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Spectra of Kohn Laplacians on spheres
John Ahn, Mohit Bansil, Garrett Brown,
Emilee Cardin and Yunus E. Zeytuncu

We study the spectrum of the Kohn Laplacian on the unit spheres in Cn and revisit
Folland’s classical eigenvalue computation. We also look at the growth rate of the
eigenvalue counting function in this context. Finally, we consider the growth rate
of the eigenvalues of the perturbed Kohn Laplacian on the Rossi sphere in C2.

1. Introduction

Background. The unit sphere S2n−1
⊂Cn is a CR manifold (of hypersurface type)

with the CR structure induced from the ambient space. By following the standard
setting we define the tangential Cauchy–Riemann complex with the operators ∂̄b and
∂̄∗b on the spaces of square integrable (0, q)-forms L2

(0,q)(S
2n−1). (For simplicity we

restrict our attention to (0, q) forms instead of (p, q) forms.) The Kohn Laplacian
(or ∂̄b-Laplacian)

�b = ∂̄b∂̄
∗

b + ∂̄
∗

b ∂̄b

is a linear, closed, densely defined self-adjoint operator from L2
(0,q)(S

2n−1) to itself.
The analytic properties of this second-order differential operator are closely related
to the geometry of the underlying manifold (although we work here on S2n−1, the
same setup works on other CR manifolds). We refer the reader to [Chen and Shaw
2001, Chapter 7] for the details of this setup.

Spherical harmonics. We now list definitions and theorems that are needed in the
rest of the paper. For a detailed study of spherical harmonics we refer the reader to
[Axler et al. 1992].

We say a complex polynomial p(z) is homogeneous of degree k if p(λz)=λk p(z)
for all z 6= 0. Similarly, p(z, z̄) is called homogeneous of bidegree (p, q) if
f (λ1z, λ2 z̄)= λp

1λ
q
2 p(z, z̄) for all z 6= 0. We say a twice-differentiable function f
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is harmonic if 4 f = 0, where the Laplacian is defined by

4 f = 4
n∑

i=1

∂2 f
∂zi∂ z̄i

.

A spherical harmonic is the restriction to S2n−1 of a complex polynomial that is
harmonic on Cn. We use Hk(C

n) to denote the space of all harmonic, homoge-
neous polynomials of degree k on Cn and Hp,q(C

n) for the space of all harmonic,
homogeneous polynomials of bidegree (p, q). Similarly we use Hk(S

2n−1) and
Hp,q(S

2n−1) to denote the restrictions of these spaces on S2n−1. The following
decomposition theorem is fundamental in our study of �b on L2(S2n−1).

Theorem 1.1 [Klima 2004, Theorem 3.7]. The spaces Hp,q(S
2n−1) are pairwise

orthogonal, and

L2(S2n−1)=

∞⊕
p,q=0

Hp,q(S
2n−1).

By using a standard counting argument one obtains the following formula for
the dimensions of the spaces of spherical harmonics.

Lemma 1.2 [Klima 2004, Corollary 3.10]. For p, q ≥ 1,

dim(Hp,q(S
2n−1))=

(n+ p−1
p

)(n+q−1
q

)
−

(n+ p−2
p−1

)(n+q−2
q−1

)
=
(n− 1)(n+ p+ q − 1)

pq

(n+ p−2
p−1

)(n+q−2
q−1

)
.

Notation. In the rest of the note we use the standard � and O notation to denote
asymptotic lower and upper bounds, respectively. That is, given two functions f
and g, we say f = �(g) if there exists a constant c > 0 such that f (x) ≥ cg(x)
as x →∞. Similarly, f = O(g) if there exists c > 0 such that f (x) ≤ cg(x) as
x→∞. Finally, we say f =2(g) if f =�(g) and f = O(g).

Results. Folland [1972] computed the eigenvalues and eigenforms of �b on
L2
(0,q)(S

2n−1) by using unitary representations.

Theorem 1.3. Hp,q(S
2n−1) is an eigenspace for ∂̄∗b ∂̄b with the associated eigen-

value 2q(p+ n− 1).

In Section 2 of this note we go over these computations on the space of square
integrable functions (i.e., L2(S2n−1)) by using spherical harmonics and present
eigenvalue computations in an accessible way. This more elementary approach
enables us to write code1 in SymPy that computes the eigenvalues of �b and other
similar second-order differential operators defined on L2(S2n−1). Furthermore, by

1The code can be downloaded at https://goo.gl/kBsUzA.

https://goo.gl/kBsUzA
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using the explicit forms of the eigenvalues and formulas for the dimensions of spher-
ical harmonic subspaces of L2(S2n−1), we study the growth rate for the counting
function of the eigenvalues. For m ∈ Z, let N (m) be the number of eigenvalues of
�b on L2(S2n−1) that are less than or equal to m, counting multiplicity.

Theorem 1.4. There exists a real c > 0 so that 1
c mn
≤ N (m) ≤ cmn; that is,

N (m)=2(mn).

In other words, here we prove that

lim sup
m→∞

N (m)
mn ∈ (0,∞).

It would be interesting to compute the exact limit and check if it is related to the
surface area of S2n−1. Indeed, in the case of the Laplace–Beltrami operator, Weyl’s
law states that this ratio is the surface area of S2n−1.

In addition to the induced CR structure from the ambient manifold, one can
define different intrinsic CR structures on a given manifold; see [Boggess 1991,
Chapter 8]. The most famous example of these abstract CR manifolds is the Rossi
sphere. It is known that the Rossi sphere is not globally CR embeddable into any Cn

[Burns 1979]. This can be seen by explicitly studying the perturbed Kohn Laplacian
(defined by the abstract CR structure) and looking at its essential spectrum. In
[Abbas et al. 2019], the authors studied the bottom of the spectrum of the perturbed
Kohn Laplacian by using spherical harmonics. In the last section of this note we
continue this study and provide the growth rate of the largest eigenvalues from each
subspace of spherical harmonics.

2. Eigenvalues of �b on L2(S2n−1)

Explicit eigenvalue computation. Since ∂̄∗b is identically zero on L2(S2n−1), �b

simplifies on L2(S2n−1) as

�b = ∂̄
∗

b ∂̄b.

Before we compute the eigenvalues we present the operators ∂̄b and ∂̄∗b in coordinate
forms. A smooth differential 1-form ω on S2n−1 can be expressed as

ω =

n∑
k=1

(Ak dzk + Bk dz̄k)= A1 dz1+ B1 dz̄1+ · · ·+ An dzn + Bn dz̄n,

where Ak, Bk ∈ C∞(Cn). As computed in [Folland 1972], for a smooth function f
on S2n−1 we have

∂̄b f =
n∑

i=1

(
∂ f
∂ z̄i
− zi

n∑
a=1

z̄a
∂ f
∂ z̄a

)
dz̄i .
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Furthermore, following the normalization of inner products as in [Folland 1972]
we have

〈dz̄i , dz̄ j 〉 = 2δi j and 〈dzi , dz̄ j 〉 = 0.

Using integration by parts, we obtain the following expression for the adjoint
operator.

Lemma 2.1. For a smooth 1-form ω =
∑n

k=1(Ak dzk + Bk dz̄k),

∂̄∗bω =−2
n∑

i=1

(
∂

∂zi
Bi −

n∑
a=1

∂

∂za
za z̄i Bi

)
.

Proof. Let g be a smooth function on S2n−1. Since we are working on a compact
manifold, we don’t get any boundary terms when we integrate by parts:〈
∂̄∗b

( n∑
k=1

(Ak dzk + Bk dz̄k)

)
, g
〉

=

〈 n∑
k=1

(Ak dzk + Bk dz̄k), ∂̄bg
〉

=

〈 n∑
k=1

Ak dzk +

n∑
k=1

Bk dz̄k,

n∑
i=1

(
∂g
∂ z̄i
− zi

n∑
a=1

z̄a
∂g
∂ z̄a

)
dz̄i

〉

= 2
n∑

i=1

〈
Bi ,

∂g
∂ z̄i
− zi

n∑
a=1

z̄a
∂g
∂ z̄a

〉

= 2
n∑

i=1

(〈
Bi ,

∂g
∂ z̄i

〉
−

n∑
a=1

〈
Bi , zi z̄a

∂g
∂ z̄a

〉)

= 2
n∑

i=1

(
−

〈
∂

∂zi
Bi , g

〉
+

n∑
a=1

〈
∂

∂za
za z̄i Bi , g

〉)

=−2
n∑

i=1

(〈
∂

∂zi
Bi , g

〉
−

n∑
a=1

〈
∂

∂za
za z̄i Bi , g

〉)

=−2
n∑

i=1

〈
∂

∂zi
Bi −

n∑
a=1

∂

∂za
za z̄i Bi , g

〉

=

〈
−2

n∑
i=1

(
∂

∂zi
Bi −

n∑
a=1

∂

∂za
za z̄i Bi

)
, g
〉
.

By comparing the beginning and ending of the identity we prove the lemma. �

Before we look at the action of �b on a square integrable function we look at
the action of two other operations on the spherical harmonics.
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Lemma 2.2. If f ∈Hp,q(S
2n−1), then

n∑
k=1

zk
∂ f
∂zk
= p f and

n∑
k=1

z̄k
∂ f
∂ z̄k
= q f.

Proof. Consider a polynomial f ∈ Hp,q . So f is harmonic homogeneous of
bidegree p, q. Then for each monomial term g = zα1

1 · · · z
αn
n z̄β1

1 · · · z̄
βn
n of f , we

have
n∑

k=1

zk
∂g
∂zk
=

n∑
k=1

(αk)g =
( n∑

k=1

αk

)
g = pg,

n∑
k=1

z̄k
∂g
∂ z̄k
=

n∑
k=1

(βk)g =
( n∑

k=1

βk

)
g = qg.

So each monomial term g is scaled by p or q. By the linearity of differential
operators, f is scaled by p or q as well. �

By combining the lemmas above we obtain the eigenvalues of �b.

Theorem 1.3. Hp,q(S
2n−1) is an eigenspace for ∂̄∗b ∂̄b with the associated eigen-

value 2q(p+ n− 1).

Proof. For f ∈Hp,q(S
2n−1),

∂̄∗b ∂̄b f = ∂̄∗b

[ n∑
i=1

(
∂ f
∂ z̄i
− zi

n∑
a=1

z̄a
∂ f
∂ z̄a

)
dz̄i

]

= ∂̄∗b

[ n∑
i=1

(
∂ f
∂ z̄i
− zi q f

)
dz̄i

]

=−2
n∑

i=1

[
∂

∂zi

(
∂ f
∂ z̄i
− zi q f

)
−

n∑
a=1

∂

∂za
za z̄i

(
∂ f
∂ z̄i
− zi q f

)]

=−2
n∑

i=1

[(
∂2 f
∂zi∂ z̄i

−
∂

∂zi
zi q f

)
−

n∑
a=1

(
∂

∂za
za z̄i

∂ f
∂ z̄i
−

∂

∂za
za z̄i zi q f

)]

=−2
n∑

i=1

∂2 f
∂zi∂ z̄i

+ 2
n∑

i=1

∂

∂zi
zi q f + 2

n∑
i=1

n∑
a=1

∂

∂za
za z̄i

∂ f
∂ z̄i

.

We start with the first term. Because f is harmonic, we know

0=4( f )= 4
n∑

i=1

∂2 f
∂zi∂ z̄i

.
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Thus, we have

0=
n∑

i=1

∂2 f
∂zi∂ z̄i

=−2
n∑

i=1

∂2 f
∂zi∂ z̄i

.

For the second and third terms, we apply the product rule:

2
n∑

i=1

∂

∂zi
zi q f = 2q

n∑
i=1

∂

∂zi
zi f

= 2q
n∑

i=1

(
zi
∂ f
∂zi
+ f

)

= 2q
[ n∑

i=1

zi
∂ f
∂zi
+

n∑
i=1

f
]
= 2q(p+ n) f,

2
n∑

i=1

n∑
a=1

∂

∂za
za z̄i

∂ f
∂ z̄i
= 2

n∑
a=1

∂

∂za
za

n∑
i=1

z̄i
∂ f
∂ z̄i

= 2
n∑

a=1

∂

∂za
zaq f

= 2q
n∑

a=1

(
za
∂ f
∂za
+ f

)
= 2q(p+ n) f.

Now recall that on S2n−1 we have z1 z̄1+ · · ·+ zn z̄n = 1. Thus,
n∑

a=1

n∑
i=1

zi z̄i f =
n∑

a=1

f = n f.

We also go over the following explicit computation (again by using linearity we
can assume f is a monomial and f = zα1

1 · · · z
αn
n z̄β1

1 · · · z̄
βn
n ):

n∑
a=1

za
∂

∂za

n∑
i=1

zi z̄i f =
n∑

a=1

za
∂

∂za
(z1 z̄1+ · · ·+ zn z̄n) f

=

n∑
a=1

za

(
∂

∂za
z1 z̄1 f + · · ·+

∂

∂za
za z̄a f + · · ·+

∂

∂za
zn z̄n f

)

=

n∑
a=1

za

(
αa

za
z1 z̄1 f + · · ·+

αa + 1
za

za z̄a f + · · ·+
αa

za
zn z̄n f

)

=

n∑
a=1

((αa)z1 z̄1 f + · · ·+ (αa + 1)za z̄a f + · · ·+ (αa)zn z̄n f )
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=

n∑
i=1

(α1+ · · ·+ (αi + 1)+ · · ·+αn)zi z̄i f

=

n∑
i=1

(p+ 1)zi z̄i f = (p+ 1)
n∑

i=1

zi z̄i f = (p+ 1) f.

We are now ready to compute the fourth term of the ∂̄∗b ∂̄b f expansion:

−2
n∑

i=1

n∑
a=1

∂

∂za
za z̄i zi q f =−2q

( n∑
a=1

∂

∂za
za

n∑
i=1

zi z̄i f
)

=−2q
( n∑

a=1

(
za

∂

∂za
+ I
) n∑

i=1

zi z̄i f
)

=−2q
( n∑

a=1

za
∂

∂za

n∑
i=1

zi z̄i f +
n∑

a=1

n∑
i=1

zi z̄i f
)

=−2q(p+ 1+ n) f.

Returning to our original computation of ∂̄∗b ∂̄b f , we now have

∂̄∗b ∂̄b f

=−2
n∑

i=1

∂2 f
∂zi∂ z̄i

+ 2
n∑

i=1

∂

∂zi
zi q + 2

n∑
i=1

n∑
a=1

∂

∂za
za z̄i

∂ f
∂ z̄i
− 2

n∑
i=1

n∑
a=1

∂

∂za
za z̄i zi q

= 0+ 2q(p+ n) f + 2q(p+ n) f − 2q(p+ 1+ n) f

= 2q(p+ n− 1) f. �

Asymptotics of counting function. We now look at the counting function N (m).

Definition 2.3. For m ∈ Z, let N (m) be the number of eigenvalues of �b on
L2(S2n−1) that are less than or equal to m, counting multiplicity.

Similar functions and relations between their asymptotics and geometry of the
underlying manifold were studied in [Métivier 1981; Fu 2005; 2008]. In particular
in some cases the growth rate of N (m) carries information about the type of the
manifold [Fu 2005; 2008]. Furthermore, in the case of the Laplace–Beltrami
operator, Weyl’s law states that the limit of the ratio N (m)/mn gives the surface
area of S2n−1. Before we state our result, we recall Lemma 1.2.

Lemma 1.2. For p, q ≥ 1,

dim(Hp,q(S
2n−1))=

(n− 1)(n+ p+ q − 1)
pq

(n+ p−2
p−1

)(n+q−2
q−1

)
.
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Note that ignoring multiplicity would induce a function with linear growth.
Indeed for any even m̂ with m ≥ m̂ > 2(n− 1), we can solve m̂ = 2q(p+ n− 1)
after fixing q = 1. Additionally, by convention, we set N (m)= 0 when m < 0.

We note that when n = 1, the eigenvalue of ∂̄∗b ∂̄b is equal to 0. Indeed, when
n = 1 and when p and q are both nonzero, Lemma 1.2 gives us that the dimension
of Hp,q is 0. This is because the only harmonic homogeneous polynomials on C

are of the form z p or z̄q , which belong to Hp,0 or H0,q , respectively. Thus, Hp,q is
nontrivial only when either p or q is zero. However, on such spaces, the eigenvalue
of ∂̄∗b ∂̄b on Hp,q is 0.

Lemma 2.4. There exists a real constant c > 0 so that cmn
≤ N (m); that is,

N (m) ∈�(m).

Proof. Fix even m; then N (m)− N (m− 2) is the multiplicity of the eigenvalue m,
since all the eigenvalues are even by Theorem 1.3. This requires computing the sum
of the dimensions of all Hp,q(S

2n−1) such that the pair (p, q) satisfies the equation
E(p, q)=m, where E(p, q)= 2q(p+n−1). Now assuming m > 2(n−1), there
exists a positive integer solution p = p̂ to E(p, q) = m when q = 1. Define the
solution set A = {(p, q) | E(p, q)= m}. Then we have

N (m)− N (m− 2)=
∑

(p,q)∈A

dimHp,q ≥ dimH p̂,1.

Note that dimH p̂,1 =�(mn−1), which follows from Lemma 1.2. Namely, since
asymptotically p̂ = m/2, we have

dimH p̂,1(S2n−1) =
(n− 1)(n+ p̂)

p̂

(n+ p̂−2
n−1

)(n−1
n−1

)
≥

(n+ p̂−2
n−1

)
≥

1
(n− 1)!

p̂n−1

=�

(
m
2

)n−1

=�(mn−1).

Putting it all together, we have

2N (m)≥ N (m)+ N (m− 1)=
m∑

j=0

(N ( j)− N ( j − 2))

≥

m∑
j=0

�( jn−1)≥�(mn). �

Lemma 2.5. There exists a real constant c > 0 so that N (m) ≤ cmn; that is,
N (m)= O(mn).

Proof. Again, fix an even m and inspect N (m)−N (m−2). Note that asymptotically,
we can let our eigenvalue equation be E(p, q) = 2qp. Thus, asymptotically we
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have

N (m)− N (m−2)=
∑

(p,q)∈A

dimHp,q .
∑

(p,q)∈A

(p+q)(pq)n−2
= σ(m)O(mn−2),

where σ(m) is the sum of all divisors of m. Thus, we have

N (m).
∑
x≤m

2xn−2σ(x). 2mn−2
∑
x≤m

σ(x)= O(mn).

The last equality follows since
∑

x≤m σ(x)= O(m2). A proof of this fact can be
found in Chapter 3.6 of [Apostol 1976]. �

By combining the last two lemmas we obtain the following statement.

Theorem 1.4. There exists a real c > 0 so that 1
c mn
≤ N (m) ≤ cmn; that is,

N (m)=2(mn).

We note that the constants in Lemma 2.4, Lemma 2.5, and Theorem 1.4 do
depend on the dimension n. This dependence also agrees with the explicit constants
calculated by Weyl for the Laplace–Beltrami operator.

3. Spectra of other second-order differential operators on L2(S2n−1)

Another interesting class of second-order differential operators are sum of squares
operators Mb, introduced in the fourth chapter of [Klima 2004]. These operators
capture half of the action of �b on S3; in higher dimensions they lead to the study
of various possible perturbations of �b.

We define the sum of squares operator Mb on L2(S2n−1) as

Mb =−(M12 M12+M13 M13+ · · ·+M1n M1n),

where M1k = z̄1(∂/∂zk)− z̄k(∂/∂z1) and M1k = z1(∂/∂ z̄k)− zk(∂/∂ z̄1). Note that
one can easily consider Mik for i 6= 1; for simplicity we focus on the case i = 1.

For any f ∈ Hp,q(S
2n−1), the specific degrees of the zk, z̄k may vary. For

example, both z2
1z2 z̄3

1 z̄2
2 and z1z2

2 z̄2
1 z̄3

2 are in H3,5(S
3). In previous arguments, such

specificity was unnecessary, but we find that for Mb, the eigenvalues can directly
depend on the exact degrees of the zk, z̄k . To that end, for nonnegative integer
tuples p = (p1, . . . , pn) and q = (q1, . . . , qn), we use H∗p,q(Cn) to denote the
space of all harmonic, homogeneous polynomials where pk is the degree of zk ,
and qk is the degree of z̄k . Then we use H∗p,q(S2n−1) to denote the restriction of
this space on S2n−1. For example, now z2

1z2 z̄3
1 z̄2

2 ∈H
∗

(2,1),(3,2)(S
3) but z1z2

2 z̄2
1 z̄3

2 ∈

H∗(1,2),(2,3)(S
3). Note that H∗p,q(S2n−1) is a subspace of H p̄,q̄(S

2n−1), where p̄ =∑n
i=1 pi and q̄ =

∑n
i=1 qi . Now for certain H∗p,q(S2n−1), we have the following

result.
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Lemma 3.1. Consider two nonnegative integer tuples p = (p1, . . . , pn) and q =
(q1, . . . , qn). Suppose that for each 1 ≤ k ≤ n, at least one of pk or qk is 0. Then
the eigenvalue of Mb on H∗p,q(S2n−1) is

p1

n∑
k=2

qk + q1

n∑
k=2

pk + (n− 1)q1+

n∑
k=2

qk .

Proof. Take f ∈H∗p,q(S2n−1), where pk = 0 or qk = 0 for each k. By linearity, we
can inspect the action of each −M1k M1k piece of Mb on f . We have

−M1k M1k f =−
(

z̄1
∂

∂zk
− z̄k

∂

∂z1

)(
z1
∂

∂ z̄k
−zk

∂

∂ z̄1

)
f

=−z̄1
∂

∂zk
z1
∂

∂ z̄k
f + z̄1

∂

∂zk
zk
∂

∂ z̄1
f + z̄k

∂

∂z1
z1
∂

∂ z̄k
f − z̄k

∂

∂z1
zk
∂

∂ z̄1
f

=−z1 z̄1
∂

∂zk

∂

∂ z̄k
f + z̄1

∂

∂ z̄1

∂

∂zk
zk f + z̄k

∂

∂ z̄k

∂

∂z1
z1 f −zk z̄k

∂

∂z1

∂

∂ z̄1
f

= 0+ z̄1
∂

∂ z̄1

∂

∂zk
zk f + z̄k

∂

∂ z̄k

∂

∂z1
z1 f −0

= z̄1
∂

∂ z̄1

(
zk
∂

∂zk
+ I
)

f + z̄k
∂

∂ z̄k

(
z1
∂

∂z1
+ I
)

f

= z̄1
∂

∂ z̄1
zk
∂

∂zk
f + z̄1

∂

∂ z̄1
f + z̄k

∂

∂ z̄k
z1
∂

∂z1
f + z̄k

∂

∂ z̄k
f

= q1 pk f +q1 f +qk p1 f +qk f.

Thus, we have

Mb( f )=
n∑

k=2

−M1k M1k f =
n∑

k=2

(q1 pk + q1+ qk p1+ qk) f

=

( n∑
k=2

q1 pk +

n∑
k=2

q1+

n∑
k=2

qk p1+

n∑
k=2

qk

)
f

=

(
q1

n∑
k=2

pk + (n− 1)q1+ p1

n∑
k=2

qk +

n∑
k=2

qk

)
f. �

The above lemma tells us that z2
1z2 z̄3

1 z̄2
2 ∈H

∗

(2,1),(3,2)(S
3) has eigenvalue 2(2)+

3(1)+ (2− 1)(3)+ (2) = 12. On the other hand, z1z2
2 z̄2

1 z̄3
2 ∈ H∗(1,2),(3,2)(S

3) has
eigenvalue 1(2) + 3(2) + (2 − 1)(3) + (2) = 13. More generally, the lemma
tells us that Hp,0(S

2n−1) is in the null space of Mb for all p ∈ N. Furthermore,
the eigenvalue of Mb on H∗0,q(S

2n−1) is (n − 1)q1 + q2 + · · · + qn . On other
Hp,q(S

2n−1) spaces, computational results suggest that we have integer eigenvalues,
and matrix representations follow a pattern as well. We will leave the investigation
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of other eigenvalues to a future study. We invite the interested reader to see other
computational results by downloading our code.2

4. Eigenvalues of �t
b on the Rossi sphere

Previously in [Abbas et al. 2019], the authors studied the spectrum of the perturbed
Kohn Laplacian �t

b on the Rossi sphere. They obtained an upper bound for the
lowest eigenvalue for�t

b on each Hk(S
3). In our project, we look at the asymptotics

of the spectrum of the (perturbed) Kohn Laplacian on the Rossi sphere, in particular
the asymptotics of λmax

k , the maximum eigenvalue of �t
b on Hk(S

3).
In [Abbas et al. 2019] the authors prove tridiagonal representation results for

spaces of homogeneous polynomials of odd degree, H2k−1(S
3). However, their

proof actually works for arbitrary degrees, Hk(S
3). We restate the steps to construct

the tridiagonal matrix representations here, and one can refer to [Abbas et al. 2019]
for details. We first recall the definition of differential operators L,L, and �t

b
on L2(S3).

Definition 4.1. We define L and L as

L = z̄1
∂

∂z2
− z̄2

∂

∂z1
,

L= z1
∂

∂ z̄2
− z2

∂

∂ z̄1
,

�t
b =−Lt

1+ |t |2

(1− |t |2)2
Lt .

The motivation for these operators arises from the CR-manifold (S3,Lt), which
is not CR-embeddable [Rossi 1965]. Note that Lt = L+ t̄L and |t |< 1.

Theorem 4.2 [Abbas et al. 2019]. Let { f0, . . . , fk} be an orthogonal basis for
H0,k(S

3). Then {Lσ f0, . . . ,Lσ fk} is an orthogonal basis for Hσ,k−σ (S
3).

The proof of Theorem 4.2 follows from induction on inner products. The main
two steps are the fact that −L is the adjoint of L, and that LL scales elements of
Hp,q(S

3) by a constant factor based on their bidegree.
Now one can consider an orthogonal basis { f0, . . . , fk} for H0,k(S

3) and define
the following two subspaces for even k:

Vi = span{ fi , L2 fi , L4 fi , . . . ,Lk−2 fi , Lk fi },

Wi = span{L fi , L3 fi , L5 fi , . . . ,Lk−3 fi , Lk−1 fi },

2The code can be downloaded at https://goo.gl/kBsUzA.

https://goo.gl/kBsUzA
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and similarly for odd k:

Vi = span{ fi , L2 fi , L4 fi , . . . ,Lk−3 fi , Lk−1 fi },

Wi = span{L fi , L3 fi , L5 fi , . . . ,Lk−2 fi , Lk fi }.

The motivation to define such spaces follows by inspecting the expanded form
of �t

b, which is equal to LL+LL+L2
+L2 up to constants. Previous work has

shown that LL and LL scale elements of Hp,q(S
3) by a constant factor, and the

actions of L2 and L2 suggest that invariant subspaces will involve basis elements
that differ by 2 j applications of L. Indeed, it was shown in [Abbas et al. 2019] that
�t

b is invariant on Vi and Wi . On these finite-dimensional invariant subspaces one
can obtain a matrix representation for the second-order operator �t

b.

Theorem 4.3 [Abbas et al. 2019]. The matrix representation of �t
b, m(�t

b), on
Vi ,Wi ⊂Hk(S

3) is

h


d1 u1

−t̄ d2 u2

−t̄ d3
. . .

. . .
. . . uk−1

−t̄ dk

 ,

where h is a constant and on Vi ,

u j =−4t · ( j)(2 j − 1)(k− j)(2k− 1− 2 j),

dj = (2 j − 1)(2k+ 1− 2 j)+ 4|t |2( j − 1)(k+ 1− j);
on Wi ,

u j =−4t · ( j)(2 j + 1)(k− j)(2k− 1− 2 j),

dj = 4( j)(k− j)+ |t |2(2 j − 1)(2k+ 1− 2 j).

Moreover, the matrix above is similar to

B =


d1 c1

c1 d2 c2

c2 d3
. . .

. . .
. . . ck−1

ck−1 dk

 ,

where cj = (−t̄ · u j )
1/2
= |t |

√
−u j/t .

After recalling these results, we also introduce the numerical range of a matrix.

Definition 4.4. Given an n × n square matrix A, we define its numerical range
W (A)= {〈Ax, x〉 | x ∈ Cn, ‖x‖ = 1}.
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Also recall that λmax
k denotes the maximum eigenvalue of m(�t

b) on Hk(S
3). We

first prove the following lower bound.

Lemma 4.5. There exists a real constant c > 0 so that 1
c k2
≤ λmax

k ; that is, λmax
k =

�(k2).

Proof. For a square matrix A, sup W (A) is an upper bound for the eigenvalues of A.
Furthermore, if A is Hermitian then the maximum eigenvalue equals sup W (A).

Let A=m(�t
b) on Wi . By the above discussion, since A is similar to a Hermitian

matrix B, it suffices to show that sup W (B)=�(k2).
Fix x = ek/2 for k even, and x = e(k+1)/2 for k odd. Since 〈Bei , ej 〉 = a′i j , by the

above matrix representation we have that for k even

〈Bek/2, ek/2〉 = Bk/2,k/2 = dk/2

= 4
(k

2

)(
k− k

2

)
+ |t |2

(
2k

2
− 1
)(

2k+ 1− 2k
2

)
= k2
+ |t |2(k− 1)(k+ 1)

=�(k2).

A similar result follows for k odd. Now since 〈Bek/2, ek/2〉 ∈ W (B), we have
sup W (B)=�(k2). �

For the lower bound we invoke Gershgorin’s circle theorem.

Theorem 4.6 [Gershgorin 1931]. Suppose A is a complex square matrix, and Ri is
the sum of the absolute values of the off-diagonal entries in the i-th row. Then every
eigenvalue of A must lie within one of the closed discs D(ai i , Ri )⊂ C.

Recall that m(�t
b) on Vi ,Wi is similar to the real symmetric matrix B. Since B

is Hermitian, Theorem 4.6 will give us interval bounds on the real line. Furthermore,
the tridiagonal structure of B makes these bounds tight.

Lemma 4.7. There exists a real constant c > 0 so that λmax
k ≤ ck2; that is, λmax

k =

O(k2).

Proof. Applying Theorem 4.6 on B, we have

D(bi i , Ri )= (di − (ci−1+ ci ), di + (ci−1+ ci )),

since the i-th row of B has only two off-diagonal entries, ci−1 and ci , both of
which are nonnegative by Theorem 4.3. Note that for the extremal cases of the
first and last rows, the radii of these discs will involve only one off-diagonal entry.
Now it suffices to show that an upper bound for Mi = di + ci−1+ ci is O(k2). By
inspection, ci−1, and ci are O(k2) because ui−1, ui are O(k4). Since di is O(k2)

as well, we have our result. �

By combining the last two lemmas we obtain the following statement.
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Theorem 4.8. There exists a real c > 0 so that 1
c k2
≤ λmax

k ≤ ck2; that is, λmax
k =

2(k2).

In addition to the asymptotics λmax
k , we computed λmax

k explicitly by using SymPy.
Similar codes also work to compute the largest eigenvalues of other operators, such
as Mb, on finite-dimensional invariant spaces.

Finally we note that, in this section we studied perturbed Kohn Laplacians on S3.
One can define similar perturbations on higher-dimensional spheres and investigate
the corresponding spectra. Although in higher dimensions the Boutet de Monvel
theorem [1975] guarantees embeddability of strongly pseudoconvex abstract CR
manifolds, it would be still worthwhile to compute the distribution of eigenvalues.
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