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A finite graph on n vertices has a prime labeling provided there is a way to label
the vertices with the integers 1 through n such that every pair of adjacent vertices
has relatively prime labels. We extend the definition of prime labeling to infinite
graphs and give a simple necessary and sufficient condition for an infinite graph
to have a prime labeling. We then measure the complexity of prime labelings
of infinite graphs using techniques from computability theory to verify that our
condition is as simple as possible.

1. Introduction

A graph labeling is essentially an assignment of integers to the vertices (or some-
times edges or both) of a graph subject to certain conditions. In the last 50 or so
years, a multitude of graph labelings have been described and studied. The dynamic
survey [Gallian 1998] describes over 50 types of graph labelings with results drawn
from over 2000 papers. All but a handful of these consider only finite graphs. Here
we consider one type of graph labeling and see how we can extend the definition to
infinite graphs, with the hope that understanding this limit case might shed some
light on open problems for finite graphs.

For a finite graph G(V, E), a prime labeling is a bijection f :V→{1, 2, . . . , |V |}
such that for all {u,v}∈E , f (u) and f (v) are relatively prime (gcd( f (u), f (v))=1).
If a graph admits a prime labeling, we call the graph prime. This notion of graph
labeling originates with Entringer, and was first described in a paper by Tout,
Dabboucy, and Howalla [Tout et al. 1982]. Most of the results on prime labelings
have been to show that large classes of graphs are in fact prime, but little is known
in general. For example, Pikhurko [2007] proved that all trees with up to 50 vertices
are prime. Recently Haxell, Pikhurko, and Taraz [Haxell et al. 2011] proved that
all large trees are prime. However, the Entringer–Tout conjecture, that all trees are
prime, remains open.
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A similar story emerges for another class of graphs: ladders (Pn�P2 for some n).
T. Varkey conjectured in an unpublished work that all ladders are prime. Work on
this question was done in [Berliner et al. 2016; Sundaram et al. 2006; 2007], and a
recent preprint [Ghorbani and Kamali 2016] claims to prove the conjecture.

In this present work, we ask which infinite graphs admit prime labelings. As
far as we know, this is the first attempt at such an investigation, although we note
that other types of labelings have successfully been extended to infinite graphs,
such as in [Combe and Nelson 2006] for magic labelings or [Chan et al. 2009] for
graceful labelings. The latter is particularly interesting in that it classifies precisely
which infinite trees have graceful labelings, despite the long open conjecture that
all (finite) trees are graceful. In Section 4, we will similarly prove that all infinite
trees and all infinite ladders are prime.

We will start in Section 2 with some preliminary definitions and notation. Then
in Section 3 we give an algorithm which produces a prime labeling of many infinite
graphs that have prime labelings. This will lead us to a classification theorem for
which infinite graphs are prime, which we state and prove in Section 4. We consider
issues of complexity in Section 5. Finally, we conclude with some open questions
in Section 6.

2. Preliminaries

Before we can study prime labelings of infinite graphs, we must decide what exactly
we mean by this. First, by an infinite graph G = (V, E) we will always mean a
countably infinite graph (while there are uncountable graphs, it does not make sense
to label these with integers). We could safely take V = N= {0, 1, 2, . . .}, but we
will usually use v0, v1, v2, . . . for the names of the vertices to avoid confusion with
their labels. The edge set E will simply be a set of two-element subsets of V. Note
this allows for finite or countably infinite numbers of edges, and does not prohibit
vertices having infinite degree.

We will freely generalize standard notation for graphs to the infinite case: K2,∞,
for example, will be the complete bipartite graph which has two vertices in one
part and infinitely many in the other. The only time standard notation becomes
ambiguous is with infinite paths: since Pn is a path with n edges, it makes sense to
consider P∞ as a path with infinitely many edges. However, there are two options
here. The path could extend infinitely in both directions (a two-way infinite path) or
just one (a one-way infinite path). We will use P∞ to represent the one-way infinite
path and not adopt a notation for the former.

It is then reasonable to extend the definition of prime labeling to infinite graphs
as follows:

Definition. Given an infinite graph G = (V, E), a prime labeling is a bijection
f : V → {1, 2, . . .} such that gcd( f (u), f (v))= 1 for all {u, v} ∈ E .
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In what follows, it will sometimes be useful to exclude 1 from the codomain. Fol-
lowing Vaidya and Prajapati [2011], who introduced and studied k-prime labelings
for finite graphs, we define k-prime labelings of infinite graphs as follows:

Definition. Given an infinite graph G = (V, E), a k-prime labeling is a bijection
f : V → {k, k+ 1, k+ 2, . . .} such that gcd( f (u), f (v))= 1 for all {u, v} ∈ E .

Note that a 1-prime labeling is the same as a prime labeling. Thus trivially, every
prime graph is k-prime for some k, and every graph that is k-prime for all k will
be prime. We will see shortly that there are infinite graphs that are prime but not
2-prime. However, it turns out that every infinite 2-prime graph is k-prime for all k.
This can be seen by considering an algorithm for producing a k-prime labeling, as
we now proceed to do.

3. An algorithm for prime labelings

We begin by describing a procedure which we think is a reasonable way to produce
a k-prime labeling of an infinite graph. As usual, we take the vertex set to be
V = {v0, v1, . . .}.

We will proceed in stages, so that the every vertex is assigned some label at a
finite stage, and in the limit, the labeling of the graph is k-prime. At the start of
stage s, we will assume that we have labeled finite subsets Vs ⊆ V without mistakes
(i.e., the greatest common divisor of labels on any two adjacent vertices in Vs is 1),
and proceed to find and label two vertices appropriately.

Algorithm 3.1. Proceed in stages.

Stage s = 0: label v0 with k and set V1 = {v0}.

Stage s > 0: Given labeled Vs ⊂ V :

(1) Find the least natural number i such that vi is not adjacent to any vertex in Vs ,
and label it with the least integer greater than k not yet used as a label.

(2) Find the least integer j such that vj is unlabeled, and label it with a prime not
yet used as a label, larger than any label of vertices adjacent to vj .

(3) Let Vs+1 = Vs ∪ {vi , vj } and proceed to the next stage.

By design, this algorithm will always label adjacent vertices with numbers that
are relatively prime. Since there are infinitely many prime numbers, it is always
possible to complete step (2) of each stage. Thus, in order to show that this algorithm
produces a k-prime labeling for a graph, it is only necessary to show that it is always
possible to find a vertex vi such that vi is not adjacent to any vertex in Vs .

To illustrate the algorithm, we give some examples of infinite graphs that have
prime labelings, as well as some that do not.
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Figure 1. A (one-way) infinite ladder.

1 5 4 11 8 17 10 23 14

3 2 7 6 13 9 19 12 v17

Figure 2. The result of the first eight stages of the algorithm.

Example 3.2. The graph P∞�P2 with vertices arranged as in Figure 1 receives a
prime labeling from Algorithm 3.1.

The result of the first eight stages of the algorithm is shown in Figure 2. Since
the graph extends infinitely, it will always be possible to find a vertex not adjacent
to any of the already labeled vertices. This means the algorithm will produce a
prime labeling.

Example 3.3. An infinite complete binary tree with vertices arranged as in Figure 3
receives a prime labeling from Algorithm 3.1.

Once again, it will always be possible to find a vertex not connected to the labeled
part of the graph, so the algorithm produces a prime labeling. The result of the first
four stages of the algorithm is shown in Figure 4.

Example 3.4. Algorithm 3.1 does not produce a prime labeling for an infinite star
(the graph K1,∞).

In order to produce a prime labeling, the algorithm must label the center of the
star. After labeling the center of the star, step (1) of the next stage will attempt to
find the least natural number i such that vi is not adjacent to any vertex in the set

v0

v1 v2

v3 v4 v5 v6

Figure 3. The top of a complete infinite binary tree.
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1

3 5

2 7 4 11

v7 v8 6 v10 v11 v12 8 v14

Figure 4. The labeling after four stages.

of already labeled vertices, which includes the center of the star. Since the center
of the star is adjacent to all other vertices, this is impossible, and the algorithm will
not produce a prime labeling.

Note that if the infinite vertex was removed from the graph, the algorithm could
easily produce a 2-prime labeling for the resulting graph. If the center of the star
was then labeled with 1, the union of the two labelings would be a prime labeling
for K1,∞.

Example 3.5. Algorithm 3.1 does not produce a prime labeling for the infinite
bipartite graph K∞,∞.

To see this, consider any graph K∞,∞. Let a be the least natural number such
that the vertex va is adjacent to v0.

After a finite number of stages, va will be labeled. At the next stage, step (1)
will look for the least natural number i such that vi is not adjacent to any element
of the set of labeled vertices Vs ⊃ {v0, va}. Since every vertex is adjacent to either
v0 or va , this is not possible, and as such the algorithm will not be able to label the
rest of the graph.

Unlike with the infinite star, there is no way to adjust the algorithm to produce a
prime labeling of K∞,∞.

Proposition 3.6. K∞,∞ has no prime labeling.

Proof. Let a 6= 1 and b 6= 1 be any two labels of a pair of vertices in separate partite
sets, and consider n = ab. Whatever vertex gets labeled with n (or indeed, any
multiple of n) cannot be adjacent to either of the vertices labeled a or b. However,
every vertex is adjacent to one of these vertices, a contradiction. Thus the graph
has no prime labeling. �

4. Classification of infinite graphs

We have seen that not all graphs have prime labelings. The issue illustrated in
Proposition 3.6 demonstrates a particular obstruction, which we summarize in the
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following lemma. Let N (S) denote the set of vertices adjacent to one or more
vertices in S (the open neighborhood of S) and N [S] = N (S) ∪ S (the closed
neighborhood of S).

Lemma 4.1. If an infinite graph G = (V, E) has a finite set S ⊂ V, for which
N [S] contains all but finitely many vertices of G, then G does not have a k-prime
labeling.

Proof. Suppose G has a k-prime labeling, and consider such a finite set S ⊂ V. Let
n be the product of the labels on the vertices of S. As such the infinitely many
multiples of n must be assigned to vertices not in N [S]. Thus N [S] cannot be
cofinite, contrary to hypothesis. �

Note that if S is finite and N [S] is cofinite, then there is a finite set S′ for which
N [S′] = V (add to S all finitely many elements not in N [S]). Such a set S′ is called
a dominating set. Thus another way to describe the obstruction to a graph having a
k-prime labeling is to say the graph has a finite dominating set. We will see that
graphs that avoid this obstruction will always have a k-prime labeling at least for
each k ≥ 2. Thus we make the following definition.

Definition. An infinite graph G = (V, E) is called finitely dominated provided
there is some finite dominating set S, that is, a finite S such that N [S] = V.

Theorem 4.2. An infinite graph G has a k-prime labeling for k ≥ 2 if and only if
G is not finitely dominated.

Proof. The forward direction is Lemma 4.1.
Conversely, if G is not finitely dominated, then for any finite set S of vertices

there is a vertex not adjacent to any element in S. This means that Algorithm 3.1
will produce a k-prime labeling: at each stage, Vs is finite, so it is always possible
to find the least natural number i such that vi is not adjacent to any vertex in the
set Vs of already labeled vertices. �

We saw in Example 3.4 that the infinite star does not get a k-prime labeling from
Algorithm 3.1, and by this theorem, we see that in fact it cannot have a k-prime
labeling for any k ≥ 2 (the center vertex is dominating). However, the infinite star
is prime, since we can eliminate the “problem” by labeling the center vertex 1. This
works in general and provides our main classification theorem.

We write G − v for the graph resulting from removing the vertex v (and all
incident edges).

Theorem 4.3. An infinite graph G has a prime labeling if and only if there is a
vertex v such that G− v is not finitely dominated.

Proof. Suppose first that G has a prime labeling f for which f (v) = 1. Then
G− = G − v is 2-prime, witnessed by f |G− . By Theorem 4.2, G− is not finitely
dominated, as required.
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Conversely, if G−v is not finitely dominated, then G−v has a 2-prime labeling
by Theorem 4.2. The vertex that was removed can be labeled with 1, giving a prime
labeling of G. �

Note, another way to state this result is that a graph will have a prime labeling if
and only if it is possible to remove one vertex such that the remaining graph has a
2-prime labeling.

We can now state the relationship between k-prime graphs for different values
of k.

Corollary 4.4. If a graph has a k-prime labeling for any k ≥ 2, it has a k-prime
labeling for all k.

Proof. According to Theorem 4.2, the condition for a graph to have a k-prime
labeling is exactly the same for any k ≥ 2. So if a graph satisfies that condition
for any k ≥ 2, it satisfies it for all k ≥ 2. Further, if a graph is 2-prime, then it is
not finitely dominated. But then G− v0 will also not be finitely dominated, so by
Theorem 4.3, G will have a prime labeling. �

As a result of our classification theorem, some natural classes of graphs will
clearly have prime labelings.

Corollary 4.5. All infinite trees are prime.

We say a graph is locally finite if every vertex has finite degree.

Corollary 4.6. All infinite locally finite graphs are prime. In particular, the infinite
ladder is prime.

The reason locally finite graphs allow our algorithm to work is that the neigh-
borhood of any finite set must be finite. But even if this doesn’t happen, we could
always have enough vertices not adjacent to the finite set for other reasons. For
example, the graph could have infinitely many connected components or one of the
connected components could have infinite diameter.

Corollary 4.7. All infinite graphs with infinitely many connected components or
containing a connected component with infinite diameter have prime labelings.

5. Computable graphs

We turn now to the question of complexity of prime labelings for infinite graphs.
In the finite case, we would consider computational complexity: you might ask
whether deciding if a finite graph has a prime labeling is NP-complete. For infinite
graphs, we use ideas from computability theory.

To do this, we must restrict our attention to computable graphs. Essentially,
we identify graphs with their edge set, taking the vertex set to be N, and require
the edge set to be a computable set. This means that there is an algorithm that,
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given any two vertices (natural numbers) as input, returns whether the two vertices
are adjacent. A more precise definition is beyond the scope of this paper, but the
interested reader can see [Soare 1987] for background on computability theory
in general or [Gasarch 1998] for a survey of the use of computability theory in
combinatorics.

The first natural question to consider in this context is whether all computable
graphs that have prime labelings have computable prime labelings (note that since
we insist V = N, a computable graph must necessarily be infinite). In other words,
if the graph is nicely presented, will it always be possible to nicely describe a
prime labeling? Somewhat surprisingly, the answer here is yes. (This is surprising
given that many graph-theoretic properties do not behave so nicely: there are
computable graphs with 3-colorings with no computable 3-coloring [Bean 1976a]
and computable graphs with Euler paths with no computable Euler path [Bean
1976b], for example.)

Proposition 5.1. If G is a computable graph which admits a prime labeling, then
G has a computable prime labeling.

Proof. Let G be a computable graph with a prime labeling. By Theorem 4.3, we
know that there is a vertex v such that G − v is not finitely dominated. Label v

with 1, then proceed with Algorithm 3.1. At step (1) of stage s, we are looking
for a vertex not in N [Vs]. This can be found in finite time by asking whether vi is
adjacent to vj for each vj ∈ Vs , and if ever the answer is yes, we move on to the next
potential vi , which we know we must eventually find since Vs is not dominating. �

The procedure outlined above relies on a certain amount of nonuniformity: we
must know where to place the label 1. This does not prevent the prime labeling
from being computable, since we are only asking for the existence of an algorithm
for the prime labeling, not for a procedure to find that algorithm. But could we? Is
it possible, given the algorithm for a particular graph, to produce the algorithm that
gives the prime labeling? Here, we find the answer is negative.

Theorem 5.2. There is no computable function which, given any computable graph
admitting a prime labeling, produces the prime labeling for that graph.

Before we give the proof, we need a little more background from computability
theory. They key fact we will use is that there is an effective list ϕ0, ϕ1, ϕ2, . . . of
all partial computable functions (again, see [Soare 1987] for details). The intuition
here is that we can consider every possible algorithm, perhaps written in Java,
arranged alphabetically and by length (all algorithms have finite length). Of course,
for any given algorithm, we have no reason to think that this algorithm will halt on
all inputs, and this is why we are only considering partial computable functions (if
it does halt on all inputs, we call it total). However, since the list contains every
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algorithm, partial or total, we know that if there were a computable function which
gave the computable prime labeling of every computable graph (admitting a prime
labeling), it must be somewhere on the list. Our goal then is to ensure every partial
computable function on the list is wrong at least once.

Proof. We will build a sequence G0, G1, . . . of computable graphs, each admitting
a prime labeling. While doing so, we will ensure that, for each e ∈N, the partial
computable function ϕe is not a prime labeling of the graph Ge.

The construction will “dove-tail” the construction of the infinitely many graphs,
so that by the end of stage s, we will have described the first s vertices of the first s
graphs. The construction of each graph in the sequence will be independent of the
others, so we need only describe how we build an arbitrary graph Ge.

In the limit, the graph Ge will be the union of two stars with centers v0 and v1,
at least one of which is infinite. Notice that such a graph will have a prime labeling,
as removing the center of an infinite star produces an infinite set of isolated vertices
(we are appealing to Theorem 4.3 here). At each stage, we check whether ϕe has
returned the label 1 for either v0 or v1. If this has not yet occurred, we add a new
vertex adjacent to either v0 or v1, whichever we did not add to in the previous stage.
If ϕe returns 1 for the label of vi with i ∈ {0, 1}, then we only ever add new vertices
adjacent to v1−i .

Note that it is possible that ϕe will never return 1 for v0 or v1 (perhaps ϕe is
not total, or it labels a different vertex with 1). In this case, Ge will consist of two
infinite stars, but there is no way for ϕe to be a prime labeling (the product of the
labels of the two centers has nowhere to go, as in Proposition 3.6). On the other
hand, if ϕe does label one of the vertices v0 or v1 with a 1, then we never add any
more neighbors to that vertex, and only the other vertex will be an infinite star.
In this case, ϕe also cannot be a prime labeling. Whatever the label of the center
of the infinite star is, there are only finitely many vertices (on the other star) that
the infinitely many multiples of this label can be assigned to. This completes the
proof. �

The proof above relies on the inability of computable functions to predict whether
a vertex of a graph will have infinite degree, and as such, the computable function
does not know which vertex to label with 1. However, this is the only barrier to
uniformity. If we consider instead 2-prime labelings, then we get uniformity.

The other computability question we should consider is the decision problem:
given a computable graph, how hard is it to decide whether the graph has a prime
labeling? The usual way to analyze this in computability theory is to determine
where the decision problem lies inside (or above) the arithmetical hierarchy. One
way to think of this task is that we are assessing the complexity of the condition
which is equivalent to a graph having a prime labeling. We have a condition given
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in Theorem 4.3. Is this the simplest necessary and sufficient condition to a graph
having a prime labeling?

Notice that by Theorem 4.2, a graph has a k-prime labeling for k ≥ 2 if and only
if for all finite sets of vertices, there is at least one vertex not in the neighborhood
of the set. Analyzing the quantifiers, we can state this condition as

∀n ∃k (k > n ∧ k /∈ N ({0, 1, . . . , n})).

Since saying that a vertex is not in the neighborhood of a finite set of vertices is
computable, we see that a graph having a 2-prime labeling is 50

2. Similarly, to say a
graph has a prime labeling, we need it to be the case that there is a vertex, the removal
of which, leaves a 2-prime graph. Thus a graph having a prime labeling is 60

3 .
Can we do better? For 2-prime labelings, the answer is no.

Theorem 5.3. The decision problem for a graph having a k-prime labeling for
k ≥ 2 is 50

2-complete.

Proof. Fix k ≥ 2. We argued above that having a k-prime labeling is 50
2, so we

need only show completeness. We will do this by giving a 1-reduction to the known
50

2-complete index set INF= {e : |We| =∞}, where We is the domain of ϕe. That
is, we build a sequence of computable graphs {Gi } such that Ge has a k-prime
labeling if and only if e ∈ INF.

We build the graphs simultaneously, as in the proof of Theorem 5.2, but this
time each graph will either be the disjoint union of an infinite star with a finite
path, or the disjoint union of an infinite star with a (one-way) infinite path. In the
former case, the graph will not be k-prime, and in the latter it will be k-prime, by
Theorem 4.2.

The procedure for building the graph Ge is as follows. Initialize Ge with a center
vertex for its star and an initial vertex for its path. At stage s of the construction we
assume that we have built a finite star and a finite path. Run ϕe(x) on all x < s for
which ϕe(x) has not already halted at some earlier stage. We continue to run these
computations until either ϕe(x) halts for some input x , or until each computation
has run for s steps, whichever comes first. If we see some ϕe(x) halt, this will be
the first time we realize that x ∈We, so we have further evidence that |We| might
be infinite. Thus we add a vertex to the end of the finite path. On the other hand, if
no (new) x appears in We (i.e., ϕe(x) does not halt for any new x by stage s) we
work off the assumption that |We| is finite and add a vertex to the finite star in Ge.

To verify that this procedure gives us what we want, suppose first that |We| =∞.
Then there will be infinitely many stages at which we add a vertex to the end of
the path, since at each stage we “discover” at most one new x in We. Thus in the
limit, the path will be infinite (the star will likely be infinite as well, but regardless,
Ge will have a k-prime labeling). Conversely, suppose |We| is finite. Then there
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is a last stage at which any x appears in We, and so after that stage, we never add
vertices to the path, making the path finite. �

What about prime labelings? By the quantifier analysis above, we know that the
decision problem cannot be harder than 60

3 . Further, a simple modification of the
proof for Theorem 5.3 shows that the decision problem is at least 50

2-hard. We
would expect the decision problem to in fact be 60

3-complete, but a proof that it is
60

3-hard goes beyond the scope of this paper. We leave this as an open question.

Question 1. Is the decision problem for a graph having a prime labeling 60
3-

complete?

6. Conclusion and open questions

We have considered a natural extension of the definition of prime labelings to infinite
graphs. For 2-prime labelings, we have a simple necessary and sufficient condition
and a condition only slightly less simple for prime labelings. By using tools from
computability theory, we see that producing a 2-prime labeling of a 2-prime graph
is as straightforward as possible, and only slightly less so for producing prime
labelings of prime graphs. We also have that our criterion for 2-prime labelings is
as simple as possible, and conjecture that the same is true for prime labelings.

These results mirror those for graceful labelings of infinite graphs, in that working
with labelings of infinite graphs seems quite a bit easier than their finite counterparts.
This suggests that the difficulty with working with finite graphs is very much tied
to finiteness itself. The feeling of “running out of room” is exactly why labeling
results are difficult.

We wonder however, whether a more restrictive definition of labelings for infinite
graphs might serve as a better infinite analogue to the finite case. Note that for
vertex coloring, it turns out that an infinite graph is k-colorable if and only if every
finite subgraph is 4-colorable. Such a result for prime (and other) labelings would
be very nice, but with our definition, is clearly false.

We do not know what the “right” definition would be, but we conclude by
considering one possible variant of prime labeling that might be a step in the right
direction and encourage others to pursue this further.

Definition. Let G be a graph, vc be a vertex of that graph (c for center), and Gr

be the subgraph of G that includes all vertices within distance r of vc. Then G has
a limitwise prime labeling if it is possible to choose vc and label the graph such
that for infinitely many r , Gr has been given a prime labeling.

We call a graph limitwise prime if it has a limitwise prime labeling.
To get a feel for this, consider the complete infinite binary tree.

Example 6.1. A complete infinite binary tree has a limitwise prime labeling.



644 MATTHEW KENIGSBERG AND OSCAR LEVIN

8 9 10 11 12 13 14 15

31 17 16 20 19 21 18 24 23 25 22 30 27 29 26 28

Figure 5. A limitwise prime labeling of rows 3 and 4 of the com-
plete binary tree.

2

1 3

4 6 5 7

11 13 15 9 8 14 10 12

Figure 6. The start of a limitwise prime labeled tree.

Proof. For all r ≥ 3, each row of the graph can have children labeled with the
integers from 2r+1 to 2r+2

− 1 as follows:
The lowest even number e has children 2e+ 1 and 4e− 1. All other evens e

have children 2e− 1 and 2e+ 1. The lowest odd number o has children 2o− 2 and
2o+ 2. The second-greatest odd number o has children 2o− 4 and 2o+ 4. The
greatest odd number o has children 2o− 4 and 2o− 2. All others odd numbers o
have children 2o− 4 and 2o+ 2.

The process is shown here for r = 3 in Figure 5.
It is straightforward but tedious to show that this will produce a limitwise prime

labeling for the tree after the first four rows are labeled with the numbers 1 to 15 in
any manner that is prime. One possibility is shown in Figure 6 �

It certainly appears that giving a limitwise prime labeling is more difficult that
giving a prime labeling. Indeed, there are prime graphs that are not limitwise prime.

Example 6.2. Let G be the square of the two-way infinite path, as in Figure 7.
Then G has a prime labeling, but not a limitwise prime labeling

Proof. Since G is locally finite, it has a prime labeling.
To show that G has no limitwise prime labeling, choose any vertex for vc and let

Gr be the subgraph that includes all vertices within distance r of vc. Gr contains
4r + 1 vertices. This means that if Gr has a prime labeling, then 2r even labels
must be used.
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vc

Figure 7. A prime graph that is not limitwise prime.

Without loss of generality, let vc be on the bottom of the graph as shown in
Figure 7, and let b and t be the number of vertices with even labels on the bottom
and top of the graph respectively. Since there are 2r + 1 vertices on the bottom and
adjacent vertices cannot have even labels, b≤ r+1. Similarly, t ≤ r . Since 2r total
even labels must be used, b+ t = 2r , so we have only two cases to consider: either
b = t = r or b = r + 1 and t = r − 1. We will argue that as soon as r ≥ 2, both of
these cases are impossible.

If t = r , then it must be that exactly every other vertex on top is even. Since each
of these are adjacent to two different vertices on bottom, there is only one vertex
on the bottom that can be even, so b = 1 6= r . On the other hand, if b = r + 1, then
every other vertex on bottom is even, leaving no vertices on top for even vertices,
so t = 0 6= r .

So for r > 1, Gr does not have a prime labeling, which means G does not have
a limitwise prime labeling, even though it does have a prime labeling. �

There are plenty of questions to consider about limitwise prime labelings includ-
ing whether this is even a useful variant of prime labeling of infinite graphs. Here
are a few to get the ambitious reader started.

Question 2. Are all infinite trees limitwise prime?

Question 3. What are reasonable necessary and/or sufficient conditions for a graph
to be limitwise prime?

Note that if every finite subgraph of an infinite graph is prime, then the graph is
limitwise prime. However, the converse is likely false. This could be investigated
further.

There are also questions of complexity:

Question 4. Does every computable graph with a limitwise prime labeling have a
computable limitwise prime labeling?

Question 5. How hard is it to decide whether a computable graph is limitwise
prime?
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