Vol. 12, No. 4, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 15
Issue 4, 547–726
Issue 3, 367–546
Issue 2, 185–365
Issue 1, 1–184

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
Author Index
Coming Soon
Other MSP Journals
This article is available for purchase or by subscription. See below.
Graphs with at most two trees in a forest-building process

Steve Butler, Misa Hamanaka and Marie Hardt

Vol. 12 (2019), No. 4, 659–670
DOI: 10.2140/involve.2019.12.659

Given a graph, we can form a spanning forest by first sorting the edges in a random order, and then only keeping edges incident to a vertex which is not incident to any previous edge. The resulting forest is dependent on the ordering of the edges, and so we can ask, for example, how likely is it for the process to produce a graph with k trees.

We look at all graphs which can produce at most two trees in this process and determine the probabilities of having either one or two trees. From this we construct infinite families of graphs which are nonisomorphic but produce the same probabilities.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 30.00:

forests, edge ordering, components, probability
Mathematical Subject Classification 2010
Primary: 05C05
Received: 30 March 2018
Revised: 10 September 2018
Accepted: 28 October 2018
Published: 16 April 2019

Communicated by Glenn Hurlbert
Steve Butler
Department of Mathematics
Iowa State University
Ames, IA
United States
Misa Hamanaka
Department of Mathematics
Iowa State University
Ames, IA
United States
Marie Hardt
Department of Mathematics
Iowa State University
Ames, IA
United States