. It turns out that a21
+1 is the sum of two squares,

and so if an
+ 1 is the sum of two squares, then 21 | n. Sure enough, a105

+ 1 is the
sum of two squares (and has 701 decimal digits).
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We pause for a moment to remind the reader that Theorem 1.1 states that if a is
not a square, then there exists some odd n such that an

+ 1 is not the sum of two
squares. We can now extend this theorem and demonstrate that in fact there will be
infinitely many such exponents:

• If a is even with a + 1 not the sum of two squares, or if a ≡ 5 (mod 8), then
Theorems 1.2 and 1.5 tell us that an

+ 1 fails to be the sum of two squares for
infinitely many odd n (in fact, for all but at most one odd exponent n).

• If a is even with a+ 1 the sum of two squares, or if a ≡ 1 (mod 8), then we can
use Theorems 1.2 and 1.4 to state that if aδ + 1 is not the sum of two squares for
some odd exponent δ, then aδN

+ 1 fails to be the sum of two squares for all odd
integers N.

• Finally, if a ≡ 3 (mod 4), we call upon Lemma 1.6 to state that an
+ 1 can only

be a sum of two squares for n ≡ m (mod 4).

This next result allows one to state that for certain special values of a, there is
an infinite collection of odd values of n for which an

+ 1 is the sum of two squares.

Theorem 1.8. Suppose n is odd, p ≡ 1 (mod 4) is a prime number and a = px2.
Then an

+1 is the sum of two squares if and only if anp
+1 is the sum of two squares.

The above theorem implies that for those specific values of a, there are either no
odd n, or an infinite number of odd n, for which an

+ 1 is the sum of two squares.
In particular, if a + 1 is the sum of two squares, then a pn

+ 1 is the sum of two
squares for all n ≥ 0. If a+ 1 is not the sum of two squares, one of Theorems 1.2,
1.4, or 1.5 implies that an

+ 1 is not the sum of two squares for any odd n.

Example. (1) Let a = 17, where p = 17 and x = 1. Since 18 is the sum of two
squares, 1717n

+ 1 is the sum of two squares for any n.

(2) Let a = 117, where p = 13 and x = 3. Since a+ 1= 2 · 59 is not the sum of
two squares, 11713n

+ 1 is not the sum of two squares for any n.

Remark. In light of the above theorem, it is natural to ask if there are infinitely
many a ≡ 1 (mod 8) such that an

+ 1 is the sum of two squares for infinitely many
odd n. This is indeed the case. In particular, the main theorem of [Iwaniec 1972]
implies that if x is a real number ≥ 17, then the number of primes p ≤ x with
p ≡ 1 (mod 8) for which p+ 1 is the sum of two squares is at least cx/log(x)3/2

for some positive constant c.

We can use the ideas from Theorem 1.8 to construct an infinite family of numbers
a such that a p

+ 1 is the sum of two squares. This is our next result.

Theorem 1.9. If p≡ 1 (mod 4) is prime, there is a degree-4 polynomial f (X) with
integer coefficients such that f (X)p

+1= g(X)2+h(X)2 for some g(X) and h(X)
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with integer coefficients. Moreover, there is no positive integer n such that f (n) is
a square.

Example. If p = 13, then f (X)= 13(13X2
+ 3X)2. Then f (n)13

+ 1 is the sum
of two squares for every n ∈ N.

We end with a conjecture about the number of odd n for which an
+1 is the sum

of two squares.

Conjecture 1.10. Suppose a is a positive integer and a 6= ck for any positive
integer c and k > 1. Let m be the smallest positive integer such that (a+ 1)/m is
the sum of two squares:

• If m = 1, then there are infinitely many odd n such that an
+ 1 is the sum of two

squares.

• If a ≡ 3 (mod 4), am
+ 1 is the sum of two squares, and m is prime, then there

are infinitely many odd n such that an
+ 1 is the sum of two squares. (In fact,

there should be infinitely many p ≡ 1 (mod 4) such that amp
+ 1 is the sum of two

squares.)

• If a ≡ 3 (mod 4) and m is composite, then there are only finitely many odd n such
that an

+ 1 is the sum of two squares.

The main theoretical tools we use in this paper are the theory of cyclotomic
polynomials, and in particular, a classification of which primes divide 8n(a) (see
Theorem 2.1). Theorems 1.3 and 1.8 also use the identity8n(x)=F(x)2−kxq G(x)2

that arises in Aurifeuillian factorization.
The rest of the paper will proceed as follows. In Section 2, we review previous

results which we will use. In Section 3, we prove a few facts that will be used in
the remainder of the proofs. In Section 4, we prove Theorem 1.1. In Section 5, we
prove Theorems 1.2 and 1.3. In Section 6, we prove Theorems 1.4, 1.5, and 1.7,
along with Lemma 1.6, and we include a heuristic supporting Conjecture 1.10. In
Section 7, we prove Theorems 1.8 and 1.9. We conclude with a chart listing all
a ≤ 50 and the first few odd integers n such that an

+ 1 is the sum of two squares,
as well as a reference to one our theorems.

2. Background

If n is a positive integer and p is a prime number, we write pr
‖n if pr

| n but pr+1 -n.
If n is a positive integer and we write that n is not a sum of two squares because
of the prime p, we mean that p ≡ 3 (mod 4) and there is an odd r such that pr

‖n.
If a and m are integers with gcd(a,m)= 1, we define ordm(a) to be the smallest
positive integer k such that ak

≡ 1 (mod m). It is well known that ar
≡ 1 (mod m)

if and only if ordm(a) | r . Fermat’s little theorem states that if gcd(a, p)= 1, then
a p−1

≡ 1 (mod p); it follows that ordp(a) | (p− 1).
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We will make use of the identity (originally due to Diophantus)

(a2
+ b2)(c2

+ d2)= (ac+ bd)2+ (ad − bc)2.

This applies if a, b, c, d ∈ Z, and also if a, b, c and d are polynomials.
Let8n(x) denote the n-th cyclotomic polynomial; recall that8n(x) is the unique

irreducible factor of xn
− 1 with integer coefficients that does not divide xk

− 1 for
any proper divisor k of n. We have

∏
d | n8d(x)= xn

− 1 and from this it follows
that when n is odd,

xn
+ 1=

x2n
− 1

xn − 1
=

∏
d | 2n, d -n

8d(x)=
∏
δ | n

82δ(x).

We will make use of the facts that for n odd, 82n(x)=8n(−x) and that if n = pk

is prime, then
8pk (1)= lim

x→1

x pk
− 1

x pk−1
− 1
= p.

The following theorem classifies prime divisors of 8n(a).

Theorem 2.1. Assume that a ≥ 2 and n ≥ 2:

• If p is a prime and p -n, then p |8n(a) if and only if n = ordp(a).

• If p is a prime and p | n, then p |8n(a) if and only if n = ordp(a) · pk . In this
case, if n ≥ 3, then p2 -8n(a).

The authors have not been able to trace the origin of the result above, but it is
certainly quite old, and may be contained in the work of A. S. Bang [1886a; 1886b].
This theorem arises in connection with Zsigmondy’s work showing that for any a,
n ≥ 2 there is a prime p for which ordp(a)= n unless n = 2 and a+ 1 is a power
of 2. One can find a proof of the result above in Trygve Nagell’s textbook [1964]
(see Theorems 94 and 95).

We will also make use of certain identities for cyclotomic polynomials that arise
in Aurifeuillian factorization. If k is a square-free positive integer, let d(k) be the
discriminant of Q(

√
k), that is,

d(k)=
{

k if k ≡ 1 (mod 4),
4k if k ≡ 2, 3 (mod 4).

Suppose that n ≡ 2 (mod 4), and d(k)-n but d(k) | 2n. Write the prime factor-
ization of n as n = 2

∏k
i=1 pei

i and define q =
∏k

i=1 pei−1
i . Then Theorem 2.1 of

[Stevenhagen 1987] states that

8n(x)= F(x)2− kxq G(x)2

for some polynomials F(x),G(x) ∈ Z[x]. If x =−kv2 for some integer v, we get

8n(−kv2)= F(−kv2)2+ (k(q+1)/2vq G(−kv2))2
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is the sum of two squares. In the case that x = kv2 for some integer v, we get the
factorization

8n(kv2)= F(kv2)2− k(kv2)q G(kv2)2

= (F(kv2)+ k(q+1)/2vq G(kv2))(F(kv2)− k(q+1)/2vq G(kv2)).

Theorem 2.7 of [Stevenhagen 1987] states that these two factors are relatively prime.
We will also require some basic facts about quadratic residues. If p is an odd

prime, we define
(a

p

)
to be 1 if gcd(a, p) = 1 and there is some x ∈ Z such that

x2
≡a (mod p). We define

(a
p

)
to be−1 if gcd(a, p)= 1 and there is no such x , and

we set
(a

p

)
=0 if p | a. Euler’s criterion gives the congruence

(a
p

)
≡a(p−1)/2 (mod p).

The definition of the quadratic residue symbol can be extended. If n is an odd
integer with prime factorization n =

∏k
i=1 pei

i , define the Jacobi symbol by(
a
n

)
=

k∏
i=1

(
a
p

)
ei .

The quadratic reciprocity law for Jacobi symbols states that if a and b are both
positive and odd, then (

a
b

)
= (−1)

1
2 (a−1)· 12 (b−1)

(
b
a

)
.

3. General results

The following general lemmas pertain primarily to how the divisors of n affect the
divisors of an

+ 1, and are used in rest of the sections of the paper. Results of this
type are well known and date back to [Lucas 1878; Carmichael 1913/14]. A more
modern source is [Stewart 1977]. We provide our own simple and short proofs of
these facts to keep the paper self-contained.

Lemma 3.1. Let b, n ∈ Z, and n be odd and suppose b | (x + 1). Then

b | (xn−1
− xn−2

+ xn−3
− · · ·+ 1)

if and only if b | n.

Proof. Let b | (x + 1). Then x + 1≡ 0 (mod b), so x ≡−1 (mod b). Thus,

xn−1
− xn−2

+ xn−3
− · · ·− x + 1
≡ (−1)n−1

− (−1)n−2
+ (−1)n−3

− · · ·− (−1)+ 1 (mod b)

≡ 1+ 1+ 1+ · · ·+ 1+ 1 (mod b)

≡ n (mod b).

Therefore b | (xn−1
− xn−2

+ xn−3
− · · · − x + 1) if and only if n ≡ 0 (mod b),

or equivalently, b | n. �
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We obtain the following corollary as a result of the above lemma.

Corollary 3.2. Suppose that n is odd, δ | n and xδ+1 is not the sum of two squares
because of some prime p. If p -n, then xn

+ 1 is not the sum of two squares.

Proof. Consider

xn
+ 1= (xδ + 1)(xn−δ

− xn−2δ
+ xn−3δ

− · · ·− xδ + 1).

Since xδ + 1 is not the sum of two squares because of p, we have p ≡ 3 (mod 4),
r odd and pr

‖(xδ+1). Then p -n implies p -(xn−δ
− xn−2δ

+ xn−3δ
−· · ·− xδ+1)

by Lemma 3.1, and thus pr
‖(xn
+ 1) implying that xn

+ 1 is not the sum of two
squares. �

Lemma 3.3. Let p be a prime such that pe
‖(am

+ 1) for some e ∈ N, and let
n = mcpk be odd with gcd(c, p)= 1 and k ≥ 0. Then pe+k

‖(an
+ 1).

Proof. Using notation from the statement of the theorem, we can write

an
+ 1= (am

+ 1) ·
an
+ 1

am + 1
.

Then, recalling how am
+1 factors into cyclotomics, we let d be the smallest divisor

of m such that p |82d(a). Thanks to Theorem 2.1, we know that p‖82dp(a),
p‖82dp2(a), and so on, yet p does not divide into any other cyclotomic expressions
not of that form. Now, choose i as large as possible such that 2dpi

|m. Then, by our
definition of n, we know that everything in the set {dpi+1, dpi+2, . . . , dpi+k

} divides
into n yet none of them divide into m, and we also know from Theorem 2.1 (as men-
tioned above) that each of the k expressions82dpi+1(a),82dpi+2(a), . . . , 82dpi+k (a)
contains exactly one copy of the prime p and that no other cyclotomic divisors
of (an

+ 1)/(am
+ 1) contain this prime p. Hence, since pe

‖(am
+ 1), we know

pe+k
‖(an
+ 1). �

4. Proof of Theorem 1.1

We begin with a lemma constructing an odd n such that an
+ 1 is not the sum of

two squares.

Lemma 4.1. Suppose there exists a prime p≡ 3 (mod 4) such that
(a

p

)
=−1. Then

either a(p−1)/2
+ 1 or a p(p−1)/2

+ 1 is not a sum of two squares.

Proof. If a(p−1)/2
+ 1 is not a sum of two squares, then we are done. Suppose

a(p−1)/2
+ 1 is a sum of two squares. By Euler’s criterion, we have a(p−1)/2

≡

−1 (mod p), and it follows therefore that for some k ∈ N, p2k
‖ a(p−1)/2

+ 1. By
Lemma 3.3, letting m = (p − 1)/2 and n = p(p − 1)/2, we know that p2k+1

‖

(a p(p−1)/2
+ 1). Thus, by Fermat’s two squares theorem, a p(p−1)/2

+ 1 is not the
sum of two squares. �
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As an example, we examine 148n
+1. We can conclude from the prime factoriza-

tion of 148n
+ 1 that 148n

+ 1 is a sum of two squares for all odd n < 9. Note that
9 = 19−1

2 and that 19 is the smallest prime p ≡ 3 (mod 4) for which
(148

p

)
= −1.

Calculation and Fermat’s two square theorem reveal that 148(19−1)/2
+1= 1489

+1
is not a sum of two squares.

Proof of Theorem 1.1. Write a = 2ka′, where a′ is odd. If q ≡ 3 (mod 4) is prime,
then (

a
q

)
=

(
2k

q

)(
a′

q

)
=

(
2k

q

)
· (−1)(a

′
−1)/2

(
q
a′

)
=

(
2k

q

)(
−q
a′

)
.

If a′ is not a square and a′ 6= −1, then there is a prime r | a′ that occurs to an odd
power. The system of congruences

q ≡ 7 (mod 8),

−q ≡ quadratic nonresidue (mod r),

−q ≡ 1 (mod s) for all prime s | a′, s 6= r,

has a solution q ≡ x (mod 8a′) with gcd(x, 8a′)= 1. Therefore there is a prime q
satisfying these congruences, and we have

(a
q

)
=−1.

In the case that a′ is a square but a is not, k is odd. In this case we choose
q ≡ 3 (mod 8) and −q ≡ 1 (mod s) for all prime s | a′. This likewise yields a
prime q such that

(a
q

)
=−1.

By Lemma 4.1, either a(p−1)/2
+ 1 or a p(p−1)/2

+ 1 is not a sum of two squares
and so there is at least one value of n for which an

+1 is not a sum of two squares. �

5. Even

Now we consider the case when a is even. We prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Suppose that an
+ 1 is the sum of two squares. If aδ + 1

is also the sum of two squares for every divisor δ of n, then we are done. If not,
then let δ be the largest divisor of n such that aδ + 1 is not the sum of two squares.
Thus, δ < n and so there is a prime p that divides n/δ. By assumption, we have
that aδp

+ 1 is the sum of two squares and

aδp
+ 1= (aδ + 1)(aδ(p−1)

− aδ(p−2)
+ · · ·+ 1).

Lemma 3.1 implies that gcd(aδ + 1, (aδp
+ 1)/(aδ + 1)) divides p. Since aδ + 1 is

not the sum of two squares, the gcd cannot be 1 and so it must be p. Moreover,

aδp
+ 1

p2 =
aδ + 1

p
·

aδp
+ 1

p(aδ + 1)
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is a sum of two squares and the product of two relatively prime integers. Thus,
(aδ + 1)/p is the sum of two squares. It follows that p ≡ 3 (mod 4) and since
aδ + 1 is odd, we get

aδ + 1= p× sum of two squares≡ 3 (mod 4).

However, since a is even, we must have that δ = 1 and the previous equation
implies that p is the unique prime congruent to 3 mod 4 that divides a+ 1 to an
odd power. �

Now we prove Theorem 1.3 involving a special case when a ≡ 0 (mod 4).

Proof of Theorem 1.3. First, we show that ax
+ 1 is not the sum of two squares. We

have
ax
+ 1=

∏
d | 2x, d -x

8d(a).

We apply Theorem 2.1 of [Stevenhagen 1987] to 82x(y) ∈ Z[y]. We set n = 2x ,
k = x , d(k)= 4x . Then d(k)-n but d(k) | 2n. We have

82x(y)= F(y)2− xyG(y)2.

Assume without loss of generality that the leading coefficient of F(y) is positive.
Note that since 82x(y) has even degree, the degree of F(y) is larger than that
of G(y).

Replacing y with xy2 we get

82x(xy2)= F(xy2)2− x(xy2)G(xy2)

= (F(xy2)+ xyG(xy2))(F(xy2)− xyG(xy2)).

Let f (y) and g(y) be the first and second factors above, respectively. We have
82x(a) = 82x(4x) = f (2)g(2). From Theorem 2.7 of [Stevenhagen 1987] we
know gcd( f (2), g(2))= 1. We claim f (2)≡ g(2)≡ 3 (mod 4). This will follow
if we show that the constant coefficients of f (y) and g(y) are both 1, and the linear
coefficients of f (y) and g(y) are both odd.

We have f (y) = a0 + a1 y + a2 y2
+ · · · and g(y) = a0 − a1 y + a2 y2

+ · · · .
Since the constant coefficient of 82x(y) is 1, we have a2

0 = 1 and so a0 =±1. If
a0 =−1, then since the leading coefficient of F(y) is positive, f (y) and g(y) have
positive leading coefficients. However, then limy→∞ f (y)= limy→∞ g(y)=∞ but
f (0)= g(0)=−1. This implies that f (y) and g(y) both have a positive real root,
but f (y)g(y)=82x(xy2) has no real roots. This is a contradiction and so a0 = 1.

It is well known that if n > 1, the coefficient of y in 8n(y) is −µ(n); see
for example, the last equation on page 107 of [Lehmer 1966]. Multiplying f (y)
and g(y), we get

82x(xy2)= 1−µ(2x)xy2
+ · · · = a2

0 + (2a0a2− a2
1)y

2
+ · · · .
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We have that µ(2x) = ±1 is odd and −µ(2x) = 2a0a2 − a2
1 . Thus, a2

1 ≡ µ(2x)
(mod 2) and so a1 is odd. Thus, f (2)≡ a0+2a1 ≡ 1+2≡ 3 (mod 4) and likewise
g(2)≡ a0− 2a1 ≡ 1− 2≡ 3 (mod 4).

Thus, there is a prime p ≡ 3 (mod 4) and an odd j such that p j
‖ f (2) and a

prime q ≡ 3 (mod 4) and an odd k such that qk
‖g(2). Since gcd( f (2), g(2))= 1,

we have p 6= q.
We claim that at most one of p or q divides x . Suppose to the contrary that

p | x and q | x . Since p |82x(a), Theorem 2.1 implies 2x = p · ordp(a) and since
q |82x(a), we get 2x=q ·ordq(a). This implies that ordp(a)=2x/p is a multiple of
q and ordq(a)=2x/q is a multiple of p. This is a contradiction, because either p<q
(in which case q ≤ ordp(a)≤ p−1) or q < p (in which case p ≤ ordq(a)≤ q−1).

Thus, at most one of p or q divides x . Assume without loss of generality that
p -x . Then we have p j

‖82x(a) and Theorem 2.1 gives ordp(a)= 2x . This implies
p -82δ(a) for δ | x with δ 6= x . As a consequence, p j

‖(ax
+1) and so ax

+1 is not
the sum of two squares.

Now, let A=ax. Then A+1 is not the sum of two squares, and A+1≡1 (mod 4).
Thus, there are at least two primes ≡ 3 (mod 4) that divide A+ 1 to an odd power,
and Theorem 1.2 implies that An

+ 1 is never the sum of two squares for n odd. �

6. Odd

This section contains proofs of Theorems 1.4, 1.5, and 1.7, along with Lemma 1.6,
which pertain to when an

+ 1 can be written as a sum of two squares when a is an
odd integer. In this section, we define m to be the least positive integer such that
(a+ 1)/m is the sum of two squares.

We begin with a ≡ 1 (mod 4). We prove Theorem 1.4 which handles the case
a ≡ 1 (mod 8), and Theorem 1.5 which handles a ≡ 5 (mod 8).

Proof of Theorem 1.4. Let a ≡ 1 (mod 8). Then an
+ 1 ≡ 2 (mod 8) for all n,

so (an
+ 1)/2 ≡ 1 (mod 4). Suppose an

+ 1 is the sum of two squares, and
assume by contradiction that δ is the largest divisor of n such that aδ + 1 is not
the sum of two squares. Since (aδ + 1)/2≡ 1 (mod 4), there exist distinct primes
q1 ≡ q2 ≡ 3 (mod 4) such that q j1

1 ‖(a
δ
+ 1) and q j2

2 ‖(a
δ
+ 1), j1, j2 odd.

We know from Lemma 3.3 that since an
+ 1 is the sum of two squares, ql1

1 ‖ n
and ql2

2 ‖ n for some odd l1 and l2. Without loss of generality, suppose q1 > q2, and
consider

aδq1 + 1= (aδ + 1)
∏

δx | δq1, δx -δ

82δx (a).

Since q1>q2, we know q1 - ordq2(a), and Theorem 2.1 implies q2 -(aδq1+1)/(aδ+1).
Then q j2

2 ‖(a
δq1+1), so aδq1+1 is not the sum of two squares. This is a contradiction

because δq1 > δ and δq1 | n. Thus aδ + 1 is the sum of two squares for all δ | n. �
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Proof of Theorem 1.5. Suppose a ≡ 5 (mod 8) and n is odd. Then

an
+ 1= a2k+1

+ 1

≡ 52k
· 5+ 1 (mod 8)

≡ 6 (mod 8).

This implies that (an
+ 1)/2≡ 3 (mod 4), so by Fermat’s two squares theorem we

know that an
+ 1 is never the sum of two squares when n is odd. �

Next, the following lemmas will be useful in forming contradictions in the proof
of Theorem 1.7 because of the restrictions they place on n in order for an

+ 1 to be
the sum of two squares, where a ≡ 3 (mod 4) and n odd.

We begin with two lemmas that cover the modulus of permissible exponents n
when a ≡ 3 (mod 4).

Lemma 6.1. For a = 4 · 2i
· (4 j + 1)− 1 with i, j ≥ 0, then an

+ 1 can only be
written as the sum of two squares (for n odd) if n ≡ 1 mod 4.

Note that this covers values of a such as a = 3, 7, 15, 19, 31, and 35. This
explains why 359

+ 1 is a sum of two squares but 353
+ 1 is not.

Proof. Let us argue by contradiction. Suppose n ≡ 3 mod 4. Write n = 4k + 3,
and note that a ≡ 4 · 2i

− 1 mod 16 · 2i . Then, making liberal use of the binomial
theorem on a3

≡ (4 · 2i
− 1)3 and a4

≡ (4 · 2i
− 1)4, we have:

an
+ 1= a4k+3

+ 1

= (a3) · (a4)k + 1

≡ (· · · + 3 · (4 · 2i )− 1) · (· · · − 4 · (4 · 2i )+ 1)k + 1 mod 16 · 2i

≡ (3 · 4 · 2i
− 1) · (1)k + 1 mod 16 · 2i

≡ 12 · 2i mod 16 · 2i .

This implies that (an
+ 1)/(4 · 2i ) is equivalent to 3 mod 4. Then there must

be at least one prime equivalent to 3 mod 4 that appears in the factorization of
(an
+ 1)/(4 · 2i ) an odd number of times. This implies the same for an

+ 1 and
thus by Fermat, an

+ 1 is not the sum of two squares. This is a contradiction to our
assumption and thus n cannot be equivalent to 3 mod 4. �

Lemma 6.2. For a = 4 · 2i
· (4 j + 3)− 1 with i, j ≥ 0, then an

+ 1 can only be
written as the sum of two squares ( for n odd) if n ≡ 3 mod 4.

Note that this covers values of a such as a = 11, 23, 27, 43, and so on, including
191 which gives us two values n = 3 and n = 15 such that 191n

+ 1 is the sum of
two squares. Both 3 and 15, of course, are equivalent to 3 mod 4.
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Proof. Keeping in mind that a ≡−1 mod 4, we have

an
+ 1= (a+ 1) · (an−1

− an−2
+ · · ·+ 1)

= 4 · 2i
· (4 j + 3) · (an−1

− an−2
+ · · ·+ 1).

Since a ≡−1 mod 4, the last expression, (an−1
− an−2

+ · · ·+ 1), is equivalent to
n mod 4. The only hope, then, for an

+ 1 to be the sum of two squares is for n to
be 3 mod 4, as then (an

+ 1)/(4 · 2i ) will be the product of two expressions both
equivalent to 3 mod 4, resulting in (an

+1)/(4 ·2i ) being equivalent to 1 mod 4. �

The last two lemmas allow us to now prove one of our earlier lemmas:

Proof of Lemma 1.6. For a ≡ 3 (mod 4), we can write a = 4K − 1, where K can
be split into an even part (which we write as 2i ) and an odd part (which we write
as either 4 j + 1 or 4 j + 3). In the first case, a+ 1 equals 4 · 2i

· (4 j + 1) and since
m is the smallest integer such that (a+ 1)/m is the sum of two squares, m must be
equivalent to 1 (mod 4), and by Lemma 6.1 we have n ≡ 1 (mod 4) in this case,
and so n ≡ m (mod 4). A similar argument applies to the second case. �

This lemma places further restrictions on n. Recall that m is the smallest positive
integer such that (a+ 1)/m is the sum of two squares.

Lemma 6.3. Let a ≡ 3 (mod 4). If an
+ 1 is the sum of two squares, then for all

primes p ≡ 3 (mod 4) such that pe
‖(a + 1), e odd, we have pk

‖n, k odd. In
particular, if an

+ 1 is the sum of two squares, then m | n.

Proof. Let an
+ 1 be the sum of two squares and suppose pe

‖(a+ 1), e odd, and
p ≡ 3 (mod 4). Select k such that pk

‖n. Then, Lemma 3.3 implies pe+k
‖(an
+ 1).

Since an
+ 1 is the sum of two squares, we know e+ k is even, which makes k odd.

It follows that since m =
∏

p for p such primes of this type, if an
+ 1 is the sum

of two squares, then m | n. �

We will now prove Theorem 1.7, which applies to all a ≡ 3 (mod 4).

Proof of Theorem 1.7. First we will prove that n/m is the sum of two squares.
Suppose that an

+ 1 is the sum of two squares and recall that by Lemma 6.3, m | n.
Assume by contradiction that n/m is not the sum of two squares. Then let q be
the greatest prime such that q ≡ 3 (mod 4) and q j

‖ n/m, j odd. If q |m, then
Lemma 3.3 implies that an even power of q divides am

+1, and so if an odd power of
q divides an

+1, then qr
‖n, r odd. But m is square-free, so q ‖m. Then qr−1

‖n/m,
r − 1 even, which is a contradiction. Therefore we can assume q -m, so q j

‖ n.
We know that82q j (a) divides an

+1. We have82q j (a)≡82q j (−1)≡8q j (1)≡
q ≡ 3 (mod 4). This implies that there exists a prime p ≡ 3 (mod 4) such that
pk
‖82q j (a), k odd. We can consider two cases: p 6= q and p = q .
Suppose p 6= q . Then p -q j, so ordp(a)= 2q j, which implies p> q . Since an

+1
is the sum of two squares, Lemma 3.3 implies pl

‖ n, l odd. Since ordp(a) > 2,
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p -a+ 1, so p -m. Then p is a prime congruent to 3 (mod 4) that divides n/m to
an odd power, and p > q, which is a contradiction because we assumed q is the
largest such prime.

Now suppose p = q. Since p |82p j (a), it follows that a p j
+ 1 ≡ 0 (mod p).

Repeatedly applying Fermat’s little theorem, a p
≡a (mod p), we find that p | (a+1).

Since p -m, pk
‖(a+1), k even. Then Lemma 3.3 implies that pk+ j

‖ an
+1, where

k + j is odd, which is a contradiction. Thus if an
+ 1 is the sum of two squares,

then n/m is also the sum of two squares.
Next we’ll prove that am

+1 is the sum of two squares. Suppose an
+1 is the sum

of two squares, where n=ms, and assume by contradiction that am
+1 is not the sum

of two squares. Then there exists some prime q ≡ 3 (mod 4) such that q j
‖(am
+1),

j odd. Since s = n/m is the sum of two squares, we know qk
‖s, k even. Then n =

mqks ′, where gcd(s ′, q)=1, so qk+ j
‖(an
+1), k+ j odd (Lemma 3.3). This is a con-

tradiction because we assumed an
+1 is the sum of two squares. Therefore if an

+1
is the sum of two squares for some odd n, then am

+1 is also the sum of two squares.
Let δ | (n/m), where δ is the sum of two squares, and suppose an

+ 1 is the sum
of two squares. We will show that amδ

+ 1 is the sum of two squares. Assume by
contradiction that there exists a prime q ≡ 3 (mod 4) such that q j

‖ amδ
+1, j odd.

Since δ is the sum of two squares, we know qk
‖ δ, k even, k ≥ 0. Because q

must divide an
+ 1 to an even power, Lemma 3.3 implies ql

‖ n/(mδ), l odd, so
ql+k
‖ n/m, l + k odd, which is a contradiction because n/m is the sum of two

squares. Thus if an
+1 is the sum of two squares, amδ

+1 is the sum of two squares
for all δ | n/m such that δ is the sum of two squares.

Finally, we will show that if anp2
+ 1 is the sum of two squares for some

p ≡ 3 (mod 4), then p | (an
+ 1). By Lemma 1.6 we know anp

+ 1 is not the sum
of two squares, so there exists some q ≡ 3 (mod 4) with q j

‖(anp
+ 1), j odd.

If q 6= p, then by Lemma 3.3 we have q j
‖(anp2

+ 1), j odd, which contradicts
anp2
+ 1 being the sum of two squares. Hence q = p, and since p | (anp

+ 1) and
anp
≡ an (mod p), we have p | (an

+ 1), as desired. �

We conclude this section with a heuristic giving evidence for Conjecture 1.10.
Suppose first that a ≡ 0 or 1 mod 4. In this case, if an

+1 is the sum of two squares
for any n, then a+ 1 is the sum of two squares. Let Ap be the event that 82p(a) is
the sum of two squares. It seems plausible that the probability that this occurs is
approximately

K√
ln(82p(a))

≈
K
√

p
.

Since
∑

p≡1 (mod 4)1/
√

p diverges, we should expect an infinite number of the
events Ap to occur, and this would yield infinitely many primes p for which a p

+1
is the sum of two squares.
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If a ≡ 2 (mod 4), then Theorem 1.2 implies there is at most one n such that
an
+ 1 is the sum of two squares.
In the case that a ≡ 3 (mod 4), let m denote the smallest positive integer such

that (a + 1)/m is the sum of two squares. First, consider primes p ≡ 1 (mod 4)
such that amp

+ 1 is the sum of two squares. We have

amp
+ 1

am + 1
=

∏
d | 2mp, d -2m

8d(a).

Theorem 2.1 implies that if we write 8d(a) = gcd(8d(a),m)cd , then the cd are
pairwise coprime and this implies that cd is the sum of two squares for all d. It
seems plausible that the cd being the sum of two squares are independent, and so
the probability that amp

+ 1 is the sum of two squares is approximately∏
d

1
√

ln(cd)
≈ p−τ(m)/2,

where τ(m) is the number of divisors of m. The sum
∑

p≡1 (mod 4) prime p−τ(m)/2

diverges if m = 1 or m is prime, and converges if m is composite. In particular,
in the case that m is composite, there are only finitely many primes p such that
amp
+ 1 is the sum of two squares.

Then, Theorem 1.7 implies that there are only finitely many primes that can
divide some number n such that an

+ 1 is the sum of two squares. If there are
infinitely many n such that an

+ 1 is the sum of two squares, it follows then that
there is a prime p such that a pr

+ 1 is the sum of two squares for infinitely many r .
We have a pr

+ 1=
∏r

i=082pi (a). If we write

ri =
82pi (a)

gcd(82pi (a), p)
,

then Theorem 2.1 implies gcd(ri , r j ) = 1. It follows from this that ri is the sum
of two squares for all i ≥ 1. Assuming that these events are independent, the
probability this occurs is

∑
i K/
√

ln(ri ). But this sum converges. Therefore the
“probability is zero” that there are infinitely many n such that an

+ 1 is the sum of
two squares in the case when a ≡ 3 (mod 4) and m is composite.

As an example, we consider a = 4713575, with a composite m value of m = 21.
We conjecture that there are finitely many n such that an

+ 1 is the sum of two
squares. So far, we know only of n = 21 and n = 105.

7. p ≡ 1 (mod 4)

The previous theorems put constraints on when an
+1 can be the sum of two squares

for different categories of a. The following proof of Theorem 1.8 uses Aurifeuillian
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factorization to show that when a = pv2, where p ≡ 1 (mod 4) is a prime and p -v,
there are either zero or infinitely many odd integers n such that an

+ 1 is the sum
of two squares.

Proof of Theorem 1.8. Let a = pv2, where p≡ 1 (mod 4) is prime. Suppose an
+1

is the sum of two squares and consider

anp
+ 1=

∏
δ | n

82δ(a)
∏

δ | np, δ -n

82δ(a).

We know
∏
δ | n 82δ(a) = an

+ 1 is the sum of two squares. Consider the
Aurifeuillian factorization of 82δ(a), where δ | np, δ -n, x = −kv2, k = −p ≡
3 (mod 4), and q is odd:

82δ(x)= (F(x))2− kxq(G(x))2,

82δ(−kv2)= (F(−kv2))2− k(−kv2)q(G(−kv2))2

= (F(−kv2))2+ kq+1v2q(G(−kv2))2

= (F(−kv2))2+ (k(q+1)/2vq G(−kv2))2

=82δ(a).

Therefore 82δ(a) is the sum of two squares for any δ | np with δ -n. Thus anp
+1 is

the sum of two squares. Conversely, suppose that anp
+1 is the sum of two squares.

Then we can see again that 82δp(a) is the sum of two squares for any factor δ. This
implies that

∏
δ | n 82δ(a)= an

+ 1 is the sum of two squares. �

Now, we will construct an infinite family of numbers a = f (X) such that a p
+ 1

is the sum of two squares.

Proof of Theorem 1.9. If p ≡ 1 (mod 4), then there exists an even integer u and an
odd integer v such that p = u2

+ v2. Then consider the polynomials

A(X)= 1
2 upX2

+ vX,

B(X)= 1
2 u2 pX2

− 1,

C(X)= 1
2 uvpX2

+ pX.

Let f (X)= p A(X)2; then we have

f (X)p
+ 1= ( f (X)+ 1)82p( f (X))

= (p A(X)2+ 1)82p(p A(X)2).

It is straightforward to check that f (X) + 1 can be written as the sum of
two squares: p A(X)2 + 1 = B(X)2 + C(X)2. Then consider the Aurifeuillian
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factorization of 82p(x), where we let k =−p and x = p A(X)2. Then we get

82p(x)= F(x)2− kxG(x)2,

82p(p A(X)2)= (F(p A(X)2))2− p(−p A(X)2)(G(p A(X)2))2

= (F(p A(X)2))2+ (p2 A(X)2)(G(p A(X)2))2

= (F(p A(X)2))2+
(

p A(X)(G(p A(X)2))
)2
.

Therefore, 82p( f (X)) can be written as the sum of two squares as well. This
implies that f (X)p

+ 1 is the product of two terms, each of which can be written
as the sum of two squares. �

8. Chart

Here we illustrate the first few odd integers n such that an
+ 1 is the sum of two

squares for all integers a ∈ [1, 50].

a n Theorem a n Theorem

1 all 1.1 26 − 1.2
2 3 1.2 27 − 1.7
3 1, 5, 13, 65, . . . 1.7 28 1, 3, 11, 19, . . . 1.2
4 all 1.1 29 − 1.5
5 − 1.5 30 31 1.2
6 7 1.2 31 1, 5, 25, 41, . . . 1.7
7 1, 13, 17, 29, . . . 1.7 32 − 1.2
8 1 1.2 33 1, 5, 7, 17, . . . 1.4
9 all 1.1 34 − 1.2

10 − 1.2 35 1, 9, 13, 29, . . . 1.7
11 3, 159, . . . 1.7 36 all 1.1
12 1, 5, 11, 23, . . . 1.2 37 − 1.5
13 − 1.5 38 − 1.2
14 3 1.2 39 1, 13, 37, 61, . . . 1.7
15 1, 29, 89, 97, . . . 1.7 40 1, 5, 13, 53, . . . 1.2
16 all 1.1 41 − 1.4
17 1, 7, 17, 23, . . . 1.8 42 − 1.2
18 19 1.2 43 − 1.7
19 1, 17, 29, 37, . . . 1.7 44 1, 5, 7, 17, . . . 1.2
20 − 1.2 45 − 1.5
21 − 1.5 46 − 1.2
22 − 1.2 47 − 1.7
23 3, 123, . . . 1.7 48 1, 3, 5, 17, . . . 1.2
24 1, 7, 11, 19, . . . 1.2 49 all 1.1
25 all 1.1 50 − 1.2
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Representations are special functions on groups that give us a way to study
abstract groups using matrices, which are often easier to understand. In particular,
we are often interested in irreducible representations, which can be thought of
as the building blocks of all representations. Much of the information about
these representations can then be understood by instead looking at the trace of
the matrices, which we call the character of the representation. This paper will
address restricting characters to subgroups by shrinking the domain of the original
representation to just the subgroup. In particular, we will discuss the problem
of determining when such restricted characters remain irreducible for certain
low-rank classical groups.

1. Introduction

Given a finite group G, a (complex) representation of G is a homomorphism
9 : G→ GLn(C). By summing the diagonal entries of the images 9(g) for g ∈ G
(that is, taking the trace of the matrices), we obtain the corresponding character, χ =
Tr ◦9 of G. The degree of the representation9 or character χ is n=χ(1). It is well
known that any character of G can be written as a sum of so-called irreducible char-
acters of G. In this sense, irreducible characters are of particular importance in repre-
sentation theory, and we write Irr(G) to denote the set of irreducible characters of G.

Given a subgroup H of G, we may view9 as a representation of H as well, simply
by restricting the domain. As such, we will write χ |H to denote the corresponding
character of H, called the restricted character or character restriction. In this paper,
we are interested in the general problem of classifying triples (G, H, χ), where G
is a finite group, H is a maximal subgroup, and χ is an irreducible character of G
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whose restriction to H remains irreducible. There is a large body of work on this
topic, see [Brundan and Kleshchev 2003; Kleshchev and Sheth 2002; Kleshchev
and Tiep 2004; 2010; Liebeck 1985; Seitz 1987; Seitz and Testerman 1990; Nguyen
and Tiep 2008; Himstedt et al. 2009; Nguyen 2008; Seitz 1990; Schaeffer Fry
2013], but several interesting cases remain unsolved.

We remark that although the general problem of classifying irreducible restric-
tions is of interest for representations over general fields, we work in this paper
only with complex representations, and therefore the term “character” will refer
specifically to complex characters here.

In this paper, we are concerned with the case that G is a classical group and
H is a maximal subgroup of G. (For a brief introduction to classical groups, see
Section 2A below.) In [Schaeffer Fry 2013], the faculty author classified all triples
as above in the case G = Sp4(q) or Sp6(q), where q is a power of 2. There, and in
many of the other articles on the topic, there are relatively few maximal subgroups
that need to be considered using advanced techniques. In [Schaeffer Fry 2013],
the process of reducing to these more difficult cases is referred to as the “initial
reduction”. Since Sp6(2

a)∼=�7(2a), the natural next step is to address the cases
G = Sp6(q) or �7(q) with q odd.

Hence, here we work with symplectic groups Sp2n(q) and orthogonal groups
�2n+1(q) with 1≤ n ≤ 3 and q a power of an odd prime, which corresponds to the
groups of Lie type B and C . Specifically, the goal of this paper is to provide the “ini-
tial reduction” for these groups, which leaves a short list of more difficult subgroups
to be addressed. Our main results, providing this “initial reduction”, are found in
Theorems 4.1, 5.1, 6.1, and 7.1. Further, we provide complete classifications of
irreducible restrictions for small values of q , which is found in Section 8.

The organization of the paper is as follows. In Section 2, we introduce some back-
ground material regarding finite classical groups and representations. In Section 3,
we discuss the code used in the computer algebra system GAP for the cases that q
is small. The remainder of the paper is dedicated to the main results.

1A. Notation. Here we introduce some basic notation for products and extensions
of groups, which will be found throughout the paper. If H is a subgroup of G, we
denote by [G : H ] the index of H in G. Given two groups X and Y, we denote the
direct product of X and Y by X × Y. The notation X ◦ Y will denote any central
product of X and Y as defined in [Gorenstein 1968, Theorem 5.3]. Such a group
is defined with respect to a subgroup Z of Z(X) that may be identified under an
isomorphism with a subgroup of Z(Y ). Then X and Y generate the group X ◦ Y
and centralize each other, and Z = X ∩ Y ⊆ Z(X ◦ Y ).

If X acts on Y, we denote the semidirect product of Y with X by Y : X , defined
as in [Gorenstein 1968, Theorem 5.1]. Here Y and X may be viewed as subgroups
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of Y : X satisfying that Y is normal in Y : X and Y ∩ X = {1}. More generally, if
Y is a normal subgroup of G with quotient G/Y ∼= X , we write G = Y.X or Y ·X ,
where we use the latter if we specifically know that Y has no complement in G. If r
and m are positive integers, we may simply write rm for the direct product, (Cr )

m,
of m copies of a cyclic group of order r .

If q = pa is a power of a prime, an elementary abelian group Ca
p of order q will

be denoted by Eq . We will use Sn and An to denote the symmetric and alternating
groups, respectively, on n letters. The wreath product of a group X and Sn will be
denoted by X o Sn . This can be thought of as a semidirect product Xn

: Sn , where Xn

denotes the direct product of n copies of X . Further, Dn will denote the dihedral
group of order 2n. Given two integers r and m, we will write (r,m) for the gcd of
the two integers.

2. Background material

2A. The finite classical groups. In this section, we introduce the main groups of
study in this paper. Readers familiar with the construction of the finite classical
groups may feel free to disregard this section. We will view the classical groups
here as groups of matrices, although they may also be viewed as groups of Lie
type or as certain groups of linear transformations. For a more in-depth discussion
of these groups, we refer the reader to [Grove 2002; Kleidman and Liebeck 1990,
Section 2].

Let q be a power of a prime p, and let Fq denote a finite field of size q. In
general, the finite classical groups can be viewed as subgroups or subquotients of
the general linear group GLn(q), which is composed of all invertible n×n matrices
with entries in Fq . The special linear group is the normal subgroup, SLn(q), of
matrices with determinant 1. We obtain the projective special linear group as the
quotient PSLn(q)= SLn(q)/Z(SLn(q)). The sizes of these groups are

|GLn(q)| = q
1
2 n(n−1)

n∏
k=1

(qk
− 1),

|SLn(q)| =
|GLn(q)|

q − 1
, |PSLn(q)| =

|SLn(q)|
(n, q − 1)

.

The general unitary group is a subgroup of GLn(q2), and can be defined as

GUn(q) := {A ∈ GLn(q2) : AT A = In},

where AT is the matrix obtained from A by raising each entry to the q-th power
and taking the transpose. The special unitary group, SUn(q), is the subgroup of
GUn(q) of matrices with determinant 1, and the projective special unitary group is
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the quotient PSUn(q)= SUn(q)/Z(SUn(q)). The corresponding sizes are

|GUn(q)| = q
1
2 n(n−1)

n∏
k=1

(qk
− (−1)k),

|SUn(q)| =
|GUn(q)|

q + 1
, |PSUn(q)| =

|SUn(q)|
(n, q + 1)

.

The symplectic group can be viewed as the subgroup

Sp2n(q)= {g ∈ GL2n(q) : gT Jg = J },

where J is the matrix

J =
[

0 In

−In 0

]
,

In is the n × n identity matrix, and gT is the transpose of g. Note here that the
dimension must be even. The projective symplectic group is then PSp2n(q) =
Sp2n(q)/Z(Sp2n(q)). We have |Sp2n(q)| = qn2 ∏n

k=1(q
2k
− 1) and |PSp2n(q)| =

1
2 |Sp2n(q)| when q is odd. For most values of n, q , the groups PSLn(q), PSUn(q),
and PSp2n(q) are simple.

The last type of finite classical group comes from the orthogonal groups. We
will be primarily interested in odd-dimensional orthogonal groups. In this case, we
can define O2n+1(q) := {g ∈ GL2n+1(q) : gT Mg = M}, where M is the matrix

M =

 0 In 0
In 0 0
0 0 1

 .
The size of this group is |O2n+1(q)| = 2qn2 ∏n

k=1(q
2k
− 1).

Taking the subgroup of elements with determinant 1, we get the special orthogo-
nal group, denoted by SO2n+1(q). Now, for n ≥ 1 and q odd, SO2n+1(q) contains a
unique subgroup of index 2, which we denote by �2n+1(q). The size of �2n+1(q)
is 1

2qn2 ∏n
k=1(q

2k
− 1).

We remark that in even dimension, there are similar constructions, but this leads
to two isomorphism classes: �−2n(q) and �+2n(q). We do not discuss these groups
further, as for our purposes the isomorphisms mentioned below will suffice.

When the rank of the matrices is small, there are “accidental” isomorphisms
between classical groups. The next theorem, found as part of [Kleidman and Liebeck
1990, Proposition 2.9.1] lists several of these isomorphisms relevant to the current
work.

Theorem 2.1. The following isomorphisms hold:

• SL2(q)∼= Sp2(q)∼= SU2(q).

• PSL2(q)∼=�3(q) for q odd.
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• �−4 (q)∼= PSL2(q2).

• �+4 (q)∼= SL2(q) ◦SL2(q)∼= 2 .(PSL2(q)×PSL2(q)).

• PSp4(q)∼=�5(q) for q odd.

2A1. Maximal subgroups of finite classical groups. For the purposes of this paper,
we are interested in restricting irreducible characters of finite classical groups to
maximal subgroups. Understanding and classifying the maximal subgroups of the
finite classical groups has been a topic of particular importance in group theory
and representation theory. We encourage the interested reader to explore the texts
discussed here.

Aschbacher [1984] showed that a maximal subgroup of a finite classical group lies
either in the class C = C1 ∪ · · · ∪ C8 composed of eight naturally defined subclasses
of subgroups or a collection S of almost quasisimple groups satisfying certain
properties. Kleidman and Liebeck [1990] classify which groups in C are indeed
maximal. For low-rank classical groups, all maximal subgroups have been classified
by Bray, Holt, and Roney-Dougal [Bray et al. 2013].

2B. Preliminary observations on characters. Throughout, we denote by

b(G) :=max{χ(1) : χ ∈ Irr(G)}

the largest irreducible character degree of G. It is well known that an upper bound
for b(G) is given by

√
|G|, which follows from the fact that |G| can be expressed

as the sum of the squares of the irreducible character degrees.
Now, note that if χ ∈ Irr(G) restricts irreducibly to a subgroup H, then χ(1)=

χ |H (1) must be at most b(H). As we will use this fact throughout the paper, we
record it here:

Lemma 2.2. Let H ≤ G and χ ∈ Irr(G). If χ(1) > b(H), we must have χ |H is
reducible.

This yields the following corollary, which will be essential throughout the fol-
lowing sections.

Corollary 2.3. Let H ≤ G and χ ∈ Irr(G). Then if χ(1) ≥
√
|H |, we must have

χ |H is reducible.

One of our primary tools will be to use Lemma 2.2 or Corollary 2.3. It will be
useful to have more efficient bounds for b(H), however. The following well-known
results from character theory will be crucial in this regard.

Theorem 2.4 (Itô’s theorem, [Isaacs 1976, Theorem 6.15]). If H CG is a normal
abelian subgroup with [G : H ] = n, then χ(1) divides n for all χ ∈ Irr(G).

Theorem 2.5 (Clifford’s theorem, [James and Liebeck 2001, Theorem 20.8]). If
H CG are groups with H normal, and χ ∈ Irr(G), then the restriction χ |H satisfies:
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(1) χ |H = e
(∑m

i=1 ψi
)

for some irreducible characters ψi ∈ Irr(H), 1 ≤ i ≤ m,
and some positive integers e and m.

(2) All constituents ψi of χ |H have the same degree.

Theorem 2.6 [Isaacs 1976, Corollary 11.29]. Let N C G and χ ∈ Irr(G). Let
θ ∈ Irr(N ) be a constituent of χ |N . Then, χ(1)/θ(1) divides the index [G : N ].

We remark that Theorem 2.4 can be viewed as a corollary to Theorem 2.6 and
the fact that irreducible characters of an abelian group are always linear. (That is,
every irreducible character of an abelian group has degree 1.)

It will also be beneficial to understand the characters of certain products of
groups.

Theorem 2.7 [James and Liebeck 2001, Theorem 19.18]. Let G1 and G2 be groups
with corresponding irreducible characters χ ∈ Irr(G1) and ψ ∈ Irr(G2). Then the
function χ ×ψ : G1×G2→ C, defined by (χ ×ψ)(g, h)= χ(g)ψ(h) for g ∈ G1,
h ∈ G2, is an irreducible character of the direct product G1×G2. Moreover, every
irreducible character of G1×G2 is of this form.

We remark that given two groups G1,G2, a central product G1◦G2 is, in a sense,
lateral to other types of products we have come to understand, since the groups G1

and G2 do not have a trivial intersection. However, central products do have the
property that all the elements in common commute with all other elements of the
larger group. For a discussion of the representation theory of these objects, we refer
the reader to [Gorenstein 1968, Chapter 3.7]. As discussed there, the irreducible
characters of a central product G1 ◦G2 can be viewed as irreducible characters of
a factor group when a suitable normal subgroup is chosen from the kernel of the
representation. For our purposes, this means that irreducible characters of a central
product G1 ◦G2 can again be taken to be products of characters of G1 and G2.

We end this section with the following lemma recording a divisibility property
for the first several cyclotomic polynomials.

Lemma 2.8. Let q ≥ 3 be an odd number:

(a) If ` ≥ 5 is prime, then ` divides at most one of q, q − 1, q + 1, q2
+ 1,

q2
+ q + 1, and q2

− q + 1.

(b) 3 divides at most one of q, q − 1, and q + 1, and does not divide q2
+ 1.

(c) If 3 divides q − ε with ε ∈ {±1}, then
• 3 divides q2

+ εq + 1;
• 9 does not divide both q − ε and q2

+ εq + 1; and
• 3 does not divide q2

− εq + 1.

Proof. Let ` be a prime. Suppose first that ` divides q. We see easily that this
implies that the other listed values are congruent to ±1 (mod `), and hence cannot
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be divisible by `. Similarly, if ` divides q ± 1, then the remaining values are
congruent to 1,±2, or 3 (mod `), and hence cannot be divisible by ` unless `= 2
or 3. When ` = 3, we see from this that the only possibilities are that 3 divides
q−1 and q2

+q+1 or that 3 divides q+1 and q2
−q+1. If ` divides q2

+1, then
it cannot divide q, q − 1, or q + 1 from above, and the remaining two values are
congruent to ±q (mod `). Since ` does not divide q , the latter are also not divisible
by `. If ` divides one of the last two values listed and is larger than 3, then it cannot
divide any of the first four by the previous arguments. Further, the remaining value
is congruent to ±2q (mod `), and hence again cannot be divisible by `. Finally, if
9 divides q ± 1, then q2

∓ q + 1≡ 3 (mod 9) and hence is not divisible by 9. �

3. Using GAP

GAP is a computer algebra system (“Groups, algorithms, and programming”) that
is extremely useful for computing with finite groups and their characters. For the
purposes of this paper, we especially make use of the character table library package
[Breuer 2013], which builds on the results in the ATLAS [Conway et al. 1985]
and contains several character tables, lists of maximal subgroups, and other useful
information about certain small groups. Our goal in this section is to describe some
of the functions and commands that will be useful for our results.

We can obtain the character table and corresponding irreducible character
values for groups stored in the character table library by using the commands
CharacterTable and Irr, respectively. For many groups stored in the library, the
list of maximal subgroups is also available, which can be obtained using the Maxes
command. Given the character table for a maximal subgroup H of G stored in GAP,
the library also has the fusion of classes stored (that is, the way conjugacy classes
of H embed into those of G), which is necessary for comparing the characters of
H to those of G for the purposes of understanding the restrictions. This is obtained
using the command GetFusionMap.

Below is the code used to generate our results in Section 8, given the character
tables stored in the library, ctg and cth for G and H, respectively. This gives the
indices of the nonlinear irreducible characters of G that restrict irreducibly to H :

irrg:=Irr(ctg);
irrh:=Irr(cth);
fus:=GetFusionMap(cth,ctg);
PositionsProperty(irrg, x -> x[1] > 1 and x{fus} in irrh);

4. Restrictions from G =�3(q)∼= PSL2(q)

In this section, we let G be the finite group �3(q) ∼= PSL2(q), where q ≥ 5 is a
power of an odd prime p. The character table for G is well-known, and the set of
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nontrivial character degrees is
{1

2(q + ε), q − 1, q, q + 1
}
, where ε ∈ {±1} is such

that q ≡ ε (mod 4).
From [Bray et al. 2013, Table 8.7], we see that a maximal subgroup H of G is

isomorphic to one of the following:

(1) A5 for q = p ≡±1 (mod 10) or q = p2, with p ≡±3 (mod 10).

(2) S4 for q = p ≡±1 (mod 8).

(3) A4 for q = p ≡±3, 5,±11,±13,±19 (mod 40).

(4) Dq±1 for q > 5.

(5) �3(q0) for q = qr
0 , with r an odd prime.

(6) SO3(q0) for q = q2
0 .

(7) Eq :
( 1

2(q − 1)
)
.

The goal of this section is to prove the following theorem:

Theorem 4.1. Let q ≥ 13 and G ∼= �3(q). Let H be a maximal subgroup and
χ ∈ Irr(G) such that χ(1) 6= 1 and χ |H is irreducible. Then q ≡ 3 (mod 4),
H ∼= Eq :

( 1
2(q − 1)

)
, and χ(1)= 1

2(q − 1).

We prove Theorem 4.1 in Lemmas 4.2–4.6 below by addressing the cases (1)–(7)
individually. We address the case 5≤q≤11 in Section 8. Throughout the remainder
of the section, let L denote the real-valued function

L(x)= 1
2(x − 1).

Note that χ(1)≥ L(q) for any χ ∈ Irr(G) with χ(1) 6= 1 and that L is increasing
for all real x .

Lemma 4.2. Let H ∼= A5, if q = p ≡ ±1 (mod 10), or q = p2, with p ≡ ±3
(mod 10) and let χ ∈ Irr(G) with χ(1) 6= 1. Then χ |H is reducible, except possibly
when q = 11 or q = 9.

Proof. First, note that |H | = 60 and that q > 19 unless q = 9 or 11. Since
L(19)= 9>

√
60=

√
|H |, we have that χ |H is reducible by Corollary 2.3, except

possibly for the stated exceptions of q . �

Lemma 4.3. Let H ∼= A4 with q= p≡±3, 5,±11,±13,±19 (mod 40) or H ∼= S4

with q = p≡±1 (mod 8), and let χ ∈ Irr(G) with χ(1) 6= 1. Then χ |H is reducible,
except possibly when q ≤ 7.

Proof. Note that |H | ≤ 24 and that q ≥ 11 unless q is 3, 5, or 7. Hence, since
L(11)= 5>

√
24≥
√
|H |, arguing as in the proof of Lemma 4.2, we see that χ |H is

reducible for all χ ∈ Irr(G), except possibly in the case of the stated exceptions. �

Lemma 4.4. Let H ∼= Dq±1 with q ≥ 11, and let χ ∈ Irr(G) with χ(1) 6= 1. Then
χ |H is reducible.
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Proof. Note that |H | = 2(q ± 1). We claim that L(q) ≥
√

2(q + 1) >
√

2(q − 1)
for all q ≥ 11, which will prove the statement by Corollary 2.3. Since the second
inequality clearly holds, we will work with the first. This is equivalent to solving
the inequality 1

4(x − 1)2 ≥ 2(x + 1), and hence to solving x2
− 10x − 7 ≥ 0

or (x − 5)2 − 32 ≥ 0. Since x2
− 10x − 7 is increasing for x > 5, we see that

L(x)≥
√

2(x + 1) whenever x ≥ 5+ 4
√

2, which is satisfied by x ≥ 11. �

Lemma 4.5. Let H ∼= �3(q0), where q = qr
0 and r is an odd prime, or let H ∼=

SO3(q0), where q = q2
0 . Then χ |H is reducible for every χ ∈ Irr(G) such that

χ(1) 6= 1.

Proof. First consider the case that q0= 3. If q ≥ 27, then L(q)≥ 13>
√

24≥
√
|H |.

If q = 9, then L(9) = 4, but we have H ∼= SO3(3), which is isomorphic to the
symmetric group S4. The character degrees of S4 are {1, 2, 3}, so the claim holds
in this case.

Hence we may assume that q0 ≥ 5. We have |H | ≤ q0(q2
0 − 1) and 1

2(q − 1)≥
1
2(q

2
0 − 1), so by Corollary 2.3, it suffices to show that

1
2(q

2
0 − 1)≥

√
q0(q2

0 − 1).

We will do this by showing that the quotient (x2
− 1)/(2

√
x(x2− 1)) is at least 1

for x ≥ 5. We have(
(x2
− 1)

2
√

x(x2− 1)

)2

=
1
4

(
x − 1

x

)
≥

1
4
(x − 1)≥ 1

for all such x , completing the proof. �

Lemma 4.6. Let H ∼= Eq :
( 1

2(q − 1)
)
. Then χ |H is reducible for every χ ∈ Irr(G)

with χ(1) 6= 1, unless q ≡ 3 (mod 4) and χ(1)= 1
2(q − 1).

Proof. Since Eq is normal and abelian in H and [H : Eq ] =
1
2(q− 1), Theorem 2.4

implies b(H)≤ 1
2(q − 1). Hence by Lemma 2.2, all irreducible nonlinear characters

χ of G restrict reducibly to H, except possibly if χ(1)= 1
2(q − 1). �

5. Restrictions from G =�5(q)∼= PSp4(q)

Throughout this section, let q be a power of an odd prime p and let G be the group
PSp4(q), which is isomorphic to �5(q). In this section, we prove the following:

Theorem 5.1. Let G =�5(q) with q ≥ 7 odd. Let H be a maximal subgroup of G
and χ ∈ Irr(G) such that χ(1) 6= 1 and χ |H is irreducible. Then one of the following
holds:

• H is isomorphic to �±4 (q).2 or a maximal parabolic subgroup of G.

• H is isomorphic to SO5(q1/2).



616 K. ALBEE, M. BARNES, A. PARKER, E. ROON AND A. A. SCHAEFFER FRY

maximal H ∼= condition on q treated in
Lemma

A6 q 6= 7 and q = p ≡±5 (mod 12) 5.2
A7 q = 7 5.2
S6 q = p ≡±1 (mod 12) 5.2

PSL2(q) q ≥ 7 and p ≥ 5 5.3
24
: A5 p = q ≡±3 (mod 8) 5.4

24
: S5 p = q ≡±1 (mod 8) 5.4

PSp4(q0), q = qr
0 and r is an odd prime 5.5( 1

2(q ± 1)×PSL2(q)
)
.22 q ≥ 5 5.6

Table 1

We note that by [Bray et al. 2013], the groups excluded by the first item
of Theorem 5.1 are the groups in Aschbacher class C1 but not isomorphic to( 1

2(q ± 1)×PSL2(q)
)
.22. We also remark that the exceptions listed in Theorem 5.1

are beyond the scope of this work, and that the cases q = 3, 5 are addressed in
Section 8. By [Bray et al. 2013], to prove Theorem 5.1, we must show that χ |H
is reducible for χ ∈ Irr(G) with χ(1) 6= 1 and H isomorphic to one of the groups
shown in Table 1.

By the main theorem of [Landazuri and Seitz 1974], we have a lower bound on
the degree of the nonlinear irreducible characters for G given by the function

L(q) := 1
2(q

2
− 1).

Note that the continuous function L :R→R given by L(x)= 1
2(x

2
−1) is everywhere

differentiable and L′(x)= x , which we know to be greater than zero on the interval
(0,∞). Hence we see that L is increasing on (0,∞).

As in the previous section, our main strategy is to determine an upper bound for
b(H) and to show that L(q) is larger than this bound, implying that the nontrivial
characters of G ∼= PSp4(q) restrict reducibly to H.

Lemma 5.2. Let H ∼= A6 with q = p ≡ ±5 (mod 12) and q 6= 7, H ∼= A7 with
q = 7, or H ∼= S6 with q = p ≡ ±1 (mod 12). Then χ |H is reducible for every
χ ∈ Irr(G) with χ(1) 6= 1.

Proof. First, if q 6= 5, 7, note that since L is increasing, L(q) ≥ L(11) = 60 >
√

720≥
√
|H |. Hence in these cases, the statement follows from Corollary 2.3.

When q = 5, we have H ∼= A6 and L(q)= 12. However, the largest irreducible
character degree of A6, as seen in the ATLAS and the GAP character table library
[Conway et al. 1985; Breuer 2013], is 10. When q = 7, we can see using the
character tables for A7 and G in GAP [Breuer 2013] that none of the nonlinear
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irreducible character degrees match. Hence in any case, χ |H is reducible for any
χ ∈ Irr(G) with χ(1) 6= 1. �

Lemma 5.3. Let q be a power of a prime p with p ≥ 5 and q ≥ 7, and let
H ∼= PSL2(q). Then χ |H is reducible for every χ ∈ Irr(G) with χ(1) 6= 1.

Proof. Set u(x)=
√

1
2 x(x2− 1), so u(q)=

√
|H |. We claim that L(x)≥ u(x) for

the relevant values of x , implying the statement by Corollary 2.3. Note that(
L(x)
u(x)

)2

=

(
(x2
− 1)

2
√
(1/2)x(x2− 1)

)2

=
1
2

(
x − 1

x

)
≥

1
2
(x − 1)≥ 1

for all x ≥ 3, which proves the claim. �

Lemma 5.4. Suppose q ≥ 7. Let q = p ≡ ±1 (mod 8) and H ∼= 24
: S5, or let

p = q ≡±3 (mod 8) and H ∼= 24
: A5. Then χ |H is reducible for every χ ∈ Irr(G)

with χ(1) 6= 1.

Proof. Since L is increasing, we see L(q) ≥ L(11) = 60 unless q = 7. Since
√
|H | ≤

√
24 · 120 < 60, we see that the nontrivial characters of PSp4(q) restrict

reducibly in this case by Corollary 2.3. From the character tables available in GAP
[Breuer 2013] for 24

: S5 and PSp4(7), we see further that when q = 7, there are no
nontrivial irreducible character degrees for G that are also degrees for H. �

Lemma 5.5. Let H ∼= PSp4(q0), where q = qr
0 and r is an odd prime. Then χ |H is

reducible for every χ ∈ Irr(G) with χ(1) 6= 1.

Proof. In this case, |H | = 1
2q4

0 (q
2
0 − 1)(q4

0 − 1). We define real-valued functions
l and u by l(x)= 1

2(x
2r
− 1) and u(x)=

(1
2 x4(x2

− 1)(x4
− 1)

)1/2. We will show
that l(x) > u(x) whenever r ≥ 3 and x ≥ 3, which will establish the statement by
Corollary 2.3.

Indeed, notice that for x > 1,

u(x)2 = 1
2 x4(x2

− 1)(x4
− 1) < x4(x2

− 1)(x4
− 1)= x10

− (x8
+ x6
− x4) < x10,

where the last inequality follows from the fact that x8
+ x6
− x4 > 0 for x > 1.

Further, for r ≥ 3, we have l(x) ≥ 1
2(x

6
− 1), which is larger than x5 for x ≥ 3.

This shows that l(x)2 > u(x)2 for x ≥ 3 and r ≥ 3, which completes the claim. �

In the final case, q ≥ 5 and H ∼=
( 1

2(q ± 1) × PSL2(q)
)
.22. Then H is an

extension of K := 1
2(q ± 1)× PSL2(q) by the direct product C2 × C2. That is,

H/K ∼= C2×C2.

Lemma 5.6. Let q ≥ 7 and H ∼=
( 1

2(q ± 1)×PSL2(q)
)
.22. Then χ |H is reducible

for every χ ∈ Irr(G) with χ(1) 6= 1.
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Proof. First, recall that for abelian groups, the degree of every irreducible character
is exactly 1. Let C be the cyclic group of size 1

2(q±1). Thus for all λ ∈ Irr(C), we
have λ(1)= 1. Since K is the direct product of C with PSL2(q), we know that all
elements of Irr(K ) are of the form λ× ϕ by Theorem 2.7, where λ ∈ Irr(C) and
ϕ ∈ Irr(PSL2(q)). In particular, the degree of each of these characters is simply
given by ϕ(1).

Further, since [H :K ]=4 and KCH, we see using Theorem 2.6 that if χ ∈ Irr(H)
and χ |H contains θ ∈ Irr(K ) as a constituent, then χ(1)/θ(1) divides 4. However,
since C is abelian and we know the maximal degree given by the generic character
table of PSL2(q) (see, for example, [Geck et al. 1996]) is q + 1, we have an upper
bound for b(H) given by b(H)≤ 4(q + 1).

Letting u(x)= 4(x + 1), notice that

L(x)
u(x)

=
(x2
− 1)

8(x + 1)
=

1
8
(x − 1) > 1

whenever x > 9, and hence L(x) > u(x), proving the statement for q > 9 by
Lemma 2.2. Further, using the GAP character table library [Breuer 2013], we see
that PSp4(9) has smallest nontrivial degree 41> u(9), finishing the case q = 9.

Finally, consider the case q = 7. Note that the character degrees of K must
be in the set {d, 2d, 4d}, where d ranges over the irreducible character degrees of
PSL2(7). Utilizing GAP, we see that none of these numbers occur as character
degrees of G larger than 1, completing the proof. �

6. Restrictions from G = Sp6(q)

In this section, let G be the symplectic group Sp6(q), where q is a power of an odd
prime p. We prove the following:

Theorem 6.1. Let G = Sp6(q), where q ≥ 5 is a power of an odd prime, and let
χ ∈ Irr(G) with χ(1) 6= 1. Suppose H ≤ G is a maximal subgroup such that the
restriction χ |H is irreducible. Then one of the following holds:

• H is isomorphic to Sp2(q)×Sp4(q) or a maximal parabolic subgroup.

• q = 5, H ∼= 2·J2, and χ(1)= 63.

• q = 5, H ∼= GL3(5).2, and χ(1)= 62.

• H ∼= Sp2(q
3) : 3 and χ(1)= 1

2(q
3
± 1).

• H ∼= Sp6(q0).2, where q = q2
0 , and q0 = 5 or χ(1)= 1

2(q
3
± 1).

As in the case of Theorem 5.1, the groups excluded by the first item of Theorem 6.1
are those found in Aschbacher class C1. We remark that the case q = 3 will be
considered in Section 8 and that addressing the exceptions listed in Theorem 6.1,
aside from 2·J2 addressed in Lemmas 6.3 and 6.4 below, will require methods
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maximal H ∼= condition on q
restriction treated in
behavior Lemma

2·A5 q = p≡±3,±11,±13,±19 (mod 40) always red. 6.2
2·S−5 q = p≡±1 (mod 8) always red. 6.2

2·PSL2(7)·2+ q = p≡±1 (mod 16) always red. 6.2
2·PSL2(7) q = p≡±7 (mod 16), q 6= 7 always red. 6.2
2·PSL2(7) q = p2, p≡±3,±5 (mod 16) always red. 6.2

2·PSL2(13) q = p≡±1,±3,±4 (mod 13) always red. 6.2
2·PSL2(13) q = p2, p≡±2,±5,±6 (mod 13) always red. 6.2

2·A7 q = 9 always red. 6.2
2×PSU3(3) q = p≡±7,±17,±19,±29 (mod 60) always red. 6.2

(2×PSU3(3)).2 q = p≡±1 (mod 12) always red. 6.2
2·J2 q = p≡±1 (mod 5) always red. 6.3

2·J2 q = 5 red. unless 6.3, 6.4χ(1)= 63
2·J2 q = p2, p≡±2 (mod 5) always red. 6.3

2·PSL2(q) p≥ 7 always red. 6.5

Table 2

beyond the scope of this article. The remainder of this section is devoted to proving
Theorem 6.1.

By the proof of [Tiep and Zalesskii 1996, Theorem 5.2], a lower bound for the
nontrivial character degrees of G is

L(q) := 1
2(q

3
− 1).

As in the previous sections, our new lower bound L is an increasing function for
x > 1.

We will first investigate the character restrictions to the subgroups listed in
Table 2, which according to [Bray et al. 2013] are the maximal subgroups in the
Aschbacher class S. Recall here that we are assuming q ≥ 5.

We may treat the first several cases using the strategies from the previous sections.

Lemma 6.2. Let q ≥ 5 and let H be one of the maximal subgroups listed above,
aside from 2·J2 or 2·PSL2(q). Then χ |H is reducible for every χ ∈ Irr(G) with
χ(1) 6= 1.

Proof. In each case, L(q) >
√
|H |, which can be seen using the same arguments as

in the previous sections. Hence the statement follows from Corollary 2.3. �

Now, we consider the second Janko group, J2, which is one of the sporadic finite
simple groups. Also called the Janko–Hall group, J2 was one of the first simple
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sporadic groups discovered and its order is |J2| = 604800. The group H ∼= 2·J2 is
the so-called Schur cover or universal covering group of J2.

Lemma 6.3. Let H ∼= 2·J2, where p = q ≡ ±1 (mod 5), q = 5, or q = p2 and
p ≡±2 (mod 5). Let χ ∈ Irr(G) with χ(1) 6= 1. Then χ |H is reducible, except in
the case q = 5 and χ(1)= 63.

Proof. Note that b(H) <
√

2 · 604800≈ 1099 .8. Since L is increasing and L(19) >
√

2 · 604800, the statement follows by Corollary 2.3 as long as q 6= 5, 9, or 11.
Further, the character table of H is available in the ATLAS or the GAP character
table library [Conway et al. 1985; Breuer 2013], from which we see that b(H)=448.
Since L(11)= 665, we are finished in this case.

Now, let q = 9. Using the character degrees for G available from [Lübeck 2007],
we see that the only degrees below the maximal degree of 2·J2 are 364 and 365,
but neither of these appear in the list of degrees from 2·J2, so they must restrict
reducibly.

When q = 5, again using [Lübeck 2007], we must consider characters of G
of degrees 62 and 63. However, only 63 occurs as a character degree for 2·J2,
completing the proof. �

Lemma 6.4. The irreducible characters of G = Sp6(5) with degree 63 restrict
irreducibly to H ∼= 2·J2.

Proof. From [Lübeck 2007], we see there are two characters of G of degree 63.
Further, from the character table of PSp6(5) available in GAP, we see that G/Z(G)
also has two irreducible characters of degree 63. That is, the two irreducible
characters of G of degree 63 are trivial on the center. We also see, using the
character tables available in GAP, that the character of H of degree 63 is trivial on
the center. Hence the characters of degree 63 of G and H can be considered as
characters of PSp6(5) and J2, respectively.

Implementing the algorithm described in Section 3, we see that the characters χ2

and χ3 of degree 63 of PSp6(5) restrict irreducibly to the character χ7 of J2. Hence
the inflations to G will restrict irreducibly to H as well. �

Lemma 6.5. Let p ≥ 7 and let H ∼= 2·PSL2(q). Then χ |H is reducible for every
irreducible character χ of G = Sp6(q) with χ(1) 6= 1.

Proof. From the character table for H ∼= SL2(q), we know b(H) = q + 1. Since
x+1< 1

2(x
3
− 1)=L(x)whenever x>2, the statement follows from Lemma 2.2. �

We now consider the maximal subgroups of G=Sp6(q) from Aschbacher class C
given in Table 3. Recall here that q ≥ 5.

We remark that these are all of the maximal subgroups in C, with the exception
of those in C1 and C8. Addressing these omitted groups and those for which we
only attain partial results will require methods beyond the scope of this article.
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Aschbacher maximal H ∼= condition on q restriction treated in
class behavior Lemma

C2 Sp2(q) o S3 always red. 6.6

C2 GL3(q).2
red. unless q = 5,

6.7χ(1)= 62

C3 Sp2(q
3) : 3 partial results 6.8

C3 GU3(q).2 always red. 6.9

C4 Sp2(q) ◦GO3(q) always red. 6.10

C5 Sp6(q0)
q = qr

0 , always red. 6.11
r odd prime

C5 Sp6(q0).2 q = q2
0 partial results 6.12

Table 3

For the remainder of the section recall that q ≥ 5 and define di to be the i-th
irreducible character degree of Sp6(q) as obtained from the list generated by [Lübeck
2007]. In particular, we have

d2 :=
1
2(q

3
− 1), d4 :=

1
2q(q − 1)(q3

− 1),

d3 :=
1
2(q

3
+ 1), d5 :=

1
2(q − 1)(q2

+ q + 1)(q2
− q + 1).

Certainly d2 < d3 and d4 < d5, since q3
− 1 < q3

+ 1 and q2
− q < q2

− q + 1.
Further, using the upper bound

∑n−1
i=0 |ai | for the positive roots of a polynomial

xn
+ an−1xn−1

+ · · · + a1x + a0, with real coefficients, we see that for q > 5,
2(d4−d3)= q5

−q4
−q3
−q2
+q−1 must be positive. Since d4 > d3 when q = 5

by checking directly, we therefore see that d5 > d4 > d3 > d2 for all q ≥ 5. Further,
similar arguments using the polynomials in q in the list generated by [Lübeck 2007]
yield that di ≥ d5 for each i ≥ 5.

Lemma 6.6. If q≥5 and H ∼=Sp2(q)oS3, then χ |H is reducible for each χ ∈ Irr(G)
with χ(1) 6= 1.

Proof. Recall that H can be viewed as the semidirect product Sp2(q)
3
: S3.

Theorem 2.7, combined with the fact that q is odd and Sp2(q) ∼= SL2(q), yields
that the irreducible characters of Sp2(q)

3 have degree at most (q + 1)3. Then,
Theorem 2.6 implies b(H)≤ 6(q + 1)3.

Now, note that b(H) < d4 for q > 5 and that b(H) < d5 for q ≥ 5. Further, when
q = 5, we have d4 = 1240, which has 31 as a prime factor. Since 31 does not divide
|H | in this case, we see d4 cannot be a character degree for H. Hence it suffices to
show neither d2 nor d3 can be a character degree for H when q ≥ 5.
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Assume by way of contradiction that d2, respectively d3, is the degree of some
irreducible character of H. Note that this means d := d2, respectively d3, must
divide |H | = 6q3(q − 1)3(q + 1)3. Letting ε = 1 in the case d = d2 and ε =−1 in
the case d = d3, recall that d = 1

2(q − ε)(q
2
+ εq + 1). In particular, we see that

any prime dividing q2
+ εq + 1, must also divide |H |. Applying Lemma 2.8, it

follows that d must be a product of powers of 2 and 3. Since q ≥ 5 is odd, this
means that the odd number q2

+ εq + 1 is of the form 3r with r > 3. However, by
Lemma 2.8(c), this means that 35 divides d but that the largest power of 3 dividing
|H | is 34, a contradiction. �

Lemma 6.7. If q≥ 5 and H ∼=GL3(q).2, then χ |H is reducible for each χ ∈ Irr(G)
with χ(1) 6= 1, except possibly if q = 5 and χ(1)= 62.

Proof. From the generic character table available for GL3(q) in CHEVIE [Geck
et al. 1996], we see that the irreducible character degrees for GL3(q) are

{1, q(q+1), q3, q2
+q+1, q(q2

+q+1), (q±1)(q2
+q+1), (q−1)2(q+1)} (1)

and that the largest of these is (q+1)(q2
+q+1). Then b(H)≤ 2(q+1)(q2

+q+1)
by Theorem 2.6.

Recall that d4=
1
2q(q2

+q+1)(q−1)2 and that for i ≥4, we have di ≥d4. Notice
also that d4 is an increasing function and d4 > b(H) whenever q ≥ 5. This shows
that every irreducible character of degree larger than d3 must restrict reducibly to H,
by Lemma 2.2.

Now, applying Theorem 2.6, we see that every member of Irr(H) has degree
of the form m or 2m for some m in the set (1). Arguing as in Lemma 6.6, using
Lemma 2.8, we see that for each member m 6= 1 in this list, there is some odd divisor
of d3 =

1
2(q + 1)(q2

− q + 1) that does not divide m, and hence no character of
degree d3 restricts irreducibly to H. The same argument yields the same statement
for d2 =

1
2(q − 1)(q2

+ q + 1), except possibly if m is one of the numbers in the
list with divisor q2

+q+ 1. But since q ≥ 5, we further have 1
2(q− 1) cannot be in

the set {1, 2, q, 2q, q ± 1, 2(q ± 1)}, and hence d2 also cannot coincide with any
character degree of H, unless q = 5 and d2 = 62= 2(q2

+ q + 1). �

We remark that the character degree 62 does not appear for the simple group
PSp6(5), so the unsolved exception in Lemma 6.7 is irrelevant for the problem of
determining irreducible restrictions from the simple group G/Z(G).

Lemma 6.8. If q ≥ 5 is odd and H ∼= Sp2(q
3) : 3, then χ |H is reducible for each

χ ∈ Irr(G) with χ(1) 6= 1, with the possible exception of those with degree equal
to d2 or d3.

Proof. Recall from above that Sp2(q)∼= SL2(q) and whenever q is odd, the maxi-
mum degree is q+1. A quick application of Theorem 2.6 gives us that the characters
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of H have degree at most 3(q3
+1). Since q > 3, it is easy to see that the inequality

3(q3
+ 1) < 1

2q(q2
+ q + 1)(q − 1)2

is true. Since the degree d4 is an increasing function and for i ≥ 4 we have di ≥ d4,
we get that the characters of Sp6(q) with degrees greater than or equal to d4 will
restrict reducibly to H. �

Lemma 6.9. Let q ≥ 5 and H ∼= GU3(q).2. Then χ |H is reducible for each
χ ∈ Irr(G) with χ(1) 6= 1.

Proof. The set of irreducible character degrees for GU3(q) is

{1, q(q−1), q3, q2
−q+1, q(q2

−q+1), (q±1)(q2
−q+1), (q+1)2(q−1)}, (2)

which can be seen from the generic character table for GU3(q) available in CHEVIE
[Geck et al. 1996]. Then the maximum character degree of GU3(q) is (q+1)2(q−1),
so Theorem 2.6 implies that b(H) is at most 2(q + 1)2(q − 1).

Since the inequality

2(q + 1)2(q − 1) < d4 =
1
2q(q2

+ q + 1)(q − 1)2

is true for q ≥ 3, we see by Lemma 2.2 that the statement is true, except possibly
for characters of G with degree d2 or d3.

Arguing exactly as in Lemma 6.7 with the roles of d2 and d3 reversed, we see
that no character of degree d2 or d3 may restrict irreducibly to H. Note that in this
case, we do not need to make an exception like that in Lemma 6.7, since when
q ≥ 5, 1

2(q + 1) cannot be in the set {1, 2, q, 2q, q ± 1, 2(q ± 1)}. �

Lemma 6.10. If q ≥ 5 and H ∼= Sp2(q) ◦GO3(q), then χ |H is reducible for each
χ ∈ Irr(G) with χ(1) 6= 1.

Proof. Let q ≥ 5 be odd and note that Sp2(q) ∼= SL2(q) and �3(q) ∼= PSL2(q)
and that the largest irreducible character degree of either of these groups is at
most q + 1. Further, note that GO3(q) contains a normal subgroup of index 4
isomorphic to the latter group. Using this information and Theorem 2.6, we see
that b(GO3(q))≤ 4(q + 1).

Now, recalling that the irreducible characters of H are products of the irreducible
characters of the groups GO3(q) and Sp2(q) since it is a central product, we
obtain an upper bound on the character degrees of H ∼= Sp2(q) ◦GO3(q) given by
b(H)≤ 4(q + 1)2.

Solving the inequality computationally, we get that 4(q + 1)2 < L(q) whenever
q ≥ 11, proving the statement for q ≥ 11 by Lemma 2.2. Further, note that if q ≥ 3,
the inequality

4(q + 1)2 < 1
2q(q2

+ q + 1)(q − 1)2
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is satisfied, so any irreducible character of G of degree at least d4 must restrict
reducibly to H.

Let d be d2 or d3. Note that the character degrees for Sp2(q) and GO3(q) are
1, q, q − 1, and q + 1, up to multiplying or dividing by powers of 2. Since H is a
central product, its irreducible character degrees are composed of products of two
of these values, up to multiplying or dividing by powers of 2. Using Lemma 2.8
and arguing exactly as in Lemma 6.6, we again see that either some prime `≥ 5 or
some power of 3 divides d but not any of the irreducible character degrees of H.
Hence we see that d cannot be the degree of any irreducible character of H, and
each χ ∈ Irr(G) with χ(1) 6= 1 must therefore restrict reducibly to H. �

We next turn our attention to the subgroups of the form Sp6(q0).(2, r), where
q = qr

0 and r is prime. Recall that |Sp6(q0)| = q9
0
∏3

i=1(q
2i
0 − 1). We begin with

the case that r is odd.

Lemma 6.11. Let q0 be a prime power such that q = qr
0 , where r is an odd prime.

Let H ∼= Sp6(q0). Then χ |H is reducible for each χ ∈ Irr(G) with χ(1) 6= 1.

Proof. From the list available at [Lübeck 2007], we see that the largest irreducible
character degree for Sp6(q0) is at most (q2

0 +1)(q2
0 +q0+1)(q2

0 −q0+1)(q0+1)3,
which is smaller than L(q) = 1

2(q
3r
0 − 1) when r ≥ 5 and q0 ≥ 3. Then by

Corollary 2.3, we are done in the case r > 3.
Now let r = 3 and notice that

d4 =
1
2(q

5
− q4
− q2
+ q)= 1

2(q
15
0 − q12

0 − q6
0 + q3

0 ).

Then, we see computationally that b(H) < d4 for all q0 ≥ 3. Hence it suffices
to show that the character degrees d2 and d3 for G do not appear as irreducible
character degrees for H.

Notice that

d2 =
1
2(q

9
0 − 1)= 1

2(q0− 1)(q2
0 + q0+ 1)(q6

0 + q3
0 + 1),

d3 =
1
2(q

9
0 + 1)= 1

2(q0+ 1)(q2
0 − q0+ 1)(q6

0 − q3
0 + 1).

Further, observing Lübeck’s list of character degrees, see [Lübeck 2007], we see that,
up to dividing by 2, every degree for H is a product of the cyclotomic polynomials
dividing q0(q6

0 − 1), which are those listed in Lemma 2.8 in terms of q0. Using
Lemma 2.8 applied to q3

0 and the arguments used before, we see that (q6
0 + q3

0 + 1)
and (q6

0−q3
0+1) have odd divisors that do not divide q0(q6

0−1)=q0(q3
0−1)(q3

0+1),
and therefore the same is true for d2 and d3. Hence these do not appear as character
degrees for Sp6(q0), completing the proof. �

Finally, we address the more delicate case that H ∼= Sp6(q0).2, where q = q2
0 .

In this case, we only achieve partial results.



IRREDUCIBLE CHARACTER RESTRICTIONS TO MAXIMAL SUBGROUPS 625

Lemma 6.12. Let q = q2
0 be odd such that q0 ≥ 7 and let H ∼= Sp6(q0).2. Then

χ |H is reducible for each χ ∈ Irr(G) with χ(1) 6= 1, except possibly those with
degree d2 or d3.

Proof. First, consider a character χ∈Irr(Sp6(q))with degree greater than or equal to

d4 =
1
2q(q2

+ q + 1)(q − 1)2 = 1
2q2

0 (q
4
0 + q2

0 + 1)(q2
0 − 1)2.

Again, from the list available at [Lübeck 2007], we see that the largest irreducible
character degree for Sp6(q0) is at most (q2

0 +1)(q2
0 +q0+1)(q2

0 −q0+1)(q0+1)3.
Hence by Theorem 2.6, we see that

b(H)≤ 2(q2
0 + 1)(q2

0 + q0+ 1)(q2
0 − q0+ 1)(q0+ 1)3.

When q0 ≥ 7, we therefore have d4 > b(H), which completes the proof by
Lemma 2.2. �

7. Restrictions from G =�7(q)

In this section, let G be the group �7(q), where q is the power of an odd prime p.
We prove the following:

Theorem 7.1. Let G = �7(q), where q ≥ 5 is a power of an odd prime, and let
χ ∈ Irr(G) with χ(1) 6= 1. Suppose H ≤ G is a maximal subgroup such that the
restriction χ |H is irreducible. Then one of the following holds:

• H is isomorphic to �±6 (q).2, (�±2 (q)×�5(q)).22, or a maximal parabolic
subgroup;

• H is isomorphic to SO7(q1/2); or

• H is isomorphic to the exceptional group of Lie type G2(q).

The groups listed in the first item of Theorem 7.1 are the maximal subgroups
in Aschbacher class C1 other than (�3(q)×�±4 (q)).2

2, by [Bray et al. 2013]. As
before, addressing the exceptions listed in Theorem 7.1 is beyond the scope of this
article. We further remark that the case H ∼=G2(q)≤�7(q) is pointed out in [Seitz
1990] as one of very few embeddings of groups of Lie type into finite classical
groups defined in the same characteristic that produce examples of irreducible
restrictions, and is the topic of a forthcoming paper by the faculty author. The
reader may also note that the exceptions listed are similar to those that must be
carefully treated in [Schaeffer Fry 2013] in the case p = 2. The remainder of this
section is devoted to proving Theorem 7.1.

Note that the smallest nontrivial irreducible character degree of G is L(q) =
q4
+ q2
+ 1, see [Tiep and Zalesskii 1996, Theorem 1.1], and that the real-valued

function L(x) is an increasing function for positive x . Our methods in this section
will largely be similar to those in previous sections.
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Aschbacher
maximal H ∼= condition on q

treated in
class Lemma

S �7(2) q = p 7.2
C2 26

: A7 p = q ≡±3 (mod 8) 7.3
C2 26

: S7 p = q ≡±1 (mod 8) 7.3
C5 �7(q0) q = qr

0 , r odd prime 7.4
C1 (�3(q)×�±4 (q)).2

2 7.5

Table 4

From [Bray et al. 2013], we see that Table 4 lists all maximal subgroups when
q ≥ 5, aside from those excepted in Theorem 7.1. Note that we will treat the case
q = 3 in Section 8 below.

Lemma 7.2. Let H ∼=�7(2) and let q ≥ 5 be an odd prime. Then χ |H is reducible
for each χ ∈ Irr(G) with χ(1) 6= 1.

Proof. Using the character table for H ∼=�7(2)∼= Sp6(2) available in GAP [Breuer
2013], we see that b(H)= 512. The statement follows since L(5)= 651> b(H)
and L is increasing. �

Lemma 7.3. Let q ≥ 5 be an odd prime and let H be a maximal subgroup of G
isomorphic to 26

: A7, where q = p ≡ ±3 (mod 8) or 26
: S7, where q = p ≡

±1 (mod 8). Then χ |H is reducible for each χ ∈ Irr(G) with χ(1) 6= 1.

Proof. Since C6
2 is abelian and normal in H, we may use Theorem 2.4 to see

that b(H) ≤ [H : C6
2 ] ≤ |S7| = 5040. Note that L(9) = 6643 > b(H), so that the

statement follows for q ≥ 9 since L is increasing. When q = 5, we may obtain
the character table for G using GAP [Breuer 2013], from which we see that the
character degrees of G that are less than [H :C6

2 ] = |A7| = 2520 do not divide 2520.
Similarly, using GAP and [Lübeck 2007], we see that the only character degree
of G when q = 7 that is less than 5040 is 2451, which does not divide 5040. Hence
applying Theorem 2.4 again yields that these cannot be character degrees of H. �

Lemma 7.4. Let q = qr
0 for a power of an odd prime q0 and an odd prime r and

let H ∼=�7(q0). Then χ |H is reducible for each χ ∈ Irr(G) with χ(1) 6= 1.

Proof. We have

|H | = |�7(q0)| = q9
0 (q

2
0 − 1)(q4

0 − 1)(q6
0 − 1),

L(q)= q4
+ q2
+ 1= q4r

0 + q2r
0 + 1≥ q12

0 + q6
0 + 1.

Consider the real-valued functions

g(x)= x12
+ x6
+ 1,

h(x)=
√

x9(x2− 1)(x4− 1)(x6− 1).
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Since both functions are positive for x > 1 and

h(x)2 = x21
− (x19

+ x17
− x13

− x11
− x13

+ x9) < x24 < g(x)2,

we see that g(x) > h(x) for all x ≥ 1, and hence L(q) > b(H). �

Lemma 7.5. Let q ≥ 5 and let H ∼= (�3(q)×�±4 (q)).2
2. Then χ |H is reducible

for each χ ∈ Irr(G) with χ(1) 6= 1.

Proof. Let N CH be the normal subgroup N ∼=�3(q)×�−4 (q) and let χ ∈ Irr(H).
From Clifford’s theorem, Theorem 2.5, χ |N = e(ψ1+ · · ·+ψm) for some positive
integer e and some ψ1, . . . , ψm ∈ Irr(N ) such that ψ1(1)= · · · = ψm(1). Then

χ(1)= χ |N (1)= e(ψ1(1)+ · · ·+ψm(1))≤ e ·m · b(N )≤ 4b(N ),

where the last inequality follows from Theorem 2.6.
Now, by Theorem 2.7, each character ψi of N is of the form φi ×ϕi , where φi is

an irreducible character of �3(q)∼= PSL2(q) and ϕi is an irreducible character of
�±4 (q), which is isomorphic to PSL2(q2) in the case “−” and to SL2(q)◦SL2(q)∼=
2.(PSL2(q)×PSL2(q)) in the case “+”.

Then in the case “−”, we have

b(N )= b(PSL2(q))b(PSL2(q2))= (q + 1)(q2
+ 1)= q3

+ q2
+ q + 1,

and so χ(1) ≤ 4(q3
+ q2
+ q + 1) < L(q), for q ≥ 5, where the last inequality

follows by analyzing the corresponding real-valued functions. This completes the
proof in the case “−”.

In the case “+”, we have b(N )= (q+1)3, using the discussion after Theorem 2.7,
so that χ(1) ≤ 4(q + 1)3 < L(q) whenever q ≥ 7. Now, when q = 5, the only
nontrivial character degree of G that is at most 4(5+ 1)3 = 864 is 651, using the
character table available in GAP [Breuer 2013]. However, note that 651 is not
divisible by 2, and that 651> (5+1)3 = 216. This yields that 651 is not a character
degree of N or of H, again using Theorem 2.6, and completes the proof. �

8. Results for small values of q

Here we address the case that q is “small”. That is, we consider the exceptional
values of q from Theorems 4.1, 5.1, 6.1, and 7.1. We do this using GAP [Breuer
2013] and our algorithm discussed in Section 3. For G ∼= �3(q) ∼= PSL2(q),
we obtain the results for 5 ≤ q ≤ 11, which are summarized in Table 5. For
G∼=�5(q)∼=PSp4(q), we summarize the results for q = 3, 5 in Table 6. The results
for G = PSp6(3) and G =�7(3) are summarized in Tables 7 and 8, respectively.

In the tables, Maxes[i] means the i-th maximal subgroup of G found using
the Maxes command in GAP and the labeling for the characters is as in the GAP
character table for G.



628 K. ALBEE, M. BARNES, A. PARKER, E. ROON AND A. A. SCHAEFFER FRY

value of q
maximal subgroup with irreducible degreeirreducible restrictions restrictions

q = 5 Maxes[1] ∼= A4 χ2, χ3 3
q = 7 Maxes[1] ∼= S4 χ2, χ3 3
q = 7 Maxes[2] ∼= S4 χ2, χ3 3
q = 7 Maxes[3] ∼= 7 : 3 χ2, χ3 3
q = 9 Maxes[1] ∼= A5 χ3 5
q = 9 Maxes[2] χ2 5
q = 11 Maxes[1] ∼= A5 χ2, χ3 5
q = 11 Maxes[2] ∼= A5 χ2, χ3 5
q = 11 Maxes[3] ∼= 11 : 5 χ2, χ3 5

Table 5. Irreducible restrictions for PSL2(q) for small q .

value of q
maximal subgroup with irreducible degreeirreducible restrictions restrictions

q = 3 Maxes[1]
χ2, χ3 5
χ5, χ6 10

q = 3 Maxes[2] ∼= A6.21
χ2, χ3 5
χ5, χ6 10

q = 3 Maxes[4] ∼= 33
: S′4 χ4 6

q = 5 Maxes[2] ∼= 53
: (2× A5).2 χ4 40

q = 5 Maxes[3] ∼= PSL2(25).22 χ2, χ3 13

Table 6. Irreducible restrictions for PSp4(q) for small q .

maximal subgroup with irreducible degreeirreducible restrictions restrictions

36
: PSL3(3)

χ2, χ3 13
χ4 78

PSL2(27).3
χ2, χ3 13
χ4 78

PSL3(3).2 χ2, χ3 13

Maxes[9] ∼= PSL2(13) χ2, χ3 13

Maxes[10] ∼= PSL2(13) χ2, χ3 13

Table 7. Irreducible restrictions from PSp6(3) to maximal subgroups.
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maximal subgroup with irreducible degreeirreducible restrictions restrictions

Maxes[3] ∼= PSL4(3).2 χ8, χ9 260

Maxes[4] ∼= G2(3)

χ2 78
χ3 91
χ5 168
χ6 182
χ10 273
χ11 546

Maxes[5]

χ2 78
χ3 91
χ5 168
χ6 182
χ10 273
χ11 546

Maxes[6] ∼= (C3
3 .C

3
3) : PSL3(3) χ2 78

Maxes[7] ∼= Sp6(2) χ4 105

Maxes[8] χ4 105

Maxes[10] ∼= A9.2 χ4 105

Maxes[11] χ4 105

Table 8. Irreducible restrictions for �7(3).
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Prime labelings of infinite graphs
Matthew Kenigsberg and Oscar Levin

(Communicated by Kenneth S. Berenhaut)

A finite graph on n vertices has a prime labeling provided there is a way to label
the vertices with the integers 1 through n such that every pair of adjacent vertices
has relatively prime labels. We extend the definition of prime labeling to infinite
graphs and give a simple necessary and sufficient condition for an infinite graph
to have a prime labeling. We then measure the complexity of prime labelings
of infinite graphs using techniques from computability theory to verify that our
condition is as simple as possible.

1. Introduction

A graph labeling is essentially an assignment of integers to the vertices (or some-
times edges or both) of a graph subject to certain conditions. In the last 50 or so
years, a multitude of graph labelings have been described and studied. The dynamic
survey [Gallian 1998] describes over 50 types of graph labelings with results drawn
from over 2000 papers. All but a handful of these consider only finite graphs. Here
we consider one type of graph labeling and see how we can extend the definition to
infinite graphs, with the hope that understanding this limit case might shed some
light on open problems for finite graphs.

For a finite graph G(V, E), a prime labeling is a bijection f :V→{1, 2, . . . , |V |}
such that for all {u,v}∈E , f (u) and f (v) are relatively prime (gcd( f (u), f (v))=1).
If a graph admits a prime labeling, we call the graph prime. This notion of graph
labeling originates with Entringer, and was first described in a paper by Tout,
Dabboucy, and Howalla [Tout et al. 1982]. Most of the results on prime labelings
have been to show that large classes of graphs are in fact prime, but little is known
in general. For example, Pikhurko [2007] proved that all trees with up to 50 vertices
are prime. Recently Haxell, Pikhurko, and Taraz [Haxell et al. 2011] proved that
all large trees are prime. However, the Entringer–Tout conjecture, that all trees are
prime, remains open.
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A similar story emerges for another class of graphs: ladders (Pn�P2 for some n).
T. Varkey conjectured in an unpublished work that all ladders are prime. Work on
this question was done in [Berliner et al. 2016; Sundaram et al. 2006; 2007], and a
recent preprint [Ghorbani and Kamali 2016] claims to prove the conjecture.

In this present work, we ask which infinite graphs admit prime labelings. As
far as we know, this is the first attempt at such an investigation, although we note
that other types of labelings have successfully been extended to infinite graphs,
such as in [Combe and Nelson 2006] for magic labelings or [Chan et al. 2009] for
graceful labelings. The latter is particularly interesting in that it classifies precisely
which infinite trees have graceful labelings, despite the long open conjecture that
all (finite) trees are graceful. In Section 4, we will similarly prove that all infinite
trees and all infinite ladders are prime.

We will start in Section 2 with some preliminary definitions and notation. Then
in Section 3 we give an algorithm which produces a prime labeling of many infinite
graphs that have prime labelings. This will lead us to a classification theorem for
which infinite graphs are prime, which we state and prove in Section 4. We consider
issues of complexity in Section 5. Finally, we conclude with some open questions
in Section 6.

2. Preliminaries

Before we can study prime labelings of infinite graphs, we must decide what exactly
we mean by this. First, by an infinite graph G = (V, E) we will always mean a
countably infinite graph (while there are uncountable graphs, it does not make sense
to label these with integers). We could safely take V = N= {0, 1, 2, . . .}, but we
will usually use v0, v1, v2, . . . for the names of the vertices to avoid confusion with
their labels. The edge set E will simply be a set of two-element subsets of V. Note
this allows for finite or countably infinite numbers of edges, and does not prohibit
vertices having infinite degree.

We will freely generalize standard notation for graphs to the infinite case: K2,∞,
for example, will be the complete bipartite graph which has two vertices in one
part and infinitely many in the other. The only time standard notation becomes
ambiguous is with infinite paths: since Pn is a path with n edges, it makes sense to
consider P∞ as a path with infinitely many edges. However, there are two options
here. The path could extend infinitely in both directions (a two-way infinite path) or
just one (a one-way infinite path). We will use P∞ to represent the one-way infinite
path and not adopt a notation for the former.

It is then reasonable to extend the definition of prime labeling to infinite graphs
as follows:

Definition. Given an infinite graph G = (V, E), a prime labeling is a bijection
f : V → {1, 2, . . .} such that gcd( f (u), f (v))= 1 for all {u, v} ∈ E .



PRIME LABELINGS OF INFINITE GRAPHS 635

In what follows, it will sometimes be useful to exclude 1 from the codomain. Fol-
lowing Vaidya and Prajapati [2011], who introduced and studied k-prime labelings
for finite graphs, we define k-prime labelings of infinite graphs as follows:

Definition. Given an infinite graph G = (V, E), a k-prime labeling is a bijection
f : V → {k, k+ 1, k+ 2, . . .} such that gcd( f (u), f (v))= 1 for all {u, v} ∈ E .

Note that a 1-prime labeling is the same as a prime labeling. Thus trivially, every
prime graph is k-prime for some k, and every graph that is k-prime for all k will
be prime. We will see shortly that there are infinite graphs that are prime but not
2-prime. However, it turns out that every infinite 2-prime graph is k-prime for all k.
This can be seen by considering an algorithm for producing a k-prime labeling, as
we now proceed to do.

3. An algorithm for prime labelings

We begin by describing a procedure which we think is a reasonable way to produce
a k-prime labeling of an infinite graph. As usual, we take the vertex set to be
V = {v0, v1, . . .}.

We will proceed in stages, so that the every vertex is assigned some label at a
finite stage, and in the limit, the labeling of the graph is k-prime. At the start of
stage s, we will assume that we have labeled finite subsets Vs ⊆ V without mistakes
(i.e., the greatest common divisor of labels on any two adjacent vertices in Vs is 1),
and proceed to find and label two vertices appropriately.

Algorithm 3.1. Proceed in stages.

Stage s = 0: label v0 with k and set V1 = {v0}.

Stage s > 0: Given labeled Vs ⊂ V :

(1) Find the least natural number i such that vi is not adjacent to any vertex in Vs ,
and label it with the least integer greater than k not yet used as a label.

(2) Find the least integer j such that vj is unlabeled, and label it with a prime not
yet used as a label, larger than any label of vertices adjacent to vj .

(3) Let Vs+1 = Vs ∪ {vi , vj } and proceed to the next stage.

By design, this algorithm will always label adjacent vertices with numbers that
are relatively prime. Since there are infinitely many prime numbers, it is always
possible to complete step (2) of each stage. Thus, in order to show that this algorithm
produces a k-prime labeling for a graph, it is only necessary to show that it is always
possible to find a vertex vi such that vi is not adjacent to any vertex in Vs .

To illustrate the algorithm, we give some examples of infinite graphs that have
prime labelings, as well as some that do not.
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v1

v0 v2

v3

v4

v5

Figure 1. A (one-way) infinite ladder.

1 5 4 11 8 17 10 23 14

3 2 7 6 13 9 19 12 v17

Figure 2. The result of the first eight stages of the algorithm.

Example 3.2. The graph P∞�P2 with vertices arranged as in Figure 1 receives a
prime labeling from Algorithm 3.1.

The result of the first eight stages of the algorithm is shown in Figure 2. Since
the graph extends infinitely, it will always be possible to find a vertex not adjacent
to any of the already labeled vertices. This means the algorithm will produce a
prime labeling.

Example 3.3. An infinite complete binary tree with vertices arranged as in Figure 3
receives a prime labeling from Algorithm 3.1.

Once again, it will always be possible to find a vertex not connected to the labeled
part of the graph, so the algorithm produces a prime labeling. The result of the first
four stages of the algorithm is shown in Figure 4.

Example 3.4. Algorithm 3.1 does not produce a prime labeling for an infinite star
(the graph K1,∞).

In order to produce a prime labeling, the algorithm must label the center of the
star. After labeling the center of the star, step (1) of the next stage will attempt to
find the least natural number i such that vi is not adjacent to any vertex in the set

v0

v1 v2

v3 v4 v5 v6

Figure 3. The top of a complete infinite binary tree.
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1

3 5

2 7 4 11

v7 v8 6 v10 v11 v12 8 v14

Figure 4. The labeling after four stages.

of already labeled vertices, which includes the center of the star. Since the center
of the star is adjacent to all other vertices, this is impossible, and the algorithm will
not produce a prime labeling.

Note that if the infinite vertex was removed from the graph, the algorithm could
easily produce a 2-prime labeling for the resulting graph. If the center of the star
was then labeled with 1, the union of the two labelings would be a prime labeling
for K1,∞.

Example 3.5. Algorithm 3.1 does not produce a prime labeling for the infinite
bipartite graph K∞,∞.

To see this, consider any graph K∞,∞. Let a be the least natural number such
that the vertex va is adjacent to v0.

After a finite number of stages, va will be labeled. At the next stage, step (1)
will look for the least natural number i such that vi is not adjacent to any element
of the set of labeled vertices Vs ⊃ {v0, va}. Since every vertex is adjacent to either
v0 or va , this is not possible, and as such the algorithm will not be able to label the
rest of the graph.

Unlike with the infinite star, there is no way to adjust the algorithm to produce a
prime labeling of K∞,∞.

Proposition 3.6. K∞,∞ has no prime labeling.

Proof. Let a 6= 1 and b 6= 1 be any two labels of a pair of vertices in separate partite
sets, and consider n = ab. Whatever vertex gets labeled with n (or indeed, any
multiple of n) cannot be adjacent to either of the vertices labeled a or b. However,
every vertex is adjacent to one of these vertices, a contradiction. Thus the graph
has no prime labeling. �

4. Classification of infinite graphs

We have seen that not all graphs have prime labelings. The issue illustrated in
Proposition 3.6 demonstrates a particular obstruction, which we summarize in the
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following lemma. Let N (S) denote the set of vertices adjacent to one or more
vertices in S (the open neighborhood of S) and N [S] = N (S) ∪ S (the closed
neighborhood of S).

Lemma 4.1. If an infinite graph G = (V, E) has a finite set S ⊂ V, for which
N [S] contains all but finitely many vertices of G, then G does not have a k-prime
labeling.

Proof. Suppose G has a k-prime labeling, and consider such a finite set S ⊂ V. Let
n be the product of the labels on the vertices of S. As such the infinitely many
multiples of n must be assigned to vertices not in N [S]. Thus N [S] cannot be
cofinite, contrary to hypothesis. �

Note that if S is finite and N [S] is cofinite, then there is a finite set S′ for which
N [S′] = V (add to S all finitely many elements not in N [S]). Such a set S′ is called
a dominating set. Thus another way to describe the obstruction to a graph having a
k-prime labeling is to say the graph has a finite dominating set. We will see that
graphs that avoid this obstruction will always have a k-prime labeling at least for
each k ≥ 2. Thus we make the following definition.

Definition. An infinite graph G = (V, E) is called finitely dominated provided
there is some finite dominating set S, that is, a finite S such that N [S] = V.

Theorem 4.2. An infinite graph G has a k-prime labeling for k ≥ 2 if and only if
G is not finitely dominated.

Proof. The forward direction is Lemma 4.1.
Conversely, if G is not finitely dominated, then for any finite set S of vertices

there is a vertex not adjacent to any element in S. This means that Algorithm 3.1
will produce a k-prime labeling: at each stage, Vs is finite, so it is always possible
to find the least natural number i such that vi is not adjacent to any vertex in the
set Vs of already labeled vertices. �

We saw in Example 3.4 that the infinite star does not get a k-prime labeling from
Algorithm 3.1, and by this theorem, we see that in fact it cannot have a k-prime
labeling for any k ≥ 2 (the center vertex is dominating). However, the infinite star
is prime, since we can eliminate the “problem” by labeling the center vertex 1. This
works in general and provides our main classification theorem.

We write G − v for the graph resulting from removing the vertex v (and all
incident edges).

Theorem 4.3. An infinite graph G has a prime labeling if and only if there is a
vertex v such that G− v is not finitely dominated.

Proof. Suppose first that G has a prime labeling f for which f (v) = 1. Then
G− = G − v is 2-prime, witnessed by f |G− . By Theorem 4.2, G− is not finitely
dominated, as required.
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Conversely, if G−v is not finitely dominated, then G−v has a 2-prime labeling
by Theorem 4.2. The vertex that was removed can be labeled with 1, giving a prime
labeling of G. �

Note, another way to state this result is that a graph will have a prime labeling if
and only if it is possible to remove one vertex such that the remaining graph has a
2-prime labeling.

We can now state the relationship between k-prime graphs for different values
of k.

Corollary 4.4. If a graph has a k-prime labeling for any k ≥ 2, it has a k-prime
labeling for all k.

Proof. According to Theorem 4.2, the condition for a graph to have a k-prime
labeling is exactly the same for any k ≥ 2. So if a graph satisfies that condition
for any k ≥ 2, it satisfies it for all k ≥ 2. Further, if a graph is 2-prime, then it is
not finitely dominated. But then G− v0 will also not be finitely dominated, so by
Theorem 4.3, G will have a prime labeling. �

As a result of our classification theorem, some natural classes of graphs will
clearly have prime labelings.

Corollary 4.5. All infinite trees are prime.

We say a graph is locally finite if every vertex has finite degree.

Corollary 4.6. All infinite locally finite graphs are prime. In particular, the infinite
ladder is prime.

The reason locally finite graphs allow our algorithm to work is that the neigh-
borhood of any finite set must be finite. But even if this doesn’t happen, we could
always have enough vertices not adjacent to the finite set for other reasons. For
example, the graph could have infinitely many connected components or one of the
connected components could have infinite diameter.

Corollary 4.7. All infinite graphs with infinitely many connected components or
containing a connected component with infinite diameter have prime labelings.

5. Computable graphs

We turn now to the question of complexity of prime labelings for infinite graphs.
In the finite case, we would consider computational complexity: you might ask
whether deciding if a finite graph has a prime labeling is NP-complete. For infinite
graphs, we use ideas from computability theory.

To do this, we must restrict our attention to computable graphs. Essentially,
we identify graphs with their edge set, taking the vertex set to be N, and require
the edge set to be a computable set. This means that there is an algorithm that,
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given any two vertices (natural numbers) as input, returns whether the two vertices
are adjacent. A more precise definition is beyond the scope of this paper, but the
interested reader can see [Soare 1987] for background on computability theory
in general or [Gasarch 1998] for a survey of the use of computability theory in
combinatorics.

The first natural question to consider in this context is whether all computable
graphs that have prime labelings have computable prime labelings (note that since
we insist V = N, a computable graph must necessarily be infinite). In other words,
if the graph is nicely presented, will it always be possible to nicely describe a
prime labeling? Somewhat surprisingly, the answer here is yes. (This is surprising
given that many graph-theoretic properties do not behave so nicely: there are
computable graphs with 3-colorings with no computable 3-coloring [Bean 1976a]
and computable graphs with Euler paths with no computable Euler path [Bean
1976b], for example.)

Proposition 5.1. If G is a computable graph which admits a prime labeling, then
G has a computable prime labeling.

Proof. Let G be a computable graph with a prime labeling. By Theorem 4.3, we
know that there is a vertex v such that G − v is not finitely dominated. Label v

with 1, then proceed with Algorithm 3.1. At step (1) of stage s, we are looking
for a vertex not in N [Vs]. This can be found in finite time by asking whether vi is
adjacent to vj for each vj ∈ Vs , and if ever the answer is yes, we move on to the next
potential vi , which we know we must eventually find since Vs is not dominating. �

The procedure outlined above relies on a certain amount of nonuniformity: we
must know where to place the label 1. This does not prevent the prime labeling
from being computable, since we are only asking for the existence of an algorithm
for the prime labeling, not for a procedure to find that algorithm. But could we? Is
it possible, given the algorithm for a particular graph, to produce the algorithm that
gives the prime labeling? Here, we find the answer is negative.

Theorem 5.2. There is no computable function which, given any computable graph
admitting a prime labeling, produces the prime labeling for that graph.

Before we give the proof, we need a little more background from computability
theory. They key fact we will use is that there is an effective list ϕ0, ϕ1, ϕ2, . . . of
all partial computable functions (again, see [Soare 1987] for details). The intuition
here is that we can consider every possible algorithm, perhaps written in Java,
arranged alphabetically and by length (all algorithms have finite length). Of course,
for any given algorithm, we have no reason to think that this algorithm will halt on
all inputs, and this is why we are only considering partial computable functions (if
it does halt on all inputs, we call it total). However, since the list contains every



PRIME LABELINGS OF INFINITE GRAPHS 641

algorithm, partial or total, we know that if there were a computable function which
gave the computable prime labeling of every computable graph (admitting a prime
labeling), it must be somewhere on the list. Our goal then is to ensure every partial
computable function on the list is wrong at least once.

Proof. We will build a sequence G0, G1, . . . of computable graphs, each admitting
a prime labeling. While doing so, we will ensure that, for each e ∈N, the partial
computable function ϕe is not a prime labeling of the graph Ge.

The construction will “dove-tail” the construction of the infinitely many graphs,
so that by the end of stage s, we will have described the first s vertices of the first s
graphs. The construction of each graph in the sequence will be independent of the
others, so we need only describe how we build an arbitrary graph Ge.

In the limit, the graph Ge will be the union of two stars with centers v0 and v1,
at least one of which is infinite. Notice that such a graph will have a prime labeling,
as removing the center of an infinite star produces an infinite set of isolated vertices
(we are appealing to Theorem 4.3 here). At each stage, we check whether ϕe has
returned the label 1 for either v0 or v1. If this has not yet occurred, we add a new
vertex adjacent to either v0 or v1, whichever we did not add to in the previous stage.
If ϕe returns 1 for the label of vi with i ∈ {0, 1}, then we only ever add new vertices
adjacent to v1−i .

Note that it is possible that ϕe will never return 1 for v0 or v1 (perhaps ϕe is
not total, or it labels a different vertex with 1). In this case, Ge will consist of two
infinite stars, but there is no way for ϕe to be a prime labeling (the product of the
labels of the two centers has nowhere to go, as in Proposition 3.6). On the other
hand, if ϕe does label one of the vertices v0 or v1 with a 1, then we never add any
more neighbors to that vertex, and only the other vertex will be an infinite star.
In this case, ϕe also cannot be a prime labeling. Whatever the label of the center
of the infinite star is, there are only finitely many vertices (on the other star) that
the infinitely many multiples of this label can be assigned to. This completes the
proof. �

The proof above relies on the inability of computable functions to predict whether
a vertex of a graph will have infinite degree, and as such, the computable function
does not know which vertex to label with 1. However, this is the only barrier to
uniformity. If we consider instead 2-prime labelings, then we get uniformity.

The other computability question we should consider is the decision problem:
given a computable graph, how hard is it to decide whether the graph has a prime
labeling? The usual way to analyze this in computability theory is to determine
where the decision problem lies inside (or above) the arithmetical hierarchy. One
way to think of this task is that we are assessing the complexity of the condition
which is equivalent to a graph having a prime labeling. We have a condition given
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in Theorem 4.3. Is this the simplest necessary and sufficient condition to a graph
having a prime labeling?

Notice that by Theorem 4.2, a graph has a k-prime labeling for k ≥ 2 if and only
if for all finite sets of vertices, there is at least one vertex not in the neighborhood
of the set. Analyzing the quantifiers, we can state this condition as

∀n ∃k (k > n ∧ k /∈ N ({0, 1, . . . , n})).

Since saying that a vertex is not in the neighborhood of a finite set of vertices is
computable, we see that a graph having a 2-prime labeling is 50

2. Similarly, to say a
graph has a prime labeling, we need it to be the case that there is a vertex, the removal
of which, leaves a 2-prime graph. Thus a graph having a prime labeling is 60

3 .
Can we do better? For 2-prime labelings, the answer is no.

Theorem 5.3. The decision problem for a graph having a k-prime labeling for
k ≥ 2 is 50

2-complete.

Proof. Fix k ≥ 2. We argued above that having a k-prime labeling is 50
2, so we

need only show completeness. We will do this by giving a 1-reduction to the known
50

2-complete index set INF= {e : |We| =∞}, where We is the domain of ϕe. That
is, we build a sequence of computable graphs {Gi } such that Ge has a k-prime
labeling if and only if e ∈ INF.

We build the graphs simultaneously, as in the proof of Theorem 5.2, but this
time each graph will either be the disjoint union of an infinite star with a finite
path, or the disjoint union of an infinite star with a (one-way) infinite path. In the
former case, the graph will not be k-prime, and in the latter it will be k-prime, by
Theorem 4.2.

The procedure for building the graph Ge is as follows. Initialize Ge with a center
vertex for its star and an initial vertex for its path. At stage s of the construction we
assume that we have built a finite star and a finite path. Run ϕe(x) on all x < s for
which ϕe(x) has not already halted at some earlier stage. We continue to run these
computations until either ϕe(x) halts for some input x , or until each computation
has run for s steps, whichever comes first. If we see some ϕe(x) halt, this will be
the first time we realize that x ∈We, so we have further evidence that |We| might
be infinite. Thus we add a vertex to the end of the finite path. On the other hand, if
no (new) x appears in We (i.e., ϕe(x) does not halt for any new x by stage s) we
work off the assumption that |We| is finite and add a vertex to the finite star in Ge.

To verify that this procedure gives us what we want, suppose first that |We| =∞.
Then there will be infinitely many stages at which we add a vertex to the end of
the path, since at each stage we “discover” at most one new x in We. Thus in the
limit, the path will be infinite (the star will likely be infinite as well, but regardless,
Ge will have a k-prime labeling). Conversely, suppose |We| is finite. Then there
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is a last stage at which any x appears in We, and so after that stage, we never add
vertices to the path, making the path finite. �

What about prime labelings? By the quantifier analysis above, we know that the
decision problem cannot be harder than 60

3 . Further, a simple modification of the
proof for Theorem 5.3 shows that the decision problem is at least 50

2-hard. We
would expect the decision problem to in fact be 60

3-complete, but a proof that it is
60

3-hard goes beyond the scope of this paper. We leave this as an open question.

Question 1. Is the decision problem for a graph having a prime labeling 60
3-

complete?

6. Conclusion and open questions

We have considered a natural extension of the definition of prime labelings to infinite
graphs. For 2-prime labelings, we have a simple necessary and sufficient condition
and a condition only slightly less simple for prime labelings. By using tools from
computability theory, we see that producing a 2-prime labeling of a 2-prime graph
is as straightforward as possible, and only slightly less so for producing prime
labelings of prime graphs. We also have that our criterion for 2-prime labelings is
as simple as possible, and conjecture that the same is true for prime labelings.

These results mirror those for graceful labelings of infinite graphs, in that working
with labelings of infinite graphs seems quite a bit easier than their finite counterparts.
This suggests that the difficulty with working with finite graphs is very much tied
to finiteness itself. The feeling of “running out of room” is exactly why labeling
results are difficult.

We wonder however, whether a more restrictive definition of labelings for infinite
graphs might serve as a better infinite analogue to the finite case. Note that for
vertex coloring, it turns out that an infinite graph is k-colorable if and only if every
finite subgraph is 4-colorable. Such a result for prime (and other) labelings would
be very nice, but with our definition, is clearly false.

We do not know what the “right” definition would be, but we conclude by
considering one possible variant of prime labeling that might be a step in the right
direction and encourage others to pursue this further.

Definition. Let G be a graph, vc be a vertex of that graph (c for center), and Gr

be the subgraph of G that includes all vertices within distance r of vc. Then G has
a limitwise prime labeling if it is possible to choose vc and label the graph such
that for infinitely many r , Gr has been given a prime labeling.

We call a graph limitwise prime if it has a limitwise prime labeling.
To get a feel for this, consider the complete infinite binary tree.

Example 6.1. A complete infinite binary tree has a limitwise prime labeling.
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8 9 10 11 12 13 14 15

31 17 16 20 19 21 18 24 23 25 22 30 27 29 26 28

Figure 5. A limitwise prime labeling of rows 3 and 4 of the com-
plete binary tree.

2

1 3

4 6 5 7

11 13 15 9 8 14 10 12

Figure 6. The start of a limitwise prime labeled tree.

Proof. For all r ≥ 3, each row of the graph can have children labeled with the
integers from 2r+1 to 2r+2

− 1 as follows:
The lowest even number e has children 2e+ 1 and 4e− 1. All other evens e

have children 2e− 1 and 2e+ 1. The lowest odd number o has children 2o− 2 and
2o+ 2. The second-greatest odd number o has children 2o− 4 and 2o+ 4. The
greatest odd number o has children 2o− 4 and 2o− 2. All others odd numbers o
have children 2o− 4 and 2o+ 2.

The process is shown here for r = 3 in Figure 5.
It is straightforward but tedious to show that this will produce a limitwise prime

labeling for the tree after the first four rows are labeled with the numbers 1 to 15 in
any manner that is prime. One possibility is shown in Figure 6 �

It certainly appears that giving a limitwise prime labeling is more difficult that
giving a prime labeling. Indeed, there are prime graphs that are not limitwise prime.

Example 6.2. Let G be the square of the two-way infinite path, as in Figure 7.
Then G has a prime labeling, but not a limitwise prime labeling

Proof. Since G is locally finite, it has a prime labeling.
To show that G has no limitwise prime labeling, choose any vertex for vc and let

Gr be the subgraph that includes all vertices within distance r of vc. Gr contains
4r + 1 vertices. This means that if Gr has a prime labeling, then 2r even labels
must be used.
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vc

Figure 7. A prime graph that is not limitwise prime.

Without loss of generality, let vc be on the bottom of the graph as shown in
Figure 7, and let b and t be the number of vertices with even labels on the bottom
and top of the graph respectively. Since there are 2r + 1 vertices on the bottom and
adjacent vertices cannot have even labels, b≤ r+1. Similarly, t ≤ r . Since 2r total
even labels must be used, b+ t = 2r , so we have only two cases to consider: either
b = t = r or b = r + 1 and t = r − 1. We will argue that as soon as r ≥ 2, both of
these cases are impossible.

If t = r , then it must be that exactly every other vertex on top is even. Since each
of these are adjacent to two different vertices on bottom, there is only one vertex
on the bottom that can be even, so b = 1 6= r . On the other hand, if b = r + 1, then
every other vertex on bottom is even, leaving no vertices on top for even vertices,
so t = 0 6= r .

So for r > 1, Gr does not have a prime labeling, which means G does not have
a limitwise prime labeling, even though it does have a prime labeling. �

There are plenty of questions to consider about limitwise prime labelings includ-
ing whether this is even a useful variant of prime labeling of infinite graphs. Here
are a few to get the ambitious reader started.

Question 2. Are all infinite trees limitwise prime?

Question 3. What are reasonable necessary and/or sufficient conditions for a graph
to be limitwise prime?

Note that if every finite subgraph of an infinite graph is prime, then the graph is
limitwise prime. However, the converse is likely false. This could be investigated
further.

There are also questions of complexity:

Question 4. Does every computable graph with a limitwise prime labeling have a
computable limitwise prime labeling?

Question 5. How hard is it to decide whether a computable graph is limitwise
prime?
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Positional strategies in games of best choice
Aaron Fowlkes and Brant Jones

(Communicated by Kenneth S. Berenhaut)

We study a variation of the game of best choice (also known as the secretary
problem or game of googol) under an additional assumption that the ranks of
interview candidates are restricted using permutation pattern-avoidance. We
describe the optimal positional strategies and develop formulas for the probability
of winning.

1. Introduction

The game of best choice, also known as the “secretary problem,” appeared in
Martin Gardner’s 1960 Scientific American column (reprinted in [Gardner 1995]),
although it has a history which predates this; see, e.g., [Kadison 1994]. Gilbert and
Mosteller [1966] gave a nice survey of the problem and solved some variations.
The basic idea is to try to hire the best candidate out of N applicants for a job, each
candidate having a specific ranking 1 (worst) through N (best). When interviewing
the candidates, the decision must be made to hire them or not, on the spot, and
candidates cannot be recalled later. The order of the interviews is (uniformly)
random and so the interviewer does not know when the top candidate will come in.

As an example, suppose the interviews have rank order 574239618. The inter-
viewer will be able to rank each initial segment of candidates relative to each other,
but will not know their rank overall out of N. So the interviewer will see

1, 12, 231, 3421, 45312, 453126, . . .

and must decide when to stop and hire. We count the game as a win if the best
candidate out of N is hired and as a loss otherwise, with all losses having equal
value. The optimal strategy, for N sufficiently large, turns out to be to reject the
first N/e of the candidates (about 37%) and then hire the next candidate who is
better than all earlier candidates.

Now, suppose that a consulting firm (with some oracular powers) agrees to filter
candidates for the interviewer. They offer two strategies. In the first strategy, they
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will guarantee that each time a candidate B ranks lower than some candidate A
already interviewed (“disappointing”), no future candidates will rank lower than B.
In the second strategy, they guarantee that each time a candidate B ranks higher
than some candidate A already interviewed (“raising the bar”), no future candidates
will rank lower than A. All other aspects of the game remain the same.

Is there any difference between these? Are they better or worse than the classical
case?

2. Refinement

Interview rank orders are permutations of some fixed size N which we write using
the notation p1 p2 · · · pN , where the pi are the values 1, 2, . . . , N arranged in some
order. In this work, we restrict the interview rank orders using pattern-avoidance.

Definition 2.1. We say that the permutation p = p1 p2 · · · pN contains the pattern
q = q1q2q3 if there exist i < j < k such that pi , pj , pk are in the same relative
order as q1, q2, q3.

So, the “disappointment-free” consulting strategy is equivalent to requiring the
interview rank orders to be 321-avoiding. Similarly, the “bar-raising” situation is
the same as 231-avoiding. See the textbook [Bóna 2012] for a gentle introduction
to pattern-avoidance. Putting aside the story about the consultants, we believe
that pattern-avoidance is a natural mechanism for modeling the effect of domain
learning by the player during the game. More precisely, as the interviewer ranks the
current candidates at each step, they acquire information that allows them to hone
the pool to include more relevant candidates at future time steps. We represent this
honing process using pattern-avoidance.

The left-to-right maxima in a permutation p consist of elements pj that are larger
in value than every element pi to the left (i.e., for i < j). In the game of best
choice, it is never optimal to select a candidate that is not a left-to-right maximum.
A positional strategy for the game of best choice is one in which the interviewer
transitions from rejection to hiring based on the position of the interview. More
precisely, the interviewer may play the k-positional strategy on a permutation p
by rejecting candidates p1, p2, . . . , pk and then accepting the next left-to-right
maximum thereafter. If k is set too high, it is likely the player will miss the best
candidate. If k is set too low, they will probably not have set their standards high
enough to capture the best candidate. We say that a particular interview rank order is
k-winnable if transitioning from rejection to hiring after the k-th interview captures
the best candidate. For example, 574239618 is k-winnable for k = 2, 3, 4, and 5. It
is straightforward to verify that a permutation p is k-winnable precisely when k
lies between the last two left-to-right maxima in p.
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In this paper, we restrict to using these positional strategies applied to a permuta-
tion chosen uniformly at random among those avoiding 321 (or, alternatively, 231)
in order to facilitate comparison with the classical case. For each model, we seek
to determine the optimal transition position k and probability of winning for finite
N and asymptotically as N →∞.

We now mention some ties to recent work. Several authors have investigated the
distribution of various permutation statistics for a random model in which a pattern-
avoiding permutation is chosen uniformly at random. For example, [Miner and Pak
2014] finds the positions of smallest and largest elements as well as the number of
fixed points in a random permutation avoiding a single pattern of size 3; [Madras
and Pehlivan 2016] finds the probability that one or two specified points occur
in a random permutation avoiding 312; and the work of several authors [Deutsch
et al. 2002/03; Firro et al. 2007] determines the lengths of the longest monotone
and alternating subsequences in a random permutation avoiding a single pattern
of size 3. We also consider uniformly random 321-avoiding and 231-avoiding
permutations in our work, but the statistics we are concerned with arise from the
game of best choice. In some sense, our results refine the question of where a
uniformly random pattern-avoiding permutation achieves its maximum because in
our problem we want to transition so as to capture the maximum value. We also
consider asymptotics for both of our models, thus obtaining a “limit-strategy,” just
as in the classical game.

In addition, Wilf [1995] has collected some results on distributions of left-to-right
maxima and Prodinger [2002] has studied these under a geometric random model.
Although we phrase our results in terms of the game of best choice, they may also
be viewed as an extension of the literature on distributions of left-to-right maxima
to subsets of pattern-avoiding permutations.

3. Raising the bar

An extension of a permutation p = p1 p2 · · · pN−1 is the result of inserting value N
into one of the N positions before, between, or after entries in p.

Lemma 3.1. Let p be a 231-permutation of size N − 1 and 0≤ k ≤ N − 1. Then
there exists a unique extension of p that is k-winnable for N.

Proof. Fix N and k. Let p1 p2 · · · pk | pk+1 · · · pN−1 be a 231-avoiding permutation
of size N − 1, with pm =max{p1, p2, . . . , pk}.

Define pw to be the leftmost value greater than pm among {pk+1, pk+2, . . . , pN−1},
and let q be the result of inserting N into the position directly prior to pw (or into
the last position if pw does not exist). So we have

q = p1 p2 · · · pm · · · pk | pk+1 · · · pw−1 N pw · · · pN−1.
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We claim that q is the unique 231-avoiding k-winnable extension of p. To see
this, observe that:

• By construction, all elements of {pk+1, . . . , pw−1} are less than pm , so q is
k-winnable.

• We began with a 231-avoiding permutation p. If q contains 231, the value N
must play the role of “3”. Therefore, it suffices to show that all of the values lying
to the left of N are less than all values lying to the right of N. By construction,
pm =max{p1, p2, . . . , pw−1} and pm < pw. If there exists some element y < pm

among the entries pw+1, pw+2, . . . , pN−1 then (pm, pw, y) forms a 231-instance,
contradicting that p is 231-avoiding. Hence, no such y exists and q is 231-avoiding.

• If the extension q were not unique, we would have two positions L1 and L2,
say, where N could be inserted to the right of pk to produce distinct k-winnable
permutations of size N. In particular, there must exist at least one element pv

between L1 and L2. But the previous paragraph shows that we would require
pm < pv for the extension q using L1 to be 231-avoiding, so the extension using
L2 is not k-winnable, a contradiction. Hence, the extension is unique. �

It is well known that the Catalan numbers

CN =
1

N+1

(2N
N

)
count the number of 231-avoiding permutations of size N ; see, e.g., [Bóna 2012].
Hence, we obtain the following result.

Corollary 3.2. There are exactly CN−1 permutations of size N that are 231-
avoiding and k-winnable.

Proof. For fixed k, the set of 231-avoiding permutations of size N−1 are in bijection
with the set of 231-avoiding k-winnable permutations of size N by Lemma 3.1. �

Notice the curious consequence that it does not matter which positional strategy
we use: for fixed N, the probability of selecting the best candidate is the same for
all k. From the explicit formula, it is straightforward to work out the asymptotic
probability of success

lim
N→∞

CN−1

CN
=

1
4
.

4. Avoiding disappointment

Next, we consider positional strategies for the 321-avoiding interview rank orders.
Recall that a permutation is k-winnable if and only if k lies between its last two
left-to-right maxima. Hence, we study the distribution of left-to-right maxima in
321-avoiding permutations. For this, we make use of Dyck paths. These may be
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viewed as paths in the Cartesian plane from (0, 0) to (N , N ), consisting of (0, 1)

steps (i.e., north) and (1, 0) steps (i.e., east), staying above the line y = x . The
northeast corners in a Dyck path consist of a north step immediately followed by
an east step. We label each northeast corner by the column and height at the end of
its east step.

Example 4.1. The Dyck paths for N = 3 are shown below:

Their sets of northeast corners are

{(1,3)}, {(1,2), (2,3)}, {(1,2), (3,3)}, {(1,1), (2,3)}, {(1,1), (2,2), (3,3)}

respectively.

Lemma 4.2. The possible sets {pi1, pi2, . . . , pim } of values and positions of left-to-
right maxima arising from the various permutations of N are in bijection with the
sets of northeast corners

{(i j , pi j ) : j = 1, . . . , m}

of Dyck paths of size N.

Proof. The defining property for a Dyck path is that at each step along the path, the
number of east steps taken so far is less than or equal to the number of north steps
taken so far. Equivalently, we may consider paths whose northeast corners satisfy
the following two conditions:

• There is always a northeast corner in the first column.

• Whenever we add a northeast corner corresponding to pi j , we take at most
pi j − i j east steps until we reach the next column with a northeast corner.

But this is precisely equivalent to the conditions that define sets of left-to-right
maxima in a permutation:

• The first position is always a left-to-right maximum.

• Whenever we add a left-to-right maximum corresponding to pi j , we have (by
definition) at most pi j − i j complementary values that are smaller than pi j and
have not yet been used. Hence, there are at most pi j − i j entries until we reach
the next left-to-right maximum.

Given a Dyck path representing a set of left-to-right maxima, we can produce a
canonical permutation p that realizes this set of left-to-right maxima as follows:
Place each pi j into position i j and then fill the complementary positions with
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position

value

4 1

7 2

8 3 5 6

Figure 1. Completing the set of left-to-right maxima {p1=4, p3=7, p5=8}.

the complementary values {1, 2, . . . , N } \ {pi1, . . . , pim } arranged increasingly. In
terms of the Dyck path, we can label each northeast corner by the value of its
corresponding left-to-right maximum, and then label the remaining horizontal edges
with the complementary values, arranged increasingly as we read north and east
along the path. Thus, the label for column i of the Dyck path gives the value for
the i-th position of the permutation. �

As an example in N = 8, if p1 = 4, p3 = 7, and p5 = 8 are the pi j , we obtain
p = 41728356; this is illustrated in Figure 1.

Recall that the Catalan numbers CN count 321-avoiding permutations of size N,
and also count the number of Dyck paths of size N ; see, e.g., [Bóna 2012]. Hence,
we obtain the following result.

Corollary 4.3. A 321-avoiding permutation p of size N is uniquely determined by
the values and positions of its left-to-right maxima.

Proof. The construction in the previous proof produces CN distinct permutations
of size N that have the structure of two increasing sequences shuffled together
(namely, the sequence of left-to-right maxima, and the sequence of complementary
values). Hence, the permutations constructed from Dyck paths in the previous result
are all 321-avoiding. Since there are Catalan-many of each, there must be exactly
one 321-avoiding permutation for each Dyck path. �

Definition 4.4. For 1 ≤ i ≤ N − 1 define Ti (N ) to be the total number of partial
Dyck paths from (0, 0) to (N − 1− i, N − 1), and define Si (N ) to be the number
of Dyck paths from (0, 0) to (N , N ) where column N − i lies weakly right of the
next-to-last northeast corner and strictly left of the last northeast corner in the path.
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N\k −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

2 1
3 3 2
4 6 8 5
5 10 20 23 14
6 15 40 65 70 42
7 21 70 145 214 222 132
8 28 112 280 514 717 726 429
9 36 168 490 1064 1817 2442 2431 1430

10 45 240 798 1988 3962 6446 8437 8294 4862
11 55 330 1230 3444 7784 14636 22997 29510 28730 16796
12 66 440 1815 5628 14154 29924 53937 82550 104312 100776 58786

Table 1. Number of k-winnable 321-avoiding permutations of N.

By Corollary 4.3, Si (N ) is the number of (N − i)-winnable permutations of N.
For example, the path in Figure 1 would be counted in Si (N ) for N − i ∈ {3, 4}
because the last two northeast corners occur in columns 3 and 5, respectively. Some
initial values are given in Table 1. If we divide by the N -th Catalan number we
obtain the probability of success for the corresponding (N−i)-positional strategy.
These are illustrated in Table 2. It turns out that the Ti (N ) are Catalan triangle
entries at (N − 1, i), namely

Ti (N )=
i+1

N

(2(N−1)−i
N−1

)
,

but we do not use this in our development.
Now, define an operation 1 that acts on a function of N by replacing N with N−1.

That is, 1 f (N )= f (N − 1). We prefer to use this operator, with the argument N
suppressed, as a notational convenience for our formulas and figures (although all
of our results can be obtained without it). We next prove recurrences for the Si

and Ti that will facilitate their computation.

Theorem 4.5. We have
Ti = Ti−1−1Ti−2,

with T1 = CN−1 and T2 = CN−1−CN−2, and

Si = i Ti +1Si−1,

with S1 = CN−1.

Proof. See Figure 2 for a schematic illustrating these recurrences.
The recurrence for T follows because each path counted by Ti−1(N ) must

end with a vertical step or a horizontal step; these are counted by 1Ti−2(N ) =

Ti−2(N − 1) and Ti (N ), respectively.



654 AARON FOWLKES AND BRANT JONES

N\k −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

2 50.0
3 60.0 40.0
4 42.8 57.1 35.7
5 23.8 47.6 54.7 33.3
6 11.3 30.3 49.2 53.0 31.8
7 4.89 16.3 33.7 49.8 51.7 30.7
8 1.95 7.83 19.5 35.9 50.1 50.7 30.0
9 0.74 3.45 10.0 21.8 37.3 50.2 50.0 29.4

10 0.26 1.42 4.75 11.8 23.5 38.3 50.2 49.3 28.9
11 0.09 0.56 2.09 5.85 13.2 24.8 39.1 50.1 48.8 28.5
12 0.03 0.21 0.87 2.7 6.8 14.3 25.9 39.6 50.1 48.4 28.2
13 0.07 0.34 1.18 3.26 7.61 15.3 26.7 40.1 50.0 48.0 28.0
14 0.13 0.49 1.47 3.76 8.31 16.1 27.4 40.4 50.0 47.7 27.7
15 0.19 0.63 1.75 4.21 8.92 16.8 28.0 40.7 49.9 47.5 27.5
16 0.26 0.78 2.01 4.61 9.46 17.3 28.5 41.0 49.9 47.2 27.4
17 0.33 0.92 2.26 4.98 9.93 17.8 28.9 41.2 49.8 47.0 27.2
18 0.4 1.05 2.48 5.31 10.3 18.3 29.2 41.3 49.7 46.8 27.1
...

105 2.73 4.49 7.22 11.3 17.1 24.9 34.2 43.3 48.4 43.7 25.0

Table 2. Percentage of k-winnable 321-avoiding permutations of N.

The recurrence for S follows because each path counted by Si (N ) passes through
column N−i at level N−1 or passes through column N−i below level N−1. The
first set of paths is counted by iTi (N ) because any path ending at (N−1− i, N−1)

can be extended in i ways depending on which of the columns N− i , N− i+2, . . . ,
N − 1 is used for the last vertical step. The second set of paths is counted by
1Si−1(N )= Si−1(N − 1) because we can bijectively extend any path passing the
required column and ending at (N−1, N−1) to end at (N , N ) instead by inserting
one more pair of vertical/horizontal steps at the last northeast corner. �

Using this theorem, we may write each Si and Ti as a linear combination of
Catalan numbers. On the one hand, applying 1 to Si , say, simply restricts the Dyck
paths we are counting to end at (N − 1, N − 1) instead of (N , N ). Algebraically,
applying 1 replaces each Catalan number in the linear combination with the previous
Catalan number.

Example 4.6. Applying the recurrences from Theorem 4.5, we have

T3 = (Cn−1−Cn−2)−1(Cn−1)= Cn−1− 2Cn−2,

T4 = (Cn−1− 2Cn−2)−1(Cn−1−Cn−2)= Cn−1− 3Cn−2+Cn−3,

T5 = (Cn−1− 3Cn−2+Cn−3)−1(Cn−1− 2Cn−2)= Cn−1− 4Cn−2+ 3Cn−3
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(0, 0)

(N, N )k = N−4

T4 T3 T2 T1

1T11T21S3

Figure 2. Schematic for path recurrences.

and

S2= 2(Cn−1−Cn−2)+1(Cn−1)= 2Cn−1−Cn−2,

S3= 3(Cn−1−2Cn−2)+1(2Cn−1−Cn−2)= 3Cn−1−4Cn−2−Cn−3,

S4= 4(Cn−1−3Cn−2+Cn−3)+1(3Cn−1−4Cn−2−Cn−3)= 4Cn−1−9Cn−2−Cn−4,

S5= 5(Cn−1−4Cn−2+3Cn−3)+1(4Cn−1−9Cn−2−Cn−4)

= 5Cn−1−16Cn−2+6Cn−3−Cn−5.

Lemma 4.7. Let i ≤ N −5 and X i be a linear combination of the Catalan numbers
CN−1, CN−2, . . . , CN−i . Then,

1
4

X i

CN
<

1X i

CN
≤

1
3

X i

CN
.

Proof. Observe that
1
4

<
CN−1

CN
≤

1
3

for all N ≥ 5. Since

1CN−i

CN
=

CN−i−1

CN
=

CN−i−1

CN−i

CN−i

CN
,

we have
1
4

CN−i

CN
<

1CN−i

CN
≤

1
3

CN−i

CN

for all N − i ≥ 5, and the result follows by linearity. �
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Lemma 4.8. For all i ≤ N − 5, we have

Ti

CN
≤

1
3

(3
4

)i−1
.

Proof. It is straightforward to verify that the result holds for i = 1 and i = 2.
Suppose the result holds for i − 1. Then,

Ti

CN
=

Ti−1

CN
−

1Ti−2

CN
<

Ti−1

CN
−

1
4

Ti−2

CN

by Lemma 4.7. From their definition in terms of lattice paths, it is also clear that
the Ti are decreasing in i (for each fixed N ). Hence,

Ti−1

CN
−

1
4

Ti−2

CN
≤

Ti−1

CN
−

1
4

Ti−1

CN
=

3
4

Ti−1

CN
≤

1
3

(3
4

)i−1

by induction. �

Theorem 4.9. We have
S3

CN
>

Si

CN

for all N ≥ 9 and all i > 3.

Proof. We have

Si

CN
=

iTi +1Si−1

CN
≤

i
3

(3
4

)i−1
+

1
3

Si−1

CN
.

An exercise using calculus proves i
3

( 3
4

)i−1 is decreasing once i >−1/ ln
( 3

4

)
(which

is between 3 and 4) and i
3

( 3
4

)i−1 is less than 1
4 for all i ≥ 11. Consequently, once

Si/CN < 3
8 , it remains so as i increases for all i ≥ 11.

In fact, using the linear combinations of Catalan numbers obtained from
Theorem 4.5 as in Example 4.6, we can verify that Si/CN < 3

8 for all 5 ≤ i ≤ 11
as illustrated in Table 2. More precisely, when we express Si/CN as a linear
combination of ratios of Catalan numbers, the limiting value as N →∞ can be
obtained by plugging in powers of 1

4 for each ratio of Catalan numbers; as these
limits are each smaller than 3

8 , we reduce to a finite computation. In detail, we use
the bounds

0.25 j <
CN− j

CN
< 0.254 j

for N > 95 + j to verify that Si/CN < 3
8 for each of the linear combinations

i = 5, 6, . . . , 11 (and check remaining finite cases for N manually).
Thus, the optimal value of Si/CN must occur in i ≤ 4 for all N. Using the

formulas from Example 4.6 again, we then find that S1/CN is optimal for N = 2,
that S2/CN is optimal for 3≤ N ≤ 8, and that S3/CN is optimal for all N ≥ 9. �
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Corollary 4.10. The optimal k-positional strategy for the game of best choice
restricted to the 321-avoiding interview rank orders is

k =


N − 1 if N = 2,

N − 2 if 3≤ N ≤ 8,

N − 3 otherwise.

The asymptotic probability of success is

lim
N→∞

3CN−1− 4CN−2−CN−3

CN
=

31
64
= 0.484375.

Using André’s reflection method or a straightforward induction argument, one
can show that the number of partial Dyck paths (i.e., lying above the line y = x)
from (0, 0) to (a, b) (where a < b) is given by the formula

C(a,b) =

(a+b
a

)b− a+ 1
b+ 1

.

Using this, we can also give a direct count of the Dyck paths for which column k
lies between the last two northeast corners of the path.

Theorem 4.11. The probability that a 321-avoiding permutation of length N is
k-winnable is

1
CN

N−k∑
i=1

(
(k−1)+(N−i)

k−1

)(N − k− i + 2)

(N − i)+ 1
(N − k− i + 1).

Proof. Set a = k − 1, and let b range over k, k + 1, k + 2, . . . , N − 1. Once the
path passes through (a, b), there are b − k + 1 ways to complete it so that it is
k-winnable. �

5. Conclusions

It seems fair to say that these results are somewhat surprising and further investiga-
tion is warranted. The “bar-raising” model has a robust strategy but only allows
a 25% success rate. The optimal strategy in the “disappointment-free” model
reviews and rejects most of the applicants yet has a success rate that is close to 50%.
Remarkably, these are not mutually exclusive and the k = N − 3 positional strategy
is asymptotically optimal in both models simultaneously.
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Graphs with at most two trees
in a forest-building process

Steve Butler, Misa Hamanaka and Marie Hardt

(Communicated by Glenn Hurlbert)

Given a graph, we can form a spanning forest by first sorting the edges in a
random order, and then only keeping edges incident to a vertex which is not
incident to any previous edge. The resulting forest is dependent on the ordering
of the edges, and so we can ask, for example, how likely is it for the process to
produce a graph with k trees.

We look at all graphs which can produce at most two trees in this process
and determine the probabilities of having either one or two trees. From this we
construct infinite families of graphs which are nonisomorphic but produce the
same probabilities.

1. Introduction

We consider the following forest-building process:

(1) Take all of the edges of the graph, remove them and sort them in a random
order.

(2) Go through the edges in this order and only put those edges back in which
connect to some vertex not previously seen by any edge.

From this, we must end up with a forest (a graph without cycles) since we can never
add an edge that closes a cycle. As an example, in Figure 1 we list all 24 different
ways to order the edges and group them based on the resulting forest formed.

We will consider this problem: how many different edge orderings produce a
given number, say k, of trees in the resulting graph? Equivalently, what is the
probability that if we take a random ordering of the edges, we produce a forest with
k trees? We will let P(G, k) denote this probability. As an example when G is the
paw graph, we see that P(G, 1)= 5

6 and P(G, 2)= 1
6 (see Figure 1).

This process was implicitly used in [Butler et al. 2015] for the complete graph,
and explicitly introduced in [Berikkyzy et al. 2018], where some basic properties

MSC2010: 05C05.
Keywords: forests, edge ordering, components, probability.

659

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-4
http://dx.doi.org/10.2140/involve.2019.12.659


660 STEVE BUTLER, MISA HAMANAKA AND MARIE HARDT

e1
e2

e3

e4
e1

e2

e3

e4
e1

e2

e3

e4
e1

e2

e3

e4

(e1, e2, e4, e3) (e1, e2, e3, e4) (e1, e3, e4, e2) (e1, e4, e2, e3)

(e2, e1, e4, e3) (e1, e3, e2, e4) (e3, e1, e4, e2) (e1, e4, e3, e2)

(e2, e4, e1, e3) (e2, e1, e3, e4) (e3, e4, e1, e2) (e4, e1, e2, e3)

(e2, e4, e3, e1) (e2, e3, e1, e4) (e3, e4, e2, e1) (e4, e1, e3, e2)

(e4, e2, e1, e3) (e2, e3, e4, e1) (e4, e3, e1, e2)

(e4, e2, e3, e1) (e3, e1, e2, e4) (e4, e3, e2, e1)

(e3, e2, e1, e4)

(e3, e2, e4, e1)

Figure 1. The results from different edge orderings of the paw graph.

were established and the probabilities for complete bipartite graphs were determined.
We summarize these results here.

Theorem 1 [Butler et al. 2015]. We have

P(Kn, k)=

( n−1
n−2k,k,k−1

)
2n−2k(2n−2

n

) .

Theorem 2 [Berikkyzy et al. 2018]. We have

P(Ks,t , k)=
(s+ t)

(s
k

)(t
k

)
st
(s+t

s

) .

For small graphs (at most five vertices), the probabilities are given in [Berikkyzy
et al. 2018]. There are a few instances where two graphs would have the same
probabilities for all k, and most of those are edge-transitive graphs. More generally,
the following was observed.

Lemma 3 [Berikkyzy et al. 2018]. If G is an edge-transitive graph with minimum
degree of at least 2 and e is any edge, then we have P(G, k) = P(G − e, k) for
all k.

In essence, this follows by noting that the last edge in an ordering is never kept,
and by symmetry every edge is the last edge in an ordering equally often.

The goal of this note is to compute the probabilities for more families of graphs,
namely graphs which can produce at most two trees in the forest-building process.
Using this, we will produce infinitely many examples of nonisomorphic graphs G
and H where the probabilities agree and neither G or H are edge-transitive.
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2. Graphs with at most two trees

We are interested in exploring the graphs which can produce at most two trees in
the forest-building process. Equivalently, this means that there are at most two
disjoint edges in the graph (disjoint in the sense that they share no vertex).

Proposition 4. The only nonempty graphs without isolated vertices, which contain
no pair of disjoint edges, are star graphs (K1,n) and the triangle graph (K3).

Proof. If the graph is not connected, then taking one edge from two different
components gives two disjoint edges. So we may assume the graph is connected.

If the graph has two disjoint edges, then we can connect these together by a path,
creating a path with at least four vertices. Conversely, if the graph has a path with
at least four vertices, then it must contain two disjoint edges. So we can conclude
the longest path is a path with at most three vertices. If the longest path has two
vertices, then the graph is a K2.

If the longest path has three vertices and the ends of the path are not leaves, then
it must be that the ends connect and form a triangle. Since the paw graph has two
disjoint edges, this can only happen if the graph is a K3.

Finally, if the graph is not a triangle and doesn’t have a path of length 4 (and
hence has no cycles), then it must be a star. �

Proposition 5. If a graph without isolated vertices has a vertex v of degree at
least 5 and contains no set of three disjoint edges, then deleting v and all incident
edges, and removing any isolated vertices results in either an empty graph, a star,
or a K3.

Proof. Let v be a vertex of degree at least 5 in the graph. Suppose that the graph
resulting from deleting the vertex v and all incident edges, and removing any isolated
vertices, is not the empty graph, a star, or a K3. Proposition 4 states that the only
nonempty graphs without isolated vertices, that contain no set of two disjoint edges,
are the star graph and K3. Thus the resulting graph will contain at least two disjoint
edges. Call these edges e1 and e2; note neither of these edges are incident to v.

At most four edges incident to v are also incident to the edges e1 and e2. Since v

has degree at least 5, this leaves at least one edge, e3, that is connected to v and not
incident to e1 or e2. Thus the original graph contains a set of three disjoint edges. �

Finally, we observe that if all the degrees are bounded by at most 4 and the graph
is connected, then as n gets large, the diameter must also grow — which forces
three disjoint edges. In particular there are finitely many graphs with maximum
degree at most 4 which produce at most two trees.

Putting this all together, we see that for n sufficiently large (n ≥ 6; verified
computationally) the only connected graphs which produce at most two trees, and
are not stars, are the following five families, shown in Figure 2:
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a

b

c

a

b

c

a a a

GSa,b,c GS+a,b,c Pawa Dia (K4)a

Figure 2. The five families of graphs.

• GSa,b,c: the stars K1,a+b and K1,b+c which have b leaves glued together (glued
stars).

• GS+a,b,c: the stars K1,a+b and K1,b+c which have b leaves glued together and
the centers joined by an edge (glued stars with an edge).

• Pawa: the paw graph with a leaves appended to the vertex of degree 1.

• Dia: the diamond graph (a four-cycle with an extra edge) with a leaves ap-
pended to one of the vertices of degree 2.

• (K4)a: the complete graph on four vertices with a leaves appended to one of
the vertices.

Note that when the degree is at least 5, the first two of these correspond to
Proposition 5 where the remaining graph is a star and the last three of these
correspond to Proposition 5 where the remaining graph is a K3.

3. Computing probabilities for the families

We now turn our attention to computing the probabilities that a graph ends in one or
two trees in the forest-building process. We can find these probabilities by noting
that if there are m edges in the graph, then the probability that we end with two
trees is

P(G, 2)=
|{rearrangements with two trees}|

m!
.

We will focus on counting the rearrangements which produce two trees. Particularly,
we want to count rearrangements where an edge occurs exactly once, not at the
start, and involves two vertices which have not been previously seen.

Since we will be counting rearrangements, we will find it useful to know how to
manipulate binomial coefficients. Recall that(n

k

)
=

n!
k! (n− k)!
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is the number of ways to choose k elements (in our case this will usually be locations)
out of an n element set. There are many binomial coefficient identities (see the
book of Graham, Knuth, and Patashnik [Graham et al. 1994, Chapter 5] for a good
introduction); we will need to make repeated use of the following well-known
result.

Proposition 6. We have∑
j

(
`− j

m

)(q+ j
n

)
=

(
`+ q + 1
m+ n+ 1

)
, (1)

where the sum ranges over all values where the summands are nonzero.

Theorem 7. We have the following probabilities:

P(GSa,b,c, 1)=
b

(b+c+1)(b+c)
+

b
(a+b+1)(a+b)

,

P(GS+a,b,c, 1)=
2b+c+2

(b+c+1)(b+c+2)
+

2b+a+2
(b+a+1)(b+a+2)

−
1

a+2b+c+1
.

Proof. Since P(GSa,b,c, 1)+ P(GSa,b,c, 2) = 1, we can focus on computing the
probability of resulting in two trees. We now claim

P(GSa,b,c, 2)

=

b∑
i=0

a∑
j=0

(a
j

)(b
i

)
(i+ j)! (b+c− i)(a+2b+c− i− j−1)!

(a+2b+c)!
−

b+c
a+2b+c

+

b∑
i=0

c∑
j=0

(c
j

)(b
i

)
(i+ j)! (a+b− i)(a+2b+c− i− j−1)!

(a+2b+c)!
−

a+b
a+2b+c

. (2)

This comes from the two cases, namely where our first edge initially comes from
the “top half” (i.e., edges coming from the star K1,a+b), and where our first edge
initially comes from the “bottom half” (i.e., edges coming from the star K1,b+c).
We focus on the top-half case, as the bottom half follows by an identical argument
by interchanging the roles of a and c.

Determining if we have two trees comes down to what happens when we pick
our first edge from the star K1,b+c. We look at all ways that this occurs by first
picking edges from K1,a+b and then considering what happens when we pick our
edge from K1,b+c. In particular, we will pick j edges from the a leaf vertices and
i edges from the b gluing vertices. We now run over all possibilities for i and j .

For each choice of edges we now consider all possible orderings as follows:

•

(a
j

)
corresponds to which of the j edges among the a were chosen.

•

(b
i

)
corresponds to which of the i edges among the b were chosen.
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• (i + j)! indicates how many ways to order these i + j edges (note that these
i + j edges are all of the initial edges).

• (b+c−i) indicates how many edges disjoint from the ones above are available
to choose, if we want to create two trees.

• (a+ 2b+ c− i − j − 1)! is the number of ways to rearrange the remaining
edges.

This gives all orderings of edges possible; to get the probability we now divide by
the total number of orderings, which is (a+ 2b+ c)!.

Note that in the summation we need to correct for i = 0, j = 0, which does not
fall into the case where the first edge is from the top. So we subtract this term,
which gives the −(b+ c)/(a+ 2b+ c) at the end.

To now simplify these sums we can repeatedly apply (1). So we have

b∑
i=0

a∑
j=0

(a
j

)(b
i

)
(i+ j)! (b+c− i)(a+2b+c− i− j−1)!

(a+2b+c)!

=

b∑
i=0

a∑
j=0

a!
j ! (a− j)!

b!
i ! (b−i)!(i+ j)! (b+c− i)(a+2b+c− i− j−1)!

(a+2b+c)!

=

b∑
i=0

a! b! (b+c− i)
(a+2b+c)! (b− i)!

a∑
j=0

(i+ j)!
i ! j !

(a+2b+c− i− j−1)!

(a− j)!

=

b∑
i=0

a! b! (b+c− i)(2b+c− i−1)!

(a+2b+c)! (b− i)!

a∑
j=0

(i+ j)!
i ! j !

(a+2b+c− i− j−1)!

(a− j)! (2b+c− i−1)!

=

b∑
i=0

a! b! (b+c− i)(2b+c− i−1)!

(a+2b+c)! (b− i)!

a∑
j=0

( i+ j
i

)(a+2b+c−i−1− j
2b+c−i−1

)

=

b∑
i=0

a! b! (b+c− i)(2b+c− i−1)!

(a+2b+c)! (b− i)!

(a+2b+c
2b+c

)

=

b∑
i=0

a! b! (b+c− i)(2b+c− i−1)!

(a+2b+c)! (b− i)!
(a+2b+c)!
(2b+c)! a!

=

b∑
i=0

b! (b+c− i)(2b+c− i−1)!

(b− i)! (2b+c)!

=
b! (b+c−1)!

(2b+c)!

b∑
i=0

(2b+c− i−1)!

(b− i)! (b+c−1)!
(b+c− i)
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=
b! (b+c−1)!

(2b+c)!

(
(b+c)

b∑
i=0

(2b+c−1−i
b+c−1

)( i
0

)
−

b∑
i=0

(2b+c−1−i
b+c−1

)( i
1

))
=

b! (b+c−1)!

(2b+c)!

(
(b+c)

(2b+c
b+c

)
−

( 2b+c
b+c+1

))
=

b! (b+c−1)!

(2b+c)!

(
(b+c)

(2b+c)!
(b+c)! b!

−
(2b+c)!

(b+c+1)! (b−1)!

)
= 1−

b
(b+c+1)(b+c)

.

By a similar process, the other double sum becomes

b∑
i=0

c∑
j=0

(c
j

)(b
i

)
(i+ j)! (a+b−i)(a+2b+c−i− j−1)!

(a+2b+c)!
= 1−

b
(b+a+1)(b+a)

.

Now replacing the double sums by these simplified expressions we have

P(GSa,b,c, 2)

=

(
1−

b
(b+c+1)(b+c)

)
−

b+c
a+2b+c

+

(
1−

b
(b+a+1)(b+a)

)
−

a+b
a+2b+c

= 1−
b

(b+c+1)(b+c)
−

b
(b+a+1)(b+a)

.

Finally we note

P(GSa,b,c, 1)= 1− P(GSa,b,c, 2)=
b

(b+ c+ 1)(b+ c)
+

b
(b+ a+ 1)(b+ a)

,

establishing the result for GSa,b,c.
The result for P(GS+a,b,c, 2) follows by a similar argument, the only difference

being the additional edge which cannot be used in order to result in two trees. So
(2) would now become

P(GS+a,b,c, 2)=

b∑
i=0

a∑
j=0

(a
j

)(b
i

)
(i+ j)! (b+c−i)(a+2b+c−i− j)!

(a+2b+c+1)!
−

b+c
a+2b+c+1

+

b∑
i=0

c∑
j=0

(c
j

)(b
i

)
(i+ j)! (a+b−i)(a+2b+c−i− j)!

(a+2b+c+1)!
−

a+b
a+2b+c+1

.

The rest of the argument works in the same way as before. �

Our approach was to focus on the probability of producing two trees. It is
possible to establish the result by focusing on one tree, and the following proof was
communicated to us by a referee of the paper.
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Alternative proof of Theorem 7. To compute the probability of producing a single
tree in the graph GSa,b,c we focus on finding the probability of producing a “bridge”,
a path of length 2 connecting the vertices va and vc (the vertices with a and b leaves
respectively). Label the b vertices which connect to both va , and vc as v1, . . . , vb.

The probability that we first pick an edge incident to a and form a bridge going
through vi is

1
(b+ c+ 1)(b+ c)

.

To see this, once we have picked the first edge there are b+ c+ 1 important edges
remaining, namely the b+ c edges incident to vc and the edge {va, vi }. In order to
form the bridge among these b+c+1 edges we must first choose {va, vi } (probability
1/(b+ c+1)) and must second choose {vi , vc} (probability 1/(b+ c)), establishing
the above probability. This is independent of vi and so going over all b of the vi we
have that the probability that we first pick an edge incident to a and form a bridge is

b
(b+ c+ 1)(b+ c)

.

A symmetrical argument gives that the probability that we first pick an edge incident
to c and form a bridge is

b
(b+ a+ 1)(b+ a)

.

Finally these events are disjoint and cover all ways to form a bridge. So we can
conclude that the probability of forming a bridge, and hence the probability of
having one component, is

b
(b+ a+ 1)(b+ a)

+
b

(b+ c+ 1)(b+ c)
.

A similar approach works for GS+a,b,c once we also account for the edge {va, vc}

being a bridge. We leave the details of this to the interested reader. �

Theorem 8. We have the following probabilities:

P(Pawa, 1)=
1
6
−

1
a+3

+
1

a+1
,

P(Dia, 1)=
3
10
−

2
a+4

+
2

a+2
,

P((K4)a, 1)=
2
5
−

3
a+5

+
3

a+3
.

Proof. We will again compute the probability that there are two trees in the process.
However, in these cases there are many more possibilities to consider. To simplify the
situation, we make the following observation: every edge which is a leaf in the orig-
inal graph will always be kept in the forest-building process. This indicates if there
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a

b

c d
e

a

b c

d
e f

a

d

g

b c

e f

Pawa Dia (K4)a

Figure 3. The remaining three graphs with the leaves collapsed to
a single edge a.

are multiple leaves off of a single vertex v, then we only need to know when the first
leaf was chosen. This is because, after first leaf, v will have been seen by some edge.

So we now represent the remaining graphs from Figure 2, as shown in Figure 3,
where a corresponds to all of the a leaves condensed down, and the remaining edges
are labeled as indicated with each label other than a corresponding to a single edge.

For each graph, we now look at all possible ways to start selecting edges and end
with a pair of disjoint edges. We also find the probability of starting our selection
in a particular way. Recall that an edge marked a corresponds to a different edges,
and so until we select that edge, we assume all a of them haven’t been seen and
are available for picking; after selection, by the observation we can assume they
have all been seen. (In other words, it is only the relative ordering of the different
types of edges that matter.)

For the paw graph, we have the possibilities shown in Table 1 (the first column
indicates every possible sequence of choices of edges until two trees are formed,
while the second column indicates the probability of any one of those sequence of

start of edge orderings resulting in two trees probabilities of an ordering

ac, ad , ae a
a+4 ·

1
4

be, eb 1
a+4 ·

1
a+3

ca, da, ea 1
a+4 ·

a
a+3

abe a
a+4 ·

1
4 ·

1
3

bae 1
a+4 ·

a
a+3 ·

1
3

cda, cea, dca, dea, eda, eca 1
a+4 ·

1
a+3 ·

a
a+2

ceda, cdea, dcea, deca, ecda, edca 1
a+4 ·

1
a+3 ·

1
a+2 ·

a
a+1

Table 1. Probabilities associated with Pawa .
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start of edge orderings resulting in two trees probabilities of an ordering

ad , ae, a f a
a+5 ·

1
5

b f , ce, ec, f b 1
a+5 ·

1
a+4

da, ea, f a 1
a+5 ·

a
a+4

ab f , ace a
a+5 ·

1
5 ·

1
4

ba f , cae 1
a+5 ·

a
a+4 ·

1
4

dea, d f a, eda, e f a, f da, f ea 1
a+5 ·

1
a+4 ·

a
a+3

de f a, d f ea, ed f a, e f da, f dea, f eda 1
a+5 ·

1
a+4 ·

1
a+3 ·

a
a+2

Table 2. Probabilities associated with Dia .

start of edge orderings resulting in two trees probabilities of an ordering

ae, a f , ag a
a+6 ·

1
6

b f , ce, dg, ec, f b, gd 1
a+6 ·

1
a+5

ea, f a, ga 1
a+6 ·

a
a+5

ab f , adg, ace a
a+6 ·

1
6 ·

1
5

ba f , dag, cae 1
a+6 ·

a
a+5 ·

1
5

e f a, ega, f ea, f ga, gea, g f a 1
a+6 ·

1
a+5 ·

a
a+4

e f ga, eg f a, f ega, f gea, ge f a, g f ea 1
a+6 ·

1
a+5 ·

1
a+4 ·

a
a+3

Table 3. Probabilities associated with (K4)a .

choices being made). If we now sum all of these probabilities together, we get

P(Pawa, 2)=
5
6
+

1
a+3

−
1

a+1
,

establishing the result (recall that P(Pawa, 1)+ P(Pawa, 2)= 1).
The results for the remaining two graphs are established in the same way and

the corresponding probabilities are given in Tables 2 and 3. �

4. Examples of graphs with the same probabilities

Using the formulas from the theorems in the preceding section, we can now compute
the probabilities for a large number of these graphs efficiently. In particular, we
examined all graphs up through 500 vertices in these families, and discovered several
examples of families of nonisomorphic graphs which produce the same probabilities.
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Figure 4. Examples of a set of three graphs with the same proba-
bilities from Proposition 9. In this case s = t = 1.

Proposition 9. Given s, t ≥ 1 with s dividing 2t (t + 1), let r = 2t (t + 1)/s. Then
we have for all k

P(GSr+3t+1,s,t , k)= P(GSt,r+s+2t+1,t , k)= P(GS3t+s+1,r,t , k).

This immediately follows by applying the formulas for the probabilities from
Theorem 7.

Proposition 10. Given t ≥ 1, we have for all k

P(GS5t+3,t,2t , k)= P(GS5t+1,t+1,2t+1, k).

This also immediately follows by applying the formulas for probabilities from
Theorem 7. We note that there were many other examples of pairs of glued star
graphs which are not explained by Propositions 9 and 10. A complete characteriza-
tion of all such pairs of glued stars remains elusive.

Looking beyond glued stars, we found very few pairs of graphs with the same
probabilities and the results do not seem to fit any patterns. As an example, all
pairs of graphs from the GS+a,b,c family up through 500 vertices with the same
probabilities are listed below (it is possible that this is a complete list for this family;
showing this would relate to solving a system of diophantine equations).

P(GS+17,3,9, k)= P(GS+10,9,10, k), P(GS+28,5,9, k)= P(GS+26,8,8, k),

P(GS+103,15,48, k)= P(GS+63,71,32, k), P(GS+95,23,53, k)= P(GS+53,66,52, k).

5. Conclusion

We found the probabilities for all connected graphs which can form at most two
trees in this forest-building process. A natural next step is to consider graphs with
at most three trees. As an example, two pairs of graphs with at most three trees
and matching probabilities are given in Figure 5. This is suggestive that these are
the start of an infinite family of such graphs, but we have not yet established this.
One difficulty is that unlike the situation for two trees where only one probability
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G1 G2 H1 H2

P(G1, 1)= P(G2, 1)= 187
6300

P(G1, 2)= P(G2, 2)= 2566
6300

P(G1, 3)= P(G2, 3)= 3547
6300

P(H1, 1)= P(H2, 1)= 5
637

P(H1, 2)= P(H2, 2)= 172
637

P(H1, 3)= P(H2, 3)= 460
637

Figure 5. Two pairs of graphs with at most three trees and produc-
ing the same probabilities.

needed to be computed (since the probabilities sum to 1), this requires that two
probabilities be computed.
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Log-concavity of Hölder means and
an application to geometric inequalities

Aurel I. Stan and Sergio D. Zapeta-Tzul

(Communicated by Sever S. Dragomir)

The log-concavity of the Hölder mean of two numbers, as a function of its index,
is presented first. The notion of α-cevian of a triangle is introduced next, for any
real number α. We use this property of the Hölder mean to find the smallest index
p(α) such that the length of an α-cevian of a triangle is less than or equal to the
p(α)-Hölder mean of the lengths of the two sides of the triangle that are adjacent
to that cevian.

1. Introduction

All parts of mathematics are interconnected, including two important branches,
geometry and analysis. Continuity, which is a fundamental notion in real analysis,
is used in Euclidean geometry as one axiom in Hilbert axiomatization, and in
proving Thales’ theorem for irrational ratios. On the other hand, geometry helps
real analysis by providing pictures that help us understand certain theorems. For
example, Euler’s theorem, which says that in any parallelogram the sum of the
squares of the lengths of its sides is equal to the sum of the squares of its diagonals,
provides a visual representation for the parallelogram identity that characterizes the
norms of inner product spaces.

There is an abundant literature of geometric inequalities concerning important
line segments in a triangle; see [Bottema et al. 1969; Mitrinović et al. 1989], for
example. Some of these inequalities improve previously existing inequalities.

In this paper we present an application of the log-concavity of the Hölder mean
with positive index, of two numbers, to find sharp inequalities relating lengths of
cevians and sides of a triangle. Using these inequalities we find the best possible
index for the Hölder mean, in a certain sense.

The paper is divided as follows:
In Section 2, we prove that the Hölder mean of two positive numbers, viewed

as a function of its index, is logarithmically concave on [0,∞). In Section 3,
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we define the notion of an α-cevian in a triangle, and find the smallest index
p(α) such that the length of every α-cevian is less than or equal to the p(α)-
Hölder mean of the lengths of the two sides of the triangle that are adjacent to that
cevian.

2. Log-concavity of Hölder means

Let a and b be two positive numbers. For any p∈ [−∞,∞], we define the p-Hölder
mean of a and b, as

Hp(a, b) :=


( 1

2a p
+

1
2 bp

)1/p if p ∈ R \ {0},
limp→0 Hp(a, b)=

√
ab if p = 0,

limp→−∞ Hp(a, b)=min{a, b} if p =−∞,
limp→∞ Hp(a, b)=max{a, b} if p =∞.

(2-1)

It follows from Jensen’s inequality that for all −∞≤ p < q ≤∞, we have

Hp(a, b)≤ Hq(a, b), (2-2)

and this inequality is strict if a 6= b; see [Bullen 1998; Bullen et al. 1988; Pólya
and Szegő 1972].

We prove now that the Hölder mean of two positive numbers, viewed as a function
of its index, is logarithmically concave on [0,∞).

Lemma 2.1. For all positive numbers a and b, the function f :[0,∞)→R, defined by

f (x) := ln(Hx(a, b)), (2-3)

is concave downward.

Proof. If a = b, then the lemma is obvious since f is a constant function, and its
value is f (x)= ln(a) for all x in [0,∞).

Let us assume now that 0< a < b. Then, defining c := b
a > 1 for all x ≥ 0, we

have

f (x)= ln(Hx(a, b))= ln
(

aHx

(
1, b

a

))
= ln(Hx(1, c))+ ln(a).

Thus the graph of f is just a vertical translation by ln(a) of the graph of g :
[0,∞)→ R, defined by

g(x)= ln(Hx(1, c)). (2-4)

Therefore, it suffices to show that g is concave downward on [0,∞).
We know that g is continuous on [0,∞), and so to achieve our goal we need to

prove that the second derivative of g is negative on (0,∞).
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Indeed, if ′ denotes the derivative with respect to x , then we have

g′(x)=
d

dx

[
1
x

ln(1+ cx)−
1
x

ln(2)
]

=−
1
x2 ln(1+ cx)+

1
x

cx ln(c)
1+ cx +

ln(2)
x2 . (2-5)

Differentiating one more time, we obtain

g′′(x)=
2
x3 ln(1+ cx)−

2
x2

cx ln(c)
1+ cx +

1
x

cx ln2(c)
(1+ cx)2

−
2 ln(2)

x3 . (2-6)

We make now the change of variable

y := cx
∈ (1,∞), (2-7)

which means

x =
ln(y)
ln(c)

. (2-8)

Substituting back in the formula of g′′(x), we obtain

g′′(x)=
2ln3(c)

ln3(y)
ln(1+y)−

2ln2(c)

ln2(y)

y ln(c)
1+y

+
ln(c)
ln(y)

y ln2(c)
(1+y)2

−
2ln(2) ln3(c)

ln3(y)
. (2-9)

Thus, to show that, for all x > 0, we have g′′(x) < 0, by multiplying both sides by
the positive number (1+ y)2 ln3(y)/ ln3(c), we have to prove that for all y > 1

h(y) := 2(1+ y)2 ln(1+ y)−2y(1+ y) ln(y)+ y ln2(y)−2(1+ y)2 ln(2) (2-10)

is negative.
The function h is defined even for y = 1, and we have h(1)= 0.
We will study the sign of the first, second, and third derivatives of h on [1,∞).
Using the product rule of differentiation, the derivative of h with respect to y is

h′(y)= 4(1+ y) ln(1+ y)+ 2(1+ y)2
1

1+ y
− 2(1+ y) ln(y)− 2y ln(y)

− 2y(1+ y)
1
y
+ ln2(y)+ 2y ln(y)

1
y
− 4(1+ y) ln(2)

= 4(1+ y) ln(1+ y)− 4y ln(y)+ ln2(y)− 4(1+ y) ln(2). (2-11)

Let us observe that h′(1)= 0.
Differentiating again, we obtain

h′′(y)= 4 ln(1+ y)+ 4(1+ y)
1

1+ y
− 4 ln(y)− 4y

1
y
+ 2

1
y

ln(y)− 4 ln(2)

= 4 ln(1+ y)− 4 ln(y)+
2 ln(y)

y
− 4 ln(2). (2-12)

We observe that h′′(1)= 0.
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1 2 3 4 5

1

2

3
a = 16

a = 8

a = 4

a = 2

f (x)= ln
[(1+ax

2

)1/x]

0
0

Figure 1. Graph of y = ln[((1+ ax)/2)1/x
] for various values of a.

Finally, differentiating one more time, we obtain

h′′′(y)= 2
[

2
1+ y

−
2
y
+

1
y2 −

ln(y)
y2

]
= 2

[
1− y

y2(y+ 1)
−

ln(y)
y2

]
< 0 (2-13)

for all y > 1, since 1− y < 0 and − ln(y) < 0.
Thus, we conclude that h′′ is strictly decreasing on [1,∞). This implies that for

all y > 1, we have h′′(y) < h′′(1)= 0. Hence, h′ is strictly decreasing on [1,∞).
This implies that for all y > 1, we have h′(y) < h′(1)= 0. Therefore, h is strictly
decreasing on [1,∞). Finally, from this assertion we conclude that h(y) < h(1)= 0
for all y > 1. The last statement is equivalent to the fact that g′′(x) < 0 for all
x > 0, and this proves that f is strictly concave on [0,∞). Therefore, the Hölder
mean function of two positive, distinct numbers is strictly logarithmically concave
downward on [0,∞). �

A graphical illustration of the logarithmic concavity of the Hölder means of two
positive numbers 1 and a, for various values of a, is presented in Figure 1.

We make now the following simple observation.

Observation 2.2. The Hölder mean of two positive numbers is logarithmically
symmetric about the geometric mean of the two numbers. That means, if a and b
are positive numbers, then for all x ∈ [−∞,∞], we have

Hx(a, b)H−x(a, b)= H 2
0 (a, b). (2-14)

Proof. Indeed, if x =∞, then

H∞(a, b)H−∞(a, b)=max{a, b} min{a, b}

= ab = H 2
0 (a, b).
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On the other hand, for all x ∈ R \ {0}, we have

Hx(a, b)H−x(a, b)=
(

ax
+ bx

2

)1/x(a−x
+ b−x

2

)−1/x

=
(ax
+ bx)1/x

21/x

(2ax bx)1/x

(ax + bx)1/x = ab = H 2
0 (a, b). �

Corollary 2.3. Since for any two positive numbers a and b, the function x 7→
ln(Hx(a, b)) is concave downward on [0,∞), and its graph is symmetric about the
point (0, ln(

√
ab)), this function is concave upward on (−∞, 0].

3. Sharp inequalities concerning α-cevians in a triangle

In this section we use the logarithmic concavity property of the Hölder mean, of
two positive numbers, as a function of the index, to prove a sharp inequality for the
length of an α-cevian in a triangle.

We give first some definitions.

Definition 3.1. Given a triangle ABC in the plane, for any point M on the side BC,
we call AM a cevian.

If M ∈ BC , meaning M is between B and C, then we say that AM is an interior
cevian.

We say that sides AB and AC of the triangle ABC are adjacent to the cevian AM.

Definition 3.2. Given a triangle ABC in the plane and α a real number, if Mα ∈ BC ,
then we say that AMα is an α-interior cevian if

B Mα

C Mα

=

(
AB

AC

)α
. (3-1)

Here P Q denotes the length of the segment P Q for any two points P and Q in the
plane. See Figure 2.

Observation 3.3. For any real number α, the three α-interior cevians AMα , B Nα ,
and CPα of a triangle ABC are concurrent.

A

Nα

CMαB

Pα

Figure 2. A triangle and its three α-cevians.
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Proof. Indeed, we have (see Figure 2)

B Mα

C Mα

·
C Nα

ANα

·
APα
B Pα

=
ABα

ACα
·

BCα

B Aα
·

C Aα

C Bα
= 1.

It follows now from Ceva’s theorem that AMα, B Nα, and CPα are concurrent. �

Observation 3.4. We make the following observations:

• For α = 0, AM0, B N0, and CP0 are the medians of the triangle ABC and they
are concurrent in the centroid of the triangle ABC. The centroid of a triangle is
denoted by X (2) in [Kimberling 1994].

• For α= 1, AM1, B N1, and CP1 are the inner bisectors of the angles of the triangle
ABC and they are concurrent in the incenter of the triangle ABC. The incenter of
a triangle is denoted by X (1) in [Kimberling 1994].

• For α = 2, AM2, B N2, and CP2 are the symmedians (symmetric to the medians
about the corresponding bisectors) of the triangle ABC and they are concurrent in
the Lemoine point, also called the Grebe point, of the triangle ABC. The Lemoine
(Grebe) point of a triangle is denoted by X (6) in [Kimberling 1994].

Let us observe that if AM is an interior cevian of a triangle ABC, then at least
one of the angles ^AM B and ^AMC is obtuse or right. If the angle ^AM B is
obtuse or right, then in the triangle AM B, the side AB opposite to this angle, with
say AB = c, is the largest side of the triangle. Thus, we have AM < c.

Similarly, if the angle ^AMC is obtuse or right, then AM < b.
Therefore, in both cases we conclude that

AM <max{b, c} = H∞(b, c).

Starting from this simple inequality, we can ask the question:

Question 3.5. Given a real number α, what is the smallest number p = p(α) ∈
[−∞,∞] such that for all triangles ABC, if AMα is an α-interior cevian, we have

AMα ≤ Hp(AB, AC)? (3-2)

We have the following proposition:

Proposition 3.6. Let b and c be two fixed positive numbers. We denote by Tb,c the
set of all triangles ABC in the plane such that AB = c and AC = b. Then, we have

sup
ABC∈Tb,c

{AMα | AMαis an α-interior cevian in ABC} = bc
bα−1
+ cα−1

bα + cα
. (3-3)

Proof. We give a vectorial proof.
In triangle AB Mα we have

−−→
AMα =

−→
AB+

−−→
B Mα. (3-4)
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In triangle ACMα we have
−−→
AMα =

−→
AC +

−−→
C Mα. (3-5)

Let us first multiply both sides of (3-4) by bα, and both sides of (3-5) by cα, and
then add the two resulting equations. We obtain

(bα + cα)
−−→
AMα = bα

−→
AB+ cα

−→
AC + (bα

−−→
B Mα + cα

−−→
C Mα). (3-6)

Since AMα is an α-interior cevian, we have

B Mα

C Mα

=
cα

bα
.

This is equivalent to

bα
−−→
B Mα + cα

−−→
C Mα = 0. (3-7)

It follows now from (3-6) that

−−→
AMα =

1
bα + cα

(bα
−→
AB+ cα

−→
AC). (3-8)

Applying the triangle inequality in (3-8), we conclude that

AMα ≤
1

bα + cα
(bαAB+ cαAC)

=
1

bα + cα
(bαc+ cαb)= bc

bα−1
+ cα−1

bα + cα
. (3-9)

Since this happens for all triangles ABC such that AB= c and AC=b, we conclude
that

S ≤ bc
bα−1
+ cα−1

bα + cα
, (3-10)

where
S = sup

ABC∈Tb,c

{AMα | AMα is an α-interior cevian in ABC}.

On the other hand, we have

S ≥ lim
m(^B AC)→0+

AMα

= lim
m(^B AC)→0+

[
1

bα + cα

∣∣∣∣bα−→AB+ cα
−→
AC
∣∣∣∣]

=

[
1

bα + cα
(bαAB+ cαAC)

]
= bc

bα−1
+ cα−1

bα + cα
, (3-11)

where |Ev| denotes the length of the vector Ev for any vector Ev in R2.
The result of our proposition follows now from inequalities (3-10) and (3-11). �
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We can write

bc
bα−1
+ cα−1

bα + cα
= bc

(bα−1
+ cα−1)/2

(bα + cα)/2
= H 2

0 (b, c)
Hα−1
α−1 (b, c)

Hα
α (b, c)

. (3-12)

Thus, we obtain

S = H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

. (3-13)

Now, Question 3.5 becomes:

Question 3.7. Given a real number α, what is the smallest number p = p(α) ∈
[−∞,∞] such that for all b and c positive, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)? (3-14)

Before answering this question, we present the following necessary condition
for an inequality between two functions, whose graphs touch at one point, to hold.

Lemma 3.8. Let I ⊆ R be an interval, and let
◦

I := {x ∈ I | there exists r > 0 such that (x − r, x + r)⊂ I }

be the set of the interior points of I. Suppose f and g are two real-valued functions
such that:

(1) f (x)≤ g(x) for all x ∈ I.

(2) f and g are continuous on I.

(3) f and g are twice-differentiable on
◦

I.

(4) There exists x0 ∈
◦

I such that f (x0)= g(x0).

(5) f ′′ is continuous at x0.

Then, we must have f ′(x0)= g′(x0) and f ′′(x0)≤ g′′(x0).

Proof. Let h(x) := g(x)− f (x). Then, for all x ∈ I, we have

h(x)≥ 0= h(x0).

Thus, h has an absolute minimum value at x0, and since x0 is a point in the interior
of I, Fermat’s theorem implies h′(x0)= 0. This is equivalent to f ′(x0)= g′(x0).

Since x0 ∈
◦

I, there exists r > 0 such that (x0 − r, x0 + r) ⊂ I. Because the
function f is dominated by function g, for all 0< h < r , we have

f (x0+ h)≤ g(x0+ h),

f (x0− h)≤ g(x0− h),

−2 f (x0)=−2g(x0).
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Adding these three relations and dividing both sides by the positive number h2, we
obtain

f (x0+ h)+ f (x0− h)− 2 f (x0)

h2 ≤
g(x0+ h)+ g(x0− h)− 2g(x0)

h2 .

Passing to the limit as h→ 0+, we obtain

lim
h→0+

f (x0+ h)+ f (x0− h)− 2 f (x0)

h2

≤ lim
h→0+

g(x0+ h)+ g(x0− h)− 2g(x0)

h2 . (3-15)

Applying L’Hôpital’s rule in the 0
0 case, twice, or using Taylor’s formula with

Lagrange’s remainder, it is not hard to see that due to the continuity of f ′′ at x0,
the last inequality becomes

f ′′(x0)≤ g′′(x0). �

To answer Question 3.7, we will analyze four cases.

Case 1. If α ≥ 1, then the answer of Question 3.7 is given by the following
proposition.

Proposition 3.9. If α ≥ 1, then the smallest number p = p(α) ∈ [−∞,∞] such
that for all positive numbers b and c, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c) (3-16)

is
p(α)= 1− 2α. (3-17)

Proof. Step 1: We prove first the inequality p(α)≤ 1− 2α.
Indeed, using Observation 2.2, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

= (H1−2α(b, c)H2α−1(b, c))
Hα−1
α−1 (b, c)

Hα
α (b, c)

= H1−2α(b, c)
[

H (α−1)/α
α−1 (b, c)H 1/α

2α−1(b, c)

Hα(b, c)

]α
≤ H1−2α(b, c) · 1α = H1−2α(b, c), (3-18)

since 0≤ α− 1< α ≤ 2α− 1 (due to the fact that α ≥ 1),

α− 1
α

(α− 1)+
1
α
(2α− 1)= α, (3-19)

and so, because x 7→ Hx(b, c) is logarithmically concave on [0,∞), we have

H (α−1)/α
α−1 (b, c)H 1/α

2α−1(b, c)≤ Hα(b, c). (3-20)



680 AUREL I. STAN AND SERGIO D. ZAPETA-TZUL

Step 2: We prove now that if p is a positive number such that for all positive
numbers b and c, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c),

then p ≥ 1− 2α.
Choosing b = 1 and c = x , where x is an arbitrary positive number, the above

inequality becomes

x
1+ xα−1

1+ xα
≤

(
1+ x p

2

)1/p

. (3-21)

We can see now that the hypotheses of Lemma 3.8 are satisfied for the functions

f (x) :=
x + xα

1+ xα
= 1+

x − 1
1+ xα

= 1+
1
2
(x − 1)+ (x − 1)

(
1

1+ xα
−

1
2

)
(3-22)

and

g(x) :=
(

1+ x p

2

)1/p

, (3-23)

and the point
x0 := 1. (3-24)

Thus, we obtain
f ′′(1)≤ g′′(1). (3-25)

Using Leibniz’s rule of differentiation and keeping only the nonzero terms, we obtain

f ′′(1)=
d2

dx2

[
1+

1
2
(x − 1)+ (x − 1)

(
1

1+ xα
−

1
2

)]∣∣∣∣
x=1

=
d2

dx2

[
(x − 1)

(
1

1+ xα
−

1
2

)]∣∣∣∣
x=1

=

(2
1

) d
dx
(x − 1)

∣∣∣∣
x=1

d
dx

(
1

1+ xα
−

1
2

)∣∣∣∣
x=1

= 2
(
−αxα−1

(1+ xα)2

)∣∣∣∣
x=1
=−

α

2
. (3-26)

On the other hand, we have

g′(x)=
1

21/p

d
dx
[(1+ x p)1/p

]

=
1

21/p

1
p
(1+ x p)(1/p)−1 px p−1

=
1

21/p

(
1+ x p

x p

)(1−p)/p

=
1

21/p (x
−p
+ 1)(1−p)/p.
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Thus, we obtain

g′′(x)=
1

21/p

1− p
p

(x−p
+ 1)(1−2p)/p(−p)x−p−1

=
p− 1
21/p (x

−p
+ 1)(1−2p)/px−p−1.

Hence, we have

g′′(1)=
p− 1

4
. (3-27)

Therefore, inequality (3-25) becomes

−
α

2
≤

p− 1
4

. (3-28)

This inequality is equivalent to

p ≥ 1− 2α, (3-29)

and so, our proof is complete. �

Case 2. If 1
2 < α < 1, then the answer to Question 3.7 is given by the following

proposition.

Proposition 3.10. If 1
2 < α < 1, then the smallest number p = p(α) ∈ [−∞,∞]

such that for all positive numbers b and c, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)

is
p(α)= 0. (3-30)

Proof. Step 1: We prove first the inequality p(α)≤ 0. That means, we show that
for all positive numbers b and c we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ H0(b, c).

Indeed, using the symmetry of the function x 7→ ln(Hx(b, c)) with respect to the
origin

Hx(b, c)H−x(b, c)= H 2
0 (b, c), (3-31)

for x = α− 1, we obtain

Hα−1(b, c)=
H 2

0 (b, c)
H1−α(b, c)

. (3-32)
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Thus, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

= H 2
0 (b, c)

[
H 2

0 (b, c)
H1−α(b, c)

]α−1 1
Hα
α (b, c)

=
H 2α

0 (b, c)H 1−α
1−α (b, c)

Hα
α (b, c)

= H0(b, c)
[

H0(b, c)
Hα(b, c)

]2α−1[H1−α(b, c)
Hα(b, c)

]1−α

≤ H0(b, c) · 12α−1
· 11−α

= H0(b, c), (3-33)

since 0< α, 1−α < α, the function x 7→ Hx(b, c) is increasing, 2α− 1> 0, and
1−α > 0.

Step 2: We show now that if p < 0, then the inequality

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)

cannot hold for all positive numbers b and c.
Indeed, if we assume by contradiction that it holds for all positive numbers b and c,

then choosing b = 1 and c = x , where x is an arbitrary positive number, we obtain

x
1+ xα−1

1+ xα
≤

(
1+ x p

2

)1/p

. (3-34)

Passing to the limit as x→∞, we get

lim
x→∞

x + xα

1+ xα
≤ lim

x→∞

(
1+ x p

2

)1/p

. (3-35)

Since α < 1 and p < 0, the last inequality becomes

∞≤
( 1

2

)1/p
,

which is a contradiction.
Thus the smallest number p for which inequality (3-14) holds is p(α)= 0. �

Case 3. If 0 ≤ α ≤ 1
2 , then the answer to Question 3.7 is given by the following

proposition.

Proposition 3.11. If 0 ≤ α ≤ 1, then the smallest number p = p(α) ∈ [−∞,∞]
such that for all positive numbers b and c we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)

is
p(α)= 1− 2α. (3-36)
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Proof. Step 1: We show first that p(α)≤ 1− 2α. Using the logarithmic symmetry
of the function x 7→ Hx(b, c), we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

= H 2
0 (b, c)

[
H 2

0 (b, c)
H1−α(b, c)

]α−1 1
Hα
α (b, c)

=
H 2α

0 (b, c)H 1−α
1−α (b, c)

Hα
α (b, c)

. (3-37)

Since 0 ≤ α ≤ 1
2 , we have 0 ≤ α ≤ 1 − α, and α can be written as a convex

combination of 0 and 1−α in the following way:

α =

(
1−

α

1−α

)
· 0+

α

1−α
· (1−α). (3-38)

Since x 7→ Hx(b, c) is logarithmically concave on [0,∞), applying Jensen’s in-
equality, we obtain

Hα ≥ H 1−α/(1−α)
0 Hα/(1−α)

1−α . (3-39)

Thus, using (3-37) and (3-39), we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

=
H 2α

0 (b, c)H 1−α
1−α (b, c)

Hα
α (b, c)

≤
H 2α

0 (b, c)H 1−α
1−α (b, c)

[H 1−α/(1−α)
0 (b, c)Hα/(1−α)

1−α (b, c)]α

= Hα/(1−α)
0 (b, c)H (1−2α)/(1−α)

1−α (b, c). (3-40)

Let us observe that α/(1−α) ∈ [0, 1], (1− 2α)/(1−α) ∈ [0, 1], and

α

1−α
+

1− 2α
1−α

= 1. (3-41)

Applying, Jensen’s inequality again, we obtain

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hα/(1−α)
0 (b, c)H (1−2α)/(1−α)

1−α (b, c)

≤ H[α/(1−α)]·0+[(1−2α)/(1−α)]·(1−α)(b, c)

= H1−2α(b, c). (3-42)

Step 2: We can prove now in exactly the same way as in the proof of Proposition 3.9
that if p is real number such that inequality (3-14) holds for all positive numbers b
and c, then

p ≥ 1− 2α. �
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Case 4. If α < 0, then the answer to Question 3.7 is given by the following
proposition.

Proposition 3.12. If α < 0, then the smallest (only) number p = p(α) ∈ [−∞,∞]
such that for all positive numbers b and c, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)

is
p(α)=∞. (3-43)

Proof. Indeed, we saw geometrically at the beginning of the paper that for all
triangles ABC, and all interior cevians AM, we have

AM ≤max{AB, AC} = H∞(b, c),

where b := AC and c := AB.
To show that p(α) =∞, we must prove that for all p <∞, inequality (3-14)

cannot hold for all positive numbers b and c.
Supposing that for some p <∞ (we may assume p > 0) inequality (3-14) holds

for all positive numbers b and c, we can choose b = 1 and c = x , where x is an
arbitrary positive number. That means, for all x > 0, we have

x + xα

1+ xα
≤

(
1+ x p

2

)1/p

.

Passing to the limit in this inequality as x→ 0+, we obtain

lim
x→0+

x + xα

1+ xα
≤ lim

x→0+

(
1+ x p

2

)1/p

.

Since α < 0, the last inequality is equivalent to

1≤
( 1

2

)1/p
.

This inequality is impossible, since 0< 1
2 < 1 and 1

p > 0. �

Therefore, the function α 7→ p(α) that gives the smallest p such that in any
triangle ABC the α-interior cevian starting from A, AMα , has a length less than or
equal to the p-Hölder mean of AB and AC is P : R→ [−∞,∞], defined by

P(α)=


∞ if α < 0,
1− 2α if 0≤ α ≤ 1

2 ,

0 if 1
2 < α < 1,

1− 2α if α > 1.

(3-44)

See the graph of P in Figure 3.
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−1 1 2 3 4 5 6

−4

−2

2

4

6

∞

P(α)=


∞ if α < 0,
1− 2α if 0≤ α ≤ 1

2 ,

0 if 1
2 < α < 1,

1− 2α if α ≥ 1

0
0

Figure 3. The graph of function y = P(α).

We observe that the function P is nonincreasing and lower semicontinuous.
The branching point α = 0 of the piecewise-defined function P corresponds to

the median AM0 of the triangle ABC.
The branching point α = 1 corresponds to the bisector AM1 of the angle ^B AC.
The branching point α= 1

2 corresponds to a cevian AM1/2 that is concurrent with
the corresponding cevians B N1/2 and C P1/2 in the point X (366) from [Kimberling
1994]. The point X (366) is the isogonal conjugate of X (365), the square root point,
which is the intersection point of the three 3

2 -interior cevians of the triangle ABC.
We summarize below our results, in the case of some classic cevians:

Proposition 3.13. Let ABC be a triangle with sides, starting from A, of lengths
AC = b and AB = c. Let M be a point on the side BC of this triangle. Then:

(1) If AM is the median corresponding to the vertex A, then its length satisfies

AM <
b+ c

2
. (3-45)

Moreover, for every p< 1, there exists a triangle ABC (depending on p) such that

AM >

(
bp
+ cp

2

)1/p

. (3-46)

(2) If AM is the interior bisector of the angle ^(B AC), then its length satisfies

AM <
2

1
a +

1
b

. (3-47)

Moreover, for every p <−1, there exists a triangle ABC such that

AM >

(
bp
+ cp

2

)1/p

. (3-48)
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(3) If AM is the symmedian corresponding to the vertex A, then its length satisfies

AM <

(
b−3
+ c−3

2

)−1/3

. (3-49)

Moreover, for every p <−3, there exists a triangle ABC such that

AM >

(
bp
+ cp

2

)1/p

. (3-50)
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Math. Appl. (East Eur. Series) 31, Reidel, Dordrecht, 1988. MR Zbl

[Kimberling 1994] C. Kimberling, “Encyclopedia of triangle centers”, website, 1994, available at
https://tinyurl.com/encytria.
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Applying prospect theory to multiattribute problems
with independence assumptions

Jack Stanley and Frank P. A. Coolen

(Communicated by Sat N. Gupta)

We discuss a descriptive theory of decision making which has received much
attention in recent decades: prospect theory. We specifically focus on applying
the theory to problems with two attributes, assisted by different independence
assumptions. We discuss a process for solving decision problems using the theory
before applying it to a real life example of purchasing breakdown cover.

1. Introduction

In this paper, we apply prospect theory (PT) to multiattribute problems, specifically
those with two attributes. We will consider levels of independence between the
attributes in the problem and will split the corresponding value function into different
parts. When discussing independence between attributes in multiattribute expected
utility theory (EUT), Keeney and Raiffa [1976] use the term “utility independence”.
However, in this paper, we use the term “independence” to represent utility or value
independence, dependent on whether we are in the EUT or PT case. This can be
seen later in Definition 1.

Within PT, the reference point is chosen to be the point from which you consider
gains and losses. As such, the different parts of the value function are all based on
whether outcomes are better or worse than the reference point with respect to each
attribute. Following this, we will design a process which can be used to effectively
and efficiently solve a multiattribute decision problem. We show how this can be
applied to a real-life problem of purchasing breakdown cover.

We will begin by covering some background information in Section 2, introducing
notation and explaining how EUT deals with multiattribute problems. We also
introduce PT and how it is applied to single attribute problems. In Section 3, we
derive formulas for applying PT to multiattribute problems under different levels of
independence. Following this, in Section 4, we introduce a standard process which
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can be used to solve multiattribute decision problems. We illustrate the approach
with an example of purchasing breakdown cover in Section 5.

2. Background

We begin by introducing some definitions and notation. The following notation is
based on [Starmer 2000, p. 334]. We define a prospect to consist of a set of outcomes
(e.g., x1, x2, . . . , xn) with probabilities corresponding to them (e.g., p1, p2, . . . , pn).
At this point, it should be made clear that prospects will be present for both EUT
and PT. A prospect simply represents what it is that we are considering and should
not be thought of as being linked exclusively to PT.

Notationally, we will consider prospects using capital letters (e.g., A, B, C) and
will consider probabilities using p with subscripts (e.g., p1, p2, p3). Therefore, an
example of a prospect is A = (x1, p1; x2, p2; . . . ; xn, pn). Here, (p1, p2, . . . , pn) is
a probability distribution (hence pi ≥ 0 and

∑n
i=1 pi = 1) and (x1, x2, . . . , xn) are

the associated outcomes. So, with prospect A as described above, we would expect
outcome xi with probability pi for i = 1, . . . , n. Interestingly, we can consider
some of the outcomes within a prospect to be prospects themselves. So, for example,
we could have prospects B, C and D with D = (B, 0.25; C, 0.75). This would yield
prospect B with probability 0.25 and prospect C with probability 0.75.

When comparing prospects A and B:
• A ≺ B denotes B is preferred to A.
• A 4 B denotes B is at least as preferable as A.
• A ∼ B denotes indifference between A and B.

We now discuss prospect theory (PT) in the single-attribute case, which we later
extend to be applicable to multiattribute decision problems. PT was introduced
by Daniel Kahneman and Amos Tversky [1979]. It was designed to be a direct
alternative to EUT, dealing with some of the issues where EUT fails to reflect the
preferences of the majority of individuals. In reflecting these attitudes, it is clear
that PT was designed as a descriptive theory.

PT is made up of two stages: an editing phase and an evaluation phase. The
editing phase of PT is designed to simplify the decision-making process. Using
several different rules and operations, the individual can change the prospects which
they have to choose between and eliminate any that should never be picked. After
the editing phase has been completed, the decision maker will then complete an
evaluation phase in which they will decide what the best decision will be for them,
based on their opinions and beliefs. Within the evaluation phase, there are two
main functions which are considered and combined to help evaluate each prospect
numerically: a decision-weighting function, represented by π(p), and a value
function, represented by v(x).
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The reference point in PT is of great importance as it allows us to choose a
neutral point and then consider better points as gains and worse points as losses.
This is because it was found in [Kahneman and Tversky 1979, pp. 268–269] that
individuals are risk-averse when it comes to gains, whereas they are risk-seeking
when dealing with losses. To reflect this, the value function is generally designed
to be concave above the reference point and convex below the reference point.

Now that we have introduced PT, we will discuss the independence assumptions
which we will later use in deriving the formulas for multiattribute PT. Note here that
we are going to denote the values the attributes can take by Y and Z. In this paper,
we will be focussing on the instances where we have certain levels of independence
between the attributes Y and Z. This independence is used in multiattribute EUT
for utility functions and later we will use it for multiattribute PT when we work
with value functions. We define it as follows:

Definition 1 (adapted from [Keeney and Raiffa 1976, pp. 226, 229] to be applicable
to PT).
• Y is independent of Z when conditional preferences for outcomes on Y given

z do not depend on the particular level of z.

• Y and Z are mutually independent attributes if Y is independent of Z and Z is
independent of Y.

We will now briefly discuss multiattribute EUT and explain how with certain
levels of independence, it is possible to construct a utility function which helps
to choose the best possible alternative for a decision problem. This focusses on
[Keeney and Raiffa 1976].

To begin with, we discuss how Keeney and Raiffa show that independence
between attributes can be represented effectively with an equation. This can be
found in [loc. cit., p. 144] where it is suggested that two strategically equivalent
utility functions can be linked by

u1(x)= h+ ku2(x) for all x . (1)

Now, let us consider the instance where Y is independent of Z. By the definition
of independence, this means that u(y, z0) and u(y, z1) are strategically equivalent
(i.e., u(y, z0)∼ u(y, z1)) for any z0, z1 ∈ Z. Due to this, we can represent the utility
function of any y ∈ Y and any z ∈ Z as a transformation of another utility function
of y ∈ Y and a different z′ ∈ Z. Namely

u(y, z)= g(z)+ h(z)u(y, z′) for any y ∈ Y and z ∈ Z, (2)

with the functions g and h only functions of z (i.e., constant in y). Following this,
we can say that an attribute Y is independent of Z if and only if (2) holds. This
will later be applied to PT and form the basis of the derivation of the formulas for
multiattribute PT.
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If we have two attributes which are mutually independent, we can use Theorem 5.2
from [loc. cit., p. 234] to evaluate the utility of any alternative. Similarly, if the
attributes only have Z independent of Y, we use Theorem 5.6 from [loc. cit., p. 244].
This briefly describes how EUT can be applied to multiattribute problems to assist
in choosing the best alternative in a decision problem. We will now show how PT
can be applied in a similar way.

3. Applying PT to multiattribute problems

As PT is the natural alternative to EUT and EUT has been applied to multiattribute
problems, it seems logical to apply PT to multiattribute problems. One method
which uses PT is the TODIM method [Gomes and Lima 1991]. This uses pairwise
comparisons over each alternative based on each attribute, choosing one attribute
to be the reference attribute. Other than that, a lot of the research in multiattribute
problems using prospect theory involves combining the theory itself with the theory
of fuzzy sets. The theory of fuzzy sets was introduced in [Zadeh 1979] and applied
to multiattribute problems by [Bellman and Zadeh 1970]. Combining prospect
theory with the theory of fuzzy sets will not be covered in this paper, research into
this area can be found in [Krohling and de Souza 2012; Liu et al. 2011; Wang and
Sun 2008].

There is limited research looking into applying PT in the same way as EUT
is applied to multiattribute decision problems in [Keeney and Raiffa 1976]. The
closest thing currently available is [Hu and Zhou 2009], which is described in
[Liu et al. 2011] as being a “multiple criteria decision-making method for the risk
decision-making problem based on prospect theory”. However, it still does not
produce a piecewise form of the value function and instead focusses on using the
weighting function from cumulative PT, introduced in [Tversky and Kahneman
1992]. Further research which uses PT methods with multiattribute problems can
be found in [Egozcue et al. 2014].

In introducing the theory, we begin by considering what the reference point will
be for each attribute Y and Z. Denote these as (y0, z0) and let v(y0, z0)= 0. In this
paper, we keep the reference point constant and as such, we do not include it in the
notation. It should be emphasised here how important the choice of reference point
is. Different choices of reference point have a significant impact on the outcome of
a decision problem. This can be seen later in Section 5.

We begin by defining strategic equivalence of two value functions (similarly to
[Keeney and Raiffa 1976, p. 144]) as follows:

Definition 2. Two value functions, v and v∗, are strategically equivalent, denoted as
v ∼ v∗, if and only if they imply the same preference ranking for any two prospects
or outcomes.
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Suppose we have two value functions, v and v∗, which are strategically equivalent.
We assume that there are constants h1, k1, h2, k2 with k1 > 0 and k2 > 0 such that

v(x)=
{

h1+ k1v
∗(x) if x < x0,

h2+ k2v
∗(x) if x 4 x0.

(3)

This is a natural assumption for the value functions v and v∗, because multiplica-
tion by a positive constant will not affect the preference ordering over outcomes
and neither will a transformation by an additive constant.

Similarly to the multiattribute EUT case, we can represent attribute Y being
independent of Z with the equation

v(y, z)=
{

c+1 (z)+ c+2 (z)v(y, z0) if y < y0,

c−1 (z)+ c−2 (z)v(y, z0) if y 4 y0,
(4)

and attribute Z being independent of Y with

v(y, z)=
{

d+1 (y)+ d+2 (y)v(y0, z) if z < z0,

d−1 (y)+ d−2 (y)v(y0, z) if z 4 z0.
(5)

Notice here the similarities with (3). For example, c+1 (z) and d+1 (y) are similar
to h1 in (3). Note that c+1 (z) is a function of z meaning it is constant in y, as is
required for the value function which is only a function of y. The same logic applies
for the rest of the c and d values in (4) and (5) respectively.

3.1. Working with mutually independent attributes. To begin with, we are going
to consider the case where we have attributes Y and Z which are mutually indepen-
dent. Assuming this, we are going to loosely follow the proof for the multiattribute
EUT formula in [Keeney and Raiffa 1976, p. 234–235] but apply it to PT.

Y and Z being mutually independent means we can represent the independence
using (4) and (5). Substituting y0 into (4) gives that c+1 (z) = c−1 (z) = v(y0, z).
This is to retain a level of continuity and to ensure that the limit as y tends to y0

from above or below is the same. Then, consider a value y1 such that y1 � y0 and
substitute this value into (4) to get

v(y1, z)= v(y0, z)+ c+2 (z)v(y1, z0) =⇒ c+2 (z)=
v(y1, z)− v(y0, z)

v(y1, z0)
. (6)

Similarly, considering a value y−1 with y−1 ≺ y0 and substituting this into (4) gives

v(y−1, z)= v(y0, z)+c−2 (z)v(y−1, z0) =⇒ c−2 (z)=
v(y−1, z)− v(y0, z)

v(y−1, z0)
. (7)

Notice that both constants c+2 (z) and c−2 (z) are positive as is required in (3). The
function c−2 (z) is positive as both the numerator and denominator are negative as
v(y0, z0)= 0, so v(y−1, z0) < 0.
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Now that we have evaluated the values of the constants c+1 (z), c−1 (z), c+2 (z) and
c−2 (z), we can substitute these back into (4) to get

v(y, z)=


v(y0, z)+

(
v(y1, z)−v(y0, z)

v(y1, z0)

)
v(y, z0) if y < y0,

v(y0, z)+
(
v(y−1, z)−v(y0, z)

v(y−1, z0)

)
v(y, z0) if y 4 y0.

(8)

Similar logic can be used to rewrite (5) as

v(y, z)=


v(y, z0)+

(
v(y, z1)−v(y, z0)

v(y0, z1)

)
v(y0, z) if z < z0,

v(y, z0)+
(
v(y, z−1)−v(y, z0)

v(y0, z−1)

)
v(y0, z) if z 4 z0.

(9)

Evaluating (9) at y1 for any point z ∈ Z gives

v(y1, z)=


v(y1, z0)+

(
v(y1, z1)−v(y1, z0)

v(y0, z1)

)
v(y0, z) if z < z0,

v(y1, z0)+
(
v(y1, z−1)−v(y1, z0)

v(y0, z−1)

)
v(y0, z) if z 4 z0.

(10)

Similarly, evaluating (9) at y−1 for any point z ∈ Z gives

v(y1, z)=


v(y−1, z0)+

(
v(y−1, z1)−v(y−1, z0)

v(y0, z1)

)
v(y0, z) if z < z0,

v(y−1, z0)+
(
v(y−1, z−1)−v(y−1, z0)

v(y0, z−1)

)
v(y0, z) if z 4 z0.

(11)

Substituting (10) and (11) into (8) and simplifying leads to the following theorem
for calculating the value function for a multiattribute prospect theory problem:

Theorem 3. For attributes Y and Z which are mutually independent, the value
function required for multiattribute prospect theory for any point (y, z) with y ∈ Y
and z ∈ Z can be evaluated as

v(y, z)= v(y0, z)+v(y, z0)

+v(y0, z)v(y, z0)

×



(
v(y1, z1)−v(y1, z0)−v(y0, z1)

v(y0, z1)v(y1, z0)

)
if y < y0, z < z0,(

v(y1, z−1)−v(y1, z0)−v(y0, z−1)

v(y0, z−1)v(y1, z0)

)
if y < y0, z 4 z0,(

v(y−1, z1)−v(y−1, z0)−v(y0, z1)

v(y0, z1)v(y−1, z0)

)
if y 4 y0, z < z0,(

v(y−1, z−1)−v(y−1, z0)−v(y0, z−1)

v(y0, z−1)v(y−1, z0)

)
if y 4 y0, z 4 z0.

(12)
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So, provided we have mutual independence, this theorem allows us to assign a
value to any alternative (y, z) for any y ∈ Y and z ∈ Z. The values in the piecewise
function which are the coefficients of the v(y0, z)v(y, z0) term are similar to the
constant kYZ in the EUT case [Keeney and Raiffa 1976, p. 234, Theorem 5.2]. In
fact, if you were to choose the reference point as the worst possible values in Y
and Z, you would find that you are only in the top part of the piecewise function of
Theorem 3. This would give no significant differences between the utility function
in EUT and the value function in PT as all outcomes would be considered as gains.
As such, everyone would display risk-aversion to all options, as is the case in EUT.
This shows how the significant difference in the theories results from the use and
choice of a reference point.

In deriving this formula, we assigned the reference point to be (y0, z0). However,
suppose we decide to change the reference point to another point (y, z) for any y ∈Y
and z∈Z. This would then potentially need different points y1, y−1, z1, z−1 to be cho-
sen, which changes the constant term. So, an individual who has the same preference
ordering for each attribute could change their decision using this formula based on
the reference point that they choose. This shows how important the reference point is.

3.2. One independent attribute. Let us consider the case where we only have one
attribute being independent of the other. Without loss of generality, we assume that
attribute Z is independent of Y, meaning we can write the value function of y and
z (with reference point (y0, z0)) in the form of (5). From here, we will use similar
steps as in the proof of Theorem 5.6 in [Keeney and Raiffa 1976, pp. 244–245].

We begin with (5) and choose z1 and z−1 with z1 � z0 � z−1. They are chosen to
satisfy the following equations which fix the origin and unit of measure of v(y0, z):

v(y0, z0)= 0, (13)

v(y0, z1)= 1, (14)

v(y0, z−1)=−1. (15)

We can now evaluate (5) at the point z = z0 for any value of y ∈ Y which leads
to (using (13))

d+1 (y)= d−1 (y)= v(y, z0). (16)

This can now be combined with (5) to give

v(y, z)=
{
v(y, z0)+ d+2 (y)v(y0, z) if z < z0,

v(y, z0)+ d−2 (y)v(y0, z) if z 4 z0.
(17)

Now evaluate (17) at the points z = z1 and z = z−1. Using (14) and (15), we get

d+2 (y)= v(y, z1)− v(y, z0), (18)

d−2 (y)= v(y, z0)− v(y, z−1). (19)
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Notice here that we have d+2 (y) > 0 and d−2 (y) > 0, as is required in the
assumption in (3). Substituting these into (17) and rearranging leads to the following
theorem.

Theorem 4. For attributes Y and Z with Z independent of Y but without Y being
independent of Z, the value function required for multiattribute prospect theory for
any point (y, z) with y ∈ Y and z ∈ Z can be evaluated as

v(y, z)=
{
v(y, z0)[1− v(y0, z)] + v(y, z1)v(y0, z) if z < z0,

v(y, z0)[1+ v(y0, z)] − v(y, z−1)v(y0, z) if z 4 z0.
(20)

If an individual is going to use Theorem 4 to help solve a multiattribute problem,
they are required to specify a few values initially to fix the unit of measure for each
of the value functions. This is something which is also done in the EUT case with
one independent attribute [Keeney and Raiffa 1976, p. 244, Theorem 5.6]. We have
already fixed the unit of measure for v(y0, z) for any z ∈ Z. However, we still need
to specify a unit of measure for the other value functions in formula (20), namely
v(y, z0), v(y, z1) and v(y, z−1).

At this point, we have already specified one value for each of these functions
(each of them evaluated at y0). Another two points are required for each value
function to specify the unit of measure. This is because v(y, z) is, by definition,
different for gains and losses. Therefore, we must fix the unit of measure for y � y0

and also for y ≺ y0. We can do this in a similar way to the EUT case.
For fixing the unit of measure of v(y, z0), we find points y2 � y0 � y−2 ∈ Y and

z2� z0� z−2 ∈Z such that the individual is indifferent between (y0, z2) and (y2, z0)

and between (y0, z−2) and (y−2, z0). The indifference means that v(y0, z2) =

v(y2, z0) and v(y0, z−2)= v(y−2, z0). Then, whether dealing with gains or losses
in the attribute Y, we will have fixed the unit of measure for v(y, z0). The same can
then be done for v(y, z1) and v(y, z−1) to fix their unit of measure. Assuming that
such points exist is a trivial assumption to make as if this is not the case, you are
in a much simpler situation and do not require the theories introduced in this paper.

Clearly, if attribute Y is independent of Z instead of Z being independent of Y,
(20) would have y and z swapped, with points y1, y−1 chosen instead of z1, z−1.
Therefore, Theorem 4 allows us to evaluate a value for all alternatives y, z with a
weaker requirement of only one attribute being independent of the other. However,
in exchange for this, there are more values that an individual will have to specify.

3.3. Calculating the coefficients for multiattribute PT. In this section, we are
going to focus on methods that can be used to evaluate the coefficients of the
value functions in (12). Within this, let us suppose that the individual has already
chosen the forms that their value functions will take. This means they will have
already specified v(y, z0) for all y ∈ Y and v(y0, z) for all z ∈ Z. This means we
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have four points which remain to be specified: v(y1, z1), v(y1, z−1), v(y−1, z1) and
v(y−1, z−1) for appropriately chosen y1, y−1, z1, z−1. But how do we make these
choices of points and resulting values?

Choosing what points to use as y1, y−1, z1 and z−1 is a free choice for the
decision maker, provided that they satisfy y1 � y0 � y−1 and z1 � z0 � z−1. This
is because the important consideration here is the values associated with them, not
the actual points. The values then form the coefficient of the value functions in the
piecewise part of (12).

Let us initially focus on working out v(y1, z1). A simple way to do this is to
attempt to find equivalences. For example, the decision maker should consider
what value of y ∈ Y means that they are indifferent between (y1, z1) and (y, z0).
As we have already specified the value function v(y, z0), we now have a value for
v(y1, z1). The same can be done for fixing Y at y0 and considering what value of
z ∈ Z leads to indifference between (y0, z) and (y1, z1). A sensible check which
the decision maker can complete is to do both and ensure that the values are the
same (or at least very similar). This simple method allows the decision maker to
accurately fix the coefficients of their value function in (12) and ensures that the
values chosen are in line with their beliefs.

If the value functions v(y, z0) and v(y0, z) have not already been specified, this
leads to a slightly more complicated situation. In this case, equivalence relations
would not be very useful and as such, it is likely that the decision maker will simply
have to choose these values. However, logic checks can be used to ensure that the val-
ues chosen are appropriate. For example, v(y1, z1) should be greater than v(y1, z0)

provided that z1 � z0. So, checking that more preferred values are given a higher
value is a simple logic check. Furthermore, the decision maker could use the equiva-
lence relations stated earlier once the value functions have been fully specified. This
will then ensure that the values that they have chosen are appropriate for their beliefs.

4. Process of solving a multiattribute decision problem

We now outline a “standard” process which can be used to help an individual solve a
decision problem with two attributes. The aim of this is to make it quicker and easier
for the individual to solve their decision problem and to ensure the best outcome
based on their beliefs. We suggest that the process of solving a multiattribute
decision problem can be broken down into a few stages. They are
• formulating the problem,
• independence and choosing a theory,
• applying the theory of choice.

We will now discuss the first two stages in the following two subsections. We will
not discuss applying the theory of choice as this is a very simple process once the
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previous two stages have been completed. However, when applying the theory of
choice, logic checks should be carried out to ensure that the individual is assigning
utilities/values in line with their underlying preferences and beliefs.

4.1. Formulating the problem. Formulating a multiattribute decision problem
involves several stages which all need to be completed fully and carefully. In
formulating the problem in this way, it will save time later in evaluating alternatives
and will ensure the individual fully understands the decision problem they are faced
with. At this point, we are going to assume that we know the individual who is
faced with the decision problem.

First, we need to establish what the decision problem actually is. What are the
alternatives that the individual is aiming to choose between? For example, the
alternatives could be different treatments which a doctor is choosing between to
give to a patient.

Following this, we need to be clear as to what is required as the outcome from the
decision problem. This could involve choosing a single best alternative, choosing
an acceptable region of alternatives or simply giving a ranking for all of the possible
alternatives. This helps the individual understand the problem they are faced with
and ensures they are getting the output that they desire.

It should also be specified to the decision maker whether there are any probabili-
ties involved in the decision problem. With probabilities involved, this would then
be an extra consideration for the decision maker to have when deciding between
EUT and PT. This is because they will have to consider the probability distribution
itself and consider whether the weighting function in PT better reflects how they
would view the probabilities.

We now need to understand what the attributes are that we are using to compare
the alternatives. In this paper, we have focussed on the case where there are two
attributes. It is important at this point to understand what these attributes actually
mean and the possible values they could take in the decision problem. Knowing the
domain of values for each attribute allows us to accurately scale the utility/value
function based around the best and worst possible outcomes, according to the
individual. Without this, mistakes could be made in that the individual may expect
a much higher value for an attribute than is actually possible. Therefore, it is vital
that the individual understands the possible values each attribute can take.

The individual should also be clear as to whether the attributes are continuous or
discrete. For example, a monetary attribute is continuous to two decimal places. So,
if the decision problem has two of the possible outcomes as £10.00 and £15.00, we
understand the values that would go between them. As such, it is conceivable to have
£12.50 as the reference point if we were using PT. However, if an attribute is consid-
ered to be discrete, this would not be the case. For example, suppose the attribute is
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different types of fruit and that two of the possible outcomes are apple and orange.
Clearly, it is not feasible to choose a reference point between these two outcomes.

It is also useful to understand a rough preference ordering for the attributes from
the decision maker. For some attributes, this is simpler than others. For example, a
monetary attribute is one where it is easy to suggest that an individual will simply
aim to minimise expenditure or maximise income. However, other attributes such
as colours of paint are much more subjective.

It could be suggested that a rough preference ordering is not needed at this stage.
However, we believe there to be a couple of reasons why it would be useful to
consider this now. First, it gives us a basis on which to ensure the individual is
acting logically. Secondly, it is useful at this stage to allow for cancellation. Once
the preference ordering has been considered, it may be that some alternatives are
better than others for both attributes. If this is the case (and the decision problem
is simply choosing a single best decision), then the alternative which is worse for
both attributes could be ignored. So, if we preferred blue paint to red paint and
blue was cheaper than red, then the red paint would be dominated and removed
from the decision problem.

We have now completed the process of formulating the problem. This was done
with the aim of simplifying the process later and assisting the decision maker in
understanding the problem with which they are faced.

4.2. Independence and choosing a theory. Now that we have formulated the deci-
sion problem, we have to consider whether either of the attributes are independent of
each other. This can be tested in the following way. Consider two particular values
of Y, say y1, y2 ∈ Y, that you can specify a preference and strength of preference
between. Now consider any value z1 ∈ Z. What is your preference and level of
preference between (y1, z1) and (y2, z1)? Now suppose that we choose a different
z2 ∈ Z with z2 6= z1. What is your preference and level of preference between
(y1, z2) and (y2, z2)? If the preference ordering and strength of preference remains
the same between the two options, irrespective of the value of Z, then we can say
that Y is independent of Z. As you would expect, to show that Z is independent of
Y uses a similar logic, but with the y and z values switched in the above.

However, can you be 100% sure of independence without testing the indifference
for all of the possible values of Y or Z? There is no guarantee that the indifference
will necessarily hold for all Y and Z. Unfortunately, attempting to test this for all
possible values of Y and Z would take a significant amount of time and potentially
be impossible. As such, it is easier to either test for a couple of potential Y, Z
combinations or to simply make an assumption.

It is worth considering at this point how individuals actually face multiattribute
decision problems — do most consider attributes as independent? Clearly the test
above can be used to see whether independence is a reasonable assumption. The
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theory level of independence number of choices

EUT mutual independence 2n+ 2
single independence 3n+ 1

PT mutual independence 2n+ 8
single independence 3n+ 7

Table 1. Comparison of the effect of independence on the number
of choices for both methods.

advantage of it is that it creates a simpler model from which to evaluate the possible
alternatives. Without this assumption, fitting a model to evaluate how good (or
bad) each alternative is becomes difficult. One possible alternative is to assume
independence and perform logic checks on the outcome to ensure rational decisions
have been made.

Suppose that we are in a situation where we assume some level of independence
between the attributes. A key consideration when choosing what level of indepen-
dence to assume is the number of choices that will be required. Clearly, this will be
different for EUT and PT and for different levels of independence. Let us consider
the general case of having attributes Y and Z, with n different alternatives to choose
between. We begin by considering the case of mutual independence in PT and
following Theorem 3 from Section 3.1.

To begin with, we make a choice of what the individual’s reference points y0 ∈Y
and z0 ∈ Z are. Once the individual has made these two choices, we have to choose
y1, y−1 ∈ Y, z1, z−1 ∈ Z that satisfy y1 � y0 � y−1 and z1 � z0 � z−1. Following
this, the individual will make eight choices to evaluate v(yi , z j ) for i, j =−1, 0, 1
using the methods in Section 3.3 (note, we already have v(y0, z0)= 0). This fixes
the constant values in the piecewise function of Theorem 3.

The individual will now need to specify conditional value functions v(y0, z) for
all z ∈ Z and, similarly, specify v(y, z0) for all y ∈ Y. This could be considered
to be four choices of value functions for each domain of Y and Z. However, they
would then need to be evaluated for all appropriate y ∈ Y, z ∈ Z that we have not
already specified. As such, we suggest that evaluating v(y, z0) for all y ∈Y will be
n− 3 choices and similarly for v(y0, z) for all z ∈ Z.

The individual is now ready to evaluate v(y, z) for any y ∈ Y and any z ∈ Z and
choose the pairing (y, z) with the highest value. To get to this point, the individual
has made 2+4+8+2(n−3)= 2n+8 choices. Applying similar logic to the other
three cases gives us the number of choices for each case; see Table 1.

Notice here that when n is not significantly large, there is not a huge difference
between the different levels of independence. However, if n gets large, this is
where having mutual independence would save significantly more time. We can
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also notice here that the number of choices is unlikely to have an impact when
choosing between EUT and PT. These extra choices for PT can be considered to be
a trade-off for the potentially more realistic modelling that PT provides.

When choosing between EUT and PT, it is worth considering whether there are
probabilities involved in the decision problem. With probabilities involved, the deci-
sion can become more complicated. For example, if the probability distribution has
some events occurring with certainty or with very low probabilities, the weighting
function in PT treats these differently [Kahneman and Tversky 1979, pp. 280–284],
making the decision more complicated. However, if the probabilities are away from
0 or 1, there is no significant difference between the probabilities and the weighting
function and as such, the choice remains the same as without probabilities.

For now, we are going to consider that we do not have probabilities involved and
compare the theories at a base level. The main difference comes in that PT has a
reference point from which to consider gains and losses, whereas EUT does not.
As such, if the alternatives contain gains and losses, PT is likely to be more useful
as it was designed to reflect how individuals deal with gains and losses better than
EUT. On the other hand, EUT is designed as a normative theory and as such, you
would expect that the decision made will be logical and rational. If we use PT, the
decision can be affected by how most people act.

Once the individual has decided the level of independence and which of the
theories they prefer, we are ready to apply the theory of choice and get the outcome
of the decision problem.

5. Solving multiattribute problems: breakdown cover

5.1. Introducing the example: purchasing breakdown cover. Let us consider a
real-life application where an individual is aiming to purchase breakdown cover for
their car. At this point, it should be emphasised that the policies that we will be
comparing are for vehicle cover for a general vehicle, with the prices a basic quote.
If an individual were to actually purchase breakdown cover, they would be required
to publish details of the vehicle that they have. Furthermore, we are only going to
consider vehicle breakdown cover as quoted by the AA1 and the RAC2 on the 26th
February 2018.

When deciding upon which cover to purchase, there are two things the individual
must consider: the cost and the extent of the cover. This is therefore an example
of a problem with two attributes to consider, as we require. To simplify notation,
we are going to assign the cost per month attribute to be represented by Y and the
level of cover attribute to be represented by Z.

1 https://www.theaa.com/breakdown-cover/
2 https://www.rac.co.uk/breakdown-cover/

https://www.theaa.com/breakdown-cover/
https://www.rac.co.uk/breakdown-cover/
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policy number level of cover cost per month notation

P0 no cover £0 (£0, 0)
P1 RA £5.50 (−£5.50, 1)
P2 RA and KR £7.50 (−£7.50, 2)
P3 RA and AH £8.00 (−£8.00, 3)
P4 RA, AH and NR £10.00 (−£10.00, 4)
P5 RA, NR and OT £12.00 (−£12.00, 5)
P6 RA, AH and KR £12.00 (−£12.00, 6)
P7 RA, NR and KR £12.00 (−£12.00, 7)
P8 RA, AH, NR and OT £12.50 (−£12.50, 8)
P9 RA, AH, NR and KR £13.50 (−£13.50, 9)
P10 RA, AH, NR, OT and KR £14.50 (−£14.50, 10)

Table 2. Summary of coverage costs for roadside assistance (RA),
key replace (KR), at home (AH), national recovery (NR), and
onward travel (OT).

Clearly, the attribute for cost is one which is going to be fairly simple to evaluate
as it is a quantitative one and utilities/values can be based off the cost. However, the
extent of the cover needs further specification. Using the AA and the RAC as the
potential providers, the possible policies we are going to compare and evaluate can
be seen in Table 2. To simplify the notation, we have used a numbering system to
represent each level of cover. For policy PI where I ∈ {0, 1, 2, . . . , 10}, we represent
the corresponding level of cover for that policy with the number I. Note that the
cost per month is a negative value as it is an amount of money that the individual
will spend on the cover. This is all summarised in Table 2.

Full details of what is included in each level of cover can be found in footnotes 1
and 2. We are going to assume that individuals prefer to minimise expenditure (and
hence maximise the attribute of money). Furthermore, we will assume individuals
prefer having a higher level of cover. However, differences in preferences between
things such as key replace and at home cover will need to be specified by the
individual in the stating of their utilities/values.

A significant difference between attributes Y and Z comes in that Y is a continuous
attribute (to 2 decimal places), whereas Z is a discrete attribute. This has a significant
impact on the choice of the reference point for PT, as was discussed in Section 4.1.

5.2. Formulating the problem. We are now going to apply the process discussed
in Section 4 to the example of purchasing breakdown cover for a vehicle. In the
introduction to the example, we have completed many of the tasks required in the
formulating of the problem. We (the authors) will be the ones who will be faced
with the decision problem and hence the outcome will be based on our preferences
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and beliefs. We have specified that we are aiming to choose a single best policy
from the options P0–P10, have identified that the attributes are cost per month (Y)
and level of cover (Z), and identified the relevant values they can take.

The only part of formulating the problem which we have not completed in the
introduction is specifying a rough preference ordering between the values that the
attributes can take. For attribute Y which represents cost per month, it is trivial
to suggest that the decision maker will aim to reduce the expenditure and hence
maximise the money they have. However, for attribute Z which represents level of
cover, it is slightly more difficult. While we can easily say that the decision maker
would prefer more cover to less cover, it is hard to distinguish between some of the
options which have similar levels of cover but with slightly different things involved.

Let us suppose we have our rough preference ordering as follows:

0≺ 1≺ 2≺ 3≺ 6≺ 7≺ 4≺ 5≺ 9≺ 8≺ 10.

This is built on the rough idea that we prefer onward travel (OT) to national recovery
(NR) to at home (AH) cover to key replace (KR). Now that we have specified this
rough preference ordering, we can simplify the problem significantly. For example,
we can remove P9 as it is dominated by P8 due to having a lower cost per month
and a more preferable level of cover. Similarly, P6 and P7 are dominated by P4.
As such, we can remove policies P6, P7 and P9 from the problem and we are left
with eight different policies to choose between. We have now fully formulated the
problem and can move on to the next stage.

5.3. Independence and choosing a theory. Now that we have formulated the prob-
lem, we need to consider whether we have any independence between the attributes
Y and Z. At this point, we can notice we have eight alternatives and, as such, the
difference in the number of choices between the different methods is not significant.
Therefore, we should base the choice of independence on the tests discussed at the
start of Section 4.2. For this particular example, we are going to cover both levels
of independence assumption and compare the outcomes.

We are now going to move on to applying the theory. Usually at this stage,
we would make a decision on whether we want to use EUT or PT. However, we
are going to apply both theories for each case of independence and compare the
different outcomes.

5.4. Applying the theories. In this section we will be applying the multiattribute
PT formulas to the example. Within this, we will analyse the impact that each choice
we make will have and will compare the outcomes to those when using multiattribute
EUT. Applying multiattribute EUT to the example is presented in Appendix A.

5.4.1. Mutually independent attributes. We will begin by considering the attributes
as mutually independent and look to apply Theorem 3 and PT to the example.
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The instance of mutually independent attributes and applying EUT can be seen in
Appendix A.1. An interesting consideration is how the choice of reference point
impacts the decision that is made. This is something we will explore within this
section. With the eight policies we are considering, we know that we will have 24
(= 2n+ 8) choices that we need to make.

We consider three different choices for the reference points. They are as follows:

Choice 1: y0 =−£10.00, z0 = 4.

Choice 2: y0 =−£12.00, z0 = 3.

Choice 3: y0 =−£9.00, z0 = 5.

At this point, we can decide on what points we want to choose as y1, y−1, z1,
z−1 with y1 � y0 � y−1 and z1 � z0 � z−1. We will choose these points now and
use the same points for each of the choices of reference points. We will choose
y1 = −£7.50, y−1 = −£12.50, z1 = 8 and z−1 = 2. As in the EUT case, these
choices are arbitrary.

However, unlike the EUT case, we choose what values we give to them rather
than in the EUT case where it had utility 1. The values that are chosen have
an impact on the coefficient of the v(y0, z)v(y, z0) term (which could be con-
sidered as an interaction term) and so have a similar impact to the impact that
the constants chosen in the EUT case have. These will therefore need to be
specified for each choice of reference point. The values chosen can be seen in
Appendix B.1.

Now that we have decided upon these values, we are ready to state the conditional
value functions for each attribute Y and Z. In other words, we are now going to
decide the values v(y, z0) for all y ∈ Y and v(y0, z) for all z ∈ Z. The choices
made were based on the previously stated preference ordering and can be found in
Appendix B.1.

After these values have been stated, we can now evaluate the values of each of
the policies using (12) from Theorem 3. This then gives us the following:

v(policy)= v(y, z) choice 1 choice 2 choice 3

P0= (£0, 0) 0.645 −3.501 −0.663
P1= (−£5.50, 1) 0.401 −0.973 −0.370
P2= (−£7.50, 2) 0.200 .750 −0.350
P3= (−£8.00, 3) 0.252 1.350 −0.276
P4= (−£10.00, 4) 0.000 1.080 −0.632
P5= (−£12.00, 5) −0.038 0.800 −0.750
P8= (−£12.50, 8) 0.400 0.700 −0.150

P10= (−£14.50, 10) 0.972 −0.238 1.210
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We have highlighted the best policy under each choice in bold. We can see
that with choices 1 and 3 for the reference point, we choose policy P10 to be the
best option. However, when we have choice 2 for the reference point, we choose
policy P3. In fact, for choice 2, policy P10 was one of the worst options. This
is clearly significantly different and shows how changing the reference point can
impact what decision is made regarding an “acceptable” level of cover for the
appropriate cost.

5.4.2. One independent attribute. We are now going to focus on the instance where
we have independence in one direction. In this paper, we will focus on the case
where Z is independent of Y. This means we will be applying Theorem 4 from
Section 3.2 to the breakdown cover example. As such, it will require 31 (= 3n+ 7)
choices to be made by the decision maker, more than has been required in any other
circumstance. We begin by deciding on the reference point (y0, z0). When making
this decision in the mutual independence case, we considered several different
choices of reference point and considered the impact they would have on the final
decision. Therefore, we are once again going to consider the same three pairs of
reference points and compare the outcomes.

Following the choice of reference point, we must choose z1, z−1 ∈ Z such that
z1 � z0 � z−1. These choices need to be carefully made as we need z1 such that
v(y0, z1)= 1 and z−1 such that v(y0, z−1)=−1. Let our choices be the following:

Choice 1: y0 =−£10.00, z0 = 4, z1 = 8, z−1 = 2.

Choice 2: y0 =−£12.00, z0 = 3, z1 = 5, z−1 = 1.

Choice 3: y0 =−£9.00, z0 = 5, z1 = 8, z−1 = 3.

Once these choices have been made, we need to fix the units of measure of v(y, z0),
v(y, z1) and v(y, z−1). As with the other theories, this is done by finding equiva-
lences. So, for example, to fix the unit of measure for v(y, z0), we need to choose
y2, y−2 ∈ Y and z2, z−2 ∈ Z such that (y0, z2)∼ (y2, z0) and (y0, z−2)∼ (y−2, z0).
Similarly, we need y3, y−3, y4, y−4 ∈ Y and z3, z−3, z4, z−4 ∈ Z such that we have
(y3, z1) ∼ (y0, z3), (y−3, z1) ∼ (y0, z−3), (y4, z−1) ∼ (y0, z4) and (y−4, z−1) ∼

(y0, z−4). The choices we will make for each choice of reference point are:

Choice 1: z2 = z3 = z4 = 5, z−2 = z−3 = z−4 = 3,

y2 =−£8.00, y3 =−£12.00, y4 =−£6.00,

y−2 =−£12.50, y−3 =−£14.50, y−4 =−£9.00.

Choice 2: z2 = z3 = z4 = 4, z−2 = z−3 = z−4 = 2,

y2 =−£10.00, y3 =−£13.50, y4 =−£8.00,

y−2 =−£13.50, y−3 =−£16.50, y−4 =−£10.00.
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Choice 3: z2 = z3 = z4 = 10, z−2 = z−3 = z−4 = 4,

y2 =−£7.50, y3 =−£8.00, y4 =−£2.50

y−2 =−£11.00, y−3 =−£13.00, y−4 =−£8.00.

Notice here that similar values of attribute Z are chosen to formulate equivalences
with. This is because Z is a discrete attribute with only eight conceivable outcomes so
equivalences would be difficult to work with if changing Z at all times. Furthermore,
as Y is continuous to two decimal places, we can fix Z at certain levels and change
the attribute Y to allow for the required equivalence relations.

Now that these choices have been made, we can state the conditional value
functions v(y0, z) for all z ∈Z and v(y, z−1), v(y, z0), v(y, z1) for all y ∈Y. These
can be found in Appendix B.2.

Now that all these have been specified, we are in a position to be able to evaluate
the value of each of the policies. The results are as follows:

v(policy)= v(y, z) choice 1 choice 2 choice 3

P0= (£0, 0) 0.735 1.100 0.715
P1= (−£5.50, 1) 0.413 0.900 0.100
P2= (−£7.50, 2) −0.100 0.685 −0.725
P3= (−£8.00, 3) −0.020 0.750 −0.450
P4= (−£10.00, 4) 0.000 0.780 −0.695
P5= (−£12.00, 5) −0.140 1.000 −0.600
P8= (−£12.50, 8) 0.200 1.110 −0.100

P10= (−£14.50, 10) −0.375 0.475 −0.380

As we can see, in this situation, the best policy is P0 for choices 1 and 3 and P8
for choice 2. It is interesting to see here that the best policy for choices 1 and 3 is to
have no breakdown cover at all. Furthermore, for choice 2, policy P0 is very close to
being chosen as the best option. This clearly suggests that for this context, there is
an underlying attitude that losing money is worse than having a lower level of cover.

While choosing cheaper policies has an obvious financial benefit in the short
term, it could lead to financial problems in the long term if the vehicle encountered
problems. This is something we could potentially account for if we included
probabilities and the corresponding financial outlay if problems occurred. However,
it would reduce it to a single attribute problem in which the costs and corresponding
probabilities are difficult to construct.

6. Concluding remarks

In this paper, we have applied PT to multiattribute problems with different indepen-
dence assumptions. We have also introduced a process which can be followed to
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assist in effectively and efficiently solving a multiattribute decision problem. Using
these two developments allows an individual to apply PT to a decision problem
with two attributes. This is especially useful for problems where there are gains
and losses to consider with respect to certain attributes.

An example of where this can be useful is seen in Section 5 where we apply
the results of this paper to a real-life example of purchasing breakdown cover. If
you already had a certain level of breakdown cover, it is easy to see how you could
consider the different costs and levels of cover as gains and losses. This shows how
multiattribute PT can be useful in solving real-life problems. However, there is
a lot more further research which can be done into applying PT to multiattribute
problems.

First, extending PT so that it can be applied to problems with more than two
attributes is interesting. This may require different methods to be used, although
independence assumptions could still be useful. Secondly, research into the reference
point in PT will be interesting. Can the reference point be adapted so that you can
choose a set of values as a reference point? This would allow the individual to
select an acceptable region as their reference point and then consider gains and
losses from that set. Finally, this paper focusses on the instance where we have at
least a certain level of independence assumption between the attributes. Could PT
be adapted so that we do not require any independence between the attributes?

Appendix A: Breakdown cover EUT calculations

A.1. Mutually independent attributes — multiattribute EUT. Using multiattribute
EUT for this context of mutually independent attributes, we will be applying
Theorem 5.2 from [Keeney and Raiffa 1976, p. 234]. For this instance, we choose
y0 =−£14.50, y1 =−£12.00, y∗ = 0, z0 = 0, z1 = 4 and z∗ = 10.

We are now required to choose the values for the constants kY and kZ which
subsequently decide kYZ and k. These choices have a significant impact on the
overall utilities we assign to each of the policies. As such, we are going to con-
sider three possible pairs of values and see how changing these values affects the
overall utilities and decisions. The pairs of values we are going to consider are as
follows:

Choice 1: kY = 0.2, kZ = 0.35.

Choice 2: kY = kZ = 0.5.

Choice 3: kY = 0.6, kZ = 0.8.

So, with choice 1, we have that kYZ = 0.45 and k = 45
7 > 0, which implies that

the attributes Y and Z are complimentary. Choice 2 would give the formulas from
additive independence and would also imply there is no interaction between the
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attributes. Choice 3 would make kYZ =−0.4 and k =− 5
6 < 0, which implies the

attributes Y and Z are substitutes.
After specifying the values for the constants, we have now fully defined what

we need for the theorem and hence can begin to evaluate the utilities for all of the
policies. To do this, we are going to consider the conditional utility functions for
each of the attributes Y and Z and evaluate a utility for each alternative. We choose
the utility values as follows:

uY(−£14.50)= 0, uY(−£8.00)= 1.75,
uY(−£12.50)= 0.8, uY(−£7.50)= 1.9,
uY(−£12.00)= 1, uY(−£5.50)= 2.2,
uY(−£10.00)= 1.35, uY(£0)= 2.9,

uZ(0)= 0, uZ(4)= 1,
uZ(1)= 0.25, uZ(5)= 1.25,
uZ(2)= 0.4, uZ(8)= 1.6,
uZ(3)= 0.65, uZ(10)= 2.2.

The result of choosing these utility values and applying Theorem 5.2 is the following:

u(policy)= u(y, z) choice 1 choice 2 choice 3

P0= (£0, 0) 0.580 1.450 1.740
P1= (−£5.50, 1) 0.775 1.225 1.300
P2= (−£7.50, 2) 0.862 1.150 1.156
P3= (−£8.00, 3) 1.089 1.200 1.115
P4= (−£10.00, 4) 1.228 1.175 1.070
P5= (−£12.00, 5) 1.200 1.125 1.100
P8= (−£12.50, 8) 1.296 1.200 1.248

P10= (−£14.50, 10) 0.770 1.100 1.760

We have highlighted the best option for each choice in bold. We can see that
for choice 1, the best option is policy P8; for choice 2, the best option is policy P0
and for choice 3, the best option is P10. It is not a surprise to see one of the more
extreme options (i.e., P0 or P10) being the chosen option for choice 3 as this was
the instance where the attributes are substitutes.

A.2. One independent attribute — multiattribute EUT. We are now going to fo-
cus on the instance where we only have one attribute which is independent of
the other. For this paper, we are going to focus on the instance where we have Z
independent of Y. This involves applying Theorem 5.6 from [Keeney and Raiffa
1976, p. 244].
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We begin by choosing y0 ∈ Y and z0, z1 ∈ Z such that u(y0, z0) = 0 and
u(y0, z1) = 1. In this instance, we are going to choose y0 = −£14.50, z0 = 0
(as in the mutual independence case) and z1 = 4. Following this, we are required
to fix the unit of measure of u(y, z0) and u(y, z1). This comes from choosing
y2 ∈ Y, z2 ∈ Z such that (y0, z2) ∼ (y2, z0) and, similarly, y3 ∈ Y, z3 ∈ Z such
that (y0, z3) ∼ (y3, z1). Let us choose y2 = −£5.50, z2 = 3, y3 = −£12.00 and
z3 = 8.

Now that these decisions have been made, we are required to evaluate the
conditional utility functions u(y0, z) for all z ∈ Z and u(y, z0), u(y, z1) for all
y ∈ Y. To begin with, we assign the utilities u(y0, z) for all z ∈ Z and using these,
then assign the remaining u(y, z0) and u(y, z1) for all y ∈Y. The choices we make
are as follows:

u(y0, 0)= 0, u(y0, 4)= 1,
u(y0, 1)= 0.2, u(y0, 5)= 1.25,
u(y0, 2)= 0.45, u(y0, 8)= 1.6,
u(y0, 3)= 0.8, u(y0, 10)= 2.1,

u(−£14.50, z0)= 0, u(−£8.00, z0)= 0.45,
u(−£12.50, z0)= 0.1, u(−£7.50, z0)= 0.55,
u(−£12.00, z0)= 0.15, u(−£5.50, z0)= 0.8,
u(−£10.00, z0)= 0.25, u(£0.00, z0)= 1.25,

u(−£14.50, z1)= 1, u(−£8.00, z1)= 2.6,
u(−£12.50, z1)= 1.6, u(−£7.50, z1)= 2.7,
u(−£12.00, z1)= 1.8, u(−£5.50, z1)= 3.1,
u(−£10.00, z1)= 2.25, u(£0.00, z1)= 3.7.

Now that these choices have been made, we can calculate the utilities of each of
the policies and choose the one with the highest utility value. The corresponding
utilities are

u(P0)= 1.25, u(P4)= 2.25,

u(P1)= 1.26, u(P5)= 2.2125,

u(P2)= 1.5175, u(P8)= 2.5,
u(P3)= 2.17, u(P10)= 2.1.

We can see from this that when we have Z independent of Y, we choose policy
P8 to be the best policy. P8 was the same policy that we chose for choice 1 of the
mutually independent EUT case but different from all other choices we have made
so far. This shows how different choices can come from the same decision maker
dependent on how they formulate the problem and choose independence.
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Appendix B: Breakdown cover PT choices

B.1. Mutually independent attributes.

Choice 1: v(y1, z1)= 1.7, v(y1, z0)= 0.8, v(y1, z−1)= 0.2,

v(y0, z1)= 0.85, v(y0, z0)= 0, v(y0, z−1)=−0.7,

v(y−1, z1)= 0.4, v(y−1, z0)=−0.5, v(y−1, z−1)=−1.3.

Choice 2: v(y1, z1)= 2.5, v(y1, z0)= 1.6, v(y1, z−1)= 0.75,

v(y0, z1)= 1.4, v(y0, z0)= 0, v(y0, z−1)=−0.3,

v(y−1, z1)= 0.7, v(y−1, z0)=−0.4, v(y−1, z−1)=−0.7.

Choice 3: v(y1, z1)= 1.1, v(y1, z0)= 0.65, v(y1, z−1)=−0.35,

v(y0, z1)= 0.4, v(y0, z0)= 0, v(y0, z−1)=−0.95,

v(y−1, z1)=−0.15, v(y−1, z0)=−0.9, v(y−1, z−1)=−1.7.

Our choices for v(y, z0) for all possible y ∈ Y are as follows:

Choice 1: v(£0, z0)= 1.9, v(−£10.00, z0)= 0,

v(−£5.50, z0)= 1.35, v(−£12.00, z0)=−0.35,

v(−£7.50, z0)= 0.8, v(−£12.50, z0)=−0.5,

v(−£8.00, z0)= 0.65, v(−£14.50, z0)=−1.05.

Choice 2: v(£0, z0)= 3.1, v(−£10.00, z0)= 0.7,

v(−£5.50, z0)= 2.35, v(−£12.00, z0)= 0,

v(−£7.50, z0)= 1.6, v(−£12.50, z0)=−0.4,

v(−£8.00, z0)= 1.35, v(−£14.50, z0)=−1.1.

Choice 3: v(£0, z0)= 1.8, v(−£10.00, z0)=−0.25,

v(−£5.50, z0)= 1.1, v(−£12.00, z0)=−0.75,

v(−£7.50, z0)= 0.65, v(−£12.50, z0)=−0.9,

v(−£8.00, z0)= 0.45, v(−£14.50, z0)=−1.6.

Similarly, we can state our values v(y0, z) for all z ∈ Z as:

Choice 1: v(y0, 0)=−1.9, v(y0, 3)=−0.45, v(y0, 8)= 0.85,

v(y0, 1)=−1.25, v(y0, 4)= 0, v(y0, 10)= 1.8.

v(y0, 2)=−0.7, v(y0, 5)= 0.3,



APPLYING PROSPECT THEORY TO MULTIATTRIBUTE PROBLEMS 709

Choice 2: v(y0, 0)=−1.45, v(y0, 3)= 0, v(y0, 8)= 1.4,

v(y0, 1)=−0.9, v(y0, 4)= 0.45, v(y0, 10)= 2.1.

v(y0, 2)=−0.3, v(y0, 5)= 0.8,

Choice 3: v(y0, 0)=−2.15, v(y0, 3)=−0.7, v(y0, 8)= 0.4,

v(y0, 1)=−1.35, v(y0, 4)=−0.4, v(y0, 10)= 1.1.

v(y0, 2)=−0.95, v(y0, 5)= 0,

B.2. Single independence. We evaluate v(y0, z) for all z ∈ Z as:

Choice 1: v(y0, 0)=−1.7, v(y0, 3)=−0.6, v(y0, 8)= 1,

v(y0, 1)=−1.25, v(y0, 4)= 0, v(y0, 10)= 1.45.

v(y0, 2)=−1, v(y0, 5)= 0.4,

Choice 2: v(y0, 0)=−1.5, v(y0, 3)= 0, v(y0, 8)= 1.4,

v(y0, 1)=−1, v(y0, 4)= 0.4, v(y0, 10)= 1.75.

v(y0, 2)=−0.55, v(y0, 5)= 1,

Choice 3: v(y0, 0)=−2.1, v(y0, 3)=−1, v(y0, 8)= 1,

v(y0, 1)=−1.7, v(y0, 4)=−0.45, v(y0, 10)= 1.45.

v(y0, 2)=−1.45, v(y0, 5)= 0,

Following this, we evaluate v(y, z0) for all y ∈ Y as:

Choice 1: v(−£14.50, z0)=−1.1, v(−£8.00, z0)= 0.4,

v(−£12.50, z0)=−0.6, v(−£7.50, z0)= 0.45,

v(−£12.00, z0)=−0.5, v(−£5.50, z0)= 0.85,

v(−£10.00, z0)= 0, v(£0.00, z0)= 1.5.

Choice 2: v(−£14.50, z0)=−0.75, v(−£8.00, z0)= 0.75,

v(−£12.50, z0)=−0.15, v(−£7.50, z0)= 0.85,

v(−£12.00, z0)= 0, v(−£5.50, z0)= 1.2,

v(−£10.00, z0)= 0.4, v(£0.00, z0)= 1.85.

Choice 3: v(−£14.50, z0)=−1.25, v(−£8.00, z0)= 1.05,

v(−£12.50, z0)=−0.8, v(−£7.50, z0)= 1.45,

v(−£12.00, z0)=−0.6, v(−£5.50, z0)= 1.8,

v(−£10.00, z0)=−0.2, v(£0.00, z0)= 2.5.
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Similarly, we evaluate v(y, z1) for all y ∈ Y as:

Choice 1: v(−£14.50, z1)=−0.6, v(−£8.00, z1)= 1.4,

v(−£12.50, z1)= 0.2, v(−£7.50, z1)= 1.55,

v(−£12.00, z1)= 0.4, v(−£5.50, z1)= 1.8,

v(−£10.00, z1)= 1, v(£0.00, z1)= 2.4.

Choice 2: v(−£14.50, z1)=−0.05, v(−£8.00, z1)= 1.8,

v(−£12.50, z1)= 0.75, v(−£7.50)= 1.9,

v(−£12.00, z1)= 1, v(−£5.50, z1)= 2.35,

v(−£10.00, z1)= 1.35, v(£0.00, z1)= 2.9.

Choice 3: v(−£14.50, z1)=−0.65, v(−£8.00, z1)= 1.45,

v(−£12.50, z1)=−0.1, v(−£7.50, z1)= 1.6,

v(−£12.00, z1)= 0.3, v(−£5.50, z1)= 2.05,

v(−£10.00, z1)= 0.85, v(£0.00, z1)= 2.75.

Finally, we evaluate v(y, z−1) for all y ∈ Y as:

Choice 1: v(−£14.50, z−1)=−2.05, v(−£8.00, z−1)=−0.3,

v(−£12.50, z−1)=−1.65, v(−£7.50, z−1)=−0.1,

v(−£12.00, z−1)=−1.5, v(−£5.50, z−1)= 0.5,

v(−£10.00, z−1)=−1, v(£0, z−1)= 1.05.

Choice 2: v(−£14.50, z−1)=−1.6, v(−£8.00, z−1)= 0.4,

v(−£12.50, z−1)=−1.15, v(−£7.50, z−1)= 0.55,

v(−£12.00, z−1)=−1, v(−£5.50, z−1)= 0.9,

v(−£10.00, z−1)=−0.55, v(£0.00, z−1)= 1.35.

Choice 3: v(−£14.50, z−1)=−2.55, v(−£8.00, z−1)=−0.45,

v(−£12.50, z−1)=−2, v(−£7.50, z−1)=−0.05,

v(−£12.00, z−1)=−1.85, v(−£5.50, z−1)= 0.8,

v(−£10.00, z−1)=−1.3, v(£0, z−1)= 1.65.
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On weight-one solvable configurations
of the Lights Out puzzle

Yuki Hayata and Masakazu Yamagishi

(Communicated by Kenneth S. Berenhaut)

We show that the center-one configuration is always solvable in the Lights Out
puzzle on a square grid with odd vertices.

1. Introduction

Let 0 = (V, E) be a finite undirected simple graph, n = #V the number of vertices,
and F the set of functions on V with values in F2, the field with two elements. We
define the Laplacian 1 :F →F by

(1 f )(v) := f (v)+
∑

(v,w)∈E

f (w)

for f ∈ F , v ∈ V. Let ev denote the characteristic function of v ∈ V. Then
{ev : v ∈ V } is a basis of F as a vector space over F2, and by means of this basis
we identify F with Fn

2 . Under this identification, 1 is a linear map represented
by In + adj(0), where In denotes the identity matrix of degree n and adj(0) the
adjacency matrix of 0. Let the image and the kernel of 1 be denoted by C and H ,
respectively. C is the set of solvable configurations of the Lights Out puzzle on 0;
see [Fleischer and Yu 2013; Goldwasser and Klostermeyer 1997; Goshima and
Yamagishi 2010]. It is known that the all-one configuration is always solvable:

Theorem 1.1 [Sutner 1989]. For any 0, it holds that (1 1 · · · 1) ∈ C .

Since C is a linear subspace of Fn
2 , we may regard it as a binary linear code; see

[Goldwasser and Klostermeyer 1997] for this point of view. The weight enumerator
of C is defined by

WC (x, y)=
n∑

i=0

Ai xn−i yi ,

MSC2010: primary 05C57; secondary 05C38, 91A46, 94B60.
Keywords: Lights Out, path graph, Cartesian product, linear code.
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where Ai is the number of vectors in C which have Hamming weight i . By Sutner’s
theorem, we have An−i = Ai . If 1 is bijective, then C = Fn

2 and we have

Ai =

(n
i

)
, WC (x, y)= (x + y)n.

In this paper, we are interested in A1 of the classical n× n Lights Out puzzle.
Our main result is Theorem 3.1, which states that the center-one configuration is
always solvable when n is odd. Our proof is a neat application of Sutner’s theorem
and is not constructive. Theorem 3.1 implies in particular that the minimal distance
of C is 1 when n is odd. For even n, it turns out that the minimal distance is at
most 2.

We then look at the case A1 ≤ 1 more closely, and make some conjectures based
on numerical computations. We also make an attempt to “explain” the value of A1.

2. Path and cycle graphs

Before proceeding to the main result, we consider the case of path and cycle graphs
as first examples.

Let 0 = Pn be the path graph with n vertices. We have

adj(0)=


0 1 0 · · · 0
1 0 1

. . .
...

0 1 0
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 0


under an obvious ordering of vertices. It is well known, see [Yamagishi 2015,
Lemma 3.1], that the characteristic polynomial of adj(0) is Sn(x), the n-th Cheby-
shev polynomial of the second kind, defined by

S0(x)= 1, S1(x)= x, Sn(x)= x Sn−1(x)− Sn−2(x) (n ≥ 2).

So we see that 1 is bijective if and only if Sn(−1) 6≡ 0 (mod 2) if and only if
n 6≡ 2 (mod 3).

In the case n ≡ 2 (mod 3), it is easy to see that H is one-dimensional, spanned
by the vector

(1 1 0 1 1 0 · · · 0 1 1), (2-1)

so that
WH (x, y)= xn

+ x (n−2)/3 y(2n+2)/3.

Since C =H ⊥, we have

WC (x, y)= 1
2((x + y)n + (x + y)(n−2)/3(x − y)(2n+2)/3) (2-2)
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by the MacWilliams identity [MacWilliams and Sloane 1977, p. 127]. In particular,
expanding (2-2), we find that

A1 =
1
3(n− 2), A2 =

1
18(5n2

− 5n+ 8).

Note that A1 and A2 can be seen more quickly as follows. In the general setting,
we have C =H ⊥ since adj(0) is a symmetric matrix. Suppose dim C = k < n, so
that dim H = n− k > 0. Any basis of H gives a parity check matrix H (of size
(n− k)× n) of C , and Ai is the number of unordered i-tuples of columns of H
whose sum is the zero vector. In the case 0 = Pn , n ≡ 2 (mod 3), the vector (2-1)
itself is a parity check matrix, and one easily sees that

A1 =
1
3(n− 2), A2 =

(1
3(n− 2)

2

)
+

(1
3(2n+ 2)

2

)
.

Next let 0= Cn be the cycle graph with n vertices (n ≥ 3). It is also well known,
see [Yamagishi 2015, Lemma 3.1], that 1 is bijective if and only if Cn(−1) 6≡ 0
(mod 2) if and only if n 6≡0 (mod 3), where Cn(x) is the n-th Chebyshev polynomial
of the first kind, defined by

C0(x)= 2, C1(x)= x, Cn(x)= xCn−1(x)−Cn−2(x) (n ≥ 2).

In the case n ≡ 0 (mod 3), it is easy to see that H is two-dimensional, spanned
by the row vectors of (

1 1 0 1 1 0 · · · 1 1 0
1 0 1 1 0 1 · · · 1 0 1

)
, (2-3)

so that
WH (x, y)= xn

+ 3xn/3 y2n/3,

WC (x, y)= 1
4((x + y)n + 3(x + y)n/3(x − y)2n/3).

In particular, we obtain

A1 = 0, A2 =
1
6(n

2
− 3n).

As explained above, A1 and A2 can be seen directly from (2-3). This is clear
for A1. Since i-th and j-th columns add to zero if and only if i ≡ j (mod 3), we
see that A2 =

1
2 n
( 1

3 n− 1
)
. We also have an alternative proof for A1 = 0 as follows.

Suppose there is a vector in C with Hamming weight 1. Then any vector with
Hamming weight 1 belongs to C since 1 commutes with “shifts”. This implies
C = Fn

2 , which contradicts n ≡ 0 (mod 3).

3. The main theorem

In the following, we let0 be the Cartesian product Pn×Pn , forgetting the previous
meaning of n as the number of vertices. The corresponding objects V,F ,1,C ,H ,
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and Ai will be denoted by Vn , Fn , 1n , Cn , Hn , and Ai (n), respectively. We use
double indices for the vertices in a natural way:

Vn = {vi, j : 1≤ i, j ≤ n},

vi, j and vk,l are adjacent ⇐⇒ |i − k| + | j − l| = 1.

Let ei, j denote the characteristic function of vi, j .
The main result of this paper is the following, which states that the center-one

configuration is always solvable in the Lights Out puzzle on Pn× Pn when n is odd.

Theorem 3.1. If n = 2m+ 1 (m ≥ 0), then em+1,m+1 ∈ Cn .

Proof. The case m = 0 is trivial since 11 is the identity map, so we suppose m ≥ 1.
We identify a function f ∈Fn with the matrix (ai, j ) such that

f =
∑

1≤i, j≤n

ai, j ei, j (ai, j ∈ F2).

Let 1a,b denote the a × b matrix whose entries are all 1, and 0 the zero matrix
whose size will be clear from the context. Sutner’s theorem states that 1n,n ∈ Cn .
Applying Sutner’s theorem to Pm × Pm , we see that

f1 :=

1m,m x 0
y 0 0
0 0 0

 ∈ Cn

for a suitable column vector x and a row vector y. Since Cn is invariant under
horizontal reflection, say α, and vertical reflection, say β, we find that

f2 :=

1m,m 0 1m,m

0 0 0
1m,m 0 1m,m

= f1+α( f1)+β( f1)+αβ( f1) ∈ Cn.

Similarly, we have
f3 := (1n,m z 0) ∈ Cn

for a suitable column vector z, so that

f4 := (1n,m 0 1n,m)= f3+α( f3) ∈ Cn,

and likewise,

f5 :=

1m,n

0
1m,n

 ∈ Cn.

Therefore we have

em+1,m+1 = f2+ f4+ f5+ 1n,n ∈ Cn

as desired. �
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Remark 3.2. Our proof is not constructive; in the context of Lights Out puzzle, we
only know that em+1,m+1 is solvable, but do not know any solution (an inverse image
of em+1,m+1 under 1n). It would be interesting to find out a unified description of
a solution of em+1,m+1.

Remark 3.3. The center-one configuration is the only universal solvable configura-
tion of weight 1, since A1(n)= 1 for some (infinitely many, under Conjecture 4.4
below) odd integers n.

Since A1(n) is the number of ei, j ’s contained in Cn , taking symmetry (i.e.,
invariance of Cn under the horizontal and vertical reflections) into account, we have:

Corollary 3.4. A1(n)≡ 1 (mod 4) if n is odd. A1(n)≡ 0 (mod 4) if n is even.

Let dn denote the minimal distance of the linear code Cn . By Theorem 3.1, we
have dn = 1 for odd n. We see that dn ≤ 2 in general by the following:

Lemma 3.5. For n ≥ 4, we have e1,4+ e3,2 ∈ Cn .

Proof. We have e1,4+ e3,2 =1n(e1,1+ e1,2+ e1,3+ e2,2) ∈ Cn . �

Note that d2 = 1 since 12 is bijective. Thus the determination of dn is equivalent
to answering the following:

Problem 3.6. Characterize (necessarily even) n such that A1(n)= 0.

4. The case A1(n) ≤ 1

With the same notation as in the previous section, we consider the case A1(n)≤ 1.
A first look at Table 1 leads to the following two conjectures.

Conjecture 4.1. If A1(n)= 0, then n+ 1= 2l
± 1 for some l ≥ 2.

Conjecture 4.2. Let n ≥ 2. We have A1(n)≤ 1 if and only if A1(2n+ 1)≤ 1.

The “if” part of Conjecture 4.2 follows from:

Proposition 4.3. We have Ai (n)≤ Ai (2n+ 1) for n ≥ 1 and 0≤ i ≤ n.

Proof. We define a map ιn :Fn→F2n+1 by


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
...

an,1 an,2 · · · an,n

 7→



0 0 0 0 · · · 0 0
0 a1,1 0 a1,2 · · · a1,n 0
0 0 0 0 · · · 0 0
0 a2,1 0 a2,2 · · · a2,n 0
...

...
...

...
...

...

0 an,1 0 an,2 · · · an,n 0
0 0 0 0 · · · 0 0


,
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which is an analog of ι±m,n used in [Goshima and Yamagishi 2010] for Cm×Cn . One
can then verify the identity ιn1n=1

2
2n+1ιn , so it follows that ιn(Cn)⊂C2n+1. Since

ιn preserves the Hamming weight, we have Ai (n)≤ Ai (2n+ 1) for 0≤ i ≤ n. �

n A1(n) dim Hn n A1(n) dim Hn n A1(n) dim Hn n A1(n) dim Hn

1 1 0 41 701 2 81 6561 0 121 14641 0
2 4 0 42 1764 0 82 6724 0 122 14884 0
3 9 0 43 1849 0 83 1401 6 123 1 80
4 0 4 44 640 4 84 128 12 124 5376 4
5 5 2 45 2025 0 85 7225 0 125 1 50
6 36 0 46 2116 0 86 7396 0 126 0 56
7 49 0 47 9 30 87 7569 0 127 16129 0
8 64 0 48 2304 0 88 7744 0 128 0 56
9 1 8 49 401 8 89 829 10 129 1 56

10 100 0 50 196 8 90 8100 0 130 16900 0
11 9 6 51 2601 0 91 8281 0 131 1 86
12 144 0 52 2704 0 92 364 20 132 17424 0
13 169 0 53 1189 2 93 8649 0 133 17689 0
14 52 4 54 980 4 94 3060 4 134 6292 4
15 225 0 55 3025 0 95 9 62 135 1 64
16 0 8 56 3136 0 96 9216 0 136 18496 0
17 109 2 57 3249 0 97 9409 0 137 8189 2
18 324 0 58 3364 0 98 388 20 138 19044 0
19 1 16 59 53 22 99 801 16 139 1681 16
20 400 0 60 3600 0 100 10000 0 140 19600 0
21 441 0 61 1 40 101 197 18 141 19881 0
22 484 0 62 0 24 102 10404 0 142 20164 0
23 9 14 63 3969 0 103 10609 0 143 649 30
24 176 4 64 0 28 104 3760 4 144 7280 4
25 625 0 65 1 42 105 11025 0 145 21025 0
26 676 0 66 4356 0 106 11236 0 146 21316 0
27 729 0 67 1 32 107 2377 6 147 21609 0
28 784 0 68 4624 0 108 11664 0 148 21904 0
29 53 10 69 841 8 109 2201 8 149 2501 10
30 0 20 70 4900 0 110 12100 0 150 22500 0
31 961 0 71 361 14 111 12321 0 151 22801 0
32 0 20 72 5184 0 112 12544 0 152 2368 8
33 1 16 73 5329 0 113 5549 2 153 23409 0
34 372 4 74 1876 4 114 4532 4 154 240 24
35 217 6 75 5625 0 115 13225 0 155 5097 6
36 1296 0 76 5776 0 116 13456 0 156 24336 0
37 1369 0 77 2549 2 117 13689 0 157 24649 0
38 1444 0 78 6084 0 118 1380 8 158 24964 0
39 1 32 79 1 64 119 53 46 159 1 128
40 1600 0 80 6400 0 120 14400 0 160 25600 0

Table 1
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Applying Conjecture 4.2 repeatedly and using Corollary 3.4, we easily arrive at
the following:

Conjecture 4.4. Let n ≥ 3 be odd and let d be the maximal odd divisor of n+ 1.
Then we have A1(n)= 1 if and only if d > 1 and A1(d − 1)= 0.

Proposition 4.5. Conjectures 4.2 and 4.4 are equivalent.

Proof. It suffices to show the implication Conjecture 4.4⇒ Conjecture 4.2. Let
n ≥ 2 and let d be the maximal odd divisor of n + 1 (and hence of 2n + 2). By
Corollary 3.4, A1(2n + 1) ≤ 1 is equivalent to A1(2n+1)= 1, which, in turn, is
equivalent to d > 1 and A1(d−1)= 0 by Conjecture 4.4. If n is odd, then the same
reasoning shows A1(n)≤1⇐⇒d>1 and A1(d−1)= 0, so we are done. If n is even,
then d = n+1> 1 and we have A1(n)≤ 1⇐⇒ A1(d−1)= 0 by Corollary 3.4. �

Next we make an attempt to “explain” the value of A1(n). If the Laplacian 1n

is bijective, then we have Cn = Fn2

2 and hence A1(n) = n2. We comment here on
the bijectivity of 1n . Sutner [2000] proved

dim Hn = deg gcd(Sn(x), Sn(x + 1)),

where Sn is the n-th Chebyshev polynomial of the second kind, regarded as a
polynomial over F2. Some sufficient conditions for the bijectivity of 1n follow
from this identity and well-known properties of Chebyshev polynomials. For
example, n = 2l

−1 (l ≥ 1) is sufficient [Yamagishi 2015, Corollary 4.3]. Note that
this confirms Conjecture 4.4 for n = 2l

− 1, as A1(n)= n2 and d = 1. There seems
to be no simple characterization of n for which 1n is bijective.

Now we consider the case where 1n is not bijective, i.e., dim Hn > 0. As in
Conjecture 4.4, the divisors d of n+ 1 with A1(d − 1)= 0 play an important role
in the following two conjectures.

Conjecture 4.6. Let n be even. Then 1n is not bijective if and only if there exists a
(necessarily odd) divisor d > 1 of n+ 1 such that A1(d − 1)= 0.

Conjecture 4.7. Suppose n is even and 1n is not bijective. Assume Conjecture 4.6,
and let dk (1≤ k ≤ t) be the divisors of n+ 1 such that dk > 1 and A1(dk − 1)= 0.
Then for 1≤ i, j ≤ n, we have ei, j ∈ Cn if and only if

i ≡ 0 (mod dk) or j ≡ 0 (mod dk) (4-1)
for k = 1, 2, . . . , t .

Example 4.8. If A1(n) = 0, then we can take d1 = n + 1 and Conjecture 4.7 is
trivially true. But this gives no explanation of why A1(n) = 0. We exclude this
case in the following examples.

Example 4.9. Suppose t = 1 and put b= (n+1)/d1. The number of pairs (i, j) for
which (4-1) with k = 1 fails is (n− b+ 1)2, so we have A1(n)= n2

− (n− b+ 1)2.
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This applies for n = 14, 24, 34, 44, 54, 74, 94, 104, 114, 124, 134, 144 (d1 = 5),
n = 50, 118, 152 (d1 = 17), n = 92 (d1 = 31), and n = 98 (d1 = 33).

Example 4.10. For n = 84, we have t = 2, d1 = 5, d2 = 17, and (4-1) for k = 1, 2
reads as i j ≡ 0 (mod 85). Thus we have A1(84) = 2(5− 1)(17− 1) = 128. The
same reasoning applies for n = 154: t = 2, d1 = 5, d2 = 31 and A1(154) =
2(5− 1)(31− 1)= 240.

Finally, we note that an answer to Problem 3.6 would give, under Conjecture 4.4,
a characterization of (necessarily odd) n with A1(n)= 1, and, under Conjecture 4.6,
a characterization of even n with nonbijective 1n .

We also point out that, in Table 1, there are four exceptions n = 2, 6, 8, 14 for
the converse statement of Conjecture 4.1. Problem 3.6 would be settled if they are
the only exceptions.
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