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Using Fermat’s two squares theorem and properties of cyclotomic polynomials,
we prove assertions about when numbers of the form an

+ 1 can be expressed as
the sum of two integer squares. We prove that an

+ 1 is the sum of two squares
for all n ∈N if and only if a is a square. We also prove that if a≡ 0, 1, 2 (mod 4),
n is odd, and an

+ 1 is the sum of two squares, then aδ + 1 is the sum of two
squares for all δ | n, δ > 1. Using Aurifeuillian factorization, we show that if a is
a prime and a ≡ 1 (mod 4), then there are either zero or infinitely many odd n
such that an

+ 1 is the sum of two squares. When a ≡ 3 (mod 4), we define m
to be the least positive integer such that (a + 1)/m is the sum of two squares,
and prove that if an

+ 1 is the sum of two squares for n odd, then m | n, and both
am
+ 1 and n/m are sums of two squares.

1. Introduction

Many facets of number theory revolve around investigating terms of a sequence
that are interesting. For example, if an = 2n

−1 is prime (called a Mersenne prime),
then n itself must be prime [Hardy and Wright 1979, Theorem 18, p. 15]. In this
case, the property that is interesting is primality. Ramanujan was interested in
the terms of the sequence bn = 2n

− 7 that are squares. He conjectured that the
only such terms are those with n = 3, 4, 5, 7 and 15, and it was later proved by
Nagell [1948]; a modern reference is [Stewart and Tall 2002, p. 96]. Finally, if the
Fibonacci sequence is defined by F0 = 0, F1 = 1 and Fn = Fn−1+ Fn−2 for n ≥ 2,
then Fn is prime only if n is prime or n = 4 [Hardy and Wright 1979, Theorem 179,
p. 148], and the only powers in the Fibonacci sequence are 0, 1, 8 and 144, which
was proven by Bugeaud, Mignotte, and Siksek [Bugeaud et al. 2006] using similar
tools to the proof of Fermat’s last theorem.

In this paper, we will consider a number to be interesting if it can be expressed
as the sum of two squares. The earliest work on this topic relates to Pythagorean
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triples, which are integer solutions to a2
+ b2

= c2. Euclid supplied an infinite
family of solutions: a = m2

− n2, b = 2mn and c = m2
+ n2.

Fermat’s two squares theorem classifies which numbers can be written as the
sum of two squares. Fermat claimed to have proven this theorem in his 1640 letter
to Mersenne, but never shared the proof. The first published proof is attributed to
Euler and was completed in 1749; see [Cox 1989, p. 11].

Theorem (Fermat’s two squares theorem). A positive integer N can be written as
the sum of two squares if and only if in the prime factorization of N,

N =
k∏

i=1

pei
i ,

we have pi ≡ 3 (mod 4) only if ei is even.

In light of Fermat’s theorem, integers that can be expressed as the sum of two
squares become increasingly rare. In particular, if S(x) denotes the number of inte-
gers n ≤ x that are expressible as a sum of two squares, then Landau [1908] proved

lim
x→∞

S(x)
x/
√

ln(x)
= K ≈ 0.764.

This can be stated more colloquially as “the probability that a number n is the sum
of two squares is K/

√
ln(n).”

A lot of progress has recently been made in understanding the gaps between
prime numbers. In particular, [Zhang 2014; Maynard 2015] prove there are bounded
gaps between primes infinitely often. The analogous questions for sums of two
squares are much easier: problem A2 from the 2000 Putnam competition asked
participants to show that there are infinitely many n such that n, n+ 1 and n+ 2
are all sums of two squares.

The culmination of several papers on large gaps between primes is [Ford et al.
2018], where it is proven that there are infinitely many n such that

pn+1− pn �
log pn log log pn log log log log pn

log log log pn
,

where pn is the n-th prime. This is still quite a ways from the conjectured statement
that pn+1 − pn � log2 pn holds infinitely often. For sums of two squares, the
analogue of this conjecture is that if qn is the n-th positive integer that is a sum of
two squares, one should have qn+1− qn � log qn infinitely often. This result was
proved in [Richards 1982], and some recent work [Kalmynin 2017] has been done
on estimating the moments ∑

qn+1≤x

(qn+1− qn)
γ ,

extending [Hooley 1971].
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We are interested in which terms in sequences of the form an
+ 1 can be written

as a sum of two squares. Curtis [2014] showed that 2n
+1 is the sum of two squares

if and only if n is even or n = 3. Additionally, if n is odd and 3n
+ 1 is the sum of

two squares, then n must be the sum of two squares, and 3p
+ 1 is the sum of two

squares for all prime numbers p | n.
The focus of the present paper is to say as much as possible about when an

+ 1
is the sum of two squares for a general positive integer a. This paper is the result of
two undergraduate research teams working simultaneously and independently over
two months in the summer of 2016. The first team, from Wake Forest University,
consisted of students Hess, Stamm, and Warren, and was led by Jeremy Rouse; the
second team, from Washington and Lee University, consisted of students Islam,
Schmitt, and Yue, and was led by Greg Dresden. Remarkably, the two teams ended
up covering many of the same topics. Some of the results are unique to the Wake
Forest team, while other results were proved by both teams using different methods.

In the case that n = 2k is even, an
+ 1= (ak)2+ 12 is trivially the sum of two

squares. For this reason, we focus on cases when n is odd. Our first result is the
following.

Theorem 1.1. If a ∈ Z, then an
+1 is the sum of two squares for every n ∈N if and

only if a is a square or a =−1.

This result parallels Artin’s conjecture that an integer a is a primitive root modulo
every prime if and only if a is not a square and a 6= −1.

Example. (1) If a = 9, then 9n
+ 1= (3n)2+ 12.

(2) If a = 7, then there is some odd n such that 7n
+ 1 is not the sum of two

squares. For example, 73
+ 1 is not the sum of two squares.

For the remainder of the paper, we assume that a is a positive integer. Our next
result gives specific criteria that handle the case when a is even.

Theorem 1.2. Suppose a is even, n is odd, and an
+ 1 is the sum of two squares:

• If a+ 1 is the sum of two squares, then aδ + 1 is the sum of two squares for
all δ | n.

• If a + 1 is not the sum of two squares, then there is a unique prime number
p ≡ 3 (mod 4) such that pr

‖a+ 1 for some odd r , and n = p.

Example. (1) If a≡2 (mod 4), then a+1 is not the sum of two squares and so there
is at most one odd exponent n such that an

+1 is the sum of two squares. For example,
with a = 6, since a+ 1 = 7 is divisible by the unique prime p = 7 ≡ 3 (mod 4),
n = 7 is the only possible odd n for which an

+1 is the sum of two squares. Indeed,
67
+ 1= 4762

+ 2312.
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(2) For a ≡ 0 (mod 4), there are more options. If we let a = 20, then since
a+ 1= 3 · 7 has two prime factors congruent to 3 mod 4 that divide it to an odd
power, we conclude that 20n

+ 1 is not the sum of two squares for any odd n. On
the other hand, for a = 24, since 2477

+ 1 is the sum of two squares, we must also
have that 2411

+1, 247
+1, and 241

+1 are each the sum of two squares. In general,
the most efficient way to test if a positive integer n is a sum of two squares is to
compute its prime factorization and use Fermat’s two squares theorem.

We consider a special case when a is a multiple of 4.

Theorem 1.3. Let a = 4x , where x ≡ 3 (mod 4) and x is square-free. If n is odd,
then anx

+ 1 is not the sum of two squares.

Example. (1) Let a = 12 = 4 · 3. Then 123n
+ 1 is not the sum of two squares

for any odd n. Note that Theorem 1.2 implies that since 123
+ 1 is not the sum of

two squares, then 123n
+ 1 is not the sum of two squares for any odd n. However,

Theorem 1.3 guarantees, without any computation necessary, that 123
+1 is not the

sum of two squares.

(2) Let a = 28= 4 · 7. Then 287n
+ 1 is not the sum of two squares for any odd n.

The factorization tables for 12n
+ 1 [Brillhart et al. 2002; Wagstaff] imply that

there are sixteen exponents 1≤ n< 293 for which 12n
+1 is the sum of two squares,

which are all prime except for n = 1. The two smallest composite exponents n for
which 12n

+ 1 could possibly be the sum of two squares are n = 473= 11 · 43 and
n = 545= 5 · 109; so far, of those two, we have confirmed only that 12545

+ 1 is
the sum of two squares.

We now consider the case when a is odd. We split this into three subcases:
a ≡ 1 (mod 8), a ≡ 5 (mod 8), and a ≡ 3 (mod 4).

Theorem 1.4. Let a ≡ 1 (mod 8). If an
+ 1 is the sum of two squares for n odd,

then aδ + 1 is the sum of two squares for all δ | n.

Example. (1) Let a = 33. Since 33119
+ 1 is the sum of two squares, 331

+ 1,
337
+ 1, and 3317

+ 1 must also be sum of two squares. Since 333
+ 1 is not the

sum of two squares, we know 333n
+ 1 is not the sum of two squares for any odd n.

(2) Let a = 41. Since 42= 2 · 3 · 7 is not the sum of two squares, 411
+ 1 is not the

sum of two squares, and hence 41n
+ 1 is not the sum of two squares for any odd n.

Note that (as seen in the example with a = 41) the above theorem implies that if
a≡ 1 (mod 8) and a+1 is not the sum of two squares, then an

+1 is not the sum of
two squares for any odd n. The next theorem addresses the case that a ≡ 5 (mod 8).

Theorem 1.5. Let a ≡ 5 (mod 8). Then, an
+ 1 is never the sum of two squares for

n odd.
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Example. Since 13≡ 5 (mod 8), we know 13n
+ 1 is not the sum of two squares

for any odd n.

It follows that if a ≡ 0, 1, 2 (mod 4), n is odd, and an
+ 1 is the sum of two

squares, then aδ+1 is the sum of two squares for all δ | n. (The case when a is even
follows from Theorem 1.2, a ≡ 1 (mod 8) from Theorem 1.4, and a ≡ 5 (mod 8)
from Theorem 1.5.)

Finally, we consider a ≡ 3 (mod 4), as covered in three separate results. These
first two place considerable restrictions on the values of n for which an

+ 1 can be
a sum of two squares.

Lemma 1.6. Let a ≡ 3 (mod 4), and let m be the smallest integer such that
(a + 1)/m is the sum of two squares. If an

+ 1 is the sum of two squares, then
n ≡ m (mod 4).

Theorem 1.7. Let a ≡ 3 (mod 4), and let m be the smallest integer such that
(a + 1)/m is the sum of two squares. If an

+ 1 is a sum of two squares for some
odd n, then

• n/m is a sum of two squares, and

• am
+ 1 is the sum of two squares, and

• if δ | (n/m) and δ is the sum of two squares, then amδ
+ 1 is the sum of two

squares.

• Moreover, if anp2
+ 1 is the sum of two squares for some p ≡ 3 (mod 4), then

p | (an
+ 1).

Theorem 1.7 showcases the advantages of having two teams working indepen-
dently. When we first shared our results in late July, the Wake Forest group had only
the first two parts of the above theorem, and the Washington and Lee group had a
weaker version of the third part that was restricted to m = 1 and to δ being a prime
equivalent to 1 (mod 4). Two weeks later, both teams had improved their results,
with Wake Forest coming up with both the fourth part and the stronger version of
the third part, as seen here. The proof that resulted from this collaboration is a nice
combination of ideas from both teams.

Example. (1) Let a= 11. Then m= 3, and since 113
+1 is the sum of two squares,

if 11n
+ 1 is the sum of two squares, then 3 j

‖n, j odd.

(2) Let a = 43. Then m = 11, and since 4311
+1 is not the sum of two squares, we

conclude that 43n
+ 1 is not the sum of two squares for any odd n.

(3) If a = 4713575, then m = 21. It turns out that a21
+1 is the sum of two squares,

and so if an
+ 1 is the sum of two squares, then 21 | n. Sure enough, a105

+ 1 is the
sum of two squares (and has 701 decimal digits).
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We pause for a moment to remind the reader that Theorem 1.1 states that if a is
not a square, then there exists some odd n such that an

+ 1 is not the sum of two
squares. We can now extend this theorem and demonstrate that in fact there will be
infinitely many such exponents:

• If a is even with a + 1 not the sum of two squares, or if a ≡ 5 (mod 8), then
Theorems 1.2 and 1.5 tell us that an

+ 1 fails to be the sum of two squares for
infinitely many odd n (in fact, for all but at most one odd exponent n).

• If a is even with a+ 1 the sum of two squares, or if a ≡ 1 (mod 8), then we can
use Theorems 1.2 and 1.4 to state that if aδ + 1 is not the sum of two squares for
some odd exponent δ, then aδN

+ 1 fails to be the sum of two squares for all odd
integers N.

• Finally, if a ≡ 3 (mod 4), we call upon Lemma 1.6 to state that an
+ 1 can only

be a sum of two squares for n ≡ m (mod 4).

This next result allows one to state that for certain special values of a, there is
an infinite collection of odd values of n for which an

+ 1 is the sum of two squares.

Theorem 1.8. Suppose n is odd, p ≡ 1 (mod 4) is a prime number and a = px2.
Then an

+1 is the sum of two squares if and only if anp
+1 is the sum of two squares.

The above theorem implies that for those specific values of a, there are either no
odd n, or an infinite number of odd n, for which an

+ 1 is the sum of two squares.
In particular, if a + 1 is the sum of two squares, then a pn

+ 1 is the sum of two
squares for all n ≥ 0. If a+ 1 is not the sum of two squares, one of Theorems 1.2,
1.4, or 1.5 implies that an

+ 1 is not the sum of two squares for any odd n.

Example. (1) Let a = 17, where p = 17 and x = 1. Since 18 is the sum of two
squares, 1717n

+ 1 is the sum of two squares for any n.

(2) Let a = 117, where p = 13 and x = 3. Since a+ 1= 2 · 59 is not the sum of
two squares, 11713n

+ 1 is not the sum of two squares for any n.

Remark. In light of the above theorem, it is natural to ask if there are infinitely
many a ≡ 1 (mod 8) such that an

+ 1 is the sum of two squares for infinitely many
odd n. This is indeed the case. In particular, the main theorem of [Iwaniec 1972]
implies that if x is a real number ≥ 17, then the number of primes p ≤ x with
p ≡ 1 (mod 8) for which p+ 1 is the sum of two squares is at least cx/log(x)3/2

for some positive constant c.

We can use the ideas from Theorem 1.8 to construct an infinite family of numbers
a such that a p

+ 1 is the sum of two squares. This is our next result.

Theorem 1.9. If p≡ 1 (mod 4) is prime, there is a degree-4 polynomial f (X) with
integer coefficients such that f (X)p

+1= g(X)2+h(X)2 for some g(X) and h(X)
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with integer coefficients. Moreover, there is no positive integer n such that f (n) is
a square.

Example. If p = 13, then f (X)= 13(13X2
+ 3X)2. Then f (n)13

+ 1 is the sum
of two squares for every n ∈ N.

We end with a conjecture about the number of odd n for which an
+1 is the sum

of two squares.

Conjecture 1.10. Suppose a is a positive integer and a 6= ck for any positive
integer c and k > 1. Let m be the smallest positive integer such that (a+ 1)/m is
the sum of two squares:

• If m = 1, then there are infinitely many odd n such that an
+ 1 is the sum of two

squares.

• If a ≡ 3 (mod 4), am
+ 1 is the sum of two squares, and m is prime, then there

are infinitely many odd n such that an
+ 1 is the sum of two squares. (In fact,

there should be infinitely many p ≡ 1 (mod 4) such that amp
+ 1 is the sum of two

squares.)

• If a ≡ 3 (mod 4) and m is composite, then there are only finitely many odd n such
that an

+ 1 is the sum of two squares.

The main theoretical tools we use in this paper are the theory of cyclotomic
polynomials, and in particular, a classification of which primes divide 8n(a) (see
Theorem 2.1). Theorems 1.3 and 1.8 also use the identity8n(x)=F(x)2−kxq G(x)2

that arises in Aurifeuillian factorization.
The rest of the paper will proceed as follows. In Section 2, we review previous

results which we will use. In Section 3, we prove a few facts that will be used in
the remainder of the proofs. In Section 4, we prove Theorem 1.1. In Section 5, we
prove Theorems 1.2 and 1.3. In Section 6, we prove Theorems 1.4, 1.5, and 1.7,
along with Lemma 1.6, and we include a heuristic supporting Conjecture 1.10. In
Section 7, we prove Theorems 1.8 and 1.9. We conclude with a chart listing all
a ≤ 50 and the first few odd integers n such that an

+ 1 is the sum of two squares,
as well as a reference to one our theorems.

2. Background

If n is a positive integer and p is a prime number, we write pr
‖n if pr

| n but pr+1 -n.
If n is a positive integer and we write that n is not a sum of two squares because
of the prime p, we mean that p ≡ 3 (mod 4) and there is an odd r such that pr

‖n.
If a and m are integers with gcd(a,m)= 1, we define ordm(a) to be the smallest
positive integer k such that ak

≡ 1 (mod m). It is well known that ar
≡ 1 (mod m)

if and only if ordm(a) | r . Fermat’s little theorem states that if gcd(a, p)= 1, then
a p−1

≡ 1 (mod p); it follows that ordp(a) | (p− 1).
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We will make use of the identity (originally due to Diophantus)

(a2
+ b2)(c2

+ d2)= (ac+ bd)2+ (ad − bc)2.

This applies if a, b, c, d ∈ Z, and also if a, b, c and d are polynomials.
Let8n(x) denote the n-th cyclotomic polynomial; recall that8n(x) is the unique

irreducible factor of xn
− 1 with integer coefficients that does not divide xk

− 1 for
any proper divisor k of n. We have

∏
d | n8d(x)= xn

− 1 and from this it follows
that when n is odd,

xn
+ 1=

x2n
− 1

xn − 1
=

∏
d | 2n, d -n

8d(x)=
∏
δ | n

82δ(x).

We will make use of the facts that for n odd, 82n(x)=8n(−x) and that if n = pk

is prime, then
8pk (1)= lim

x→1

x pk
− 1

x pk−1
− 1
= p.

The following theorem classifies prime divisors of 8n(a).

Theorem 2.1. Assume that a ≥ 2 and n ≥ 2:

• If p is a prime and p -n, then p |8n(a) if and only if n = ordp(a).

• If p is a prime and p | n, then p |8n(a) if and only if n = ordp(a) · pk . In this
case, if n ≥ 3, then p2 -8n(a).

The authors have not been able to trace the origin of the result above, but it is
certainly quite old, and may be contained in the work of A. S. Bang [1886a; 1886b].
This theorem arises in connection with Zsigmondy’s work showing that for any a,
n ≥ 2 there is a prime p for which ordp(a)= n unless n = 2 and a+ 1 is a power
of 2. One can find a proof of the result above in Trygve Nagell’s textbook [1964]
(see Theorems 94 and 95).

We will also make use of certain identities for cyclotomic polynomials that arise
in Aurifeuillian factorization. If k is a square-free positive integer, let d(k) be the
discriminant of Q(

√
k), that is,

d(k)=
{

k if k ≡ 1 (mod 4),
4k if k ≡ 2, 3 (mod 4).

Suppose that n ≡ 2 (mod 4), and d(k)-n but d(k) | 2n. Write the prime factor-
ization of n as n = 2

∏k
i=1 pei

i and define q =
∏k

i=1 pei−1
i . Then Theorem 2.1 of

[Stevenhagen 1987] states that

8n(x)= F(x)2− kxq G(x)2

for some polynomials F(x),G(x) ∈ Z[x]. If x =−kv2 for some integer v, we get

8n(−kv2)= F(−kv2)2+ (k(q+1)/2vq G(−kv2))2
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is the sum of two squares. In the case that x = kv2 for some integer v, we get the
factorization

8n(kv2)= F(kv2)2− k(kv2)q G(kv2)2

= (F(kv2)+ k(q+1)/2vq G(kv2))(F(kv2)− k(q+1)/2vq G(kv2)).

Theorem 2.7 of [Stevenhagen 1987] states that these two factors are relatively prime.
We will also require some basic facts about quadratic residues. If p is an odd

prime, we define
(a

p

)
to be 1 if gcd(a, p) = 1 and there is some x ∈ Z such that

x2
≡a (mod p). We define

(a
p

)
to be−1 if gcd(a, p)= 1 and there is no such x , and

we set
(a

p

)
=0 if p | a. Euler’s criterion gives the congruence

(a
p

)
≡a(p−1)/2 (mod p).

The definition of the quadratic residue symbol can be extended. If n is an odd
integer with prime factorization n =

∏k
i=1 pei

i , define the Jacobi symbol by(
a
n

)
=

k∏
i=1

(
a
p

)
ei .

The quadratic reciprocity law for Jacobi symbols states that if a and b are both
positive and odd, then (

a
b

)
= (−1)

1
2 (a−1)· 12 (b−1)

(
b
a

)
.

3. General results

The following general lemmas pertain primarily to how the divisors of n affect the
divisors of an

+ 1, and are used in rest of the sections of the paper. Results of this
type are well known and date back to [Lucas 1878; Carmichael 1913/14]. A more
modern source is [Stewart 1977]. We provide our own simple and short proofs of
these facts to keep the paper self-contained.

Lemma 3.1. Let b, n ∈ Z, and n be odd and suppose b | (x + 1). Then

b | (xn−1
− xn−2

+ xn−3
− · · ·+ 1)

if and only if b | n.

Proof. Let b | (x + 1). Then x + 1≡ 0 (mod b), so x ≡−1 (mod b). Thus,

xn−1
− xn−2

+ xn−3
− · · ·− x + 1
≡ (−1)n−1

− (−1)n−2
+ (−1)n−3

− · · ·− (−1)+ 1 (mod b)

≡ 1+ 1+ 1+ · · ·+ 1+ 1 (mod b)

≡ n (mod b).

Therefore b | (xn−1
− xn−2

+ xn−3
− · · · − x + 1) if and only if n ≡ 0 (mod b),

or equivalently, b | n. �
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We obtain the following corollary as a result of the above lemma.

Corollary 3.2. Suppose that n is odd, δ | n and xδ+1 is not the sum of two squares
because of some prime p. If p -n, then xn

+ 1 is not the sum of two squares.

Proof. Consider

xn
+ 1= (xδ + 1)(xn−δ

− xn−2δ
+ xn−3δ

− · · ·− xδ + 1).

Since xδ + 1 is not the sum of two squares because of p, we have p ≡ 3 (mod 4),
r odd and pr

‖(xδ+1). Then p -n implies p -(xn−δ
− xn−2δ

+ xn−3δ
−· · ·− xδ+1)

by Lemma 3.1, and thus pr
‖(xn
+ 1) implying that xn

+ 1 is not the sum of two
squares. �

Lemma 3.3. Let p be a prime such that pe
‖(am

+ 1) for some e ∈ N, and let
n = mcpk be odd with gcd(c, p)= 1 and k ≥ 0. Then pe+k

‖(an
+ 1).

Proof. Using notation from the statement of the theorem, we can write

an
+ 1= (am

+ 1) ·
an
+ 1

am + 1
.

Then, recalling how am
+1 factors into cyclotomics, we let d be the smallest divisor

of m such that p |82d(a). Thanks to Theorem 2.1, we know that p‖82dp(a),
p‖82dp2(a), and so on, yet p does not divide into any other cyclotomic expressions
not of that form. Now, choose i as large as possible such that 2dpi

|m. Then, by our
definition of n, we know that everything in the set {dpi+1, dpi+2, . . . , dpi+k

} divides
into n yet none of them divide into m, and we also know from Theorem 2.1 (as men-
tioned above) that each of the k expressions82dpi+1(a),82dpi+2(a), . . . , 82dpi+k (a)
contains exactly one copy of the prime p and that no other cyclotomic divisors
of (an

+ 1)/(am
+ 1) contain this prime p. Hence, since pe

‖(am
+ 1), we know

pe+k
‖(an
+ 1). �

4. Proof of Theorem 1.1

We begin with a lemma constructing an odd n such that an
+ 1 is not the sum of

two squares.

Lemma 4.1. Suppose there exists a prime p≡ 3 (mod 4) such that
(a

p

)
=−1. Then

either a(p−1)/2
+ 1 or a p(p−1)/2

+ 1 is not a sum of two squares.

Proof. If a(p−1)/2
+ 1 is not a sum of two squares, then we are done. Suppose

a(p−1)/2
+ 1 is a sum of two squares. By Euler’s criterion, we have a(p−1)/2

≡

−1 (mod p), and it follows therefore that for some k ∈ N, p2k
‖ a(p−1)/2

+ 1. By
Lemma 3.3, letting m = (p − 1)/2 and n = p(p − 1)/2, we know that p2k+1

‖

(a p(p−1)/2
+ 1). Thus, by Fermat’s two squares theorem, a p(p−1)/2

+ 1 is not the
sum of two squares. �
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As an example, we examine 148n
+1. We can conclude from the prime factoriza-

tion of 148n
+ 1 that 148n

+ 1 is a sum of two squares for all odd n < 9. Note that
9 = 19−1

2 and that 19 is the smallest prime p ≡ 3 (mod 4) for which
(148

p

)
= −1.

Calculation and Fermat’s two square theorem reveal that 148(19−1)/2
+1= 1489

+1
is not a sum of two squares.

Proof of Theorem 1.1. Write a = 2ka′, where a′ is odd. If q ≡ 3 (mod 4) is prime,
then (

a
q

)
=

(
2k

q

)(
a′

q

)
=

(
2k

q

)
· (−1)(a

′
−1)/2

(
q
a′

)
=

(
2k

q

)(
−q
a′

)
.

If a′ is not a square and a′ 6= −1, then there is a prime r | a′ that occurs to an odd
power. The system of congruences

q ≡ 7 (mod 8),

−q ≡ quadratic nonresidue (mod r),

−q ≡ 1 (mod s) for all prime s | a′, s 6= r,

has a solution q ≡ x (mod 8a′) with gcd(x, 8a′)= 1. Therefore there is a prime q
satisfying these congruences, and we have

(a
q

)
=−1.

In the case that a′ is a square but a is not, k is odd. In this case we choose
q ≡ 3 (mod 8) and −q ≡ 1 (mod s) for all prime s | a′. This likewise yields a
prime q such that

(a
q

)
=−1.

By Lemma 4.1, either a(p−1)/2
+ 1 or a p(p−1)/2

+ 1 is not a sum of two squares
and so there is at least one value of n for which an

+1 is not a sum of two squares. �

5. Even

Now we consider the case when a is even. We prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Suppose that an
+ 1 is the sum of two squares. If aδ + 1

is also the sum of two squares for every divisor δ of n, then we are done. If not,
then let δ be the largest divisor of n such that aδ + 1 is not the sum of two squares.
Thus, δ < n and so there is a prime p that divides n/δ. By assumption, we have
that aδp

+ 1 is the sum of two squares and

aδp
+ 1= (aδ + 1)(aδ(p−1)

− aδ(p−2)
+ · · ·+ 1).

Lemma 3.1 implies that gcd(aδ + 1, (aδp
+ 1)/(aδ + 1)) divides p. Since aδ + 1 is

not the sum of two squares, the gcd cannot be 1 and so it must be p. Moreover,

aδp
+ 1

p2 =
aδ + 1

p
·

aδp
+ 1

p(aδ + 1)
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is a sum of two squares and the product of two relatively prime integers. Thus,
(aδ + 1)/p is the sum of two squares. It follows that p ≡ 3 (mod 4) and since
aδ + 1 is odd, we get

aδ + 1= p× sum of two squares≡ 3 (mod 4).

However, since a is even, we must have that δ = 1 and the previous equation
implies that p is the unique prime congruent to 3 mod 4 that divides a+ 1 to an
odd power. �

Now we prove Theorem 1.3 involving a special case when a ≡ 0 (mod 4).

Proof of Theorem 1.3. First, we show that ax
+ 1 is not the sum of two squares. We

have
ax
+ 1=

∏
d | 2x, d -x

8d(a).

We apply Theorem 2.1 of [Stevenhagen 1987] to 82x(y) ∈ Z[y]. We set n = 2x ,
k = x , d(k)= 4x . Then d(k)-n but d(k) | 2n. We have

82x(y)= F(y)2− xyG(y)2.

Assume without loss of generality that the leading coefficient of F(y) is positive.
Note that since 82x(y) has even degree, the degree of F(y) is larger than that
of G(y).

Replacing y with xy2 we get

82x(xy2)= F(xy2)2− x(xy2)G(xy2)

= (F(xy2)+ xyG(xy2))(F(xy2)− xyG(xy2)).

Let f (y) and g(y) be the first and second factors above, respectively. We have
82x(a) = 82x(4x) = f (2)g(2). From Theorem 2.7 of [Stevenhagen 1987] we
know gcd( f (2), g(2))= 1. We claim f (2)≡ g(2)≡ 3 (mod 4). This will follow
if we show that the constant coefficients of f (y) and g(y) are both 1, and the linear
coefficients of f (y) and g(y) are both odd.

We have f (y) = a0 + a1 y + a2 y2
+ · · · and g(y) = a0 − a1 y + a2 y2

+ · · · .
Since the constant coefficient of 82x(y) is 1, we have a2

0 = 1 and so a0 =±1. If
a0 =−1, then since the leading coefficient of F(y) is positive, f (y) and g(y) have
positive leading coefficients. However, then limy→∞ f (y)= limy→∞ g(y)=∞ but
f (0)= g(0)=−1. This implies that f (y) and g(y) both have a positive real root,
but f (y)g(y)=82x(xy2) has no real roots. This is a contradiction and so a0 = 1.

It is well known that if n > 1, the coefficient of y in 8n(y) is −µ(n); see
for example, the last equation on page 107 of [Lehmer 1966]. Multiplying f (y)
and g(y), we get

82x(xy2)= 1−µ(2x)xy2
+ · · · = a2

0 + (2a0a2− a2
1)y

2
+ · · · .
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We have that µ(2x) = ±1 is odd and −µ(2x) = 2a0a2 − a2
1 . Thus, a2

1 ≡ µ(2x)
(mod 2) and so a1 is odd. Thus, f (2)≡ a0+2a1 ≡ 1+2≡ 3 (mod 4) and likewise
g(2)≡ a0− 2a1 ≡ 1− 2≡ 3 (mod 4).

Thus, there is a prime p ≡ 3 (mod 4) and an odd j such that p j
‖ f (2) and a

prime q ≡ 3 (mod 4) and an odd k such that qk
‖g(2). Since gcd( f (2), g(2))= 1,

we have p 6= q .
We claim that at most one of p or q divides x . Suppose to the contrary that

p | x and q | x . Since p |82x(a), Theorem 2.1 implies 2x = p · ordp(a) and since
q |82x(a), we get 2x=q ·ordq(a). This implies that ordp(a)=2x/p is a multiple of
q and ordq(a)=2x/q is a multiple of p. This is a contradiction, because either p<q
(in which case q ≤ ordp(a)≤ p−1) or q < p (in which case p ≤ ordq(a)≤ q−1).

Thus, at most one of p or q divides x . Assume without loss of generality that
p -x . Then we have p j

‖82x(a) and Theorem 2.1 gives ordp(a)= 2x . This implies
p -82δ(a) for δ | x with δ 6= x . As a consequence, p j

‖(ax
+1) and so ax

+1 is not
the sum of two squares.

Now, let A=ax. Then A+1 is not the sum of two squares, and A+1≡1 (mod 4).
Thus, there are at least two primes ≡ 3 (mod 4) that divide A+ 1 to an odd power,
and Theorem 1.2 implies that An

+ 1 is never the sum of two squares for n odd. �

6. Odd

This section contains proofs of Theorems 1.4, 1.5, and 1.7, along with Lemma 1.6,
which pertain to when an

+ 1 can be written as a sum of two squares when a is an
odd integer. In this section, we define m to be the least positive integer such that
(a+ 1)/m is the sum of two squares.

We begin with a ≡ 1 (mod 4). We prove Theorem 1.4 which handles the case
a ≡ 1 (mod 8), and Theorem 1.5 which handles a ≡ 5 (mod 8).

Proof of Theorem 1.4. Let a ≡ 1 (mod 8). Then an
+ 1 ≡ 2 (mod 8) for all n,

so (an
+ 1)/2 ≡ 1 (mod 4). Suppose an

+ 1 is the sum of two squares, and
assume by contradiction that δ is the largest divisor of n such that aδ + 1 is not
the sum of two squares. Since (aδ + 1)/2≡ 1 (mod 4), there exist distinct primes
q1 ≡ q2 ≡ 3 (mod 4) such that q j1

1 ‖(a
δ
+ 1) and q j2

2 ‖(a
δ
+ 1), j1, j2 odd.

We know from Lemma 3.3 that since an
+ 1 is the sum of two squares, ql1

1 ‖ n
and ql2

2 ‖ n for some odd l1 and l2. Without loss of generality, suppose q1 > q2, and
consider

aδq1 + 1= (aδ + 1)
∏

δx | δq1, δx -δ

82δx (a).

Since q1>q2, we know q1 - ordq2(a), and Theorem 2.1 implies q2 -(aδq1+1)/(aδ+1).
Then q j2

2 ‖(a
δq1+1), so aδq1+1 is not the sum of two squares. This is a contradiction

because δq1 > δ and δq1 | n. Thus aδ + 1 is the sum of two squares for all δ | n. �



598 DRESDEN, HESS, ISLAM, ROUSE, SCHMITT, STAMM, WARREN AND YUE

Proof of Theorem 1.5. Suppose a ≡ 5 (mod 8) and n is odd. Then

an
+ 1= a2k+1

+ 1

≡ 52k
· 5+ 1 (mod 8)

≡ 6 (mod 8).

This implies that (an
+ 1)/2≡ 3 (mod 4), so by Fermat’s two squares theorem we

know that an
+ 1 is never the sum of two squares when n is odd. �

Next, the following lemmas will be useful in forming contradictions in the proof
of Theorem 1.7 because of the restrictions they place on n in order for an

+ 1 to be
the sum of two squares, where a ≡ 3 (mod 4) and n odd.

We begin with two lemmas that cover the modulus of permissible exponents n
when a ≡ 3 (mod 4).

Lemma 6.1. For a = 4 · 2i
· (4 j + 1)− 1 with i, j ≥ 0, then an

+ 1 can only be
written as the sum of two squares (for n odd) if n ≡ 1 mod 4.

Note that this covers values of a such as a = 3, 7, 15, 19, 31, and 35. This
explains why 359

+ 1 is a sum of two squares but 353
+ 1 is not.

Proof. Let us argue by contradiction. Suppose n ≡ 3 mod 4. Write n = 4k + 3,
and note that a ≡ 4 · 2i

− 1 mod 16 · 2i . Then, making liberal use of the binomial
theorem on a3

≡ (4 · 2i
− 1)3 and a4

≡ (4 · 2i
− 1)4, we have:

an
+ 1= a4k+3

+ 1

= (a3) · (a4)k + 1

≡ (· · · + 3 · (4 · 2i )− 1) · (· · · − 4 · (4 · 2i )+ 1)k + 1 mod 16 · 2i

≡ (3 · 4 · 2i
− 1) · (1)k + 1 mod 16 · 2i

≡ 12 · 2i mod 16 · 2i .

This implies that (an
+ 1)/(4 · 2i ) is equivalent to 3 mod 4. Then there must

be at least one prime equivalent to 3 mod 4 that appears in the factorization of
(an
+ 1)/(4 · 2i ) an odd number of times. This implies the same for an

+ 1 and
thus by Fermat, an

+ 1 is not the sum of two squares. This is a contradiction to our
assumption and thus n cannot be equivalent to 3 mod 4. �

Lemma 6.2. For a = 4 · 2i
· (4 j + 3)− 1 with i, j ≥ 0, then an

+ 1 can only be
written as the sum of two squares ( for n odd) if n ≡ 3 mod 4.

Note that this covers values of a such as a = 11, 23, 27, 43, and so on, including
191 which gives us two values n = 3 and n = 15 such that 191n

+ 1 is the sum of
two squares. Both 3 and 15, of course, are equivalent to 3 mod 4.
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Proof. Keeping in mind that a ≡−1 mod 4, we have

an
+ 1= (a+ 1) · (an−1

− an−2
+ · · ·+ 1)

= 4 · 2i
· (4 j + 3) · (an−1

− an−2
+ · · ·+ 1).

Since a ≡−1 mod 4, the last expression, (an−1
− an−2

+ · · ·+ 1), is equivalent to
n mod 4. The only hope, then, for an

+ 1 to be the sum of two squares is for n to
be 3 mod 4, as then (an

+ 1)/(4 · 2i ) will be the product of two expressions both
equivalent to 3 mod 4, resulting in (an

+1)/(4 ·2i ) being equivalent to 1 mod 4. �

The last two lemmas allow us to now prove one of our earlier lemmas:

Proof of Lemma 1.6. For a ≡ 3 (mod 4), we can write a = 4K − 1, where K can
be split into an even part (which we write as 2i ) and an odd part (which we write
as either 4 j + 1 or 4 j + 3). In the first case, a+ 1 equals 4 · 2i

· (4 j + 1) and since
m is the smallest integer such that (a+ 1)/m is the sum of two squares, m must be
equivalent to 1 (mod 4), and by Lemma 6.1 we have n ≡ 1 (mod 4) in this case,
and so n ≡ m (mod 4). A similar argument applies to the second case. �

This lemma places further restrictions on n. Recall that m is the smallest positive
integer such that (a+ 1)/m is the sum of two squares.

Lemma 6.3. Let a ≡ 3 (mod 4). If an
+ 1 is the sum of two squares, then for all

primes p ≡ 3 (mod 4) such that pe
‖(a + 1), e odd, we have pk

‖n, k odd. In
particular, if an

+ 1 is the sum of two squares, then m | n.

Proof. Let an
+ 1 be the sum of two squares and suppose pe

‖(a+ 1), e odd, and
p ≡ 3 (mod 4). Select k such that pk

‖n. Then, Lemma 3.3 implies pe+k
‖(an
+ 1).

Since an
+ 1 is the sum of two squares, we know e+ k is even, which makes k odd.

It follows that since m =
∏

p for p such primes of this type, if an
+ 1 is the sum

of two squares, then m | n. �

We will now prove Theorem 1.7, which applies to all a ≡ 3 (mod 4).

Proof of Theorem 1.7. First we will prove that n/m is the sum of two squares.
Suppose that an

+ 1 is the sum of two squares and recall that by Lemma 6.3, m | n.
Assume by contradiction that n/m is not the sum of two squares. Then let q be
the greatest prime such that q ≡ 3 (mod 4) and q j

‖ n/m, j odd. If q |m, then
Lemma 3.3 implies that an even power of q divides am

+1, and so if an odd power of
q divides an

+1, then qr
‖n, r odd. But m is square-free, so q ‖m. Then qr−1

‖n/m,
r − 1 even, which is a contradiction. Therefore we can assume q -m, so q j

‖ n.
We know that82q j (a) divides an

+1. We have82q j (a)≡82q j (−1)≡8q j (1)≡
q ≡ 3 (mod 4). This implies that there exists a prime p ≡ 3 (mod 4) such that
pk
‖82q j (a), k odd. We can consider two cases: p 6= q and p = q .
Suppose p 6= q . Then p -q j, so ordp(a)= 2q j, which implies p> q . Since an

+1
is the sum of two squares, Lemma 3.3 implies pl

‖ n, l odd. Since ordp(a) > 2,
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p -a+ 1, so p -m. Then p is a prime congruent to 3 (mod 4) that divides n/m to
an odd power, and p > q, which is a contradiction because we assumed q is the
largest such prime.

Now suppose p = q. Since p |82p j (a), it follows that a p j
+ 1 ≡ 0 (mod p).

Repeatedly applying Fermat’s little theorem, a p
≡a (mod p), we find that p | (a+1).

Since p -m, pk
‖(a+1), k even. Then Lemma 3.3 implies that pk+ j

‖ an
+1, where

k + j is odd, which is a contradiction. Thus if an
+ 1 is the sum of two squares,

then n/m is also the sum of two squares.
Next we’ll prove that am

+1 is the sum of two squares. Suppose an
+1 is the sum

of two squares, where n=ms, and assume by contradiction that am
+1 is not the sum

of two squares. Then there exists some prime q ≡ 3 (mod 4) such that q j
‖(am
+1),

j odd. Since s = n/m is the sum of two squares, we know qk
‖s, k even. Then n =

mqks ′, where gcd(s ′, q)=1, so qk+ j
‖(an
+1), k+ j odd (Lemma 3.3). This is a con-

tradiction because we assumed an
+1 is the sum of two squares. Therefore if an

+1
is the sum of two squares for some odd n, then am

+1 is also the sum of two squares.
Let δ | (n/m), where δ is the sum of two squares, and suppose an

+ 1 is the sum
of two squares. We will show that amδ

+ 1 is the sum of two squares. Assume by
contradiction that there exists a prime q ≡ 3 (mod 4) such that q j

‖ amδ
+1, j odd.

Since δ is the sum of two squares, we know qk
‖ δ, k even, k ≥ 0. Because q

must divide an
+ 1 to an even power, Lemma 3.3 implies ql

‖ n/(mδ), l odd, so
ql+k
‖ n/m, l + k odd, which is a contradiction because n/m is the sum of two

squares. Thus if an
+1 is the sum of two squares, amδ

+1 is the sum of two squares
for all δ | n/m such that δ is the sum of two squares.

Finally, we will show that if anp2
+ 1 is the sum of two squares for some

p ≡ 3 (mod 4), then p | (an
+ 1). By Lemma 1.6 we know anp

+ 1 is not the sum
of two squares, so there exists some q ≡ 3 (mod 4) with q j

‖(anp
+ 1), j odd.

If q 6= p, then by Lemma 3.3 we have q j
‖(anp2

+ 1), j odd, which contradicts
anp2
+ 1 being the sum of two squares. Hence q = p, and since p | (anp

+ 1) and
anp
≡ an (mod p), we have p | (an

+ 1), as desired. �

We conclude this section with a heuristic giving evidence for Conjecture 1.10.
Suppose first that a ≡ 0 or 1 mod 4. In this case, if an

+1 is the sum of two squares
for any n, then a+ 1 is the sum of two squares. Let Ap be the event that 82p(a) is
the sum of two squares. It seems plausible that the probability that this occurs is
approximately

K√
ln(82p(a))

≈
K
√

p
.

Since
∑

p≡1 (mod 4)1/
√

p diverges, we should expect an infinite number of the
events Ap to occur, and this would yield infinitely many primes p for which a p

+1
is the sum of two squares.
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If a ≡ 2 (mod 4), then Theorem 1.2 implies there is at most one n such that
an
+ 1 is the sum of two squares.
In the case that a ≡ 3 (mod 4), let m denote the smallest positive integer such

that (a + 1)/m is the sum of two squares. First, consider primes p ≡ 1 (mod 4)
such that amp

+ 1 is the sum of two squares. We have

amp
+ 1

am + 1
=

∏
d | 2mp, d -2m

8d(a).

Theorem 2.1 implies that if we write 8d(a) = gcd(8d(a),m)cd , then the cd are
pairwise coprime and this implies that cd is the sum of two squares for all d. It
seems plausible that the cd being the sum of two squares are independent, and so
the probability that amp

+ 1 is the sum of two squares is approximately∏
d

1
√

ln(cd)
≈ p−τ(m)/2,

where τ(m) is the number of divisors of m. The sum
∑

p≡1 (mod 4) prime p−τ(m)/2

diverges if m = 1 or m is prime, and converges if m is composite. In particular,
in the case that m is composite, there are only finitely many primes p such that
amp
+ 1 is the sum of two squares.

Then, Theorem 1.7 implies that there are only finitely many primes that can
divide some number n such that an

+ 1 is the sum of two squares. If there are
infinitely many n such that an

+ 1 is the sum of two squares, it follows then that
there is a prime p such that a pr

+ 1 is the sum of two squares for infinitely many r .
We have a pr

+ 1=
∏r

i=082pi (a). If we write

ri =
82pi (a)

gcd(82pi (a), p)
,

then Theorem 2.1 implies gcd(ri , r j ) = 1. It follows from this that ri is the sum
of two squares for all i ≥ 1. Assuming that these events are independent, the
probability this occurs is

∑
i K/
√

ln(ri ). But this sum converges. Therefore the
“probability is zero” that there are infinitely many n such that an

+ 1 is the sum of
two squares in the case when a ≡ 3 (mod 4) and m is composite.

As an example, we consider a = 4713575, with a composite m value of m = 21.
We conjecture that there are finitely many n such that an

+ 1 is the sum of two
squares. So far, we know only of n = 21 and n = 105.

7. p ≡ 1 (mod 4)

The previous theorems put constraints on when an
+1 can be the sum of two squares

for different categories of a. The following proof of Theorem 1.8 uses Aurifeuillian
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factorization to show that when a = pv2, where p ≡ 1 (mod 4) is a prime and p -v,
there are either zero or infinitely many odd integers n such that an

+ 1 is the sum
of two squares.

Proof of Theorem 1.8. Let a = pv2, where p≡ 1 (mod 4) is prime. Suppose an
+1

is the sum of two squares and consider

anp
+ 1=

∏
δ | n

82δ(a)
∏

δ | np, δ -n

82δ(a).

We know
∏
δ | n 82δ(a) = an

+ 1 is the sum of two squares. Consider the
Aurifeuillian factorization of 82δ(a), where δ | np, δ -n, x = −kv2, k = −p ≡
3 (mod 4), and q is odd:

82δ(x)= (F(x))2− kxq(G(x))2,

82δ(−kv2)= (F(−kv2))2− k(−kv2)q(G(−kv2))2

= (F(−kv2))2+ kq+1v2q(G(−kv2))2

= (F(−kv2))2+ (k(q+1)/2vq G(−kv2))2

=82δ(a).

Therefore 82δ(a) is the sum of two squares for any δ | np with δ -n. Thus anp
+1 is

the sum of two squares. Conversely, suppose that anp
+1 is the sum of two squares.

Then we can see again that 82δp(a) is the sum of two squares for any factor δ. This
implies that

∏
δ | n 82δ(a)= an

+ 1 is the sum of two squares. �

Now, we will construct an infinite family of numbers a = f (X) such that a p
+ 1

is the sum of two squares.

Proof of Theorem 1.9. If p ≡ 1 (mod 4), then there exists an even integer u and an
odd integer v such that p = u2

+ v2. Then consider the polynomials

A(X)= 1
2 upX2

+ vX,

B(X)= 1
2 u2 pX2

− 1,

C(X)= 1
2 uvpX2

+ pX.

Let f (X)= p A(X)2; then we have

f (X)p
+ 1= ( f (X)+ 1)82p( f (X))

= (p A(X)2+ 1)82p(p A(X)2).

It is straightforward to check that f (X) + 1 can be written as the sum of
two squares: p A(X)2 + 1 = B(X)2 + C(X)2. Then consider the Aurifeuillian
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factorization of 82p(x), where we let k =−p and x = p A(X)2. Then we get

82p(x)= F(x)2− kxG(x)2,

82p(p A(X)2)= (F(p A(X)2))2− p(−p A(X)2)(G(p A(X)2))2

= (F(p A(X)2))2+ (p2 A(X)2)(G(p A(X)2))2

= (F(p A(X)2))2+
(

p A(X)(G(p A(X)2))
)2
.

Therefore, 82p( f (X)) can be written as the sum of two squares as well. This
implies that f (X)p

+ 1 is the product of two terms, each of which can be written
as the sum of two squares. �

8. Chart

Here we illustrate the first few odd integers n such that an
+ 1 is the sum of two

squares for all integers a ∈ [1, 50].

a n Theorem a n Theorem

1 all 1.1 26 − 1.2
2 3 1.2 27 − 1.7
3 1, 5, 13, 65, . . . 1.7 28 1, 3, 11, 19, . . . 1.2
4 all 1.1 29 − 1.5
5 − 1.5 30 31 1.2
6 7 1.2 31 1, 5, 25, 41, . . . 1.7
7 1, 13, 17, 29, . . . 1.7 32 − 1.2
8 1 1.2 33 1, 5, 7, 17, . . . 1.4
9 all 1.1 34 − 1.2

10 − 1.2 35 1, 9, 13, 29, . . . 1.7
11 3, 159, . . . 1.7 36 all 1.1
12 1, 5, 11, 23, . . . 1.2 37 − 1.5
13 − 1.5 38 − 1.2
14 3 1.2 39 1, 13, 37, 61, . . . 1.7
15 1, 29, 89, 97, . . . 1.7 40 1, 5, 13, 53, . . . 1.2
16 all 1.1 41 − 1.4
17 1, 7, 17, 23, . . . 1.8 42 − 1.2
18 19 1.2 43 − 1.7
19 1, 17, 29, 37, . . . 1.7 44 1, 5, 7, 17, . . . 1.2
20 − 1.2 45 − 1.5
21 − 1.5 46 − 1.2
22 − 1.2 47 − 1.7
23 3, 123, . . . 1.7 48 1, 3, 5, 17, . . . 1.2
24 1, 7, 11, 19, . . . 1.2 49 all 1.1
25 all 1.1 50 − 1.2
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