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Given a graph, we can form a spanning forest by first sorting the edges in a
random order, and then only keeping edges incident to a vertex which is not
incident to any previous edge. The resulting forest is dependent on the ordering
of the edges, and so we can ask, for example, how likely is it for the process to
produce a graph with k trees.

We look at all graphs which can produce at most two trees in this process
and determine the probabilities of having either one or two trees. From this we
construct infinite families of graphs which are nonisomorphic but produce the
same probabilities.

1. Introduction

We consider the following forest-building process:

(1) Take all of the edges of the graph, remove them and sort them in a random
order.

(2) Go through the edges in this order and only put those edges back in which
connect to some vertex not previously seen by any edge.

From this, we must end up with a forest (a graph without cycles) since we can never
add an edge that closes a cycle. As an example, in Figure 1 we list all 24 different
ways to order the edges and group them based on the resulting forest formed.

We will consider this problem: how many different edge orderings produce a
given number, say k, of trees in the resulting graph? Equivalently, what is the
probability that if we take a random ordering of the edges, we produce a forest with
k trees? We will let P(G, k) denote this probability. As an example when G is the
paw graph, we see that P(G, 1)= 5

6 and P(G, 2)= 1
6 (see Figure 1).

This process was implicitly used in [Butler et al. 2015] for the complete graph,
and explicitly introduced in [Berikkyzy et al. 2018], where some basic properties
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Figure 1. The results from different edge orderings of the paw graph.

were established and the probabilities for complete bipartite graphs were determined.
We summarize these results here.

Theorem 1 [Butler et al. 2015]. We have

P(Kn, k)=

( n−1
n−2k,k,k−1

)
2n−2k(2n−2

n

) .

Theorem 2 [Berikkyzy et al. 2018]. We have

P(Ks,t , k)=
(s+ t)

(s
k

)(t
k

)
st
(s+t

s

) .

For small graphs (at most five vertices), the probabilities are given in [Berikkyzy
et al. 2018]. There are a few instances where two graphs would have the same
probabilities for all k, and most of those are edge-transitive graphs. More generally,
the following was observed.

Lemma 3 [Berikkyzy et al. 2018]. If G is an edge-transitive graph with minimum
degree of at least 2 and e is any edge, then we have P(G, k) = P(G − e, k) for
all k.

In essence, this follows by noting that the last edge in an ordering is never kept,
and by symmetry every edge is the last edge in an ordering equally often.

The goal of this note is to compute the probabilities for more families of graphs,
namely graphs which can produce at most two trees in the forest-building process.
Using this, we will produce infinitely many examples of nonisomorphic graphs G
and H where the probabilities agree and neither G or H are edge-transitive.
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2. Graphs with at most two trees

We are interested in exploring the graphs which can produce at most two trees in
the forest-building process. Equivalently, this means that there are at most two
disjoint edges in the graph (disjoint in the sense that they share no vertex).

Proposition 4. The only nonempty graphs without isolated vertices, which contain
no pair of disjoint edges, are star graphs (K1,n) and the triangle graph (K3).

Proof. If the graph is not connected, then taking one edge from two different
components gives two disjoint edges. So we may assume the graph is connected.

If the graph has two disjoint edges, then we can connect these together by a path,
creating a path with at least four vertices. Conversely, if the graph has a path with
at least four vertices, then it must contain two disjoint edges. So we can conclude
the longest path is a path with at most three vertices. If the longest path has two
vertices, then the graph is a K2.

If the longest path has three vertices and the ends of the path are not leaves, then
it must be that the ends connect and form a triangle. Since the paw graph has two
disjoint edges, this can only happen if the graph is a K3.

Finally, if the graph is not a triangle and doesn’t have a path of length 4 (and
hence has no cycles), then it must be a star. �

Proposition 5. If a graph without isolated vertices has a vertex v of degree at
least 5 and contains no set of three disjoint edges, then deleting v and all incident
edges, and removing any isolated vertices results in either an empty graph, a star,
or a K3.

Proof. Let v be a vertex of degree at least 5 in the graph. Suppose that the graph
resulting from deleting the vertex v and all incident edges, and removing any isolated
vertices, is not the empty graph, a star, or a K3. Proposition 4 states that the only
nonempty graphs without isolated vertices, that contain no set of two disjoint edges,
are the star graph and K3. Thus the resulting graph will contain at least two disjoint
edges. Call these edges e1 and e2; note neither of these edges are incident to v.

At most four edges incident to v are also incident to the edges e1 and e2. Since v

has degree at least 5, this leaves at least one edge, e3, that is connected to v and not
incident to e1 or e2. Thus the original graph contains a set of three disjoint edges. �

Finally, we observe that if all the degrees are bounded by at most 4 and the graph
is connected, then as n gets large, the diameter must also grow — which forces
three disjoint edges. In particular there are finitely many graphs with maximum
degree at most 4 which produce at most two trees.

Putting this all together, we see that for n sufficiently large (n ≥ 6; verified
computationally) the only connected graphs which produce at most two trees, and
are not stars, are the following five families, shown in Figure 2:
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Figure 2. The five families of graphs.

• GSa,b,c: the stars K1,a+b and K1,b+c which have b leaves glued together (glued
stars).

• GS+a,b,c: the stars K1,a+b and K1,b+c which have b leaves glued together and
the centers joined by an edge (glued stars with an edge).

• Pawa: the paw graph with a leaves appended to the vertex of degree 1.

• Dia: the diamond graph (a four-cycle with an extra edge) with a leaves ap-
pended to one of the vertices of degree 2.

• (K4)a: the complete graph on four vertices with a leaves appended to one of
the vertices.

Note that when the degree is at least 5, the first two of these correspond to
Proposition 5 where the remaining graph is a star and the last three of these
correspond to Proposition 5 where the remaining graph is a K3.

3. Computing probabilities for the families

We now turn our attention to computing the probabilities that a graph ends in one or
two trees in the forest-building process. We can find these probabilities by noting
that if there are m edges in the graph, then the probability that we end with two
trees is

P(G, 2)=
|{rearrangements with two trees}|

m!
.

We will focus on counting the rearrangements which produce two trees. Particularly,
we want to count rearrangements where an edge occurs exactly once, not at the
start, and involves two vertices which have not been previously seen.

Since we will be counting rearrangements, we will find it useful to know how to
manipulate binomial coefficients. Recall that(n

k

)
=

n!
k! (n− k)!
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is the number of ways to choose k elements (in our case this will usually be locations)
out of an n element set. There are many binomial coefficient identities (see the
book of Graham, Knuth, and Patashnik [Graham et al. 1994, Chapter 5] for a good
introduction); we will need to make repeated use of the following well-known
result.

Proposition 6. We have∑
j

(
`− j

m

)(q+ j
n

)
=

(
`+ q + 1
m+ n+ 1

)
, (1)

where the sum ranges over all values where the summands are nonzero.

Theorem 7. We have the following probabilities:

P(GSa,b,c, 1)=
b

(b+c+1)(b+c)
+

b
(a+b+1)(a+b)

,

P(GS+a,b,c, 1)=
2b+c+2

(b+c+1)(b+c+2)
+

2b+a+2
(b+a+1)(b+a+2)

−
1

a+2b+c+1
.

Proof. Since P(GSa,b,c, 1)+ P(GSa,b,c, 2) = 1, we can focus on computing the
probability of resulting in two trees. We now claim

P(GSa,b,c, 2)

=

b∑
i=0

a∑
j=0

(a
j

)(b
i

)
(i+ j)! (b+c− i)(a+2b+c− i− j−1)!

(a+2b+c)!
−

b+c
a+2b+c

+

b∑
i=0

c∑
j=0

(c
j

)(b
i

)
(i+ j)! (a+b− i)(a+2b+c− i− j−1)!

(a+2b+c)!
−

a+b
a+2b+c

. (2)

This comes from the two cases, namely where our first edge initially comes from
the “top half” (i.e., edges coming from the star K1,a+b), and where our first edge
initially comes from the “bottom half” (i.e., edges coming from the star K1,b+c).
We focus on the top-half case, as the bottom half follows by an identical argument
by interchanging the roles of a and c.

Determining if we have two trees comes down to what happens when we pick
our first edge from the star K1,b+c. We look at all ways that this occurs by first
picking edges from K1,a+b and then considering what happens when we pick our
edge from K1,b+c. In particular, we will pick j edges from the a leaf vertices and
i edges from the b gluing vertices. We now run over all possibilities for i and j .

For each choice of edges we now consider all possible orderings as follows:

•

(a
j

)
corresponds to which of the j edges among the a were chosen.

•

(b
i

)
corresponds to which of the i edges among the b were chosen.
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• (i + j)! indicates how many ways to order these i + j edges (note that these
i + j edges are all of the initial edges).

• (b+c−i) indicates how many edges disjoint from the ones above are available
to choose, if we want to create two trees.

• (a+ 2b+ c− i − j − 1)! is the number of ways to rearrange the remaining
edges.

This gives all orderings of edges possible; to get the probability we now divide by
the total number of orderings, which is (a+ 2b+ c)!.

Note that in the summation we need to correct for i = 0, j = 0, which does not
fall into the case where the first edge is from the top. So we subtract this term,
which gives the −(b+ c)/(a+ 2b+ c) at the end.

To now simplify these sums we can repeatedly apply (1). So we have

b∑
i=0

a∑
j=0

(a
j

)(b
i

)
(i+ j)! (b+c− i)(a+2b+c− i− j−1)!

(a+2b+c)!

=

b∑
i=0

a∑
j=0

a!
j ! (a− j)!

b!
i ! (b−i)!(i+ j)! (b+c− i)(a+2b+c− i− j−1)!

(a+2b+c)!

=

b∑
i=0

a! b! (b+c− i)
(a+2b+c)! (b− i)!

a∑
j=0

(i+ j)!
i ! j !

(a+2b+c− i− j−1)!

(a− j)!

=

b∑
i=0

a! b! (b+c− i)(2b+c− i−1)!

(a+2b+c)! (b− i)!

a∑
j=0

(i+ j)!
i ! j !

(a+2b+c− i− j−1)!

(a− j)! (2b+c− i−1)!

=

b∑
i=0

a! b! (b+c− i)(2b+c− i−1)!

(a+2b+c)! (b− i)!

a∑
j=0

( i+ j
i

)(a+2b+c−i−1− j
2b+c−i−1

)

=

b∑
i=0

a! b! (b+c− i)(2b+c− i−1)!

(a+2b+c)! (b− i)!

(a+2b+c
2b+c

)

=

b∑
i=0

a! b! (b+c− i)(2b+c− i−1)!

(a+2b+c)! (b− i)!
(a+2b+c)!
(2b+c)! a!

=

b∑
i=0

b! (b+c− i)(2b+c− i−1)!

(b− i)! (2b+c)!

=
b! (b+c−1)!

(2b+c)!

b∑
i=0

(2b+c− i−1)!

(b− i)! (b+c−1)!
(b+c− i)
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=
b! (b+c−1)!

(2b+c)!

(
(b+c)

b∑
i=0

(2b+c−1−i
b+c−1

)( i
0

)
−

b∑
i=0

(2b+c−1−i
b+c−1

)( i
1

))
=

b! (b+c−1)!

(2b+c)!

(
(b+c)

(2b+c
b+c

)
−

( 2b+c
b+c+1

))
=

b! (b+c−1)!

(2b+c)!

(
(b+c)

(2b+c)!
(b+c)! b!

−
(2b+c)!

(b+c+1)! (b−1)!

)
= 1−

b
(b+c+1)(b+c)

.

By a similar process, the other double sum becomes

b∑
i=0

c∑
j=0

(c
j

)(b
i

)
(i+ j)! (a+b−i)(a+2b+c−i− j−1)!

(a+2b+c)!
= 1−

b
(b+a+1)(b+a)

.

Now replacing the double sums by these simplified expressions we have

P(GSa,b,c, 2)

=

(
1−

b
(b+c+1)(b+c)

)
−

b+c
a+2b+c

+

(
1−

b
(b+a+1)(b+a)

)
−

a+b
a+2b+c

= 1−
b

(b+c+1)(b+c)
−

b
(b+a+1)(b+a)

.

Finally we note

P(GSa,b,c, 1)= 1− P(GSa,b,c, 2)=
b

(b+ c+ 1)(b+ c)
+

b
(b+ a+ 1)(b+ a)

,

establishing the result for GSa,b,c.
The result for P(GS+a,b,c, 2) follows by a similar argument, the only difference

being the additional edge which cannot be used in order to result in two trees. So
(2) would now become

P(GS+a,b,c, 2)=

b∑
i=0

a∑
j=0

(a
j

)(b
i

)
(i+ j)! (b+c−i)(a+2b+c−i− j)!

(a+2b+c+1)!
−

b+c
a+2b+c+1

+

b∑
i=0

c∑
j=0

(c
j

)(b
i

)
(i+ j)! (a+b−i)(a+2b+c−i− j)!

(a+2b+c+1)!
−

a+b
a+2b+c+1

.

The rest of the argument works in the same way as before. �

Our approach was to focus on the probability of producing two trees. It is
possible to establish the result by focusing on one tree, and the following proof was
communicated to us by a referee of the paper.
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Alternative proof of Theorem 7. To compute the probability of producing a single
tree in the graph GSa,b,c we focus on finding the probability of producing a “bridge”,
a path of length 2 connecting the vertices va and vc (the vertices with a and b leaves
respectively). Label the b vertices which connect to both va , and vc as v1, . . . , vb.

The probability that we first pick an edge incident to a and form a bridge going
through vi is

1
(b+ c+ 1)(b+ c)

.

To see this, once we have picked the first edge there are b+ c+ 1 important edges
remaining, namely the b+ c edges incident to vc and the edge {va, vi }. In order to
form the bridge among these b+c+1 edges we must first choose {va, vi } (probability
1/(b+ c+1)) and must second choose {vi , vc} (probability 1/(b+ c)), establishing
the above probability. This is independent of vi and so going over all b of the vi we
have that the probability that we first pick an edge incident to a and form a bridge is

b
(b+ c+ 1)(b+ c)

.

A symmetrical argument gives that the probability that we first pick an edge incident
to c and form a bridge is

b
(b+ a+ 1)(b+ a)

.

Finally these events are disjoint and cover all ways to form a bridge. So we can
conclude that the probability of forming a bridge, and hence the probability of
having one component, is

b
(b+ a+ 1)(b+ a)

+
b

(b+ c+ 1)(b+ c)
.

A similar approach works for GS+a,b,c once we also account for the edge {va, vc}

being a bridge. We leave the details of this to the interested reader. �

Theorem 8. We have the following probabilities:

P(Pawa, 1)=
1
6
−

1
a+3

+
1

a+1
,

P(Dia, 1)=
3

10
−

2
a+4

+
2

a+2
,

P((K4)a, 1)=
2
5
−

3
a+5

+
3

a+3
.

Proof. We will again compute the probability that there are two trees in the process.
However, in these cases there are many more possibilities to consider. To simplify the
situation, we make the following observation: every edge which is a leaf in the orig-
inal graph will always be kept in the forest-building process. This indicates if there
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Figure 3. The remaining three graphs with the leaves collapsed to
a single edge a.

are multiple leaves off of a single vertex v, then we only need to know when the first
leaf was chosen. This is because, after first leaf, v will have been seen by some edge.

So we now represent the remaining graphs from Figure 2, as shown in Figure 3,
where a corresponds to all of the a leaves condensed down, and the remaining edges
are labeled as indicated with each label other than a corresponding to a single edge.

For each graph, we now look at all possible ways to start selecting edges and end
with a pair of disjoint edges. We also find the probability of starting our selection
in a particular way. Recall that an edge marked a corresponds to a different edges,
and so until we select that edge, we assume all a of them haven’t been seen and
are available for picking; after selection, by the observation we can assume they
have all been seen. (In other words, it is only the relative ordering of the different
types of edges that matter.)

For the paw graph, we have the possibilities shown in Table 1 (the first column
indicates every possible sequence of choices of edges until two trees are formed,
while the second column indicates the probability of any one of those sequence of

start of edge orderings resulting in two trees probabilities of an ordering

ac, ad , ae a
a+4 ·

1
4

be, eb 1
a+4 ·

1
a+3

ca, da, ea 1
a+4 ·

a
a+3

abe a
a+4 ·

1
4 ·

1
3

bae 1
a+4 ·

a
a+3 ·

1
3

cda, cea, dca, dea, eda, eca 1
a+4 ·

1
a+3 ·

a
a+2

ceda, cdea, dcea, deca, ecda, edca 1
a+4 ·

1
a+3 ·

1
a+2 ·

a
a+1

Table 1. Probabilities associated with Pawa .
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start of edge orderings resulting in two trees probabilities of an ordering

ad , ae, a f a
a+5 ·

1
5

b f , ce, ec, f b 1
a+5 ·

1
a+4

da, ea, f a 1
a+5 ·

a
a+4

ab f , ace a
a+5 ·

1
5 ·

1
4

ba f , cae 1
a+5 ·

a
a+4 ·

1
4

dea, d f a, eda, e f a, f da, f ea 1
a+5 ·

1
a+4 ·

a
a+3

de f a, d f ea, ed f a, e f da, f dea, f eda 1
a+5 ·

1
a+4 ·

1
a+3 ·

a
a+2

Table 2. Probabilities associated with Dia .

start of edge orderings resulting in two trees probabilities of an ordering

ae, a f , ag a
a+6 ·

1
6

b f , ce, dg, ec, f b, gd 1
a+6 ·

1
a+5

ea, f a, ga 1
a+6 ·

a
a+5

ab f , adg, ace a
a+6 ·

1
6 ·

1
5

ba f , dag, cae 1
a+6 ·

a
a+5 ·

1
5

e f a, ega, f ea, f ga, gea, g f a 1
a+6 ·

1
a+5 ·

a
a+4

e f ga, eg f a, f ega, f gea, ge f a, g f ea 1
a+6 ·

1
a+5 ·

1
a+4 ·

a
a+3

Table 3. Probabilities associated with (K4)a .

choices being made). If we now sum all of these probabilities together, we get

P(Pawa, 2)=
5
6
+

1
a+3

−
1

a+1
,

establishing the result (recall that P(Pawa, 1)+ P(Pawa, 2)= 1).
The results for the remaining two graphs are established in the same way and

the corresponding probabilities are given in Tables 2 and 3. �

4. Examples of graphs with the same probabilities

Using the formulas from the theorems in the preceding section, we can now compute
the probabilities for a large number of these graphs efficiently. In particular, we
examined all graphs up through 500 vertices in these families, and discovered several
examples of families of nonisomorphic graphs which produce the same probabilities.
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Figure 4. Examples of a set of three graphs with the same proba-
bilities from Proposition 9. In this case s = t = 1.

Proposition 9. Given s, t ≥ 1 with s dividing 2t (t + 1), let r = 2t (t + 1)/s. Then
we have for all k

P(GSr+3t+1,s,t , k)= P(GSt,r+s+2t+1,t , k)= P(GS3t+s+1,r,t , k).

This immediately follows by applying the formulas for the probabilities from
Theorem 7.

Proposition 10. Given t ≥ 1, we have for all k

P(GS5t+3,t,2t , k)= P(GS5t+1,t+1,2t+1, k).

This also immediately follows by applying the formulas for probabilities from
Theorem 7. We note that there were many other examples of pairs of glued star
graphs which are not explained by Propositions 9 and 10. A complete characteriza-
tion of all such pairs of glued stars remains elusive.

Looking beyond glued stars, we found very few pairs of graphs with the same
probabilities and the results do not seem to fit any patterns. As an example, all
pairs of graphs from the GS+a,b,c family up through 500 vertices with the same
probabilities are listed below (it is possible that this is a complete list for this family;
showing this would relate to solving a system of diophantine equations).

P(GS+17,3,9, k)= P(GS+10,9,10, k), P(GS+28,5,9, k)= P(GS+26,8,8, k),

P(GS+103,15,48, k)= P(GS+63,71,32, k), P(GS+95,23,53, k)= P(GS+53,66,52, k).

5. Conclusion

We found the probabilities for all connected graphs which can form at most two
trees in this forest-building process. A natural next step is to consider graphs with
at most three trees. As an example, two pairs of graphs with at most three trees
and matching probabilities are given in Figure 5. This is suggestive that these are
the start of an infinite family of such graphs, but we have not yet established this.
One difficulty is that unlike the situation for two trees where only one probability
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G1 G2 H1 H2

P(G1, 1)= P(G2, 1)= 187
6300

P(G1, 2)= P(G2, 2)= 2566
6300

P(G1, 3)= P(G2, 3)= 3547
6300

P(H1, 1)= P(H2, 1)= 5
637

P(H1, 2)= P(H2, 2)= 172
637

P(H1, 3)= P(H2, 3)= 460
637

Figure 5. Two pairs of graphs with at most three trees and produc-
ing the same probabilities.

needed to be computed (since the probabilities sum to 1), this requires that two
probabilities be computed.
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