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Edge Folkman numbers Fe(G1,G2; k) can be viewed as a generalization of more
commonly studied Ramsey numbers. Fe(G1,G2; k) is defined as the smallest order
of any Kk-free graph F such that any red-blue coloring of the edges of F contains
either a red G1 or a blue G2. In this note, first we discuss edge Folkman numbers
involving graphs Js = Ks − e, including the results Fe(J3, Kn; n+ 1) = 2n− 1,
Fe(J3, Jn; n) = 2n − 1, and Fe(J3, Jn; n + 1) = 2n − 3. Our modification of
computational methods used previously in the study of classical Folkman numbers
is applied to obtain upper bounds on Fe(J4, J4; k) for all k > 4.

1. Overview

For a graph F, we say that F→ (G1,G2) if in any red-blue coloring of the edges
of F, there exists a red G1 or a blue G2. The classical Ramsey numbers can be
defined using this arrowing notation as R(G1,G2) = min{n | Kn → (G1,G2)}.
If graph F is Kk-free and F → (G1,G2), then we write F → (G1,G2; k). If
graph Gi is complete, we may write |V (Gi )| in place of Gi ; for example, instead
of F → (Ks, Kt ; k) we could write F → (s, t; k). Given graphs G1,G2 and an
integer k > 1, we define the set of edge Folkman graphs by

Fe(G1,G2; k)= {F | F→ (G1,G2) and Kk 6⊆ F},

and we will denote by Fe(G1,G2; k;m) the set of such Folkman graphs with
m vertices. The edge Folkman number Fe(G1,G2; k) is the smallest m such that
Fe(G1,G2; k;m) is nonempty. A theorem by Folkman [1970] states that if k >
max{s, t}, then Fe(s, t; k) = Fe(Ks, Kt ; k) exists. One may easily notice that for
graphs G1 and G2, if k> R(G1,G2), then Fe(G1,G2; k)= R(G1,G2). Henceforth,
in the sequel we will focus on the cases for k ≤ R(G1,G2).

In general, the Ramsey numbers R(G,H) are difficult to compute, and Fe(G,H ;k)
for k < R(G,H) still more so. The graph J3 = P3, however, leads to much
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easier cases. The arrowing F → (J3,H) is equivalent to the question, “Does
the removal of every matching sK2 from F leave a subgraph containing H?” In
Section 2, we present constructions which witness upper bounds on Fe(J3;Kn; n+1),
Fe(J3; Jn; n+ 1), and Fe(J3; Jn; n), and then we show that these bounds are tight.

In Section 3, we use computational methods modified from prior work on
Fe(3, 3; 4) to determine values of Folkman numbers Fe(J4, J4; k) for k > 6, and
bounds on Fe(J4, J4; k) for k = 5, 6. These are obtained with the help of techniques
used in satisfiability (SAT) and MAX-CUT, both of which are well-studied problems
in computer science. The cases of Fe(J4, J4; k) lie between the much-studied
Fe(3, 3; k) and little-studied Fe(4, 4; k). We also present up-to-date history of
bounds on the former, namely Fe(3, 3; 4).

2. Arrowing (J3, Kn) and (J3, Jn)

Let the graph K2n denote the complete graph K2n with removed perfect matching;
i.e., K2n = K2n − nK2.

Proposition 1. For all n ∈ N, n ≥ 2, we have K2n−1 + K1→ (J3, Kn).

Proof. We will first show that, for each n≥ 2, in any red-blue edge coloring of K2n−1

avoiding red J3= P3, every vertex v∈V (K2n−1) belongs to a blue Kn−1. We proceed
by induction. The claim is obvious for n = 2. Next, consider any red-blue coloring
of K2n avoiding red J3. Fix any v1 ∈ V (K2n ), and let v2 be the vertex not adjacent
to v1. If v1 is redly adjacent to some vertex w1, then let {w1, w2} be nonadjacent;
otherwise, choose an independent set {w1, w2} arbitrarily, but v1 6∈ {w1, w2}. The
restriction of this coloring to K2n −{v1, v2} = K2n−1 is a red-blue coloring avoiding
red J3, so by induction w2 is part of some blue Kn−1 ⊂ K2n −{v1, v2}. Since v1 is
adjacent to all vertices in K2n − {v1, v2} and is bluely adjacent to all its vertices,
possibly except w1, together with this blue Kn−1 it forms a blue Kn . By induction,
the statement holds for all n.

Similarly, we prove the statement of the proposition by induction. Clearly, any
red-blue edge coloring of K21 + K1 has either a red J3 or a blue K2. For n ≥ 3,
consider any red-blue coloring of the graph K2n−1 + K1 without any red J3. Let
{x} = V (K1). If any vertex v is redly adjacent to x , choose an independent set
{v1, v2} so that v2 = v; otherwise, choose an independent set {v1, v2} arbitrarily.
We have shown that in the restriction of this coloring to K2n−1 , v1 is in a blue Kn−1.
Vertex v2 cannot be part of this Kn−1. Since x is adjacent to all vertices in V (K2n−1),
and is bluely adjacent to all such vertices (except perhaps v2), it is in a blue Kn .
Thus, K2n−1 + K1→ (J3, Kn). �

Theorem 2. For all k > n ≥ 2 we have Fe(J3, Kn; k)= 2n− 1.

Proof. We notice that R(J3, Kn)= 2n− 1, as listed in [Radziszowski 2017]. For
k= n+1, this gives the lower bound 2n−1≤ Fe(J3, Kn; n+1), while Proposition 1



ON SOME EDGE FOLKMAN NUMBERS, SMALL AND LARGE 815

provides a witness for the upper bound. For larger k the claim follows directly from
definitions since Fe(J3, Kn; k) is nonincreasing in k. �

Theorem 3. For all n ≥ 3 we have

Fe(J3, Jn; k)=


4 if k = n = 3,
2n− 3 if k > n > 2,
2n− 1 if k = n and n > 3.

Proof. For the special case of k=n=3, it can be easily checked that K1,3→ (J3, J3);
hence it gives the upper bound. Clearly, three vertices are not enough for a suitable
Folkman graph, so Fe(J3, J3; 3)= 4.

For the case k>n>2, as in Theorem 3, the lower bound Fe(J3, Jn; n+1)≥2n−3
for any k ≥ n follows from R(J3, Jn)= 2n− 3; see [Radziszowski 2017]. For the
upper bound, we will prove that K2n−3 + K3→ (J3, Jn). Consider any red-blue
coloring of the graph K2n−3 + K3 avoiding red J3. Let {x, y, z} = V (K3) and let e
be the edge {x, y}. By Proposition 1, the restriction of this coloring to the subgraph
K2n−2+K1= K2n−3+(K3−e)must include a blue Kn−1. Since Kn−1 6⊂ K2n−3+K1,
this blue Kn−1 must include exactly one of x or y; without loss of generality it
includes x and not y. But in the original coloring, y is bluely adjacent to all or
all but one of the vertices in the blue Kn−1, so y is part of a blue Jn . Hence
Fe(J3, Jn; k)= 2n− 3 for all k > n.

Finally we consider the case of k = n for n > 3. Consider any Kn-free graph G
with |V (G)| = 2n−2. Color the edges of G as follows: take a maximum matching
R ⊆ E(G), color all of its edges in red, and color all edges in G − R blue. This
coloring contains no red J3. We will show that either it contains no blue Jn , or that
G ⊆ Kn−2+ nK1.

Suppose that G contains a blue Jn and let S ⊂ V (G) be the vertices of the Jn .
Since G does not contain Kn , there exist nonadjacent vertices x, y ∈ S. Every edge
in R must be incident to a vertex in S = V (G)− S, implying that |R| ≤ |S| = n−2.
Now consider any pair of adjacent vertices s, t ∈ S (one of which may be x or y).
Since s and t are adjacent, at least one must be incident to a red edge, since
otherwise we could add the edge {s, t} to R and obtain a matching larger than R.
Since |R| ≤ |S| − 2, there exist two vertices in S neither of which is incident to
a red edge; then these vertices must be x and y. Furthermore, any other vertex
in S is adjacent to x and y, so it must be incident to some red edge. Therefore,
|R| = n− 2= |S|.

For any two vertices s ′, t ′ ∈ S, there exist vertices s, t ∈ S distinct from x and y,
such that {s, s ′} and {t, t ′} are red edges. We must have that s ′ and t ′ are nonadjacent,
since otherwise we could obtain a matching larger than R by taking R, removing
edges {s, s ′} and {t, t ′}, and replacing them with edges {x, s}, {y, t}, and {s ′, t ′}.
Additionally, if (without loss of generality) x is adjacent to s ′ ∈ S, then we could
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obtain a matching larger than R by replacing edge {s, s ′} with edges {x, s ′} and
{y, s}. Thus, the vertex set S ∪ {x, y} does not induce any edges, implying that
G ⊆ Kn−2+ nK1.

We can edge color Kn−2+ nK1 in a way that avoids red J3 and blue Jn simply
by coloring only one edge in the Kn−2 red. Thus, Kn−2+ nK1 6→ (J3, Jn). Then
there is no graph G on 2n − 2 vertices such that G → (J3, Jn; n), which gives
the lower bound Fe(J3, Jn; n) ≥ 2n − 1. For the upper bound we consider the
graph K2n−1 + K1. Let {x} = V (K1) and let vertices v1, v2 be nonadjacent. By
Proposition 1, any red-blue coloring of K2n−1+K1 with no red J3 contains a blue Kn .
This blue Kn can include at most one of v1, v2, and therefore at most one of {v1, x}
and {v2, x}. Hence, consider the subgraph K2n−2 + K 3 ⊂ K2n−1 + K1 constructed
by removing the edges {v1, x} and {v2, x}. Next, observe that any coloring of
K2n−2+K 3 with no red J3 therefore contains a blue Jn . So K2n−2+K 3→ (J3, Jn),
and thus, Fe(J3, Jn; n)= 2n− 1. �

3. Folkman numbers Fe(J4, J4; k)

3.1. Cases for k ≥ 6. In order to find upper bounds on Fe(J4, J4; k) for k ≥ 6 we
reduced the corresponding arrowings to instances of the Boolean satisfiability (SAT)
problem, which has been extensively studied. In particular, this approach had been
previously used by Shetler, Wurtz, and the third author to test arrowing of (K3, J4).
We applied it instead to the question of whether G 6→ (J4, J4), as follows: We map
the edges E(G) to the variables of a Boolean formula φG , so that the color of an
edge e is represented by the value of its corresponding Boolean variable. Then for
each J4 consisting of edges e1, e2, e3, e4, e5, we add to φG two clauses,

(e1+ e2+ e3+ e4+ e5)∧ (ē1+ ē2+ ē3+ ē4+ ē5).

Then G 6→ (J4, J4) if and only if φG is satisfiable. We solved many such instances
of satisfiability problem for formulas φG with the SAT-solver MiniSAT [Eén and
Sörensson 2004]. The results of these computations lead to the next theorem.

Theorem 4. It holds that

Fe(J4, J4; k)=
{

10 for k ≥ 8,
11 for k = 7,

and 11≤ Fe(J4, J4; 6)≤ 14.

Proof. It is known that R(J4, J4)= 10, see [Chvátal and Harary 1972], and hence
Fe(J4, J4; k)≥ 10 for all k ≥ 4, and Fe(J4, J4; k)= 10 for k ≥ 11. A computation
using MiniSAT determined that the graph G = K4+ K2,2,2 satisfies G→ (J4, J4).
Since |V (G)| = 10 and G is K8-free, using previous comments we obtain that
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Fe(J4, J4; 8)= 10. Because Fe(J4, J4; k) is nonincreasing in k, we also obtain that
Fe(J4, J4; k)= 10 for k = 9 and k = 10.

To find the lower bound for Fe(J4, J4; 7), we tested all nonisomorphic graphs
on 10 vertices found with nauty [McKay and Piperno 2014]. We ignored graphs
containing K7 and those which are K5-free (since it would contradict Fe(3, 3; 5)=15
[Piwakowski et al. 1999]). Testing exhaustively all 1806547 such graphs via φG

with MiniSAT revealed that Fe(J4, J4; 7; 10)=∅, and thus Fe(J4, J4; 7)≥ 11. A
computation using MiniSAT determined that the graph F = K2+ K3,2,2,2 satisfies
F → (J4, J4). Since |V (F)| = 11 and F is K7-free, much as before we obtain
Fe(J4, J4; 7) ≤ 11. Lastly, we determined using MiniSAT that the graph H =
C5+ K3,3,3 satisfies H→ (J4, J4). Since |V (H)| = 14 and H is K6-free, we have
Fe(J4, J4; 6)≤ 14. �

The exact value of Fe(J4, J4; 6) possibly could be determined as above with a
larger effort using similar computational techniques.

3.2. Fe(J4, J4; 5) and MAX-CUT. Our attempts to use MiniSAT to find a graph G
witnessing an upper bound on Fe(J4, J4; 5) were unsuccessful, as the SAT-solver
slowed down significantly when we tested larger graphs. However, we managed
to obtain the bound Fe(J4, J4; 5) ≤ 1297 using a modification of an idea and
computational approach of Dudek and Rödl [2008] for studying Fe(3, 3; 4), which
itself is based on an idea of Goodman [1959].

For a red-blue coloring of a graph G, we define Tdiff(v) and Tsame(v), respectively,
to be the number of triangles containing v in which the edges incident to v are
different colors or the same color. Let t be the number of triangles in G, and let m be
the number of monochromatic triangles in G. In each nonmonochromatic triangle,
there are two vertices v1, v2 for which the edges incident to it are different colors.
Then

∑
v∈G Tdiff(v)= 2(t−m) counts each nonmonochromatic triangle in G twice.

Furthermore,
∑

v∈G Tsame(v) = t + 2m gives the number of nonmonochromatic
triangles plus three times the number of monochromatic triangles. Therefore,

6m = 2
∑
v∈G

Tsame(v)−
∑
v∈G

Tdiff(v). (1)

Observe that if 3m > |E(G)|, then the ratio of edges in monochromatic triangles
to edges is greater than 1, implying that there is some edge e which is part of two
distinct monochromatic triangles. Therefore, if for every red-blue coloring of G we
have

2|E(G)|< 2
∑
v∈G

Tsame(v)−
∑
v∈G

Tdiff(v), (2)

then G→ (J4, J4).
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We now recall a method for linking arrowing triangles to the MAX-CUT problem,
first proposed by Dudek and Rödl [2008]. Let HG be the graph created as follows:
We map every edge e of G to vertex ve of H, so that V (HG) = E(G). Then for
any two vertices ve, v f in V (HG), we add the edge {ve, v f } if and only if their
corresponding edges e and f are a part of some triangle in G. Note that any
red-blue coloring of E(G) corresponds to a bipartition V (HG)= B ∪ R of vertices
of HG , inducing an edge cut C, for which any nonmonochromatic triangle in G
has exactly two edges in C. For any graph F, let MC(F)=MAX-CUT(F) denote
the maximum number of edges in F between the partite sets of any bipartition of
V (F). Letting MC(HG) be the size of the cut C, we have

MC(HG)=
∑
v∈G

Tdiff(v)≤MC(HG). (3)

Clearly, any edge in HG has both endpoints in the same partite set B or R if and
only if it is not in C. The above considerations lead to the following theorem.

Theorem 5. If MC(HG) < 2t (G)− 2|E(G)|/3, then G→ (J4, J4).

Proof. For any graph G whose edges are arbitrarily colored red and blue, consider
the cut C of HG as described above. Using (1) and (3), one can easily show that∑

v∈G

Tsame(v)= |E(HG)| −MC(HG)= 3t −MC(HG).

Now from the assumption we have 2|E(G)| < 2(3t − MC(HG)) − (MC(HG)).
Finally, using (2) and its implication we conclude that G→ (J4, J4). �

For large graphs H, finding tight upper bounds for MC(H) is computationally
expensive. For this reason, we used the following weakening of Theorem 5 for
vertex-transitive graphs G. Its advantage is that it allows us to detect conditions for
which Theorem 5 can be applied much faster.

Theorem 6. Let G be a vertex-transitive d-regular graph, where Gv denotes the
graph induced in G by the neighbors of vertex v. If we have

MC(Gv) <
2
3 |E(Gv)| −

1
3 d,

then G→ (J4, J4).

Proof. This is following the same argument as in an alternative approach to bounding
Folkman numbers used by Lu [2008] and Spencer [1988]. Here, however, with an
additional term d/3, we need to use the observation made above between equalities
(1) and (2). �

MAX-CUT is among Karp’s original 21 NP-hard problems [1972]. In order to
find good bounds on MC(HG) and MC(Gv) for graphs G of our interest, we used
the eigenvalue and semidefinite programming approximations of MAX-CUT. This
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approach was used by several authors, including Lu [2008], Dudek and Rödl [2008],
and Lange et al. [2014] to obtain upper bounds on Fe(3, 3; 4) (see Section 3.3 for a
historical summary).

We applied Theorems 5 and 6 to many graphs of different types. We found an
interesting positive instance using the following construction described in [Lu 2008].
For positive integers n and s, s < n, define S = {si (mod n) | i = 0, 1, . . . , n− 1}.
Then, if n − 1 ∈ S, let L(n, s) be the graph with vertex set Zn and edge set
{{x, y} | x − y ∈ S}. Clearly, the graphs L(n, s) are vertex-transitive.

Theorem 7. Fe(J4, J4; 5)≤ 1297.

Proof. For the graph L(1297, 8), which is 216-regular, we found that it satisfies the
assumptions of both Theorems 5 and 6, using two MAX-CUT bounding methods:
the eigenvalue method and the SDP approach. We used our Java library and
associated programs, including the eigs function in Matlab and the SDP solver
SDP-LR [Helmberg and Rendl 2000]. An easy (computer) test shows that the graph
L(1297, 8) is K5-free, and hence it is a witness of the upper bound. �

We wish to note that recently (and after this work was completed) a much better
bound of 51 on Fe(J4, J4; 5) was obtained in [Xu et al. 2018]. The latter bound
did not require any computations. We also would like to recall the bound on
Fe(J4, J4; 4) obtained in [Lu 2008], as follows.

Proposition 8. Fe(J4, J4; 4)≤ 30193.

The bound in Proposition 8 is mentioned by Lu [2008] in his paper on Fe(3, 3; 4)
as a side result, without any comments on the approach. However, we communicated
with the author who confirmed that the main idea of his approach was similar to
one in this work.

3.3. History of the Folkman number Fe(3, 3; 4). Table 1 below summarizes the
history of bounds on the edge Folkman number Fe(3, 3; 4)= Fe(K3, K3; 4), which
is the smallest unknown classical Folkman number, sometimes also called the most
wanted. This table builds on an earlier Table 5 by Xu and the third author [Xu and
Radziszowski 2016], where further extensive comments about the progress related
to Fe(3, 3; 4) can be found. The new entries in Table 1 here are lower bounds
13, 14 and 20. The bound Fe(3, 3; 4) ≥ 14 can be obtained as follows: removal
of any independent set of three vertices from any graph in Fe(3, 3; 4) must yield
a 5-chromatic K4-free graph, but Nenov [1984] proved (without using computer
algorithms) that any such graph has at least 11 vertices. Fe(3, 3; 4)≥ 13 is implied
in the same way by an earlier result of Nenov [1983]. In contrast, the currently
best-known lower bound of 20 was obtained by Bikov and Nenov [2017] using
CPU-intensive computations.
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year lower/upper who/whatbounds

1967 any? [Erdős and Hajnal 1967]
1970 exist [Folkman 1970]
1972 11 – implicit in [Lin 1972], implied by Fe(3, 3; 5)≥ 10
1975 – 1010? Erdős [1975] offers $100 for proof
1983 13 – implied by a result of [Nenov 1983]
1984 14 – implied by a result of [Nenov 1984]
1986 – 8 · 1011 [Frankl and Rödl 1986]
1988 – 3 · 109 [Spencer 1988]
1999 16 – Piwakowski, Radziszowski and Urbański,

implicit in [Piwakowski et al. 1999]
2007 19 – [Radziszowski and Xu 2007]
2008 – 9697 [Lu 2008]
2008 – 941 [Dudek and Rödl 2008]
2012 – 100? Graham offers $100 for proof
2014 – 786 Lange, Radziszowski and Xu [Lange et al. 2014]
2017 20 – [Bikov and Nenov 2017]

Table 1. History of bounds on the Folkman number Fe(3, 3; 4).

For any graph G with t triangles and graph HG as defined in Section 3.2, one can
easily observe that G→ (K3, K3) if and only if MC(HG)< 2t ; see also [Dudek and
Rödl 2008]. Thus, computational techniques to find upper bounds for MAX-CUT
may lead to good upper bounds on Fe(3, 3; 4), including the first such result by
Dudek and V. Rödl [2008]. Lange, Xu, and the third author used the SDP MAX-
CUT approximation to obtain an upper bound on MC(HG) for a particular K4-free
graph G on 786 vertices, and used it to show that G→ (K3, K3).

We made numerous attempts to lower this bound by trying to find a smaller
K4-free graph G for we could obtain the bound MC(HG) < 2t . Among the graphs
tested were the graphs G(n, r) considered in [Dudek and Rödl 2008], the graphs
L(n, s) from [Lu 2008], and their variations. In particular, we tested a generalization
of L(n, s) to Galois fields GF(pk), in addition to graphs constructed by adjoining
various pairs of circulant graphs in a variety of ways. Our efforts have convinced
us that these methods are unlikely to yield any major improvement on this bound.

The well-known K4-free graph G127= L(127, 5) was studied by several authors;
see for example [Radziszowski and Xu 2007; Xu and Radziszowski 2016]. In
particular, it was conjectured by Exoo that G127→ (K3, K3). Needless to say, we
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were not successful in proving Exoo’s conjecture, because otherwise it would imply
that Fe(3, 3; 4)≤ 127.

Computations. Some of the results in this paper were found through the use of
various computational methods. This involved a large library of functions, including
graph manipulation, construction of various types of graphs, and tests for graph
arrowing. Graphs were represented in a variety of ways, including two-dimensional
Boolean arrays, lists of edges for sparse graphs, and the g6-format of [McKay
and Piperno 2014]. Our code was written in Java and executed on Unix and
Windows systems. For our final results, Matlab and SDP-LR [Helmberg and Rendl
2000; Rendl et al. 2010] were used to calculate eigenvalue and SDP MAX-CUT
approximations, respectively. MiniSAT [Eén and Sörensson 2004] was used to
solve satisfiability problems. We also made use of lists of nonisomorphic graphs
with special properties found with nauty [McKay and Piperno 2014].
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[Erdős and Hajnal 1967] P. Erdős and A. Hajnal, “Research problem 2-5”, J. Combin. Theory 2
(1967), 104.

[Folkman 1970] J. Folkman, “Graphs with monochromatic complete subgraphs in every edge color-
ing”, SIAM J. Appl. Math. 18 (1970), 19–24. MR Zbl

[Frankl and Rödl 1986] P. Frankl and V. Rödl, “Large triangle-free subgraphs in graphs without K4”,
Graphs Combin. 2:2 (1986), 135–144. MR Zbl

[Goodman 1959] A. W. Goodman, “On sets of acquaintances and strangers at any party”, Amer. Math.
Monthly 66 (1959), 778–783. MR Zbl

[Helmberg and Rendl 2000] C. Helmberg and F. Rendl, “A spectral bundle method for semidefinite
programming”, SIAM J. Optim. 10:3 (2000), 673–696. MR Zbl

http://msp.org/idx/mr/3700702
http://msp.org/idx/zbl/1373.05116
http://dx.doi.org/10.2307/2037824
http://dx.doi.org/10.2307/2037824
http://msp.org/idx/mr/0332559
http://msp.org/idx/zbl/0229.05116
http://dx.doi.org/10.1080/10586458.2008.10129023
http://msp.org/idx/mr/2410116
http://msp.org/idx/zbl/1152.05047
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://msp.org/idx/zbl/1204.68191
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.210.8193
http://msp.org/idx/mr/0389669
http://msp.org/idx/zbl/0347.05116
http://dx.doi.org/10.1016/S0021-9800(67)80119-4
http://dx.doi.org/10.1137/0118004
http://dx.doi.org/10.1137/0118004
http://msp.org/idx/mr/0268080
http://msp.org/idx/zbl/0193.53103
http://dx.doi.org/10.1007/BF01788087
http://msp.org/idx/mr/932121
http://msp.org/idx/zbl/0596.05037
http://dx.doi.org/10.2307/2310464
http://msp.org/idx/mr/0107610
http://msp.org/idx/zbl/0092.01305
http://dx.doi.org/10.1137/S1052623497328987
http://dx.doi.org/10.1137/S1052623497328987
http://msp.org/idx/mr/1741192
http://msp.org/idx/zbl/0960.65074


822 JENNY M. KAUFMANN, HENRY J. WICKUS AND STANISŁAW P. RADZISZOWSKI

[Karp 1972] R. M. Karp, “Reducibility among combinatorial problems”, pp. 85–103 in Complexity
of computer computations (New York, 1972), edited by R. E. Miller and J. W. Thatcher, Plenum,
New York, 1972. MR Zbl

[Lange et al. 2014] A. R. Lange, S. P. Radziszowski, and X. Xu, “Use of max-cut for Ramsey
arrowing of triangles”, J. Combin. Math. Combin. Comput. 88 (2014), 61–71. MR Zbl

[Lin 1972] S. Lin, “On Ramsey numbers and Kr -coloring of graphs”, J. Combin. Theory Ser. B 12
(1972), 82–92. MR Zbl

[Lu 2008] L. Lu, “Explicit construction of small Folkman graphs”, SIAM J. Discrete Math. 21:4
(2008), 1053–1060. MR Zbl

[McKay and Piperno 2014] B. D. McKay and A. Piperno, “Practical graph isomorphism, II”, J. Sym-
bolic Comput. 60 (2014), 94–112. MR Zbl

[Nenov 1983] N. D. Nenov, “Zykov numbers and some of their applications in Ramsey theory”,
Serdica 9:2 (1983), 161–167. In Russian. MR Zbl

[Nenov 1984] N. D. Nenov, “The chromatic number of any 10-vertex graph without 4-cliques is at
most 4”, C. R. Acad. Bulgare Sci. 37:3 (1984), 301–304. In Russian. MR Zbl

[Piwakowski et al. 1999] K. Piwakowski, S. P. Radziszowski, and S. Urbański, “Computation of the
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