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Determining how the brain stores information is one of the most pressing prob-
lems in neuroscience. In many instances, the collection of stimuli for a given
neuron can be modeled by a convex set in Rd. Combinatorial objects known as
neural codes can then be used to extract features of the space covered by these
convex regions. We apply results from convex geometry to determine which
neural codes can be realized by arrangements of open convex sets. We restrict our
attention primarily to sparse codes in low dimensions. We find that intersection-
completeness characterizes realizable 2-sparse codes, and show that any realizable
2-sparse code has embedding dimension at most 3. Furthermore, we prove that
in R2 and R3, realizations of 2-sparse codes using closed sets are equivalent to
those with open sets, and this allows us to provide some preliminary results on
distinguishing which 2-sparse codes have embedding dimension at most 2.

1. Introduction

One of the fundamental problems of convex geometry is understanding the inter-
section behavior of convex sets. Classical theorems in this area include Helly’s
theorem and its many variations, which show that the presence of lower-order
intersections of convex sets in Rd can force intersections of higher order; see for
example [Amenta et al. 2017; Danzer et al. 1963; Eckhoff 1993; Matoušek 2002].
Recent work [Tancer 2013] on the representability of simplicial complexes provides
a sharp bound on the dimension in which intersection patterns of convex sets can
be realized. We consider the problem of simultaneously realizing intersection
patterns along with other relationships between convex sets, such as containment.
This problem is motivated by one of the challenges of mathematical neuroscience:
determining how the structure of a stimulus space is represented in the brain.

Many types of neurons respond to stimuli in an environment; the set of all such
stimuli is called the stimulus space X. Usually, we consider X ⊂ Rd. If we are
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considering data from n neurons {1, . . . , n} which respond to stimuli in X, the
receptive field for neuron i is the subset Ui of the stimulus space X for which
neuron i is highly responsive. Throughout this article, we assume the sets Ui

are convex. Indeed, experimental data on many types of neurons, such as place
cells [O’Keefe and Dostrovsky 1971] or orientation-tuned neurons [Hubel and
Wiesel 1959], make it evident that receptive fields are often well-approximated
by convex sets. Hence, for such neurons, the regions of stimulus space in which
multiple neurons fire can be modeled by intersections of convex sets, and thus the
mathematical theory developed by Helly, Tancer, and others can inform us about
the possible arrangements of receptive fields in a given dimension.

Helly’s theorem, however, cannot inform us about all types of receptive field
arrangements. For example, if Ui , Uj are receptive fields which intersect, the neural
data will differentiate between Ui ⊆Uj and Ui 6⊆Uj , but Helly’s theorem merely
notes that Ui and Uj intersect. We thus go beyond the usual scope of convex
geometry to consider the problem of finding arrangements of convex sets which
fully realize the information present in the neural data, including containments. This
problem was posed originally in [Curto et al. 2013b], and has been an active area
of exploration in recent years. Others such as [Chen et al. 2019; Curto et al. 2017;
Cruz et al. 2019; Amzi Jeffs 2018; Amzi Jeffs and Novik 2018] have approached
it using methods from algebra, combinatorics, and discrete geometry, but a full
solution remains out of reach. In order to address this issue, we first describe how
neural data is represented mathematically.

Definition. A neural code on n neurons is a set of binary firing patterns C ⊂ {0, 1}n,
representing neural activity. Elements of C are referred to as codewords.

The firing of a neuron is an all-or-nothing event, and so a codeword c ∈ C
represents a data point in which a specific set of neurons are simultaneously firing,
with neuron i active if ci = 1 and inactive if ci = 0. For example, the codeword
0011 represents a data point at which neurons 3 and 4 were active, while neurons 1
and 2 were not. In the receptive field context, the presence of this codeword in C
indicates that (U3 ∩U4)\(U1 ∪U2) 6=∅.

Definition. Let U = {U1, . . . ,Un} be a collection of sets in Rd. The associated
neural code C(U)⊆ {0, 1}n is the set of firing patterns representing the regions in
the arrangement

C(U) def
=

{
c ∈ {0, 1}n

∣∣∣∣ (⋂
ci=1

Ui

)
\

(⋃
cj=0

Uj

)
6=∅

}
.

Any collection of sets U in Rd gives rise to an associated neural code. However,
as we have mentioned, the receptive fields Ui are generally presumed to be convex.
One of our main motivating examples is that of place cells, whose receptive fields
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Figure 1. An open convex realization of the code C =
{000, 100, 010, 110, 011} in R2, with each region labeled with
its corresponding codeword. This shows that C is an open convex
realizable code with d(C) ≤ 2. It can be shown that, in fact,
d(C)= 1.

are generally seen to be convex, as explained in [Curto et al. 2017]. We additionally
assume the receptive fields Ui are open, since by restricting to open sets, we force
all sets in our realization to be full-dimensional; furthermore, their intersections, if
nonempty, must also be full-dimensional. This allows us to avoid degenerate cases
which would not be meaningful in a neural context. These assumptions are consistent
with the literature [Curto et al. 2013b; 2017; Lienkaemper et al. 2017]. However,
many of our proofs will require that we shift between closed and open convex sets
that are associated to the same code. We therefore make the following definition:

Definition. If U={U1, . . . ,Un} is a collection of open (respectively, closed) convex
sets in Rd for which C= C(U), then we say that C is open (closed) convex realizable
in Rd, and that U is an open (closed) convex realization of C.

Then, for any code C, we define d(C) to be the minimum dimension d such that
C has an open convex realization in Rd, if such a dimension d exists. Figure 1
shows an open convex realization in R2 for a code C which has minimum dimension
d(C) = 1. If C is not realizable with open convex sets in any dimension, we say
d(C)=∞. Such codes do exist; see Figure 2.

Definition. The support of a vector c ∈ {0, 1}n, denoted by supp(c), is the set of
indices of value 1, or the set of all firing neurons:

supp(c) def
= {i | ci = 1}.

The support of a code C ⊆ {0, 1}n is the set of the supports of its codewords:

supp(C) def
= {supp(c) | c ∈ C}.

We assume that there are instances when none of the neurons of interest are firing;
hence, we will always assume that the codeword 00 · · · 0 is present in any code.
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Figure 2. The code C = {000, 010, 001, 110, 101} is not open
convex realizable in Rd for any d <∞. If it were, we could pick
points p ∈ (U1∩U2)\U3 and q ∈ (U1∩U3)\U2. The line segment
pq is contained in U1 by convexity; to move from p to q along pq ,
we must leave U2 and enter U3. If we leave U2 before entering U3

that would indicate the presence of codeword 100, which is not in
the code; if we enter U3 before leaving U2 that would indicate the
codeword 111, which is not in the code. Since all sets are open,
these are the only possibilities.

Example. Let C = {000, 101, 110, 111}. Then supp(101) = {1, 3}, supp(111) =
{1, 2, 3}, and supp(C)= {∅, {1, 3}, {1, 2}, {1, 2, 3}}.

Recent work, for example [Lin et al. 2014], shows the utility and importance of
sparsity in neural codes. For practical reasons, our definition of “sparse” differs
slightly from the usual low average weight definition often used in coding literature;
see for example [Curto et al. 2013a]. We use instead a low maximum weight
definition:

Definition. A code C is k-sparse if |supp(c)| ≤ k for all c ∈ C.

We begin the program of studying k-sparse codes by focusing on 2-sparse codes,
where there is already rich mathematics to be found. Our fundamental motivating
questions are the following:

Question 1.1. Which 2-sparse codes are open convex realizable?

Question 1.2. If C is an open convex realizable 2-sparse code, what is its minimum
embedding dimension d(C)?

Our main result is the following characterization of which 2-sparse codes have
open convex realizations, including a dimensional bound.

Theorem 1.3. A 2-sparse code C has an open convex realization if and only if
supp(C) is intersection-complete. Furthermore, if C is realizable then d(C)≤ 3.

This answers our first question in its entirety, and partially answers the second.
Note that in this result there is no room for generality in terms of sparsity; there are
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3-sparse codes that are realizable but not intersection-complete; see for example
the code C = {0, 1}3\{001} in [Curto et al. 2013b]. In Section 2, we will prove
Theorem 1.3 using several lemmas. In particular we show in Lemma 2.6 that
for such codes it is equivalent to find a closed convex realization, as it may be
transformed to an open convex realization in R2 or R3. It immediately follows from
this and [Tancer 2013] that any 2-sparse code has a convex open realization in R3.
In Section 3, we consider the second question in more detail, and exhibit a class of
2-sparse codes with d ≤ 2, as well as a class with d = 3.

2. Realizability of 2-sparse codes

This section is dedicated to proving Theorem 1.3, which establishes that a 2-sparse
code is realizable precisely when its support is intersection-complete and, for such
codes C, d(C)≤ 3. In order to prove this theorem, we make use of the simplicial
complex of a code, which is introduced below.

Definition. A simplicial complex on a finite set S is a family 1 of subsets of S
such that if X ∈1 and Y ⊆ X, then Y ∈1.

In this paper, the set S under consideration will most often be [n]= {1, . . . , n}. In
a situation where S = {v1, . . . , vn}, we will typically refer to any set in a simplicial
complex on S by its set of indices.

Definition. The simplicial complex of a code C is the smallest simplicial com-
plex containing supp(C); this is denoted by 1(C). The k-skeleton of a simplicial
complex 1 is the simplicial complex 1k given by the collection of sets in 1 of size
at most k+ 1; see Figure 3.

If C is 2-sparse, then 1(C) consists only of 0-, 1-, and 2-element sets. We can
therefore think of 1(C) as a graph, with 1-element sets corresponding to vertices
and 2-element sets as edges between them. Note that since 1(C) is a simplicial
complex, if {i, j} ∈1(C), then both {i} and { j} must be in 1(C) as well; hence this
association is well-defined. The formal relationship between 2-sparse codes and
graphs is captured by the following definition.

v1

v2 v4

v3 v1

v2 v4

v3

Figure 3. At left, a geometric representation of simplicial complex
on S={v1, v2, v3, v4}with1={∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3},
{2, 3}, {2, 4}, {1, 2, 3}}. At right, a geometric representation of the
1-skeleton of 1.
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Figure 4. The graph GC for C = {000, 100, 010, 110, 011}; see
Figure 1 for a realization of C.

Definition. Let C ⊂ {0, 1}n be a neural code. The graph of C, denoted by GC , is
the graph whose vertex set is [n], with i adjacent to j if {i, j} ⊆ supp(c) for some
c ∈ C; see Figure 4.

Note that GC is the 1-skeleton of 1(C). In particular, for a 2-sparse code, 1(C)
and GC contain exactly the same information because1(C) is equal to its 1-skeleton.

As we saw in Figure 2, there exist 2-sparse codes that are not convex in any
dimension. The following lemma generalizes the obstruction presented in that figure.

Lemma 2.1. Let C be a 2-sparse code. If C has a convex open realization in any
dimension, then supp(C) is intersection-complete.

Proof. Suppose C is a 2-sparse code with open convex realization U ={U1, . . . ,Un}.
Since C is 2-sparse, |supp(c)| ∈ {0, 1, 2} for every c ∈ C. If |supp(c)| is at most 1,
then supp(c)∩ supp(c′) ∈ supp(C) for any c′ ∈ C, because the intersection is either
∅ or supp(c). It then remains to show that supp(c)∩supp(c′)= {i} ∈ supp(C) when
supp(c)= {i, j} and supp(c′)= {i, k} with j 6= k. In this case, Ui ∩Uj and Ui ∩Uk

are nonempty so there exist points p ∈Ui ∩Uj and q ∈Ui ∩Uk . Consider the line
segment pq connecting p and q. Since Ui is convex, pq is contained in Ui . For
each m ∈ [n]\{i}, consider the set Lm = pq ∩Ui ∩Um ; note that any two such sets
are disjoint, and that L j and Lk are nonempty. If the sets {Lm} partition the line pq ,
then this would disconnect pq in the subspace topology, but as pq is connected,
this is impossible. Thus, there must be some point on pq which is contained in Ui

only. The existence of this point implies {i} ∈ supp(C) as desired. �

The conclusion of the previous lemma is that it is necessary for open convex
realizable 2-sparse codes to be intersection complete. In fact, this property char-
acterizes 2-sparse codes with an open convex realization; this is the content of
Theorem 1.3. To prove Theorem 1.3, we will use a method of repeatedly making
geometric augmentations to existing realizations; in order to make such augmenta-
tions without changing the underlying code, we must ensure that subset containment
relations between sets are maintained. In the 2-sparse case, the following definition
encapsulates the key relationships that must be maintained:

Definition. Let U = {U1, . . . ,Un} be a collection of sets in Rd. For any ordered
pair (Ui ,Uj ) we distinguish three possible relations between Ui and Uj :
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Type A (disjointness): Ui ∩Uj =∅; i.e., {i, j} 6⊆ supp(c) for any c ∈ C.

Type B (containment): Uj ⊆ Ui ; i.e., there exists a codeword c ∈ C(U) so that
{i, j} ⊆ supp(c) and any codeword whose support contains j must also have i in
its support.

Type C (proper intersection): Ui ∩Uj is nonempty and Uj \Ui is nonempty; i.e.,
there exist codewords c1, c2 ∈ C(U) so that {i, j} ⊆ supp(c1), j ∈ supp(c2) and
i /∈ supp(c2).

The type-A, type-B and type-C set relationships effectively characterize the
structure of a 2-sparse code; indeed, 2-sparse codes are completely determined by
the pairwise relationships of the sets in any realization. We explicitly state this in
the following proposition.

Proposition 2.2. Let U and U ′ be collections of sets in Rd so that C(U) and C(U ′)
are both 2-sparse. Then C(U)= C(U ′) if and only if for every ordered pair (i, j) the
relation between Ui and Uj is the same as the relation between U ′i and U ′j .

We now introduce the geometric underpinnings of the augmentations we will
apply to realizations of codes. In these definitions, we make use of the idea of
an ε-ball around a point p (Bε(p) = {x ∈ Rd

| ‖x − p‖ < ε}), the interior of a
set A (int(A) = {x ∈ A | Bε(x) ⊆ A for some ε > 0}), and the closure of a set
(A = {x ∈ Rd

| x is a limit point of A}).

Definition. Given ε > 0 and A ⊂ Rd, the trim of A by ε is the set

trim(A, ε) def
= int{p ∈ Rd

| Bε(p)⊆ A}.

The inflation of A by ε is the set

inflate(A, ε) def
= {a+ x | a ∈ A, x ∈ Rd with ‖x‖< ε}.

If A= {A1, . . . , An} is a collection of sets, then

trim(A, ε)= {trim(A1, ε), . . . , trim(An, ε)},

inflate(A, ε)= {inflate(A1, ε), . . . , inflate(An, ε)}.

Proposition 2.3. For any convex set A ⊂ Rd and ε > 0, the following statements
hold:

(1) trim(A, ε) is an open convex set.

(2) trim(A, ε) is contained in the interior of A.

(3) inflate(A, ε) is an open convex set.

Proof. For (1), we need only prove convexity, and we may assume trim(A, ε) is
nonempty. Let p and q be points in trim(A, ε); then Bε(p) and Bε(q) are contained
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in A, and hence so is the convex hull of their union. This convex hull contains the
line segment pq . For (2), note that trim(A, ε)⊆ trim(A, ε/2)⊆ int(A). Finally, (3)
follows from the fact that A is convex and {x ∈Rd

| ‖x‖<ε} is open and convex. �

We now show that open convex realizations of 2-sparse codes can be trimmed
down to give another open convex realization.

Lemma 2.4. Given a 2-sparse code C with an open convex realization U =
{U1, . . . ,Un}, there exists some ε > 0 so that trim(U, ε) is also a realization of C.

Proof. Our method is as follows: For each set Ui , we find an εi such that
trim(Ui , εi ) 6=∅, and for each pair {i, j} we find an εi j such that trim({Ui ,Uj }, εi j )

preserves their relationship type (type A, type B or type C). We then let ε be the
minimum of all εi and εi j , and show that trim(U, ε) is a realization of the original
code C.

To start, for each i with Ui nonempty, there must be some point p and δi > 0
with Bδi (p)⊆Ui . Let εi = δi/2. Let ε1 =mini∈[n] εi . Now, for each pair {i, j}, we
choose εi j depending on the relationship type between Ui and Uj :

Type A: If Ui ∩Uj =∅, set εi j =min{εi , εj }.

Type B: If Ui =Uj , set εi j =min{εi , εj }. If Ui (Uj , note that Uj\Ui has nonempty
interior. Thus there exists some point p and some δi j > 0 with Bδi j (p) ⊆ Uj\Ui .
Let εi j =min{δi j/2, εi }.

Type C: If Ui ∩Uj 6=∅, but neither Ui ⊆Uj nor Uj ⊆Ui is true, note that Ui ∩Uj is
open and therefore there exist a point p and ε′>0 with Bε′(p)⊆Ui∩Uj . There exist
also points pi , pj in Ui\Uj , Uj\Ui respectively, with corresponding ε̂ and ε̃ such
that Bε̂(pi )⊆Ui\Uj and Bε̃(pj )⊆Uj\Ui . Pick εi j =min{εi , εj , ε̂/2, ε̃/2, ε′/2}.

Let ε2 = mini, j εi j , and finally, let ε = min{ε1, ε2}. Since trim(U, ε) ⊂ U, and
originally there were no triple intersections, by construction it is impossible for
trim(U, ε) to have triple intersections. Thus, C(trim(U, ε)) is still 2-sparse. We now
show that C(trim(U, ε))= C.

If the codeword with support {i, j} is in C(trim(U, ε)), then

trim(Ui , ε)∩ trim(Uj , ε) 6=∅.

As trim(U, ε) ⊂ U, this implies Ui ∩Uj 6= ∅. Since C is 2-sparse, the codeword
with support {i, j} is in C. On the other hand, if the codeword with support {i, j} is
in C, then Ui ∩Uj 6=∅, and so we are in a case of type A, B or C above. By our
choice of ε, we ensure that in each case trim(Ui , ε)∩ trim(Uj , ε) 6=∅, and hence
(as the code is 2-sparse) the codeword with support {i, j} is in C(trim(U, ε)).

If a codeword with support {i} is in C(trim(U, ε)), then

trim(Ui , ε)\
⋃

j∈[n], j 6=i

trim(Uj , ε) 6=∅.
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We then know that Ui\
⋃

j∈[n], j 6=i Uj 6= ∅. If it were not, then we would have
Ui ⊆

⋃
j∈I Uj for some index set I. However, this is impossible: If |I | = 1, then

Ui ⊆ Uj , but then trim(Ui , ε) ⊆ trim(Uj , ε). If |I | > 1, then Ui ⊆
⋃

j∈I Uj . But
then the 2-sparsity of C means we would see the codewords {i, j} and {i, k} in C
for j, k ∈ I but not their intersection {i}, contradicting Lemma 2.1. Hence, the
codeword with support {i} is in C.

Now, suppose a codeword with support {i} is in C, and let J = { j |Ui ∩Uj 6=∅}.
If |J | ≤ 1 then we are in a case of type A, B, or C above, and by our choice of
ε we know there is a codeword with support {i} in C(trim(U, ε)). If |J | ≥ 2, let
j, k ∈ J. Then by our choice of ε, we know trim(Ui , ε) ∩ trim(Uj , ε) 6= ∅ and
trim(Ui , ε)∩ trim(Uk, ε) 6= ∅, and hence the codewords with supports {i, j} and
{i, k} are in trim(U, ε). By Lemma 2.1, we know the codeword with support {i} is
also in C(trim(U, ε)). �

Next, we show that a closed convex realization of a 2-sparse codes can be inflated
to create an open convex realization.

Lemma 2.5. Let C be a 2-sparse code with a closed convex realization V =
{V1, . . . , Vn} in which every set is bounded. Then there exists some ε > 0 such that
inflate(V, ε) is an open convex realization of C.

Proof. Consider the partial ordering on V given by set inclusion. We will use this
ordering to inflate the sets in V iteratively (possibly by different ε factors) and then
argue that we can obtain a uniform ε for which inflate(V, ε) is an open convex
realization of C. In this iterative process, if Vi = Vj for any i 6= j, we apply the
process simultaneously to Vi and Vj . As such, it is sufficient for our proof to assume
Vi 6= Vj for any i 6= j.

To start, begin with a fixed index i for which Vi is maximal in V with respect to
inclusion. All sets in V are closed and bounded, so for any j with Vi ∩ Vj =∅, Vi

has positive distance di, j to Vj . Let δi =minVi∩Vj=∅ di, j . Now if there are j, k 6= i
with Vj ∩ Vk 6=∅, then Vi has positive distance di, j,k to Vj ∩ Vk ; take δ′i to be the
minimum of all such di, j,k . Furthermore, let δ′′i > 0 be such that for all j with
Vj 6⊆ Vi , we have Vj 6⊆ inflate(Vi , δ

′′

i ). Finally, choose εi < min
{ 1

2δi ,
1
2δ
′

i ,
1
2δ
′′

i

}
.

These choices help guarantee that no new pairwise or triple intersections are created,
and no new containments are created.

If we replace Vi by inflate(Vi , εi ), then the code is still 2-sparse, and the three
subset relationship types for the ordered pairs (Vi , Vj ) where j 6= i are maintained:

Type A: Disjointness is preserved since εi is at most half the distance from Vi to
any set disjoint from it.

Type B: Containment is preserved since we are only making Vi bigger.

Type C: Proper intersection is preserved by our choice of εi .
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By a similar argument, the subset relationship of the ordered pair (Vj , Vi ) for any
j 6= i is also preserved after replacing Vi by inflate(Vi , εi ). Thus replacing Vi by
inflate(Vi , εi ) yields a new realization of C.

For any subsequent step in our iterative process, choose a set Vi ∈ V for which
every member of the set {Vj ∈ V | Vj ⊃ Vi } has already been inflated. Choose εi

in the same way as previously described with the additional caveat that if Vi ⊆ Vj

then εi < εj . A similar argument shows that replacing Vi by inflate(Vi , εi ) yields
a new realization of C. Once we have inflated every set in the realization we can let
ε=mini∈[n] εi and observe that inflate

(
U, 1

2ε
)

is an open convex realization of C. �

This result allows us to prove the useful fact that for 2-sparse codes, open and
closed convex realizations exist interchangeably, and we can build either type of
realization from the other.

Lemma 2.6. Let C be a 2-sparse code. Then C has an open convex realization in
Rd if and only if C has a closed convex realization in Rd.

Proof. First, let U be an open convex realization of C. Applying Lemma 2.4, there is
an ε > 0 such that U ′ = trim(U, ε) is an open realization of C. Since the closure of
each U ′i is contained in Ui (by Proposition 2.3), U ′ is an open convex realization of
C in which two sets intersect if and only if their closures do. Let V = {U ′1, . . . ,U

′
n}.

No triple intersections exist in V since these would correspond to triple intersections
in U . Thus by Proposition 2.2 it suffices to show that V preserves the relations
between sets in U ′. Disjointness is preserved since sets in U ′ intersect if and only if
their closures do. Containment is preserved under taking closures. Lastly, proper
intersection is preserved, since if Ui \Uj is nonempty then there are limit points of
Ui that are not limit points of Uj .

For the reverse direction, let V be a closed convex realization of C. For every
nonempty intersection Vi ∩ Vj , let pi, j be a point in this intersection. Furthermore,
if some set Vi is not contained in any other Vj , let pi ∈ Vi \

⋃
j 6=i Vj . Then set V

to be the convex hull of all these p′i s and p′i, j s. Replacing each Vi by Vi ∩V yields
a realization of C in which every set is closed, convex, and bounded. Applying
Lemma 2.5, we obtain an open convex realization of C in Rd. �

Although it may not be immediately clear from the proof, the condition that C is
2-sparse is necessary for Lemma 2.6 to hold. The 2-sparse condition is in fact best
possible, since there exist 3-sparse codes which have closed convex realizations
in R2, but for which open convex realizations exist only in R3 or higher. One such
example is the code

C = {0000, 1000, 0100, 0010, 0001, 1110, 1001, 0101, 0011}.

Figure 5 shows a closed realization of this code in R2, but it has no open realization
in R2; see [Curto et al. 2017] for more details.
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1 2 3

4

Figure 5. A closed realization of a code in R2 that has no open
realization in R2.

Even more strikingly, there exist codes with a closed convex realization in R2

that have no open convex realization in any dimension; see [Lienkaemper et al.
2017] for an example of such a code on five neurons. This emphasizes how special
realizations of 2-sparse codes are.

We can now use the previous lemmas to relate the convexity of a 2-sparse code C
to the convexity of its associated simplicial complex1(C). We first need a technical
lemma.

Lemma 2.7. Let U be an open convex realization of a 2-sparse code C. Then if
Uj 6⊆Uk for any k 6= j, there is a point p ∈ ∂Uj\

⋃
k 6= j Uk .

Proof. Recall that for any set U ⊂ Rd, ∂U is the boundary of U. Consider the sets
{∂Uj ∩Uk}k 6= j . These sets are disjoint: if not, then there exists p ∈ (∂Uj ∩Uk)∩

(∂Uj ∩U`). As p ∈ Uk ∩U`, there exists ε > 0 with Bε(p) ⊆ Uk ∩U`. But then
Bε(p)∩Uj 6=∅, as p ∈ ∂Uj , so Uj ∩Uk ∩U` 6=∅ contradicting that C is 2-sparse.

Now, note that the disjoint sets {∂Uj ∩Uk}k 6= j are open in the subspace topology
with respect to ∂Uj , and hence they cannot partition ∂Uj since ∂Uj is connected.
Thus, there exists p ∈ ∂Uj\

⋃
k 6= j Uk . �

Lemma 2.8. Let C be a 2-sparse code and let d ≥ 2. Then C has an open convex
realization in Rd if and only if supp(C) is intersection-complete and 1(C) has an
open convex realization in Rd.

Proof. For the forward direction, we know from Lemma 2.1 that if C has a realization
then supp(C) is intersection-complete. We will show that given a realization U of C,
we can construct a realization of GC . Since C is 2-sparse, we know C and 1(C)
must already contain the same 2-element sets, so we will show that we can adjust
the realization of C to obtain any singletons {i} which appear in 1(C) but not in C.

Let {i} ∈1(C)\ supp(C). If there exist j, k such that {i, j} and {i, k} are both in
supp(C), then as supp(C) is intersection-complete, we know {i} ∈ supp(C). Thus,
there must be exactly one j such that {i, j} ∈ supp(C). Note immediately that in
the realization U we have Ui ⊆Uj since {i, j} is the only set in the support where i
appears. It suffices to transform U so that Ui and Uj intersect, but Ui also contains
points not in any other set in the realization.

If we have Uj ⊆Ui , then Ui =Uj so Uj ∩Uk =∅ for any other k, and we can
replace Uj with an open ball properly contained in Ui to obtain the desired result.
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Otherwise, Uj may intersect many other sets in the realization, but cannot be
contained in them, since this would imply a triple intersection between the containing
set Uk , Uj , and Ui . Apply Lemma 2.4 to obtain ε > 0 for which U ′ = trim(U, ε) is
an open realization of C. Define the sets Vk = ∂U ′j ∩U ′k ; note that each Vk is closed.
Furthermore, these sets are disjoint, since if p∈ Vk∩V`, then p∈Uj∩Uk∩U` in the
original realization which is impossible for a 2-sparse code. Since ∂U ′j is connected
and the Vk are disjoint closed sets,

⋃
k 6= j Vk ( ∂U ′j ; let p ∈ ∂U ′j\

⋃
k 6= j Vk . Then

p has positive distance to all sets U ′k with k 6= j so there is some ε′ > 0 with
Bε′(p)∩U ′k =∅ for all k 6= j. Replacing U ′i with Bε′(p) will create a realization
of a code C′ with supp(C′) = supp C ∪ {i}. Repeating this step as many times as
necessary, we obtain a realization of 1(C).

For the reverse, suppose U is an open convex realization of 1(C). Note that
if {i, j} ∈ supp(1(C)), it is also in supp(C) since C is 2-sparse. Now, suppose
{i}∈ supp(1(C))\ supp(C). Then there is at most one j 6= i such that {i, j}∈ supp(C)
as C is intersection-complete. If there is such a j, replace Ui with Ui ∩Uj which
is an open convex set; if there is no such j, then remove Ui entirely. This gives a
convex realization of 1(C)\{i}, and we can repeat this operation as many times as
necessary to obtain a realization of C. �

The above lemma can be summarized as follows: realizing a 2-sparse code and
realizing its simplicial complex are equivalent, as long as supp(C) is intersection-
complete. This equivalence is our main tool in proving Theorem 1.3 and obtaining
a complete classification of which 2-sparse codes are convex in R3.

Proof of Theorem 1.3. The fact that any open convex realizable 2-sparse code must
have supp(C) that is intersection-complete follows directly from Lemma 2.1. For the
reverse direction, since supp(C) is intersection-complete, we know by Lemma 2.8
that it is sufficient to find an open convex realization for 1(C). As C is 2-sparse,
Lemma 2.6 tells us that it suffices to find a closed convex realization for 1(C).
Since 1(C) is a 1-dimensional simplicial complex, a construction of [Tancer 2013]
(see the proof of Theorem 3.1 therein) leads to a closed convex realization of a
1-dimensional simplicial complex in R3. This proves the desired result. �

Theorem 1.3 makes it very straightforward to check whether a 2-sparse code has
an open convex realization in R3. The challenge that lies ahead is determining the
minimal embedding dimension for a given 2-sparse code. We begin investigating
this problem in the next section.

3. Dimension of 2-sparse codes

We noted early on that for 2-sparse codes, the simplicial complex1(C) and the graph
GC of the pairwise intersections of the code capture the same information. In this
section, we will make heavy use of this correspondence, and construct realizations
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of various 2-sparse codes using graph-theoretic methods. Hence, throughout this
discussion we will often refer to “realizations” of a graph GC . It is important to note
that while a graph is the intersection graph of its realization, finding convex sets
whose intersection graph is the graph of concern is not sufficient here. In particular,
if a collection of convex sets has a triple with nonempty intersection then it is not,
for our purposes, a realization of any graph, since graphs only encode intersections
of order 2.

Our main result, Theorem 1.3, shows that any intersection-complete 2-sparse
code can be realized in dimension d ≤ 3. In this section, we begin the program
of classifying 2-sparse codes based on minimal embedding dimension. We focus
on distinguishing codes of dimension d = 3 from codes of dimension d ≤ 2; note
that the general problem of distinguishing 1-dimensional codes has been solved
[Rosen and Zhang 2017]. Recall from Lemma 2.8 that realizing a 2-sparse code
C is equivalent to realizing its simplicial complex 1(C) (and therefore, its graph
GC), so throughout this section we refer to realizing GC rather than C itself. Our
main contribution is that while the dimension of certain graphs can be bounded, we
find that the traditional 2-dimensional graph-theoretic distinction (planarity) is not
necessary for GC to represent a 2-dimensional code. In particular, in Proposition 3.1,
we observe d(C)≤ 2 if GC is planar, and in Proposition 3.2 if GC is not planar, one
can construct a related graph whose code has minimal embedding dimension 3.
However, planarity does not strictly govern minimal embedding dimension, as any
complete or complete bipartite graphs are realizable in R2.

The following proposition describes some common graphs which do have 2-
dimensional convex realizations, including planar graphs.

Proposition 3.1. The following graphs have an open convex realization in R2:

(1) planar graphs,

(2) the complete k-partite graph Kn1,n2,...,nk with part sizes n1, n2, . . . , nk ,

(3) any graph G with vertex set {v1, v2, . . . , vn, u1, . . . , uk} where the induced
subgraph on the vertices v1, v2, . . . , vn is complete and {v1, v2, . . . , vn} ⊇

NG(uk)⊇ NG(uk−1)⊇ · · · ⊇ NG(u1).

Proof. In all cases, we find a closed convex realization of the given graph G, which
by Lemma 2.6 implies the existence of an open convex realization. For (1), we
first recall the circle packing theorem, which says that for any planar graph G with
vertex set {v1, . . . , vn}, there exist disjoint disks C1,C2, . . . ,Cn in R2 such that Ci

is tangent to C j if and only if vi is adjacent to vj , and Ci ∩C j =∅ otherwise. See
Figure 6 for an illustration of how these disks are constructed.

For (2), we first find a realization for the complete graph Kn = K1,1,...,1 (n copies
of 1 here). Consider the line segments `1, `2, . . . , `n , where `i has endpoints (i, 0)
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v1 v2

v3

v4

v5

v6

v7

C1
C2

C3

C4

C5 C6

C7

Figure 6. A planar graph G and the corresponding closed realiza-
tion using the circle packing theorem.

and (0, n+ 1− i), and observe that `i ∩ `j 6=∅ for any i 6= j. Moreover, no three
of these lines are concurrent. This gives a closed convex realization of Kn . Now to
realize Kn1,n2,...,nk , start with a closed convex realization of Kk as constructed in the
realization of (2). Replace each line segment `i with ni disjoint parallel translates of
`i that are arbitrarily close in distance to `i , and call these segments si1, si2, . . . , sini .
Observe that by construction, si j ∩si j ′ =∅ for any j 6= j ′. Moreover, si j ∩si ′ j ′ 6=∅
for i 6= i ′ because li ∩ li ′ 6=∅ and si j and si ′ j ′ are arbitrarily close and parallel to `i

and `i ′ respectively. Moreover, if any three line segments si j , si ′ j ′, si ′′ j ′′ had a point
in common, then li , li ′, li ′′ would, which they don’t. Hence the union of the sets
{si1, si2, . . . , sini }

k
i=1 gives a closed convex realization of Kn1,n2,...,nk . See Figure 7

for examples of the constructions in the proof of (2).
It remains to prove (3). Without loss of generality, we assume NG(uk) =

{v1, v2, . . . , vr }, indexed in such a way that each set NG(u j ) is {v1, v2, . . . , vs}

`1

`3

`5

`2 `4

Figure 7. A closed convex realization of K5 (left) and a closed
convex realization of K2,4,3 (right), as constructed in the proof of
Proposition 3.1.
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`1

`2

`3

`4

`5

`′1

`′2

`′3

Figure 8. A closed convex realization of the graph G with vertices
v1, v2, v3, v4, v5, u1, u2, u3, where the induced graph on v1, . . . , v5

is complete, and N (u3) = {v1, v2, v3}, N (u2) = {v1, v2} and
N (u1)= {v1}.

for some s. To realize G, first start with a realization of Kn as in the proof of (2),
where vj is represented by `j for each j. Now, extend each line segment `j for
1 ≤ j ≤ r so that (0, j) remains as an endpoint, the slope remains the same,
but the lower endpoint has y-coordinate −k. Then, for each s with 1 ≤ s ≤ k,
introduce a line segment `′s that lies on the line in the xy-plane given by y = s, and
only intersects the line segments in the set {`′j | j ∈ NG(us)}. The line segments
`1, . . . , `n, `

′

1, . . . , `
′

k give a closed realization of G. See Figure 8 for an example
of this construction. �

Thus far, we have exhibited classes of graphs that can be realized in R2, including
any planar and some nonplanar graphs GC . We now show how to adjust any nonpla-
nar graph by edge subdivision to create a new graph that cannot be realized in R2.

Proposition 3.2. Let G be a nonplanar graph. Let G ′ be the graph obtained from
G by replacing each edge vivj by a length-2 path vi , vi j , vj (we refer to this as
the edge subdivision of G throughout). Then G ′ does not have an open convex
realization in R2, and hence its minimal embedding dimension is 3.

Proof. Suppose by contradiction that G ′ has an open convex realization in R2. Let the
graph G have vertex set {v1, v2, . . . , vn}, so G ′ has as its vertices {vi | i = 1, . . . , n}
together with vertices {vi j |vivj ∈ E(G)}, where for any i, j, the vertex vi j is adjacent
only to vi and vj . Suppose the open convex realization U of G ′ consists of the sets
{Ui } and {Ui j }, where for any i , Ui is the open convex set corresponding to vi , and
for any i 6= j with vivj ∈ E(G), Ui j is the open convex set corresponding to vi j .

First, for all i = 1, . . . , n select a point pi in Ui that does not lie in any other
sets in U . Then, for every pair i, j such that vi and vj are adjacent in G, note
that Ui ∩Ui j and Uj ∩U j i are nonempty, so we can also select points xi j and x j i

in Ui ∩Ui j and Uj ∩Ui j , respectively. Let the line segment xi j x j i intersect ∂Ui
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and ∂Uj at points pi j and p j i , respectively. Define the path Pi j from pi to pj by
concatenating the line segments pi pi j , pi j p j i , and p j i pj in that order.

Now consider another pair of indices k, l. We claim that two different paths
Pi j and Pkl can only intersect at the points pi ,pj ,pk or pl , if anywhere. To show
this, it is enough to show that among any pair of line segments, one chosen from
{pi pi j , pi j p j i , p j i pj } and one from {pk pkl, pkl plk, plk pl}, their intersection (if it
exists), must be one of the points pi , pj , pk or pl . We split this into three cases:

First, consider the intersection of pi pi j and pk pkl . If i = k then the two segments
can only intersect at pi , unless j = l, in which case the segments were the same
segments to begin with. If i 6= k, then observe that pi pi j ∈ Ui , pk pkl ∈ Uk and
Ui ∩Uk is empty because vi and vk are not adjacent in G ′. A similar argument estab-
lishes our desired result when the pair of segments in question are {pi pi j , pkl pk},
{pi j pi , pkl pk} and {pi j pi , pk pkl}.

Second, consider the intersection of pi j p j i and pkl plk . Notice that pi j p j i ⊆Ui j

and pkl plk ⊆Ukl . Since vi j and vkl are not adjacent in G ′, Ui j ∩Ukl is empty, so
the two paths in question cannot intersect.

Finally, consider the intersection of pi pi j and pkl plk . Suppose that i = k. When
j = l, the segments in question are pi pi j , pi j p j i but these are from the same path
Pi j so we need not consider this situation. When j 6= l, pi pi j ⊆ Ui ∪Ui j , and
pil pli ⊆Uil\Ui . Since j 6= l, Ui j ∩Uil =∅, and hence (Ui ∪Ui j )∩ (Uil\Ui )=∅,
so the two segments in question do not intersect. A similar argument establishes
the result when j = l. It remains to establish the desired result when i 6= l, k.
Suppose for a contradiction that pi pi j intersects pkl pkl . Since pi pi j ⊆Ui∪∂Ui , and
pkl plk ⊆Ulk , this implies (Ui∪∂Ui )∩Ulk is nonempty. However, this is impossible
because Ui ∩Ulk =∅ (because vi and vlk are not adjacent in G ′) and ∂Ui ∩Ulk =∅.

The above argument establishes that two distinct paths Pi j , Pkl can only intersect
at their endpoints. Construct a graph G ′′ on the same vertex set as G with two
vertices adjacent precisely when they are adjacent in G, but with each edge vivj

drawn precisely along the path Pi j . The graph G ′′ is a planar embedding of G,
contradicting that G is not planar. �

4. Future directions

This paper initiated the program of studying k-sparse codes, with a full characteri-
zation of the structure of 2-sparse codes. Section 2 was dedicated to a topological
and analytic investigation of such codes in order to achieve a full characterization
of realizability through Theorem 1.3, which additionally told us that any realiz-
able 2-sparse code has minimal embedding dimension at most 3. Section 3 then
began the study of differentiating 2-sparse codes by embedding dimension through
Propositions 3.1 and 3.2. The most pressing questions are how these investigations,
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which relied heavily on the graph-like structure of these codes, could generalize
when k > 2.

Question 4.1. For a particular k, how can we characterize which k-sparse codes
are realizable? More specifically, given a positive integer `, for which k-sparse
codes is d(C)= `?

In investigating the minimum embedding dimension of a k-sparse code, certain
dimension bounds can be used. For example, suppose C is a k-sparse code with
1 = 1(C), and let fd(1) be the number of codewords in 1 with support size
d + 1. Then, by applying the fractional Helly theorem, we find k > fd(1)/

(n−1
d

)
;

this was noted in [Curto et al. 2017]. Similar to this, many known bounds rely
solely on the combinatorial information in the code and in particular the simplicial
complex 1(C). While often dimension bounds are the best known results, a more
specific investigation in [Rosen and Zhang 2017] gives a full characterization of
1-dimensional codes. Our work thus focuses on distinctions between dimensions 2
and 3 for 2-sparse codes, as a beginning step towards a characterization of 2-
dimensional codes.

However, in addressing the question of whether a k-sparse code is realizable at all,
an investigation into the topology can provide insight beyond what is apparent from
the combinatorics. This is especially evident from the developments in Section 2.
The key idea there was shifting from one realization of a code to another by shrinking
or expanding sets. Indeed, this method has been applied with more generality and
great success in [Cruz et al. 2019]. The question then for k-sparse codes for k > 2 is
what analogous topological operations to realizations preserve the underlying code.

Question 4.2. Given a convex realization U ={U1, . . . ,Un} of a code C in Rd, what
topological maps can be applied to the sets Ui so that the resulting sets still form a
convex realization of C?
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