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The involutions and the symmetric spaces associated to the family of modular
groups of order 2m are explored. We begin by analyzing the structure of the auto-
morphism group and by establishing which automorphisms are involutions. We
conclude by calculating the fixed-point group and symmetric spaces determined
by each involution.

1. Introduction

A first course in group theory usually provides a short introduction to the idea
of the automorphism group of a group. Students often begin by calculating the
automorphism group for a few familiar groups of small order, such as the symmetric
group S3 or the dihedral group D4. Computing the automorphism group of one of
these groups is an especially fruitful exercise as it requires a student to understand
properties of the group itself and results in students making conjectures about
the structure of automorphism groups of similar groups. Though this activity is
worthwhile on its own, knowing the structure of the automorphism group of a group
has also proven essential in a variety of areas, including the theory of symmetric
spaces.

First introduced by Élie Cartan [1926; 1927], real symmetric spaces were a special
class of homogeneous Riemannian manifolds. Berger [1957] later generalized
these spaces and gave classifications of the irreducible semisimple symmetric
spaces. Since then the theory of symmetric spaces has expanded into a field
that plays a fundamental role in numerous areas of active research, including Lie
theory, number theory, differential geometry, harmonic analysis, and physics; see
[Harish-Chandra 1984a; 1984b; 1984c; 1984d; Ōshima and Matsuki 1984; Brylinski
and Delorme 1992; Carmona and Delorme 1994; van den Ban and Schlichtkrull
1997a; 1997b; Delorme 1998] for mathematics examples and [Olshanetsky and
Perelomov 1983; Zirnbauer 1996] for physics examples. The theory of symmetric
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spaces also has many generalizations. Symmetric varieties, symmetric k-varieties,
Vinberg’s theta-groups, spherical varieties, Gelfand pairs, Bruhat–Tits buildings,
Kac–Moody symmetric spaces, and generalized symmetric spaces are among these
generalizations which have found importance in various areas of mathematics and
physics such as number theory, algebraic geometry, and representation theory.

The majority of these generalizations can be studied in the context of generalized
symmetry spaces. Generalized symmetric spaces are defined as the homogeneous
spacesG=H withG an arbitrary group andH DG� Dfg 2G j �.g/Dgg the fixed-
point group of an order-n automorphism � . Of special interest are automorphisms
of order 2, also called involutions. If G is an algebraic group defined over a field k
and � an involution defined over k, then these spaces are also called symmetric
k-varieties, first introduced in [Helminck 1994].

For involutions there is a natural embedding of the homogeneous spaces G=H
into the group G as follows. Let � W G ! G be a morphism of G given by
�.g/D g�.g/�1 for g 2G, where � is an involution of G. The map � induces an
isomorphism of the coset spaceG=H onto �.G/Dfg�.g/�1 jg 2Gg. We will take
the image QD fg�.g/�1 j g 2Gg as our definition of the generalized symmetric
space determined by .G; �/. In addition, we define the extended symmetric space
determined by .G; �/ as RD fg 2G j �.g/D g�1g. Extended symmetric spaces
play an important role in generalizing the Cartan decomposition for real reductive
groups to reductive algebraic groups defined over an arbitrary field. While for
real groups it suffices to use Q for the Cartan decomposition, in the general case
one needs the extended symmetric space R. Symmetric spaces and symmetric
k-varieties are well known for their role in many areas of mathematics, but they
are probably best known for their fundamental role in representation theory. The
generalized symmetric spaces as defined above are of importance in a number of
areas as well, including group theory, number theory, and representation theory.

Recently, involutions and symmetric spaces have been determined for dihedral
groups [Cunningham et al. 2014], dicyclic groups [Bishop et al. 2013], and semidi-
hedral groups [Schaefer and Schlechtweg 2017]. In this paper, we investigate the
involutions and symmetric spaces associated to the modular groups of order 2m.
Since all non-Abelian 2-groups of order 2m which contain a cyclic subgroup of
order 2m�1 and where m � 4 are isomorphic to a dihedral group, a generalized
quaternion group (contained in the more general class of dicyclic groups), a semidi-
hedral group, or a modular group by [Gorenstein 1968], this work completes the
study of involutions and symmetric spaces for groups of this structure. We begin
in Section 2 by analyzing the family of modular groups, Mm.2/, of order 2m for
m> 4. In Section 3, we classify the automorphisms of Mm.2/ and establish which
automorphisms are involutions. We also consider which involutions arise from inner
automorphisms. In Section 4, we describe the fixed-point group H, the generalized
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symmetric space Q, and the extended symmetric space R determined by each
involution of Mm.2/. Finally in the Appendix, we provide H, Q, and R for each
involution of M4.2/.

2. Preliminaries

Throughout this paper, we consider the modular 2-group Mm.2/, which can be
described using the following presentation from [Gorenstein 1968]:

Mm.2/D hx; y j x
2m�1

Dy2D1; yxDx2
m�2C1yi;

where m � 4 is an integer. Defined in terms of generators and relations, this
presentation is convenient for determining the automorphism group of Mm.2/ and
the fixed-point group and symmetric spaces associated with each involution.

We begin by providing some basic structural properties of Mm.2/ that are pre-
requisites for the rest of the paper. The group presentation given above clearly
shows that Mm.2/ is a non-Abelian group. The next result we state provides a
commutation relation which we will use to simplify the structure of the group’s
elements.

Lemma 1. For any integer k � 1, we have yxk D x.2
m�2C1/ky.

Using the outcome of Lemma 1 repeatedly, together with the relations x2
m�1

D

y2 D 1 and the uniqueness of a quotient and a remainder in the quotient-remainder
theorem, we have the following results.

Proposition 2. Every element of Mm.2/ has a unique presentation as xiyj, where
i and j are integers with 0� i < 2m�1 and j 2 f0; 1g.

We call the presentation given in Proposition 2 the normal form of an element of
Mm.2/ and by writing all elements of the group in their normal form, we have the
subsequent corollary.

Corollary 3. The non-Abelian group Mm.2/ has order 2m and consists of the
elements 1, x, x2, . . . , x2

m�1�1, y, xy, x2y, . . . , x2
m�1�1y.

In order to determine the automorphism group and the symmetric spaces, it will
be necessary to know the order and inverse of each group element. The next three
results establish this information.

Lemma 4. For any integer k � 1,

.xiyj /k D

�
xikCij.k�1/2

m�3

yj when k is odd;
xikCijk2

m�3

when k is even:

Proof. Suppose k � 1 is an integer and xiyj 2 Mm.2/ for 0 � i < 2m�1 and
j 2 f0; 1g. Then .xiyj /.xiyj /D x2iCij2

m�2

by Lemma 1. When k is odd,
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.xiyj /k has 1
2
.k� 1/ pairs of the form .xiyj /.xiyj /. Thus

.xiyj /k D x.2iCij2
m�2/ 1

2
.k�1/xiyj

D x.k�1/.iCij2
m�3/Ciyj D xikCij.k�1/2

m�3

yj :

When k is even, .xiyj /k has 1
2
k pairs of the form .xiyj /.xiyj /. In this case

.xiyj /k D x.2iCij2
m�2/ 1

2
k
D xikCijk2

m�3

as desired. �

Proposition 5. For any integer i with 0� i < 2m�1,

jxi j D
2m�1

gcd.i; 2m�1/
and jxiyj D

2m�1

gcd.2m�2; i C i2m�3/
:

Proof. By basic properties of cyclic groups and the fact that jxj D 2m�1,

jxi j D
2m�1

gcd.i; 2m�1/
:

Consider xiy. Then .xiy/2 D x2iCi2
m�2

by Lemma 4, and

jx2iCi2
m�2

j D
2m�1

gcd.2m�1; 2i C i2m�2/

by above. By Lagrange’s theorem, j.xiy/2j � jxiyj. Furthermore, jxiyj �
2j.xiy/2j by properties of order. Hence we have j.xiy/2j � jxiyj � 2j.xiy/2j.

Since jMm.2/j D 2
m, we know that jxiyj is a power of 2 by Lagrange’s theorem.

So either jxiyj D j.xiy/2j or jxiyj D 2j.xiy/2j. We can easily rule out the first
case, because h.xiy/2i is a proper subgroup of hxiyi, seeing as it does not contain
xiy for instance. Thus

jxiyj D 2j.xiy/2j D 2
2m�1

gcd.2m�1; 2i C i2m�2/
D

2m�1

gcd.2m�2; i C i2m�3/
: �

Proposition 6. For any integer i with 0� i < 2m�1,

.xi /�1 D x2
m�1�i and .xiy/�1 D x.2

m�1�i/.2m�2C1/y:

Proof. The result follows immediately from Lemma 1 and the relations x2
m�1

D

y2 D 1. �

The final result of this section describes which elements compose the center
of Mm.2/. Knowing the center allows us to simplify calculations in several instances.

Proposition 7. The center of Mm.2/ consists of all elements of the form xi where
0� i < 2m�1 is even. Thus Z.Mm.2// is a cyclic subgroup of order 2m�2.
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Proof. We break this proof into three cases.

Case 1: Consider x2k 2Mm.2/, where 0� k < 2m�2. Then

xx2k D x1C2k D x2kC1 D x2kx;

and by Lemma 1,

yx2k D x2k.2
m�2C1/y D xk2

m�1

x2ky D x2ky:

Thus x2k commutes with both generators and hx2i �Z.Mm.2//.

Case 2: Consider x2kC1 2Mm.2/, where 0� k < 2m�2. Using the commutation
relation of Lemma 1,

yx2kC1 D x.2kC1/.2
m�2C1/y D x2kC1x2

m�2

y ¤ x2kC1y;

as x2
m�2

is not equal to the identity. Thus x2kC1 is not central.

Case 3: Consider xiy 2 Mm.2/, where 0 � i < 2m�1. Then xxiy D xiC1y.
However,

xiyx D xix2
m�2C1y D x2

m�2

xiC1y:

These two expressions cannot be equal because x2
m�2

is not equal to the identity.
Thus elements of the form xiy are not central.

Therefore, Z.Mm.2//D hx
2i. �

Example. The center of M4.2/ is Z.M4.2//D f1; x
2; x4; x6g.

3. Automorphisms and involutions of Mm.2/

In this section, we determine the automorphism group of Mm.2/, denoted by
Aut.Mm.2//. We begin by analyzing the structure of each automorphism and
then move to proving some properties of the automorphism group as a whole. We
conclude this section by establishing which elements of Aut.Mm.2// are involutions
and what properties two automorphism must satisfy to be equivalent.

Theorem 8. A homomorphism � W Mm.2/! Mm.2/ is an automorphism if and
only if �.x/D xayb and �.y/D xc2

m�2

y where a is odd and b; c 2 f0; 1g.

Proof. Let � 2 Aut.Mm.2//. Then by properties of automorphisms, � must map x
to an element of order 2m�1 and y to an element of order 2. Thus by Proposition 5,
�.x/D xa or xay, where a is odd and �.y/D y, x2

m�2

, or x2
m�2

y. However, �
would not be injective if y mapped to x2

m�2

. Therefore, if � is an automorphism,
�.x/D xayb and �.y/D xc2

m�2

y, where a is odd and b; c 2 f0; 1g. The converse
of this statement can be proven using cases. �

Corollary 9. The automorphism group Aut.Mm.2// has order 2m.
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Proof. Since there are 2m�2 � 2 elements xayb , where a is odd and b 2 f0; 1g, and
two elements xc2

m�2

y, where c 2 f0; 1g,

jAut.Mm.2//j D 2
m�2
� 2 � 2D 2m: �

Remark. It is interesting that jAut.Mm.2//j D jMm.2/j. In the cases of dihedral
groups [Cunningham et al. 2014], generalized quaternion groups [Bishop et al.
2013], and semidihedral groups [Schaefer and Schlechtweg 2017], the order of the
automorphism group is much larger than the order of the group.

Based on the results of Theorem 8, we can represent each automorphism uniquely
as �a;b;c , where �a;b;c.x/ D xayb and �a;b;c.y/ D xc2

m�2

y, where a is odd
and b; c 2 f0; 1g. Using this notation, we see that �1;0;0 denotes the identity
automorphism. In the following theorem, we determine where �a;b;c maps an
arbitrary element xiyj 2Mm.2/.

Theorem 10. Let xiyj 2Mm.2/ for 0 � i < 2m�1 and j 2 f0; 1g and �a;b;c 2
Aut.Mm.2//, where a is odd and b; c 2 f0; 1g. Then

�a;b;c.x
iyj /D

�
xaiCabi2

m�3Ccj2m�2

yj when i is even,
xaiCab.i�1/2

m�3Ccj2m�2

ybCj when i is odd.

Proof. Let xiyj 2Mm.2/ for 0� i <2m�1 and j 2f0; 1g and �a;b;c 2Aut.Mm.2//,
where a is odd and b; c 2 f0; 1g. By Theorem 8, we have

�a;b;c.x
iyj /D .xayb/i .xc2

m�2

y/j :

In Proposition 7, we proved xc2
m�2

2Z.Mm.2//. Thus .xc2
m�2

y/j D xcj2
m�2

yj.
To understand how the term .xayb/i interacts with xcj2

m�2

yj, we split into two
cases: i even and i odd.

Case 1: Let i be even. Then by Lemma 4

�a;b;c.x
iyj /D .xayb/ixcj2

m�2

yj

D xaiCabi2
m�3

xcj2
m�2

yj

D xaiCabi2
m�3Ccj2m�2

yj :

Case 2: Let i be odd. Then by Lemma 4

�a;b;c.x
iyj /D .xayb/ixcj2

m�2

yj

D xaiCab.i�1/2
m�3

ybxcj2
m�2

yj

D xaiCab.i�1/2
m�3Ccj2m�2

ybCj : �

Conjugation by a fixed element of a group G is one of the most important
examples of an automorphism of a group. Thus it is interesting to determine which
elements of Aut.Mm.2// are inner automorphisms. Given an arbitrary group G and
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an element g 2G, we let 'g 2Aut.G/ denote conjugation by g and Inn.G/ denote
the collection of inner automorphisms of G.

Theorem 11. The inner automorphisms of Mm.2/ are �1;0;c and �.2m�2C1/;0;c ,
where c 2 f0; 1g.

Proof. Consider 'g for some g 2Mm.2/. Suppose g D xi. Then

'xi .x/D xixx2
m�1�i

D x2
m�1C1

D x;

'xi .y/D xiyx2
m�1�i

D xix.2
m�2C1/.2m�1�i/y D x�i2

m�2

y:

When �i is even, x�i2
m�2

y D y and when �i is odd, x�i2
m�2

y D x2
m�2

y. Next,
consider g D xiy. Then

'xiy.x/D .x
iy/x.yx2

m�1�i /D xi .x2
m�2C1y/.yx2

m�1�i /D x2
m�2C1;

'xiy.y/D .x
iy/y.yx2

m�1�i /D xi .x.2
m�1�i/.2m�2C1/y/D x�i2

m�2

y:

Again, when �i is even, x�i2
m�2

y D y and when �i is odd, x�i2
m�2

y D x2
m�2

y.
Conversely, consider �1;0;c 2 Aut.Mm.2//. Note that conjugation by x�c gives

x�cxxc D x;

x�cyxc D xc.2
m�2/y:

Thus, �1;0;c 2 Inn.Mm.2//. Similarly, consider �2m�2C1;0;c 2 Aut.Mm.2//. Then
conjugation by x�cy gives

.x�cy/x.yxc/D x2
m�2C1;

.x�cy/y.yxc/D xc.2
m�2/y:

Thus, �2m�2C1;0;c 2 Inn.Mm.2//. Therefore, �a;b;c is an inner automorphism of
Mm.2/ if and only if a is 1 or 2m�2C 1, b D 0, and c 2 f0; 1g. �

It follows from this result that four of the 2m automorphisms in Aut.Mm.2//

are inner automorphisms, which we knew would be the case as Inn.Mm.2// Š

Mm.2/=Z.Mm.2// and jZ.Mm.2//j D 2
m�2 [Gorenstein 1968]. In Section 4, we

will find it useful to understand the structure of the involutions arising from inner
automorphisms because it will allow us to simplify the presentation of the fixed-
point groups, the generalized symmetric spaces, and the extended symmetric spaces
in these cases.

Before we can characterize the involutions, we require the following lemmas.

Lemma 12. For any �a;b;c ; �d;e;f 2 Aut.Mm.2//, where a and d are odd and
b; c; e; f 2 f0; 1g,

�a;b;c ı�d;e;f D �adCab.d�1/2m�3Cce2m�2; bCe; cCf :
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Proof. Let �a;b;c and �d;e;f 2 Aut.Mm.2//. To determine �a;b;c ı �d;e;f , we
examine �a;b;c ı�d;e;f .x/ and �a;b;c ı�d;e;f .y/.

By Theorem 10 and d odd,

�a;b;c ı�d;e;f .x/D �a;b;c.x
dye/D xadCab.d�1/2

m�3Cce2m�2

ybCe:

Next, by Theorem 10 and f 2m�2 even,

�a;b;c ı�d;e;f .y/D �a;b;c.x
f 2m�2

y/

D xaf 2
m�2Cabf 2m�22m�3Cc2m�2

y D x.afCc/2
m�2

y:

Because a is odd, aD 2kC 1 for k 2 Z and we have

x.afCc/2
m�2

y D x..2kC1/fCc/2
m�2

y D x.fCc/2
m�2

y:

Thus �a;b;c ı�d;e;f .y/D x.cCf /2
m�2

y.
Given the images of x and y under �a;b;c ı �d;e;f , we can define the general

form of automorphism composition:

�a;b;c ı�d;e;f D �adCab.d�1/2m�3Cce2m�2; bCe; cCf : �

This result now allows to us to answer our question regarding automorphisms of
order 2. We see in the following theorem that this reduces to evaluating an equation
modulo 2m�1.

Lemma 13. Let �a;b;c 2 Aut.Mm.2//, where a is odd and b; c 2 f0; 1g. Then
.�a;b;c/

2 D �1;0;0 if and only if

a2C ab.a� 1/2m�3C bc2m�2 � 1 mod 2m�1: (1)

Proof. Consider �a;b;c 2 Aut.Mm.2//. By Lemma 12, we find that

�a;b;c ı�a;b;c D �a2Cab.a�1/2m�3Cbc2m�2;2b;2c :

Since b; c 2 f0; 1g, we have 2b � 2c � 0 mod 2 always. Thus we only need to
solve (1) to determine when �a;b;c ı�a;b;c D �1;0;0. �

Theorem 14. For m D 4, Aut.M4.2// contains 11 involutions and for integers
m� 5, Aut.Mm.2// contains 15 involutions.

Proof. Let �a;b;c 2 Aut.Mm.2//, where a is odd and b; c 2 f0; 1g, such that
.�a;b;c/

2 D �1;0;0. Then by Lemma 13, (1) holds.

Case 1: Suppose b D 0 and c D 0. Then (1) reduces to a2 � 1 mod 2m�1. There
are four elements a in Z2m�1 with a2 � 1 mod 2m�1 by [Burton 2010], namely 1,
�1, 1C 2m�2, and �1C 2m�2. Thus we have four elements of the form �a;0;0 2

Aut.Mm.2// with .�a;0;0/2 D �1;0;0. Because �1;0;0 has order 1, it follows that
there are three involutions of the form �a;0;0, where a2f�1; 1C2m�2;�1C2m�2g.
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Case 2: Suppose b D 0 and c D 1. Then (1) again reduces to a2 � 1 mod 2m�1

with solutions 1, �1, 1C 2m�2, and �1C 2m�2. Thus in this case we have four
involutions of the form �a;0;1, where a 2 f1;�1; 1C 2m�2;�1C 2m�2g.

Case 3: Suppose b D 1 and c D 0. Then (1) reduces to a2 C a.a � 1/2m�3 �
1 mod 2m�1, which is equivalent to a2.1C 2m�3/ � a2m�3 � 1 � 0 mod 2m�1.
Consider mD 4. Then our equation becomes 3a2� 2a� 1� 0 mod 8. It can be
shown that 1 and 5 are the only solutions. Thus the only involutions of the form
�a;1;0 when mD 4 are �1;1;0 and �5;1;0.

Now suppose m � 5. Because 1C 2m�3 is odd, our equation is equivalent to
.1C 2m�3/Œa2.1C 2m�3/� a2m�3� 1�� 0 mod 2m�1. By using the identity

.1C2m�3/Œa2.1C2m�3/�a2m�3�1�D .a.1C2m�3/�2m�4/2� .2m�4C1/2;

our original quadratic equivalence may be expressed as

.a.1C 2m�3/� 2m�4/2 � .2m�4C 1/2 mod 2m�1:

Because .2m�4C 1/2 is odd when m � 5, this congruence has four solutions by
[Burton 2010]. It can be shown that 1, 1C2m�2, �1�2m�3, and �1�2m�2�2m�3

are the solutions for a. Thus we have four involutions of the form �a;1;0, where
a 2 f1; 1C 2m�2;�1� 2m�3;�1� 2m�2� 2m�3g.

Case 4: Suppose bD 1 and cD 1. Then finally (1) reduces to a2Ca.a�1/2m�3C
2m�2 � 1 mod 2m�1, which is equivalent to

a2.1C 2m�3/� a2m�3C 2m�2� 1� 0 mod 2m�1:

Consider mD 4. Then our equation becomes 3a2� 2aC 3� 0 mod 8. It can be
shown that 3 and 7 are the only solutions. Thus the only involutions of the form
�a;1;1 when mD 4 are �3;1;1 and �7;1;1.

Now suppose m � 5. Because 1C 2m�3 is odd, our equation is equivalent to
.1C2m�3/Œa2.1C2m�3/�a2m�3C2m�2�1�� 0 mod 2m�1. Using the identity

.1C 2m�3/Œa2.1C 2m�3/� a2m�3C 2m�2� 1�

D .a.1C 2m�3/� 2m�4/2� .2m�4� 1/2;

our original quadratic equivalence may be expressed as

.a.1C 2m�3/� 2m�4/2 � .2m�4� 1/2 mod 2m�1:

Because .2m�4 � 1/2 is odd when m � 5, this congruence has four solutions by
[Burton 2010]. It can be shown that�1, �1�2m�2 , 1C2m�3, and 1C2m�2C2m�3

are the solutions for a. Thus we have four involutions of the form �a;1;1, where
a 2 f�1;�1� 2m�2; 1C 2m�3; 1C 2m�2C 2m�3g.
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Considering all cases, it follows that Aut.Mm.2// contains 11 involutions when
mD 4 and 15 involutions m� 5. �

Remark. Given that the number of involutions increases as m increases in the
cases of dihedral groups [Cunningham et al. 2014], generalized quaternion groups
[Bishop et al. 2013], and semihedral groups [Schaefer and Schlechtweg 2017], it is
a bit surprising that the number of involutions of Mm.2/ is at most 15 for all m.

Example. Consider M4.2/. Then by Theorem 14 the 11 involutions in Aut.M4.2//

are �3;0;0, �5;0;0, �7;0;0, �1;0;1, �3;0;1, �5;0;1, �7;0;1, �1;1;0, �5;1;0, �3;1;1, and
�7;1;1.

As stated earlier, it is useful to know which of these involutions arise from inner
automorphisms. Using the results of Theorems 11 and 14, it is clear that when
a D 1 or 2m�2 C 1, b D 0, and c D 0 or 1, equation (1) is satisfied. Thus, we
have the following result that characterizes which inner automorphisms are also
involutions.

Theorem 15. All three nonidentity, inner automorphisms of Mm.2/ are involutions.

Example. Consider M4.2/. It follows by Theorem 15 that the involutions in
Aut.M4.2// that arise from inner automorphisms are �1;0;1, �5;0;0, and �5;0;1.

We complete this section by determining which elements of Aut.Mm.2// are
equivalent, for equivalent involutions produce the same generalized symmetric
spaces.

Definition 16. Let G be a group and �, � 2 Aut.G/. Then � and � are said
to be isomorphic, written � � � , if and only if there exists � 2 Aut.G/ such
that ����1 D � , i.e., � and � are conjugate to each other. Two isomorphic
automorphisms are said to be in the same equivalence class.

We begin by finding the inverse of an automorphism.

Lemma 17. For any �a;b;c ; �d;e;f 2Mm.2/, where a and d are odd and b;c;e;f 2
f0;1g, we have

�d;e;f D �
�1
a;b;c

if and only if

d � .aCab2m�3/�1.1Cab2m�3�bc2m�2/ mod 2m�1; eD b and f D c:

Proof. Consider �a;b;c ; �d;e;f 2Mm.2/. It follows by Lemma 12 that

�a;b;c ı�d;e;f D �adCab.d�1/2m�3Cce2m�2; bCe; cCf D �1;0;0

if and only if

ad C ab.d � 1/2m�3C ce2m�2 � 1 mod 2m�1; b D e and c D f:
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Using the fact that b D e, the equation

ad C ab.d � 1/2m�3C ce2m�2 � 1 mod 2m�1

is equivalent to

ad C ab.d � 1/2m�3C bc2m�2 � 1 mod 2m�1:

Solving for d , we get

d � .aC ab2m�3/�1.1C ab2m�3� bc2m�2/ mod 2m�1: �

Lemma 18. For any �a;b;c ; �d;e;f 2Mm.2/, where a and d are odd and b;c;e;f 2
f0;1g, we have

�a;b;c ı�d;e;f ı�
�1
a;b;c D �˛;e;f ;

where

˛� .aCab2m�3/�1ŒadCc.e�abd/2m�2C.ab.2d�1/Cade.1�a//2m�3�

Cb.cCf /2m�2: (2)

Proof. Consider �a;b;c ; �d;e;f 2Mm.2/. Then

�a;b;c ı�d;e;f ı�
�1
a;b;c

D �adCab.d�1/2m�3Cce2m�2; bCe; cCf ı�.aCab2m�3/�1.1Cab2m�3�bc2m�2/; b; c

by Lemmas 12 and 17. Utilizing Lemma 12 again, this composition becomes
�ˇCˇ.�1/.bCe/2m�3Cb.cCf /2m�2; 2bCe; 2cCf , where

ˇ D ad C ab.d � 1/2m�3C ce2m�2;

 D .aC ab2m�3/�1.1C ab2m�3� bc2m�2/;

which is equivalent to �˛;e;f , where ˛ satisfies (2), by basic algebra and reduction
modulo 2m�1 and 2bCe�e mod 2 and 2cCf�f mod 2 by reduction modulo 2. �

Proposition 19. Two elements �d;e;f ; �p;q;r 2Aut.Mm.2// are equivalent if there
exists an �a;b;c 2 Aut.Mm.2// such that

p� .aCab2m�3/�1ŒadCc.e�abd/2m�2C.ab.2d�1/Cade.1�a//2m�3�

Cb.cCf /2m�2 mod 2m�1; (3)

q D e, and r D f .

Proof. Let �d;e;f ; �p;q;r 2 Aut.Mm.2//, where d and p are odd and e; f; p; q 2
f0; 1g. These elements are conjugate if there exists an �a;b;c 2Aut.Mm.2//, where
a is odd and b; c 2 f0; 1g, such that

�a;b;c ı�d;e;f ı�
�1
a;b;c D �p;q;r :
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Using the results of the previous theorem, this is true if and only if p satisfies (3),
q D e, and r D f . �

Example. Consider M4.2/ and the 11 involutions in Aut.M4.2//, namely �3;0;0,
�5;0;0, �7;0;0, �1;0;1, �3;0;1, �5;0;1, �7;0;1, �1;1;0, �5;1;0, �3;1;1, and �7;1;1. Take
�3;0;0. Then by Proposition 19 the only involutions �3;0;0 could be equivalent to
are �3;0;0, �5;0;0, and �7;0;0. Using d D 3, e D 0, and f D 0, the equivalence
in Proposition 19 reduces to p � .1C 2b/�1Œ3C 4bcC 2b�C 4bc mod 8. Since
b; c 2 f0; 1g, the only possible values for p are 3 and 7. Thus �3;0;0 is equivalent
to itself and �7;0;0 but not �5;0;0. We can use similar calculations to show the
remaining equivalence classes of involutions in Aut.M4.2// are f�1;0;1; �5;0;1g,
f�3;0;1g, f�7;0;1g, f�1;1;0; �5;1;0g, and f�3;1;1; �7;1;1g.

4. Fixed-point groups and symmetric spaces of Mm.2/

Recall from the Introduction that we are interested in determining the fixed-point
group H, the generalized symmetric space Q, and the extended symmetric space
R for each involution of Mm.2/ found in Theorem 14. Please note that for the
remainder of this paper the notation “�” will represent equivalence modulo 2m�1.

Let �a;b;c 2 Aut.Mm.2// be an involution. Then we know by Theorem 8 that
b D 0 or b D 1. We begin by considering the fixed-point group for an involution of
the form �a;0;c .

Theorem 20. For an involution �a;0;c2Aut.Mm.2//, where a is odd and c2 f0; 1g,
the fixed-point group is

H�a;0;c
D fxiyj j i.a� 1/C jc2m�2 � 0g;

where 0� i < 2m�1 and j 2 f0; 1g.

Proof. Let �a;0;c 2 Aut.Mm.2// be an involution. By definition, an element
xiyj 2Mm.2/ is in the fixed-point group of �a;0;c if �a;0;c.xiyj / D xiyj. By
Theorem 10, this implies

�a;0;c.x
iyj /D xaiCcj2

m�2

yj D xiyj :

For xiyj to satisfy this equation, ai C jc2m�2 � i or i.a� 1/C jc2m�2 � 0. �

We now consider involutions of the form �a;1;c .

Theorem 21. For an involution �a;1;c 2Aut.Mm.2//, where a is odd and c2f0; 1g,
the fixed-point group is

H�a;1;c
D fxiyj j i.a� 1C a2m�3/C jc2m�2 � 0 for i eveng;

where 0� i < 2m�1 and j 2 f0; 1g.
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Proof. Let �a;1;c 2Aut.Mm.2// be an involution and let xiyj 2Mm.2/. We break
this proof into two cases: i even and i odd.

Case 1: Suppose i is even. Then Theorem 10 implies

�a;1;c.x
iyj /D xaiCai2

m�3Ccj2m�2

yj D xiyj :

Thus, xiyj is fixed when ai C ai2m�3 C cj 2m�2 � i or i.a � 1C a2m�3/C
jc2m�2 � 0.

Case 2: Suppose i is odd. Then again Theorem 10 implies

�a;1;c.x
iyj /D xaiCa.i�1/2

m�3Ccj2m�2

yjC1 D xiyj :

Because j C 1¤ j , elements of the form xiyj with i odd are never in the fixed-
point group of �a;1;c . �

Example. Consider M4.2/ and four of its involutions: �3;0;0, �5;0;1, �1;1;0, and
�7;1;1. Using the results of Theorems 20 and 21, we have

H�3;0;0
D f1; x4; x4y; yg;

H�5;0;1
D f1; x2; x4; x6; xy; x3y; x5y; x7yg;

H�1;1;0
D f1; x4; x4y; yg;

H�7;1;1
D f1; x2; x4; x6g:

Theorem 22. For an involution �a;0;c 2Aut.Mm.2//, where a is odd and c2f0; 1g,
the generalized symmetric space is

Q�a;0;c
D fxi.1�a/�jc2

m�2

j 0� i < 2m�1 and j 2 f0; 1gg:

Proof. Let �a;0;c 2 Aut.Mm.2// be an involution and let xiyj 2Mm.2/. Using
Theorem 10 and Proposition 6, we have

xiyj .�a;0;c.x
iyj //�1 D xiyj .xaiCcj2

m�2

yj /�1

D xiyj .yjx�.aiCcj2
m�2//

D xi.1�a/�jc2
m�2

: �

Recall by Proposition 7 that elements of the form xi where i is even are in the
center Z.Mm.2//. Since for any involution �a;b;c the value of a is odd, we have
the following corollary:

Corollary 23. For an involution �a;0;c2Aut.Mm.2//, where a is odd and c2f0; 1g,
the generalized symmetric space satisfies Q�a;0;c

�Z.Mm.2//.

Now we will examine the generalized symmetric spaces for involutions of the
form �a;1;c .
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Theorem 24. For an involution �a;1;c 2Aut.Mm.2//, where a is odd and c2f0; 1g,
the generalized symmetric space is

Q�a;1;c
D fxa2

m�3Ci.1�a�a2m�3�a2m�2/�jc2m�2

y j i is odd g

[ fxi.1�a�a2
m�3/�jc2m�2

j i is even g;

where 0� i < 2m�1 and j 2 f0; 1g.

Proof. Let �a;1;c 2 Aut.Mm.2// and xiyj 2Mm.2/.

Case 1: Suppose i is even and j D 0. By Theorem 10 and Proposition 6,

xi .�a;1;c.x
i //�1 D xi .xaiCai2

m�3

/�1

D xi.1�a�a2
m�3/:

Case 2: Suppose i is odd and j D 0. By Theorem 10, Proposition 6, and Lemma 1,

xi .�a;1;c.x
i //�1 D xi .xaiCa.i�1/2

m�3

y/�1

D xix.�ai�a.i�1/2
m�3/.2m�2C1/y

D xi�ai2
m�2�ai�a.i�1/2m�3

y

D xa2
m�3Ci.1�a�a2m�3�a2m�2/y:

Case 3: Suppose i is even and j D 1. By Theorem 10 and Proposition 6,

xiy.�a;1;c.x
iy//�1 D xiy.xaiCai2

m�3Cc2m�2

y/�1

D xi .y2/x�ai�ai2
m�3�c2m�2

D xi�ai�ai2
m�3�c2m�2

D xi.1�a�a2
m�3/�c2m�2

:

Case 4: Suppose i is odd and j D 1. By Theorem 10, Proposition 6, and Lemma 1,

xiy.�a;1;c.x
iy//�1 D xiy.xaiCa.i�1/2

m�3Cc2m�2

/�1

D xi .x.�ai�a.i�1/2
m�3�c2m�2/.2m�2C1//y

D xi�ai2
m�2�ai�a.i�1/2m�3�c2m�2

y

D xa2
m�3Ci.1�a�a2m�3�a2m�2/�c2m�2

y: �

We now determine the extended symmetric spaces for each involution. We begin
with involutions of the form �a;0;c 2 Aut.Mm.2//.

Theorem 25. For an involution �a;0;c 2Aut.Mm.2//, where a is odd and c 2f0; 1g,
the extended symmetric space is

R�a;0;c
D fxiyj j i.aC .2m�2C 1/j /C jc2m�2 � 0g;

where 0� i < 2m�1 and j 2 f0; 1g.
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Proof. Let �a;0;c 2 Aut.Mm.2// and xiyj 2 Mm.2/. To solve the equation
�a;0;c.x

iyj /D .xiyj /�1, we solve the equivalent equation �a;0;c.xiyj /xiyj D 1.
By Theorem 10 and Lemma 1, we have

�a;0;c.x
iyj /xiyj D xaiCcj2

m�2

yjxiyj

D xaiCcj2
m�2

xi.2
m�2C1/j y2j

D xaiCcj2
m�2Ci.2m�2C1/j

D 1

when i.aC .2m�2C 1/j /C jc2m�2 � 0. �

Next we turn our attention to the extended symmetric spaces of involutions
of the form �a;1;c . As in the fixed-point group case, we find that the extended
symmetric spaces of these involutions do not contain elements of the form xiyj

for i odd.

Theorem 26. For an involution �a;1;c 2Aut.Mm.2//, where a is odd and c2f0; 1g,
the extended symmetric space is

R�a;1;c
D fxiyj j i.aC a2m�3C .2m�2C 1/j /C jc2m�2 � 0 and i is eveng;

where 0� i < 2m�1 and j 2 f0; 1g.

Proof. Let �a;1;c 2Aut.Mm.2// and xiyj 2Mm.2/. We again split into two cases:
i even and i odd.

Case 1: Suppose i is even. Using Theorem 10 and Lemma 1, we have

�a;1;c.x
iyj /xiyj D xaiCai2

m�3Ccj2m�2

yjxiyj

D xaiCai2
m�3Ccj2m�2Ci.2m�2C1/j y2j

D xaiCai2
m�3Ccj2m�2Ci.2m�2C1/j

D 1

when i.aC a2m�3C .2m�2C 1/j /C jc2m�2 � 0.

Case 2: Suppose i is odd. Using Theorem 10 and Lemma 1, we have

�a;1;c.x
iyj /xiyj D xaiCa.i�1/2

m�3Ccj2m�2

yjC1xiyj

D xaiCa.i�1/2
m�3Ccj2m�2Ci.2m�2�1/jC1

y:

An element of this form can never be equivalent to the identity. Thus, when i is
odd, xiyj …R�a;1;c

. �

Example. Consider M4.2/ and four of its involutions: �3;0;0, �5;0;1, �1;1;0, and
�7;1;1. Using the results of Theorems 22 and 24, we have

Q�3;0;0
D f1; x2; x4; x6g;

Q�5;0;1
D f1; x4g;
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Q�1;1;0
D f1; x4; x4y; yg;

Q�7;1;1
D f1; x4; x2y; x6yg:

In addition, we have

R�3;0;0
D f1; x2; x4; x6; xy; x2y; x3y; x4y; x5y; x6y; x7yg;

R�5;0;1
D f1; x4; x2y; x6yg;

R�1;1;0
D f1; x2; x4; x6; y; x2y; x4y; x6y; g;

R�7;1;1
D f1; x4; x2y; x6yg

by Theorems 25 and 26.

Remark. In general, Q � R for all arbitrary groups and all of their respective
involutions. Thus it is not a surprise that Q�a;b;c

� R�a;b;c
in these instances.

However, it is usually the case that Q ¤ R. Thus the fact that Q�7;1;1
D R�7;1;1

for M4.2/ is notable. The fixed-point group, the generalized symmetric space,
and the extended symmetric space for all involutions of M4.2/ are provided in the
Appendix.

The descriptions of H, Q, and R can be simplified when �a;b;c is an inner
automorphism. Recall from Theorem 15 that an involution arising from an inner
automorphism is of the form �1;0;1 or �2m�2C1;0;c , where c 2 f0; 1g.

Theorem 27. Let �a;0;c be an involution of Mm�1.2/ which arises from an inner
automorphism.

(1) If aD 1 and c D 1, then

H�1;0;1
D f1; x; x2; : : : ; x2

m�1�1
g;

Q�1;0;1
D f1; x2

m�2

g;

R�1;0;1
D f1; x2

m�2

; x2
m�3

y; x3�2
m�3

yg:

(2) If aD 2m�2C 1 and c D 0, then

H�
2m�2C1;0;0

D fxiyj j i is even and j 2 f0; 1gg;

Q�
2m�2C1;0;0

D f1; x2
m�2

g;

R�
2m�2C1;0;0

D f1; x2
m�2

; y; x2
m�2

yg:

(3) If aD 2m�2C 1 and c D 1, then

H�
2m�2C1;0;1

D fxiyj j i C j is even and j 2 f0; 1gg;

Q�
2m�2C1;0;1

D f1; x2
m�2

g;

R�
2m�2C1;0;1

D f1; x2
m�2

; x2
m�3

y; x3�2
m�3

yg:



THE CLASSIFICATION OF INVOLUTIONS AND SYMMETRIC SPACES 581

Appendix: Fixed-point groups and symmetric spaces for involutions of M4.2/

H
Q

R

�
3
;0
;0

f
1
;x
4
;y
;x
4
y
g

f
1
;x
2
;x
4
;x
6
g

f
1
;x
2
;x
4
;x
6
;x
y
;x
2
y
;x
3
y
;x
4
y
;x
5
y
;x
6
y
;x
7
y
g

�
5
;0
;0

f
1
;x
2
;x
4
;x
6
;y
;x
2
y
;x
4
y
;x
6
y
g
f
1
;x
4
g

f
1
;x
4
;y
;x
4
y
g

�
7
;0
;0

f
1
;x
4
;y
;x
4
y
g

f
1
;x
2
;x
4
;x
6
g

f
1
;x
;x
2
;x
3
;x
4
;x
5
;x
6
;x
7
;y
;x
2
y
;x
4
y
;x
6
y
g

�
1
;0
;1

f
1
;x
;x
2
;x
3
;x
4
;x
5
;x
6
;x
7
g

f
1
;x
4
g

f
1
;x
4
;x
2
y
;x
6
y
g

�
3
;0
;1

f
1
;x
4
;x
2
y
;x
6
y
g

f
1
;x
2
;x
4
;x
6
g

f
1
;x
2
;x
4
;x
6
g

�
5
;0
;1

f
1
;x
2
;x
4
;x
6
;x
y
;x
3
y
;x
5
y
;x
7
y
g
f
1
;x
4
g

f
1
;x
4
;x
2
y
;x
6
y
g

�
7
;0
;1

f
1
;x
4
;x
2
y
;x
6
y
g

f
1
;x
2
;x
4
;x
6
g

f
1
;x
;x
2
;x
3
;x
4
;x
5
;x
6
;x
7
;x
y
;x
3
y
;x
5
y
;x
7
y
g

�
1
;1
;0

f
1
;x
4
;y
;x
4
y
g

f
1
;x
4
;y
;x
4
y
g

f
1
;x
2
;x
4
;x
6
;y
;x
2
y
;x
4
y
;x
6
y
g

�
5
;1
;0

f
1
;x
4
;x
4
y
;y
g

f
1
;x
4
;y
;x
4
y
g

f
1
;x
2
;x
4
;x
6
;y
;x
2
y
;x
4
y
;x
6
y
g

�
3
;1
;1

f
1
;x
2
;x
4
;x
6
g

f
1
;x
4
;x
2
y
;x
6
y
g
f
1
;x
4
;x
2
y
;x
6
y
g

�
7
;1
;1

f
1
;x
2
;x
4
;x
6
g

f
1
;x
4
;x
2
y
;x
6
y
g
f
1
;x
4
;x
2
y
;x
6
y
g
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