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We prove two related concentration inequalities concerning the number of rational
points of hyperelliptic curves over subsets of a finite field. In particular, we
investigate the probability of a large discrepancy between the numbers of quadratic
residues and nonresidues in the image of such subsets over uniformly random
hyperelliptic curves of given degrees. We find a constant probability of such a high
difference and show the existence of sets with an exceptionally large discrepancy.

1. Introduction

Let q be a prime power and let Fq be the finite field with q elements. A curve
E : y2

= f (x) (together with a point at infinity O) is called an elliptic curve over Fq if
f (x) ∈ Fq [x] is a cubic polynomial having distinct roots in the algebraic closure Fq

of Fq . The set of rational points of E in Fq is

E(Fq)= {(x, y) ∈ Fq × Fq : y2
= f (x)} ∪ {O}.

Suppose that q is odd. Using the fact that there are (q−1)/2 invertible quadratic
residues and (q − 1)/2 nonresidues in Fq , one can approximate the size of E(Fq)

as follows. For each x ∈ Fq , the probability of f (x) being a nonzero square in Fq ,
and hence contributing two points to E(Fq), is about 1

2 . With probability about 1
2

there is no point in E(Fq) having the first coordinate x ∈ Fq . Therefore, #E(Fq) is
expected to be close to q + 1. Indeed, Hasse [1936] proved that the error in this
estimate is at most 2

√
q:

|#E(Fq)− (q + 1)| ≤ 2
√

q.

Knowledge of #E(Fq) is crucial in elliptic curve cryptography (ECC), which is
considered to be more efficient than the classical cryptosystems, like RSA [Rivest
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et al. 1978]. The security of ECC depends on the difficulty of solving the elliptic
curve discrete logarithm problem (ECDLP). The best known algorithm to solve
ECDLP in finite fields is Pollard’s rho algorithm [1975], which requires O(

√
p) time

complexity, where p is the prime factor of q . However, some well-studied classes
of elliptic curves are not good candidates for ECC. For instance, if the number
of rational points of an elliptic curve E in Fp is exactly p, where p is a prime,
then the running time of solving the ECDLP is O(log p); see [Semaev 1998].
Using verifiably random elliptic curves in ECC improves security since randomly
generated curves are unlikely to be part of a weak class. Hyperelliptic curves can
also be used in cryptography; see [Cohen et al. 2006] for more details. However, the
verifiability of random hyperelliptic curves is much harder; see [Hess et al. 2001;
Satoh 2009].

In this paper, we investigate the behaviour of random hyperelliptic curves over
subsets S of Fq . We are interested in the hyperelliptic curves E : y2

= f (x) where
f (x) is a polynomial in Fq [x] of degree 4k− 1 (k ≥ 1) having distinct roots in Fq .
Denote by E(Fq , S) the rational points of E in Fq where the x-coordinate is in S; i.e.,

E(Fq , S)= {(x, y) ∈ S× Fq : y2
= f (x)}.

We remark that the point at infinity O is not included in E(Fq , S). The approximation
we have described for #E(Fq) suggests that the expected value of #E(Fq , S) is
about #S. For random hyperelliptic curves E over Fq , the probability that the error
|#E(Fq , S)− #S| is small has been extensively studied; see [Pelekis and Ramon
2017; Schmidt et al. 1995] for example.

On the other hand, it is easy to see that there exist many hyperelliptic curves of
any (positive) even degree so that the error |#E(Fp, S)− #S| is very large. Indeed,
the error is about #S when f (x) is the square of any nonconstant polynomial
in Fq [x] for any S ⊂ Fp.

However, an error bound is not obvious in the case of hyperelliptic curves of
odd degree, which we study in the probabilistic setting. Equivalently, we examine
the difference between the numbers of quadratic residues and nonresidues in the
image multiset f (S). Using 4k-wise independence, we show that all subsets S of
Fq behave similarly, in the sense that the interested discrepancy is proportional to
√

#S and has a positive probability which depends only on the degree of the curve.

Theorem 1. Given a positive integer k and ε>0, there exist δ>0 and a threshold N
such that the following holds: for every odd prime power q > N, if a curve E : y2

=

f (x) is chosen uniformly at random among all hyperelliptic curves of degree 4k−1
over Fq , then with a probability at least (4π3/2/e3)2−2k

− ε, we have

|#E(Fq , S)− #S|> δ
√

#S

for any set S ⊂ Fq with #S ≥ N.
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Theorem 2. Given a positive integer k, there exist a threshold N and ε > 0 such
that the following holds: for every odd prime power q > N, if a curve E : y2

= f (x)
is chosen uniformly at random among all hyperelliptic curves of degree 4k − 1
over Fq , then with a probability at least ε, we have

|#E(Fq , S)− #S|> 0.8577
√

k
√

#S

for any set S ⊂ Fq with #S ≥ N.

These two theorems imply that one can expect large deviation of magnitude
√

#S.
In the last section, we show that for small sets S of prime fields Fp, the error is
often much larger.

2. Preliminaries

Throughout this section, let q be an odd prime power and let n, k be positive integers
such that 4k < n ≤ q . Suppose S = {s1, . . . , sn} ⊂ Fq , and

f (x)=
4k−1∑
j=0

aj x j
∈ Fq [x]

is chosen uniformly at random.
We denote by #Q R, #N R and #R the numbers of si ∈ S such that f (si ) is an

invertible quadratic residue, a quadratic nonresidue and zero in Fq , respectively.
Then, n=#Q R+#N R+#R. It follows that, provided the curve E : y2

= f (x) forms
a hyperelliptic curve of degree 4k−1 over Fq , the discrepancy we are interested in is

|#E(Fq , S)− n| = |2 #Q R+ #R− n| = |#Q R− #N R|. (1)

This suggests we look at the random variables

X i =

(
f (si )

q

)
,

where
(a

q

)
is the Legendre symbol defined as

(
a
q

)
=


0 if a is the zero in Fq ,

1 if a is a nonzero square in Fq ,

−1 otherwise.

We note that among all polynomials f (x) ∈ Fq [x] of degree at most 3, only a
small fraction fail to form elliptic curves. Indeed, the exceptions, where f (x) has
degree strictly less than 3 or has multiple roots, contribute q3

+q2(q− 1) of all the
q4 polynomials considered. When q is large, such exceptions are negligible. This
situation generalizes to hyperelliptic curves.
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Lemma 3. Let q be a prime power, k be a positive integer and Fq [x]4k−1 be the set
of polynomials in Fq [x] of degree at most 4k−1. Then at most a 2/q fraction of the
polynomials in Fq [x]4k−1 fail to define a hyperelliptic curve of degree 4k− 1.

Proof. A polynomial in Fq [x] defines a hyperelliptic curve precisely when it is
separable, or equivalently when it is square-free because finite fields are perfect.
As shown in [Carlitz 1932], the number of monic square-free polynomials in
Fq [x] of degree 4k − 1 is q4k−1

− q4k−2. Thus, accounting for scaling, there are
(q − 1)(q4k−1

− q4k−2) polynomials in Fq [x] that define a hyperelliptic curve of
degree 4k− 1. Therefore, the fraction of those polynomials in Fq [x] of degree at
most 4k− 1 that do not is

q4k
− (q − 1)(q4k−1

− q4k−2)

q4k =
2q4k−1

− q4k−2

q4k <
2
q
. �

Hence, the probability that, among all hyperelliptic curves of degree 4k − 1
over Fq , the discrepancy (1) is larger than some δ

√
n is at least the probability that,

among all polynomials of degree at most 4k− 1 over Fq , the absolute value of the
sum of the random variables X i is larger than the same δ

√
n minus 2/q; i.e.,

P(|#E(Fq , S)− n|>δ
√

n)≥ P

(∣∣∣∣ n∑
i=1

X i

∣∣∣∣>δ√n
)
−

2
q
. (2)

In the next two subsections, we will first estimate the higher moments

Ej := E

((
1
√

n

n∑
i=1

X i

)j)
, where 1≤ j ≤ 4k,

by finding their main order, and then give lower bounds on the interested probabilities
involving the random variables X i .

2.1. Estimating E2k and E4k. Since f (x)∈Fq [x] is a random polynomial of degree
at most 4k− 1, the random variables X i exhibit 4k-wise independence. Indeed, by
solving a system of linear equations, the number of polynomials f (x) in Fq [x] of
degree at most 4k− 1 satisfying

f (si1)= r1, f (si2)= r2, . . . , f (si`)= r`

is exactly q4k−`, given `≤ 4k, r1, . . . , r` ∈ Fq and distinct i1, . . . , i` ∈ {1, . . . , n}.
Thus,

E(Xh1
i1
· · · Xh`

i` )=
∑

r1,...,r`∈Fq

P( f (si1)=r1, . . . , f (si`)=r`)
(

r1

q

)h1

· · ·

(
r`
q

)h`

=

∑
r1,...,r`∈Fq

q4k−`

q4k

(
r1

q

)h1

· · ·

(
r`
q

)h`
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=

[∑
r1∈Fq

1
q

(
r1

q

)h1
]
· · ·

[∑
r`∈Fq

1
q

(
r`
q

)h`]

=

[∑
r1∈Fq

P( f (si1)=r1)

(
r1

q

)h1
]
· · ·

[∑
r`∈Fq

P( f (si`)=r`)
(

r`
q

)h`]
= E(Xh1

i1
) · · · E(Xh`

i` ).

We also note that the random variables X i only take the values 0, 1,−1, and so
X2h−1

i = X i and X2h
i = X2

i for all h ≥ 1. Also, by convention, X0
i = 0. Therefore

we have

E(X2h−1
i )= E(X i )=

∑
r∈Fq

P( f (si )=r)
(

r
q

)
=

∑
r∈Fq

1
q

(
r
q

)
= 0,

E(X2h
i )= E(X2

i )=
∑
r∈Fq

P( f (si )=r)
(

r
q

)2

=

∑
r∈Fq

1
q

(
r
q

)2

= 1−
1
q
.

To summarize the above two observations, we have the following lemma:

Lemma 4. Let ` ≤ 4k, let h1, . . . , h` be positive integers, and let i1 . . . , i` be
distinct numbers from {1, . . . , n}. Then,

E(Xh1
i1
· · · Xh`

i` )=

{
(1− 1/q)` if h1, . . . , h` are all even numbers,
0 otherwise.

Before we estimate the general Ej , let us compute E6 (when k ≥ 2) as a toy
version:

E6 = E

(
1
√

n

n∑
i=1

X i

)6

=
1
n3

( n∑
i=1

E(X6
i )+

6!
4! 2!

∑
i 6= j

E(X4
i X2

j )+
6!

2! 2! 2!

∑
i< j<k

E(X2
i X2

j X2
k )

)

=
1
n3

(
n
(
1− 1

q

)
+ 15n(n− 1)

(
1− 1

q

)2
+ 90

(n
3

)(
1− 1

q

)3)
= 15

(
1− 1

q

)3
−

15
n

(
1− 1

q

)2(
2− 3

q

)
+

1
n2

(
1− 1

q

)(
16− 45

q
+

30
q2

)
.

We derive in the lemma below how the number 15 in the leading term can be
expressed in terms of j = 6.

Lemma 5. For 1≤ j ≤ 4k, we have

Ej =


j !

2 j/2( j/2)!
+ Oj

(1
n

)
as n→∞, if j is an even number,

0 otherwise.



760 KRISTINA NELSON, JÓZSEF SOLYMOSI, FOSTER TOM AND CHING WONG

Proof. If j is an odd number, then every term in the multinomial expansion has at
least one odd index, and hence vanishes by Lemma 4.

Suppose now that j is an even integer. Using the multinomial theorem and
Lemma 4, we have

Ej =
1

n j/2 E

(( n∑
i=1

X i

)j)
=

1
n j/2 E

( ∑
h1+···+hn= j

j !
h1! · · · hn!

n∏
t=1

Xht
t

)

=
1

n j/2

∑
h1+···+hn= j

j !
h1! · · · hn!

E

( n∏
t=1

Xht
t

)

=
1

n j/2

∑
h1+···+hn= j

hi even

j !
h1! · · · hn!

(
1−

1
q

)#{i :hi>0}

=
1

n j/2

j/2∑
m=1

(
1−

1
q

)m

H( j,m),

where

H( j,m)=
∑

h1+···+hn= j
hi even

#{i :hi>0}=m

j !
h1! · · · hn!

=

( n
m

) ∑
h′1+···+h′m= j

h′i>0 even

j !
h′1! · · · h

′
m !

is a polynomial (with integer coefficients) in n of degree m. Therefore, the leading
term of Ej comes from the summand where m = j/2. In this case, h′i = 2 for every
1≤ i ≤ j/2 and so

H( j, j/2)=
( n

j/2

) j !
2 j/2

has leading term
j !

( j/2)!2 j/2 n j/2.

It follows that

Ej =
1

n j/2

((
1− 1

q

)j/2 j !
( j/2)! 2 j/2 n j/2

+ · · ·

)
=

(
1− 1

q

)j/2 j !
( j/2)! 2 j/2 + Oj

(1
n

)
=

j !
( j/2)! 2 j/2 + Oj

(1
n

)
as n→∞. �

In particular, for each fixed k,

E2k =
(2k)!
2kk!
+ Ok

(1
n

)
is bounded uniformly in n ≥ 1. As a consequence, one can have the following
estimates, which will be used later in our proof, using Stirling’s approximation. For
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all fixed k ≥ 1, we have

2k
√

E2k ≥

√
2k
e
+ Ok

(1
n

)
(3)

and
E2

2k

E4k
≥

(√2π
e

)3
21/2−2k

+ Ok

(1
n

)
(4)

as n→∞.

2.2. Lower bounds for the probabilities.

Proposition 6. Under the setting stated in the beginning of this section, we have

P

(∣∣∣∣ 1
√

n

n∑
i=1

X i

∣∣∣∣>δ)≥ (E2k − δ
2k)2

E4k − 2δ2kE2k + δ4k (5)

for any 0< δ < 1
2 , and

P

(∣∣∣∣ 1
√

n

n∑
i=1

X i

∣∣∣∣≥ 2k
√

E2k − ε
1/2−o(1)

)
≥ ε > 0 (6)

as ε→ 0.

Proof. Let c ≥ 1 be a parameter to be determined. Using the second-moment
Markov inequality, one can show that for 0< λ < c2k,

P

(∣∣∣∣ 1
√

n

n∑
i=1

X i

∣∣∣∣> 2k
√

ck −
√
λ

)
= P

((
1
√

n

n∑
i=1

X i

)2k

− ck >−
√
λ

)

≥ P

(∣∣∣∣( 1
√

n

n∑
i=1

X i

)2k

− ck
∣∣∣∣<√λ)

≥ 1−
1
λ

E

(((
1
√

n

n∑
i=1

X i

)2k

− ck
)2)

= 1−
c2k
− 2ckE2k + E4k

λ
. (7)

To prove (5), we take λ = (ck
− δ2k)2, where δ > 0 is small. Maximizing the

right-hand side of (7) over c, we see that the maximum is

1−
c2k
− 2ckE2k + E4k

(ck − δ2k)2
=

(E2k − δ
2k)2

E4k − 2δ2kE2k + δ4k ,

when

ck
=

E4k − δ
2kE2k

E2k − δ2k .
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Now we prove (6). To make

P

(∣∣∣∣ 1
√

n

n∑
i=1

X i

∣∣∣∣> 2k
√

ck −
√
λ

)
≥ ε,

we take

λ=
c2k
− 2ckE2k + E4k

1− ε
.

Since we require c2k > λ, it follows that

c2k
− 2ckE2k + E4k < c2k

− c2kε,

and therefore

η := εck < 2E2k −
E4k

ck < 2E2k .

To compute the leading terms of 2k
√

ck −
√
λ as ε→ 0, we first use the binomial

series to expand the numerator of
√
λ as

ck

√
1−

(
2E2k

ck −
E4k

c2k

)
= ck

(
1− E2k

1
ck +

E4k − E2
2k

2
1

c2k + O
(

1
c3k

))
(8)

as c→∞. Indeed, the bracket inside the square root in (8) is small in view of
Lemma 5. To get

√
λ, we multiply (8) by

1
√

1− ε
= 1+ 1

2ε+
3
8ε

2
+ O(ε3).

Substituting ck
= η/ε, we have

ck
−
√
λ=

η

ε

[
1−

(
1+ 1

2
ε+

3
8
ε2
+O(ε3)

)(
1−

E2k

η
ε+

E4k−E2
2k

2η2 ε2
+O

(
ε3

η3

))]
= E2k−

1
2
η+

(
E2

2k−E4k

2
+

E2k

2
η−

3
8
η2
)
ε

η
+O

(
ε2

η2

)
.

We may now take η satisfying
√
ε� η� 1 so that the terms in the last line are

indeed arranged in decreasing order of magnitude. Therefore,

2k
√

ck −
√
λ=

2k
√

E2k − ε1/2−o(1) = 2k
√

E2k − ε
1/2−o(1)

as ε→ 0, establishing (6). �

3. Proofs of the theorems

Proof of Theorem 1. Write n = #S, as in Section 2. Given ε > 0, we choose N large
enough so that 2/N < ε/3, and the error appearing in (4) has an absolute value less
than ε/3.
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Since E4k > E2k ≥
1
2 , there exists a small δ > 0 such that∣∣∣∣ (1− δ2k/E2k)

2

1− 2δ2k(E2k/E4k)+ δ4k(1/E4k)
− 1

∣∣∣∣< ε

3
E4k

E2
2k

.

Together with (2), (5) and (4), we have

P(|#E(Fq , S)− n|>δ
√

n)≥ P

(∣∣∣∣ n∑
i=1

X i

∣∣∣∣>δ√n
)
−

2
q

≥
E2

2k

E4k

(1− δ2k/E2k)
2

1− 2δ2k(E2k/E4k)+ δ4k(1/E4k)
−
ε

3

≥
E2

2k

E4k
−
ε

3
−
ε

3
≥

(√
2π
e

)3

21/2−2k
− ε,

as desired. �

Proof of Theorem 2. Similarly we write n=#S. Using the estimate (3), we choose N
so large and ε so small that the following lower bound implied by (6) is large:

2k
√

E2k − ε
1/2−o(1) > 0.8577

√
k.

Here 0.8577 is a number strictly smaller than
√

2/e. Now, increasing N if necessary,
we also have 2/N < ε/2. Then, by (2) and (6), we have

P
(
|#E(Fq , S)− n|>0.8577

√
k
√

n
)
≥ P

(∣∣∣∣ n∑
i=1

X i

∣∣∣∣>0.8577
√

k
√

n
)
−

2
q

≥ P

(∣∣∣∣ n∑
i=1

X i

∣∣∣∣>( 2k
√

E2k − ε
1/2−o(1))

√
n
)
−
ε

2

≥
ε

2
. �

4. Sets with exceptionally large discrepancy

So far we have considered sets of arbitrarily large size. We will show, as one
may expect, that if n is a constant, then for each prime p large enough, there is a
probability α>0 that the error is much larger than

√
n for β

(p
n

)
of the subsets S⊂Fp

of size n. In particular, for each n, there is a probability 2−n−1 that a randomly
chosen subset S ⊂ Fp of size n has the following property — a randomly chosen
monic separable cubic f over Fp has a probability 2−n−1 so that f (S) consists only
of nonzero quadratic residues or quadratic nonresidues.

Let F be the set of monic, separable cubics over Fp. Note that #F = p3
− p2.

Let m, n be constants independent of p such that n− 2m >
√

n. We construct a
bipartite graph G with

(p
n

)
“S-vertices” in one partition, each associated with a
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set S ⊂ Fp of size n, and p3
− p2 “ f -vertices” in the other, each associated with

an f ∈ F. We draw an edge between the vertex corresponding to f and the vertex
corresponding to S when ∣∣∣∣∑

si∈S

(
f (si )

p

)∣∣∣∣≥ n− 2m.

Fix f ∈ F , and let Q⊂ Fp be the set of points mapped by f to a nonzero quadratic
residue, and N ⊂ Fp be those points mapped to a nonresidue. Let p/2+ A f be the
size of the larger of these two sets. Then the degree of the vertex associated to f
in G is at least ( p/2−A f

m

)( p/2+A f

n−m

)
. (9)

By Hasse’s theorem we have A f ≤
√

p, and so (9) is bounded below by( p/2−
√

p
m

)( p/2−
√

p
n−m

)
=

( p
n

)[( n
m

)
2−n
+ o(1)

]
as p→∞. Thus the number of edges in our graph, E , is at least( p

n

)[( n
m

)
2−n
+ o(1)

]
(p3
− p2).

Now if only β
(p

n

)
of the S-vertices achieve degree at least α(p3

− p2), then we have

E ≤ β
( p

n

)
(p3
− p2)+

( p
n

)
(1−β)α(p3

− p2),

and so
β ≥

1
1−α

[( n
m

)
2−n
−α+ o(1)

]
> 0

as p→∞, provided that α > 0 is small enough.
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