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A Riemannian orbifold is a mildly singular generalization of a Riemannian
manifold that is locally modeled on Rn modulo the action of a finite group.
Orbifolds have proven interesting in a variety of settings. Spectral geometers
have examined the link between the Laplace spectrum of an orbifold and the
singularities of the orbifold. One open question in this field is whether or not a
singular orbifold and a manifold can be Laplace isospectral. Motivated by the
connection between spectral geometry and spectral graph theory, we define a
graph-theoretic analog of an orbifold called an orbigraph. We obtain results about
the relationship between an orbigraph and the spectrum of its adjacency matrix.
We prove that the number of singular vertices present in an orbigraph is bounded
above and below by spectrally determined quantities, and show that an orbigraph
with a singular point and a regular graph cannot be cospectral. We also provide a
lower bound on the Cheeger constant of an orbigraph.

1. Introduction

A Riemannian orbifold is a mildly singular generalization of a Riemannian man-
ifold. A point in an n-dimensional manifold is contained in a neighborhood that
is homeomorphic to Rn. A point in an n-dimensional orbifold is contained in a
neighborhood that is homeomorphic to a quotient of Rn under the action of a finite
group. Two useful examples of orbifolds to consider are the Zn-football (Figure 1,
left) and the Zn-teardrop (Figure 1, right):

Example 1. Let Zn act on a 2-dimensional sphere by rotations generated by a
2π/n-radian rotation about an axis passing through the center of the sphere. The
quotient of the sphere under this action is the Zn-football. Points lying on the
intersection of the sphere with the axis of rotation are fixed by all rotations. The
images in the Zn-football of these points are the conical points at the north and
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Figure 1. Left: football obtained by 180-degree rotation of sphere.
Right: teardrop orbifold.

south poles of the football. If the local lift of a point in an orbifold has nontrivial
isotropy, the point is called a singular point in the orbifold. The singular set of the
Zn-football consists of the cone points at its north and south poles.

Example 2. The Zn-teardrop is topologically a 2-sphere except for a single point
whose neighborhood is locally modeled on the cone R2/Zn , where Zn acts by rota-
tions around a fixed point. Thus the Zn-teardrop’s singular set consists of the isolated
cone point. Thurston [1979] showed that unlike the Zn-football, the Zn-teardrop can-
not be obtained as the quotient of a manifold under a smooth, discrete group action.

Introduced by Satake [1956] under the name V -manifold, and later renamed
and studied as orbifolds by Thurston [1979], orbifolds have proven interesting in a
variety of settings; see [Adem et al. 2007; Gordon 2012; Hodgson and Tysk 1993],
for example. Of particular interest are results relating the eigenvalue spectrum of
the Laplace operator on a Riemannian orbifold (an orbifold endowed with a suitably
invariant Riemannian metric) to the singular set of the orbifold. For example, in
the presence of a curvature hypothesis, one of us [Stanhope 2005] showed that the
Laplace spectrum constrains the structure of the singular set. One fundamental
orbifold spectral geometry question that remains open is whether or not the Laplace
spectrum actually detects the presence of singular points.

Brooks [1991; 1999] proposes viewing k-regular graphs as combinatorial analogs
of smooth manifolds. The infinite k-regular tree Tk is viewed as the graph-theoretic
version of the universal cover of a finite k-regular graph. A finite k-regular graph 0
is studied as the quotient of Tk by the fundamental group of 0 in analogy to the
study of quotients of the universal cover of a manifold under the action of a discrete
cocompact group of isometries acting freely. In this setting Brooks obtains several
results including a characterization of Ramanujan graphs, a partial converse to
Sunada’s theorem, and links between the spectrum of a k-regular graph and the
graph’s diameter and girth.

Following Brooks’ analogy, observe that the action of a discrete, cocompact
group of isometries which is not free yields a quotient space that is an orbifold
rather than a manifold. Given the successful examination of orbifolds from the
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Figure 2. Left: a small 3-orbigraph. Right: a 3-orbigraph with 7 vertices.

perspective of spectral geometry, we seek to extend Brooks’ analogy one step further
by first proposing a graph-theoretic analog of an orbifold and, second, applying
the lens of spectral graph theory to orbifold graphs. References in the literature to
an orbifold-like class of graphs are limited. Brooks [1999] himself describes an
“orbifold graph” as a quotient of a k-regular graph under a nonfree group action.
He offers orbifold graphs as a motivating idea, but chooses to “avoid entering into
the technicalities of ‘orbifold graphs’.” Juan-Pineda, Lafont, Millan-Vossler and
Pallekonda [Juan-Pineda et al. 2011] describe an analogy between orbifolds and
objects from Bass–Serre theory [Bass 1993] called graphs-of-groups. Although the
present work has its roots in the ideas of Brooks, the graphs that we examine here
can be viewed as a generalization of the edge-index graph of a graph-of-groups.

We define an orbigraph to be a member of the following class of weighted,
directed graphs.

Definition 3. An orbigraph of degree k (k-orbigraph) is a finite, weighted, directed
graph � where the adjacency matrix A of � satisfies the following:

(i) Ai j ∈ Z≥0.

(ii)
∑

j Ai j = k.

(iii) Ai j > 0 if and only if Aj i > 0.

Figure 2 shows two examples of orbigraphs.

Remark 4. All orbigraphs discussed below will be assumed to be connected unless
noted otherwise. Condition (iii) in Definition 3 implies that a connected orbigraph
must be strongly connected. Nonzero diagonal entries in the adjacency matrix of
an orbigraph correspond to weighted loops in the orbigraph.

In Section 2 below we demonstrate the analogy between orbigraphs and orbifolds
through the following three points:

(a) The local structure of a vertex in a k-orbigraph is that of the quotient of a k-
regular graph, just as the local structure of a k-dimensional orbifold is the quotient
of a k-dimensional manifold.
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(b) Some vertices in an orbigraph have the same local structure as a vertex in a
regular graph and some do not. This leads us to the definition of regular and singular
vertices in an orbigraph — an essential piece of the analogy between orbifolds and
orbigraphs.

(c) We show that some orbigraphs can be obtained as the quotient of a finite regular
graph under an equitable partition and some cannot. This mirrors the fundamental
fact from the geometric setting that orbifolds are divided into two classes: those
that are covered by a manifold (like the football) and those that are not (like the
teardrop). Indeed, the presence of singular objects that are not merely quotients
of regular objects saves the study of orbifolds and orbigraphs from being simply a
reduced version of a known field of study.

Section 3 connects orbigraphs to the theory of Markov chains. In Section 4
Markov chain methods are used to obtain a graph-theoretic characterization of when
an orbigraph can be obtained as the quotient of a finite regular graph, and when
it cannot. This characterization makes it easy to generate examples of orbigraphs
with these properties, facilitating our later examination of how spectral results for
orbifolds carry over to the orbigraph setting. Also using Markov chain methods
we provide a lower bound on the Cheeger constant of a k-orbigraph in terms of k
and the size of its vertex set. This adds a third family to the list in [Chung 2005] of
families of directed graphs that satisfy similar bounds. It would be interesting to
know if the bound presented here is sharp, or if an improved bound could be used
to obtain a strong upper bound on the convergence of random walks on orbigraphs.
Our examination of the Cheeger constant on orbigraphs is the topic of Section 5.

In Section 6 we follow the philosophy of Brooks and ask questions from the
spectral geometry of orbifolds in the orbigraph setting. The orbigraph spectrum
discussed here is the list of eigenvalues of the adjacency matrix of an orbigraph.
Because the analogy between orbifolds and orbigraphs established in Section 2 is
strong, the questions carry over naturally and we obtain several interesting results:

(a) We show that the spectrum does not detect whether or not an orbigraph can
be obtained as the quotient of a finite k-regular graph. The analogous question for
orbifolds is still an open problem in spectral geometry.

(b) The number of singular points in an orbigraph can be bounded both above and
below by spectrally determined quantities. In the geometric setting one can seek
spectral bounds on the number of components of the singular set. In dimension 2,
the fifth author and Proctor [Proctor and Stanhope 2010] obtained a result of this
type under a curvature hypothesis.

(c) The spectrum of an orbigraph detects the presence of singular points. As
mentioned above, this question is still open in the orbifold setting.
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2. Orbigraphs as discrete orbifolds

2.1. Local structure of a k-orbigraph. The local structure of an orbigraph is that
of a quotient of a k-regular graph. There are multiple ways to define the quotienting
process for graphs. Here quotient graphs will be formed with respect to an equitable
partition. The definition given below uses the approach of Barrett, Francis and
Webb [Barrett et al. 2017] to extend the definition of an equitable partition from the
familiar setting of simple graphs to the more general setting of weighted directed
graphs. We also follow the thorough treatment of the simple graph case in Chapter 5
of [Godsil 1993].

In what follows let w(u, v) denote the weight of directed edge (u, v).

Definition 5. Let 0 be a graph (possibly directed, weighted, or both) and

P = {V1, V2, . . . , Vm}

be a partition of its vertices:

(a) We say P is an equitable partition if for all pairs i, j the number
∑

v∈Vj
w(u, v)

is the same for each element u in Vi .

(b) Given an equitable partition P on 0, the weighted directed graph with adjacency
matrix Ai j =

∑
v∈Vj

w(u, v), u in Vi , is called the quotient graph of 0 with
respect to P and will be denoted by 0/P.

Remark 6. If a group G acts on a simple graph 0 by automorphisms, the vertex
orbits of the action form an equitable partition of the vertex set of 0. This type of
equitable partition is called an orbit partition. In this case the quotient graph will
be written 0/G.

To discuss the local structure of an orbigraph we introduce further terms from
graph theory. Note that an undirected edge {v,w} of weight n in a graph will be
viewed as being equivalent to a pair of weight-n directed edges (v,w) and (w, v),
and vice versa.

Definition 7. (a) The k-star graph is the complete bipartite graph K1,k and will
be denoted by Sk . The vertex with degree k in Sk is the central vertex of Sk .

(b) The neighborhood of a vertex v in an undirected graph 0 is the subgraph of 0
including the vertex v, all vertices w adjacent to v, and all edges {v,w}.

(c) The out-neighborhood of a vertex v in a directed graph 1 is the directed
subgraph of 1 including vertex v, all vertices w at which edges initiating at v
terminate, and all directed edges (v,w) with initial vertex v.

Because the neighborhood of each vertex in a simple k-regular graph is Sk , we
view a simple k-regular graph as the graph-theoretic analog of a k-dimensional
manifold.
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Figure 3. Out-neighborhoods of the central vertex in quotients of S3.

Let G be a group of graph automorphisms of Sk and form the quotient graph Sk/G.
The central vertex c of Sk/G is the vertex in Sk/G associated to the element of
the orbit partition on Sk containing the central vertex of Sk . The out-neighborhood
of c in Sk/G is a weighted star graph with between 1 and k edges. The sum of the
weights over all edges in the out-neighborhood of c is k.

Example 8. There are only three different weighted, directed graphs that arise
as quotients of S3 by a group of graph automorphisms. Figure 3 illustrates the
out-neighborhoods of the central vertex in each of these three quotients.

Because all row sums in the adjacency matrix of a k-orbigraph � are k, the
out-neighborhood of a vertex v in � is identical to the outgoing neighborhood of
the central vertex in some quotient of a k-star. In this way, a k-star quotient provides
the local model of the neighborhood of a point in an orbigraph. Our interest in the
local structure of an orbigraph at a vertex is in the number of outgoing edges and
the weights of those edges. The terminal point of an outgoing edge is not important.
Because of this the out-neighborhood of a vertex with a loop is taken with the loop
“undone”. For example, vertex v1 in Figure 2, left, is locally modeled on the middle
graph in Figure 3.

To complete our analogy between the local structure of orbifolds and the local
structure of orbigraphs we observe that requirement (iii) in Definition 3 corresponds
to the fact that if local neighborhoods U, V in an orbifold satisfy U ∩ V 6=∅ then
we also have V ∩U 6=∅.

2.2. Singular points in an orbigraph. The key feature of the study of orbifolds
that distinguishes it from manifold theory is the presence of orbifold singular points.
We define a singular vertex in an orbigraph in the following way.

Definition 9. A vertex v of an orbigraph is singular if any outgoing edge from v

has weight greater than 1. A vertex that is not singular is called regular.

We see that regular graphs contain no singular vertices, as required by our analogy
between regular graphs and manifolds.

Example 10. Both vertices in the orbigraph in Figure 2, left, are singular. Vertices
v1, v4 and v6 in the orbigraph in Figure 2, right, are singular, and the rest are regular.
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Figure 4. Graph diagram of K4.

In contrast to the orbifold setting, singular points in an orbigraph are not marked
with an isotropy group. However we can quantify the extent to which a vertex v is sin-
gular by noting the number of outgoing edges from v that have weight greater than 1.
We can also consider the list of weights of outgoing edges from v. As mentioned in
the Introduction, graphs-of-groups offer an alternative graph-theoretic interpretation
of orbifolds. A graph-of-groups, in contrast to an orbigraph, has vertices that are
marked with a group in a way that is analogous to an orbifold isotropy group.

2.3. Good and bad orbigraphs. In Example 1 we saw that the football orbifold is
the quotient of a sphere under the smooth action of a finite group. In Example 2
it was asserted that the teardrop orbifold cannot be obtained as a quotient in this
manner. Orbifolds that can be written as the quotient of a manifold under a smooth,
discrete group action are called good. Otherwise they are called bad. Following
these ideas we define good and bad orbigraphs as follows.

Definition 11. A k-orbigraph � is said to be good if it can be obtained as the
quotient of a finite k-regular graph 0 via an equitable partition on 0. If an orbigraph
is not good it is called bad.

Example 12. The orbigraph in Figure 2, left, is good because it is the quotient of
the complete graph K4, as presented in Figure 4, by the group Z3 generated by a
2π/3-radian rotation about the center vertex. The orbigraph in Figure 2, right, is
bad. This follows from Theorem 20 below and the observation that the product of
edge weights along cycle (v1, v2, v3, v4, v5, v6, v7, v1) is 2, while the product of
edge weights along the reverse cycle (v1, v7, v6, v5, v4, v3, v2, v1) is 4.

The analogy with the covering theory of topological spaces is further strengthened
by the following two lemmas.

Lemma 13. If � is a k-orbigraph and P is an equitable partition on the vertices
of �, then �/P is a k-orbigraph.

Proof. Let A denote the adjacency matrix of �/P, where P = {V1, V2, . . . , Vm},
and let w�( · , · ) denote the weight function on directed edges in �. Because �
is an orbigraph, we know w�(u, v) is a nonnegative integer for all vertices u, v
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in �. Hence Ai j =
∑

v∈Vj
w�(u, v), for any u ∈ Vi , is a nonnegative integer. Fixing

i ∈ {1, 2, . . . ,m}, and taking u some element of Vi , consider the i-th row sum of A:∑
j

Ai j =
∑

j

∑
v∈Vj

w�(u, v)=
∑
v∈�

w�(u, v)= k.

Finally suppose Ai j > 0. Then there must a j ∈ {1, 2, . . . ,m} for which any
u ∈ Vi has w�(u, v) > 0 for some v ∈ Vj . Because � is an orbigraph, we must also
have w�(v, u) > 0. Thus Aj i > 0. �

Definition 14. We say that an orbigraph �1 covers an orbigraph �2 if there is an
equitable partition P of the vertices of �1 such that �1/P =�2.

Lemma 15. The covering relation is transitive.

Proof. Suppose�1 is an orbigraph with equitable partition P1 such that�1/P1=�2,
and �2 has an equitable partition P2 such that �2/P2 = �3. We need to show
there is an equitable partition P3 of �1 such that �1/P3 = �3. For i = 1, 2 let
Ai denote the adjacency matrix of orbigraph �i , and Pi denote the characteristic
matrix corresponding to partition Pi . By a straightforward modification of [Godsil
1993, Lemma 2.1, p. 77] to the setting of weighted, directed graphs we have that
A1 P1= P1 A2 and A2 P2= P2 A3. Thus A1 P1 P2= P1 A2 P2= P1 P2 A3. We conclude
P1 P2 defines an equitable partition on �1 with quotient orbigraph �3. �

As a consequence of the previous two lemmas we obtain the following.

Corollary 16. The quotient of any good orbigraph must also be good.

3. Orbigraphs and Markov chains

The fact that the row sum of the adjacency matrix of an orbigraph is constant provides
an immediate connection between orbigraphs and Markov chains. Following [Kelly
1979], we review ideas from the theory of Markov chains and introduce notation that
will be used hereafter. Matrix A will denote the adjacency matrix of a k-orbigraph�
with n vertices. Define P= (1/k)A. Matrix P is the transition matrix of a stationary
Markov chain, as all entries of P lie in the interval [0, 1] and all rows of P sum
to 1. Because the adjacency matrix of a k-orbigraph has right eigenvalue k (to see
this consider the eigenvector with all entries equal to 1), P has right eigenvalue 1
and stationary distribution vector π = (π1, π2, . . . , πn), with

∑n
k=1 πk = 1, for

which π P = π . By Remark 4 we know � is strongly connected so π is the unique
stationary distribution of P.

Our first result connecting orbigraphs to Markov chains is a bound on the minimal
entry of π in terms of the degree and number of vertices of an orbigraph.
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Lemma 17. Let πm be a minimal entry in stationary distribution π . Then

πm ≥
1

nkn−1 .

Proof. Let πM denote a maximal entry in π and let c be the minimal nonzero value
that appears as an entry in matrix P. Because � is strongly connected, there is a
path of length ` < n from the M-th vertex to the m-th vertex of �. This implies
that (P`)Mm is nonzero. Using this and the fact that π P = π , we have

πm =

n∑
k=1

(P`)kmπk ≥ (P`)MmπM ≥ c`πM ≥ cn−1πM .

Because P is the transition matrix associated to an orbigraph, we have c ≥ 1/k.
Also, we know that πM ≥ 1/n because the sum of the entries of π is 1. Thus
πm ≥ cn−1πM ≥ 1/(nkn−1) as required. �

Here we relate the stationary distribution of a good orbigraph to that of its finite
regular cover.

Lemma 18. Let 0 be a k-regular graph with N vertices, P = {V1, V2, . . . , Vn} be
an equitable partition of the vertices of 0, and P be the transition matrix of the
orbigraph 0/P. Let |Vi | denote the number of vertices in partition element Vi . The
stationary distribution of P is the n-tuple π , where πi = (1/N )|Vi |.

Proof. Let Q denote the transition matrix obtained by scaling the adjacency matrix
of 0 by 1/k. The result follows from the observation that the stationary distribution
of Q is the N -tuple (1/N , 1/N , . . . , 1/N ) and [Godsil 1993, Lemma 2.2, p. 78]. �

4. Characterizing good and bad orbigraphs

We use the Markov chain methods and notation from Section 3 to provide a quick
way to distinguish good orbigraphs from bad orbigraphs.

Definition 19. An orbigraph � satisfies the balanced cycle condition if the product
of the edge weights along each directed cycle v1, v2, . . . , vl, v1 in � equals the
product of the edge weights along the reverse directed cycle v1, vl, vl−1, . . . , v1.

Theorem 20. An orbigraph is good if and only if it satisfies the balanced cycle
condition.

A stationary Markov chain is said to satisfy the detailed balance equations if

πi Pi j = πj Pj i for all i, j = 1, 2, . . . , n.

The Markov chain analog of the balanced cycle condition from Definition 19
is called the Kolmogorov criterion. In particular, an orbigraph satisfies the bal-
anced cycle condition if and only if the corresponding Markov chain satisfies the
Kolmogorov criterion. We can now state a needed lemma.
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Lemma 21. A stationary Markov chain satisfies the detailed balance equations if
and only if it satisfies the Kolmogorov criterion.

Proof. This follows from combining Theorems 1.2 and 1.7 in [Kelly 1979]. �

Proof of Theorem 20. Suppose � is a good orbigraph. This implies � = 0/P,
where 0 is a k-regular graph and P = {V1, V2, . . . , Vn} is an equitable partition
on 0. Scaling the adjacency matrix of 0 by 1/k yields the symmetric transition
matrix Q of a Markov chain. We relate the stationary distribution of Q to the
stationary distribution of P, the transition matrix of �, by Lemma 18. In particular
πi = (1/N )|Vi |, where π denotes the stationary distribution of P and N is the
number of vertices in 0.

The following computation confirms that P satisfies the detailed balance equa-
tions:

πj Pj i =
1
N
|Vj |Pj i =

1
N
|Vj |

∑
k∈Vi

Q jk =
1
N

∑
l∈Vj

∑
k∈Vi

Qlk

=
1
N

∑
k∈Vi

∑
l∈Vj

Qkl =
1
N
|Vi |

∑
l∈Vj

Qkl = πi Pi j .

(The argument closely follows that of [Tian and Kannan 2006, Theorem 2.16],
which is given in the setting of lumpable Markov chains. It makes essential use of
the fact that P is an equitable partition and that Q is a symmetric matrix.) The fact
that � satisfies the balanced cycle condition now follows from Lemma 21.

Now suppose � is an orbigraph that satisfies the balanced cycle condition.
By Lemma 21, P and π satisfy the detailed balance equations πi Pi j = πj Pj i .
Multiplying by k on both sides gives πi Ai j = πj Aj i . Because A has all nonnegative
integer entries, π will have all nonnegative rational entries. Thus there is an
integer m for which mπ = (d1, d2, . . . , dn) is a vector of nonnegative integers. This
allows us to write

di Ai j = dj Aj i , (1)

an equality of products of nonnegative integers.
We now build a finite k-regular cover 0 of �. Let X be the set of nonzero,

nondiagonal entries of A. Let Y = {A11+ 1, A22+ 1, . . . , Ann + 1}. Let c be the
least common multiple of the integers in X ∪ Y. For each i = 1, 2, . . . , n we take
Vi to be a set of cdi vertices. The disjoint union V1 tV2 t · · · tVn forms the vertex
set of 0 and gives the needed vertex partition P of 0.

It remains to specify adjacency in 0 in such a way that 0/P = �. Suppose
i 6= j . For the quotient 0/P = � to be valid, each vertex in Vi must be adjacent
to Ai j vertices in Vj , and each vertex in Vj must be adjacent to Aj i vertices in Vi .
Thus the number of edges with one vertex in Vi and one vertex in Vj , which we
will denote by e{i, j}, is simultaneously Ai j |Vi | and Aj i |Vj |. The adapted detailed
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balance equations from (1) show that this requirement follows from our choice for
the sizes of Vi and Vj as

Ai j |Vi | = Ai j cdi = Aj i cdj = Aj i |Vj |.

Because Ai j divides |Vj | and Aj i divides |Vi |, we can distribute the e{i, j} edges
connecting Vi and Vj with exactly Ai j edges adjacent to each vertex in Vi and
exactly Aj i edges adjacent to each vertex in Vj . Because Ai i + 1 divides |Vi |, we
can require that all elements of Vi are adjacent to exactly Ai i other elements of Vi .
This completes the adjacency relations for 0.

By construction we observe 0/P = �. The degree of a vertex v in 0 is∑
j=1 Ai j = k; thus 0 is k-regular. Should 0 fail to be connected, any connected

component 0′ of 0 will satisfy 0′/P =�. �

Remark 22. Corollary 16 and Theorem 20 imply that if an orbigraph � satisfies
the balanced cycle condition then so does any orbigraph quotient of �. This stands
in contrast to [Tian and Kannan 2006, Example 2.17].

5. Bounding the Cheeger constant of an orbigraph

Chung [2005] defined a Cheeger constant for directed graphs and obtained lower
bounds on the Cheeger constant for both regular and Eulerian directed graphs. Using
R to denote a k-regular directed graph on n vertices and E an Eulerian directed
graph with m edges, Chung showed

h(R)≥ 2
kn

and h(E)≥ 2
m
. (2)

Here we apply Chung’s methods to obtain a lower bound on the Cheeger constant
of an orbigraph. We use notation from Section 3.

Define a function F from � to the nonnegative real numbers by

F(i, j)= πi Pi j ,

where i and j are vertices in �. This function is an example of a circulation on �;
see [Chung 2005, Lemma 3.1]. Letting S range over all nonempty proper subsets
of the vertex set of �, the Cheeger constant h(�) of � is defined as

h(�)= inf
S

∑
i∈S, j /∈S F(i, j)

min
{∑

j∈S F( j),
∑

j∈S F( j)
} ,

where F( j)=
∑

i,i→ j F(i, j) and S is the set of vertices of � that are not in S.
We have the following lower bound on the Cheeger constant of �.

Proposition 23. Let � be a k-orbigraph with n vertices. Then

h(�)≥
2

n2kn .
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Proof. We begin by bounding the numerator in the expression defining the Cheeger
constant (let πm denote a minimal entry in π ):∑

i∈S, j /∈S

F(i, j)=
∑

i∈S, j /∈S

πi Pi j ≥
∑

i∈S, j /∈S

πm Pi j ≥
1

nkn .

The last inequality follows from Lemma 17 and the observation that the smallest
possible nonzero value for an entry in P is 1/k.

To bound the denominator first observe that
∑

j∈S F( j) is no greater than the
sum of the columns in P associated to the vertices in S. It is similar for

∑
j∈S F( j).

Since the total sum of the entries in P is n, we have∑
j∈S

F( j)+
∑
j∈S

F( j)≤ n.

Thus min
{∑

v∈S F(v),
∑

v∈S F(v)
}
≤ n/2.

We see that for any choice of S the quotient in the definition of the Cheeger
constant must be greater than or equal to 2/(n2kn), completing the proof. �

Remark 24. Chung uses the inequalities in (2) to obtain convergence bounds for a
type of random walk on regular and Eulerian directed graphs. The presence of n
in the exponent in the denominator of the orbigraph bound makes it too weak to
obtain a similar orbigraph result. It would be interesting to see if a better bound on
the Cheeger constant of an orbigraph, should one exist, would allow a convergence
result similar to the regular and Eulerian cases.

6. Spectral results for orbigraphs

Because different matrices can be associated to a given graph, a variety of graph spec-
tra are examined in spectral graph theory. Here the spectrum of an orbigraph� is de-
fined to be the list of eigenvalues of the adjacency matrix of � with each eigenvalue
repeated according to its multiplicity. We will write the spectrum of an orbigraph
with n vertices as a multiset {λ1, λ2, . . . , λn}. The study of the spectral properties
of directed graphs is relatively new and has yielded interesting applications, as well
as directed graph analogs of familiar graph-theoretical results, including Cheeger’s
inequality; see [Chung 2005; Langville and Meyer 2006], for example. We focus on
developing results that relate the spectrum of an orbigraph to its orbigraph structure.

Remark 25. Just as with k-regular graphs, the spectral radius of a k-orbigraph is k.
In addition, the number of eigenvalues in the spectrum of an orbigraph (counting
multiplicity) is equal to the number of vertices in the orbigraph.

Lemma 26. Suppose orbigraph �1 covers orbigraph �2. Then the spectrum of �2

is contained in the spectrum of �1 as multisets.
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v1
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Figure 5. The left and center orbigraphs are cospectral. The left
orbigraph is bad. The center orbigraph is good as it is covered by
the right-most graph using the indicated partition.

Proof. This follows from the argument in Lemma 2.2 of Chapter 5 in [Godsil
1993], adjusted to allow the graph carrying the equitable partition to be a weighted,
directed graph. �

Corollary 27. Any orbigraph with complex eigenvalues must be bad.

Proof. This follows from Lemma 26 and the fact that regular graphs have real
eigenvalues. �

Theorem 28. The spectrum of an orbigraph does not distinguish good orbigraphs
from bad orbigraphs.

Proof. The orbigraph on the left in Figure 5 and the orbigraph in the center of
the figure both have spectrum {−2, 0, 1, 3}. However the orbigraph on the left is
bad and the orbigraph in the center is good. To see that the left orbigraph is bad,
apply Theorem 20 and the fact that the product of the edge weights along cycle
(v1, v2, v3, v4) is not equal to the product of the edge weights of this cycle reversed.
The center orbigraph is good because it is covered by the 3-regular graph on the
right side of Figure 5 using the indicated equitable partition. �

In the following lemma a directed edge from vertex v1 to vertex v2 of weight w is
considered to contribute w-many different ways to move from v1 to v2. The length
spectrum of a graph is the finite list of nonnegative integers where the m-th number
in the list counts the number of closed walks of length m present in the graph.

Lemma 29. The eigenvalue spectrum of an orbigraph determines and is determined
by the length spectrum of the orbigraph.

Proof. Let � be a k-orbigraph, A its adjacency matrix, and wm the number of
closed walks in � of length m. We know that

wm = tr(Am) (3)
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because the diagonal of Am counts the number of closed walks of length m. However

tr(Am)=

n∑
i=1

λm
i .

Thus the eigenvalue spectrum of � uniquely determines the length spectrum of �,
and conversely by Newton’s identities [Mead 1992] the length spectrum of �
uniquely determines the eigenvalue spectrum of �. �

We now prove that the number of singular points in an orbigraph is bounded
above and below by spectrally determined quantities.

Theorem 30. Let � be a k-orbigraph with n vertices. If s is the number of singular
points in �, then we have∑n

i=1 λ
2
i − nk

k2− k
≤ s ≤

n∑
i=1

λ2
i − nk,

where λi are the eigenvalues of the adjacency matrix A of �.

Proof. First note that
∑n

i=1 λ
2
i = tr(A2) and by Lemma 29 this quantity counts the

number of closed walks of length 2 in �. A given vertex v in � has outgoing edges
with weights summing to k, each of which is matched by at least one incoming
edge. This implies the number of closed walks of length 2 starting at v is at least k.
Observing that there are n vertices in �, we obtain tr(A2) ≥ nk. Now suppose
v1 is a singular vertex in �. This vertex has at least one outgoing edge (v1, v2)

of weight greater than 1. Edge (v1, v2) contributes at least one closed walk of
length 2, beginning and ending at v2, that has not yet been counted. We conclude
that tr(A2)≥ nk+ s; thus s ≤

∑n
i=1 λ

2
i − nk.

For the lower bound, note that each singular vertex vi contributes Aj i (Ai j − 1)
extra (i.e., beyond the initial k length-2 paths) length-2 paths based at vj . Thus the
total number of extra paths contributed by vertex vi is

∑
vi∼v j

Aj i (Ai j − 1). We
bound this quantity in terms of k:∑

vi∼v j

Aj i (Ai j − 1)≤
∑
vi∼v j

k(Ai j − 1)= k
∑
vi∼vj

Ai j −
∑
vi∼vj

k ≤ k2
− k.

Hence each singular vertex contributes at most k2
− k extra walks of length 2, so

s(k2
− k)≥

∑n
i=1 λ

2
i − nk. Isolating s in this inequality completes the proof. �

Remark 31. The orbigraph with adjacency matrix k In , where In denotes the n× n
identity matrix, achieves the lower bound in Theorem 30 for all choices of k and n.
Thus this lower bound is sharp in k and n.
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Corollary 32. Suppose � is a k-orbigraph with n vertices. Then � is isomorphic
to a k-regular graph if and only if∑

i

λ2
i − nk = 0 and

∑
i

λi = 0.

Proof. A simple k-regular graph � has no self loops; thus Lemma 29 implies∑
i λi = 0. Viewing each edge {vi , vj } in � as two directed edges, (vi , vj ) and

(vj , vi ), we see each vertex in � has exactly k closed walks of length 2. Therefore∑
i λ

2
i = nk.

Conversely, assume that � is an orbigraph such that
∑

i λ
2
i = nk and

∑
i λi = 0.

Then by Theorem 30, we have s ≤ 0. As s ≥ 0 we see s = 0. Thus the outgoing
edges of each vertex in � all have weight 1. The second condition implies � has
no loops. By combining pairs of directed edges (vi , vj ) and (vj , vi ) into a single
undirected edge {vi , vj }, we obtain a simple k-regular graph. �

In the smooth setting it is not known if a manifold can have the same Laplace
spectrum as a nonmanifold orbifold. We can resolve this question in the setting of
orbigraphs.

Corollary 33. A regular graph and an orbigraph with one or more singular points
cannot be cospectral.

Proof. Suppose regular graph 0 and orbigraph � are cospectral and that � contains
s ≥ 1 singular points. By Remark 25 the largest eigenvalue in the shared spectrum
of 0 and � is the degree of regularity of each graph. Denote this largest eigenvalue
by k. In addition the shared spectrum implies that each graph has the same number
of vertices n. By the forward direction of Corollary 32, the fact that 0 is k-regular
implies

∑
i λ

2
i − nk = 0 and

∑
i λi = 0. However the backwards direction of

Corollary 32 implies s = 0, a contradiction. �
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