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An explicit formula is derived for the value of weak information in a discrete-time
model that works for a wide range of utility functions, including the logarithmic
utility and power utility. We assume a complete market with a finite number
of assets and a finite number of possible outcomes. Explicit calculations are
performed for a binomial model with two assets.

1. Introduction

Suppose an investor knows the distribution of the prices of the stocks in the market
at a future time and this investor wants to optimize her or his expected utility from
wealth at that future time. Our basic question is: What is the financial value of this
information?

Much of the research into utility optimization and the financial value of weak
information has been looked at previously in a continuous time setting [Baudoin
2003; Baudoin and Nguyen-Ngoc 2004]. The purpose of this paper is to investigate
how to optimize a stock portfolio given weak information in a discrete-time setting.
It should be stressed that the results we obtain are new and cannot be obtained as a
consequence of the results in [Baudoin 2003; Baudoin and Nguyen-Ngoc 2004].

We will assume that the market is complete. We will also assume that there are
no transactions costs. For a definition of complete markets, see [Björk 2009]. The
main tool we use in finding the optimal expected utility given the weak information
on future stock prices is the martingale method; see [Shreve 2004]. The reader
might recognize that the problem treated here is related to robust utility maximiza-
tion problems, as discussed in [Gilboa and Schmeidler 1989] and later works in
mathematical finance by H. Föllmer, A. Gundel and S. Weber.

MSC2010: 91G10.
Keywords: anticipation, mathematical finance, financial value of weak information, portfolio

optimization, discrete market models, insider trading.

883

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-5
http://dx.doi.org/10.2140/involve.2019.12.883


884 AMIRAN / BAUDOIN / BROCK / COSTER / CRAVER / EZEAKA / MARIANO / WISHART

As with classical results in this field, we will be looking at the expected utility
as opposed to the expected wealth. This is an important difference to note since
utility functions allow us to include an individual’s attitude towards risk.

2. Utility functions

There are many different utility functions used in mathematics and economics to
measure an individual’s happiness or satisfaction. We denote our utility functions
by U. We require that a utility function is strictly concave, strictly increasing, and
continuously differentiable. We assume as in [Baudoin 2003] that

lim
x→0

U ′(x)=+∞ and lim
x→∞

U ′(x)= 0. (1)

These conditions are sufficient for a utility function to exhibit risk aversion, to
satisfy the law of diminishing marginal utility, and to guarantee that an increase in
wealth results in an increase in utility. Further, when discussing the risk aversion of
our utility functions, we use the absolute and relative risk aversion functions; see
[Meyer and Meyer 2005]. We will be looking specifically at three different types
of utility functions:

(i) Log utility: U (x)= ln(x), x > 0. The log utility function has a constant relative
risk aversion of 1. This implies the individual will always take on a constant
proportion of risk with respect to their wealth.

(ii) Power utility: U (x)= xγ /γ for −∞< γ < 0 and 0< γ < 1 and x > 0. The
power utility function also has a constant relative risk aversion, but the constant
value is 1− γ . Thus, the power utility function is less risk-averse compared to the
log utility function for 0< γ < 1. In this case, the constant γ reflects the relative
risk aversion with the individual becoming more risk-averse as γ approaches 0. If
−∞<γ <0, the individual is more risk-averse than an individual whose preferences
can be described by the logarithmic utility function. As γ approaches −∞, the
individual becomes more and more risk-averse.

(iii) Exponential utility: U (x) = −e−αx for α > 0 and x ∈ R. The exponential
utility function has a constant absolute risk aversion of 1. Thus, the individual with
an exponential utility function will assume a constant amount of risk rather than a
constant proportion of risk with respect to their wealth. Notice that the exponential
utility function does not satisfy the condition (1), but it is still an interesting function
to note, and our results still hold true for this function.

3. Modeling the financial value of weak information on discrete-time
complete markets with a discrete state space

Setup. Suppose we have a market with d financial assets, and a sample space
�1 = {ω1, . . . , ωM} of possible outcomes of all the asset prices after one time
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period. For all probability measures P, we always assume P(ωj ) > 0 for all
j ∈ {1, . . . ,M}. This is not a restriction since if P(ωj ) = 0, then we exclude ωj

from �1. Let N be our final time period, and let ESn ∈ Rd denote the asset prices
at time n where n ∈ {0, 1, . . . , N }. Further, let the random variable Vn denote the
value of the portfolio at time n. Denote the initial wealth of the investor V0 by v.
Without loss of generality we can assume one of the assets is a risk-free asset. We
define r to be the rate of return of the risk-free asset. We will denote by M the
set of equivalent1 probability measures under which discounted stock prices are
martingales. Furthermore, we will assume our market is free from arbitrage. Thus,
we can assume that the set M is nonempty. For a complete market, M is a singleton,
say M= {P̃}, where P̃ is the unique probability measure under which discounted
stock prices are martingales; see [Björk 2009] for more details about arbitrage,
completeness, and equivalent martingale measures. We denote by 9v the set of
self-financing portfolios given initial wealth v. The probability measure P̃ basically
represents the “knowledge” of the uninformed investor. Notice that by Jensen’s
inequality this is the same as having no information at all, since it is optimal to
invest in the risk-free asset only.

3.1. Weak anticipation. Now suppose we have some weak anticipation (weak
information) regarding the prices of assets at our final time period. That is to say,
we know the distribution of ESN . We will denote this distribution by ν. Let � denote
the path space of the (M-dimensional) stock price process { ESn}1≤n≤N . Further, let
A be the (finite) set of possible asset prices at time N. Note |A| ≤ M N.

Definition. The probability measure Pν defined by

Pν(ω) :=
∑
Ex∈A

P̃(ω | ESN=Ex) ν( ESN=Ex)

is called the minimal probability measure associated with the weak information ν,
where P̃ ∈M is an (remember M is a singleton in a complete market) equivalent
martingale measure.

In the sense of the following proposition, Pν is minimal in the set of probability
measures Q equivalent to P such that Q( ESN=Ex) = ν( ESN=Ex) for all Ex ∈ A. We
denote this set by Eν.

Proposition 3.1. Let φ be a convex function. Then

min
Q∈Eν

Ẽ

[
φ

(
dQ

dP̃

)]
= Ẽ

[
φ

(
dPν

dP̃

)]
,

where dQ/dP̃ denotes the Radon–Nikodym derivative of Q with respect to P̃.
1In our finite discrete sample space, by equivalent we simply mean, for all i ∈ {1, 2, . . . ,M},

Q(ωi ) > 0.
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Proof. Let Ex ∈A and Q ∈ Eν be given. Then,

Ẽ

[
dQ

dP̃

∣∣∣∣ ESN=Ex
]
=
ν(ESN=Ex)

P̃(ESN=Ex)
.

Let φ be a convex function. Then from the conditional version of Jensen’s inequality

φ

(
ν(ESN=Ex)

P̃(ESN=Ex)

)
= φ

(̃
E

[
dQ

dP̃

∣∣∣∣ ESN=Ex
])
≤ Ẽ

[
φ

(
dQ

dP̃

) ∣∣∣∣ ESN=Ex
]
.

Taking the expected value on both sides, we get

Ẽ

[
φ

(
ν(SN )

P̃(SN )

)]
= Ẽ

[
φ

(
dPν

dP̃

)]
≤ Ẽ

[
φ

(
dQ

dP̃

)]
,

and the result is proved. �

3.2. Value of weak information. Since an insider’s anticipation has a different
final time distribution than an uninformed investor’s, it is natural to find a way to
characterize the value of this information. Since we focused on maximizing our
utility of wealth rather than the monetary value of wealth, we will define our value
accordingly.

Definition. The financial value of weak information is the lowest expected utility
that can be gained from anticipation. We write

u(v, ν)= min
Q∈Eν

max
ψ∈9v

EQ
[U (VN )].

Our main theorem is the following:

Theorem 3.2. The financial value of weak information in a complete market is

u(v, ν)= max
ψ∈9v

Eν[U (VN )] = Eν
[

U
(

I
(

λ(v)

(1+ r)N

dP̃

dPν

))]
,

where λ(v) is determined by

Ẽ

[
1

(1+ r)N I
(

λ(v)

(1+ r)N

dP̃

dPν

)]
= v,

where P̃ ∈M is the unique probability measure under which the prices are martin-
gales. Moreover, the optimal wealth at time n, V̂n , is given by

V̂n =
1

(1+ r)N−n

∑
ω∈�

I
(

λ(v)

(1+ r)N

dP̃

dPν
(ω)

)
P̃(ω | ESn) for n ∈ {0, 1, . . . , N }.

At time n, the optimal amount to purchase of the i-th linearly independent asset is

δi
n =

M∑
j=1

(D−1
n+1)i, j V̂n+1(ωj ) for n ∈ {0, 1, . . . , N − 1},
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where

Dn+1 =


S1

n+1(ω1) S2
n+1(ω1) · · · SM

n+1(ω1)

S1
n+1(ω2) S2

n+1(ω2) · · · SM
n+1(ω2)

...
...

...

S1
n+1(ωM) S2

n+1(ωM) · · · SM
n+1(ωM)


is the matrix of M linearly independent asset prices at time n+1, (D−1

n+1)i, j rep-
resents the element (i, j) of the matrix D−1

n+1, and V̂n+1 comes from the above
equation.

Proof. We will proceed by rewriting maxψ∈9v EQ
[U (VN )]. In order to do this, we

need the convex conjugate Ũ (y) :=maxx>0[U (x)− xy]; see [Karatzas et al. 1991].
We form the Lagrangian for solving maxψ∈9v EQ

[U (VN )] by

L(λ)= EQ
[U (VN )] + λ

[
v− EQ

[
dP̃

dQ

VN

(1+ r)N

]]
.

Now using Ũ, substituting in for VN from the martingale method (see the Appendix),
and doing algebra, we can rewrite our Lagrangian as

L(λ)= λv+ Ẽ

[
dQ

dP̃
Ũ
(

λ

(1+ r)N

dP̃

dQ

)]
.

Thus, we deduce

u(v, ν)= min
Q∈Eν

min
λ>0

[
λv+ Ẽ

[
dQ

dP̃
Ũ
(

λ

(1+ r)N

dP̃

dQ

)]]
=min

λ>0

[
λv+ min

Q∈Eν
Ẽ

[
dQ

dP̃
Ũ
(

λ

(1+ r)N

dP̃

dQ

)]]
.

Since the convexity of Ũ implies the function mapping z 7→ zŨ
(
λ/((1+ r)N z)

)
is

convex, we can use Proposition 3.1 to get

u(v, ν)=min
λ>0

[
λv+ Ẽ

[
dPν

dP̃
Ũ
(

λ

(1+ r)N

dP̃

dPν

)]]
.

Taking the derivative now with respect to λ and setting it equal to 0, we find

v = Ẽ

[
1

(1+ r)N I
(

λ∗(v)

(1+ r)N

dP̃

dPν

)]
,

where λ∗(v) is the minimizer. Now,

u(v, ν)= λ∗(v)v+ Ẽ

[
dPν

dP̃
Ũ
(

λ∗(v)

(1+ r)N

dP̃

dPν

)]
= Eν

[
U
(

I
(

λ∗(v)

(1+ r)N

dP̃

dPν

))]
.
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Thus, we have shown the first part of the theorem. Now note that the discounted opti-
mal wealth process {V̂n/(1+ r)n}0≤n≤N is a martingale under P̃ (see the Appendix).
As a result,

V̂n =
1

(1+ r)N−n Ẽ[V̂N | ESn] =
1

(1+ r)N−n

∑
ω∈�

I
(

λ(v)

(1+ r)N

dP̃

dPν
(ω)

)
P̃(ω | ESn)

for all n ∈ {0, 1, . . . , N }. Further, note that wealth is determined by your portfolio
from the previous time period and the current prices. Thus,

V̂n+1 = Dn+1Eδn,

so we have

D−1
n+1V̂n+1 = Eδn. �

Remark. We know from [Björk 2009] that the matrix of all asset prices in the
complete market has rank M. Therefore, we can choose M linearly independent
assets to invest in. Further, note that the optimal amount to purchase for each asset
is only unique when M = d .

Definition. We define the additional value of weak information as the extra utility
gained from investing with anticipation instead of just putting all of your wealth in
the risk-free asset, which we define by

F(v, ν)= u(v, ν)−U (v(1+ r)N ).

Definition. We also define the ratio of added value to the total value by

π(v, ν)=
F(v, ν)
u(v, ν)

= 1−
U (v(1+ r)N )

u(v, ν)
.

As a consequence of Theorem 3.2 we obtain the following interpretation of the
additional value of weak information for the log utility function.

Corollary 3.3. The additional value of weak information for the log utility function
is given by the relative entropy of ν with respect to P̃ESN

:

F(v, ν)= Eν
[

ln
(

dν
dP̃ESN

)]
.

Proof. We first solve for λ:

v= Ẽ

[
1

(1+ r)N I
(

λ

(1+ r)N

dP̃

dPν

)]
= Ẽ

[
1

(1+ r)N

(1+ r)N

λ

dPν

dP̃

]
=⇒ λ=

1
v
.
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Substituting for λ in our value of weak information equation, we thus have

u(v, ν)= Eν
[

U
(

I
(

λ

(1+ r)N

dP̃

dPν

))]
= Eν

[
ln
(
(1+ r)N

1/v
dPν

dP̃

)]
= ln(v(1+ r)N )+ Eν

[
ln
(

dPν

dP̃

)]
.

This implies the additional value of weak information for the log utility is

F(v, ν)= Eν
[

ln
(

dPν

dP̃

)]
= Eν

[
ln
(

dν
dP̃ESN

)]
,

where the last equality follows from the definition of Pν. �

Just like the log utility, we can also find the financial value of weak information
for the power utility.

Corollary 3.4. The value of weak information for the power utility function is given
by

u(v, ν)=
vγ (1+ r)Nγ

γ ( Ẽ[(dP̃/dPν)1/(γ−1)])γ−1
Eν
[(

dP̃

dPν

)γ /(γ−1)]
.

Proof. We now will solve for the value of λ:

Ẽ

[
1

(1+ r)N

(
λ

(1+ r)N

dP̃

dPν

)1/(γ−1)]
=v =⇒ λ=

(
v(1+ r)Nγ /(γ−1)

Ẽ[(dP̃/dPν)1/(γ−1)]

)γ−1

.

Substituting in for λ, we get

u(v, ν)= Eν
[

U
(

I
(

λ

(1+ r)N

dP̃

dPν

))]
= Eν

[
1
γ

((
v(1+ r)Nγ /(γ−1)

Ẽ[(dP̃/dPν)1/(γ−1)]

)γ−1 1
(1+ r)N

dP̃

dPν

)γ /(γ−1)]
=

vγ (1+ r)Nγ

γ ( Ẽ[(dP̃/dPν)1/(γ−1)])γ−1
Eν
[(

dP̃

dPν

)γ /(γ−1)]
. �

4. Complete markets: the binomial model

Single-period binomial model. We first will focus on a single-period binomial
model with two assets: one risk-free asset with payoff 1+ r , and one risky asset
with payoffs S0(1+ h) if the stock goes up, and S0(1− k) if the stock goes down,
where we assume S0 > 0 and k < 1. In order to have an arbitrage-free market, we
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ν0= 50%

δ0= 12.21095

ν1= 50%

n= 0 n= 1

Figure 1. An example of a single-period binomial model using
the log utility, where the parameter values are r = .032, h= .09,
k= .019, v= 200.0, and s= 20.0.

require h > r >−k. Since there is only one risky asset, we will denote the amount
of units owned of the risky asset at time n by δn .

Figure 1 shows a basic single-period binomial using the log utility. It represents
the amount of stock you should buy initially, δ0. From here there are only two
outcomes for our final time; the stock price will either go up or down.

Example 1 (log utility). When looking at the log utility function, we begin by
maximizing E[U (VN )] with respect to δ. We then are able to obtain our equation
for the optimal number of shares with respect to wealth, δ̂, in a single-period
model:

δ̂0 =
v(1+ r)(ν0(h− r)+ ν1(−k− r))

−s(h− r)(−k− r)
.

Example 2 (power utility). As in the log utility case, we solve for our optimal
number of shares with respect to wealth, δ̂0, in a single-period model:

δ̂0 =
((ν0(h− r))1/(γ−1)

− (ν1(−k− r))1/(γ−1))(1+ r)v
(ν1(−k− r))1/(γ−1)s(−k− r)− (ν0(h− r))1/(γ−1)s(h− r)

.

Example 3 (exponential utility). Similarly to the previously examined utilities, we
solve for the optimal number of shares with respect to wealth, δ̂, in a single-period
model for the exponential utility:

δ̂0 =
ln (ν0(h− r))− ln (−ν1(−k− r))

s(h+ k)
.

N-period binomial model. In binomial models, everything can be explicitly com-
puted. For instance, the following proposition gives the formula for the transition
probabilities of the minimal probability Pν. It is easy to establish by using the
formula for conditional probabilities and straightforward combinatorial arguments.
We note that {Sn}1≤n≤N is a Markov chain under the probability Pν.
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Proposition 4.1. Let l ∈ {1, . . . , N − 1} and i ∈ {0, . . . , N − l}. Then

Pν
(
SN−l+1=(1+ h)SN−l | SN−l=(1+ hN−l−i )(1− k)i S0

)
=

∑l−1
j=0

(l−1
j

)
(N − i − j) · · · (N − i − (l − 1))(i + 1)(i + 2) · · · (i + j)νi+ j∑l

j=0
( l

j

)
(N − i − j) · · · (N − i − (l − 1))(i + 1)(i + 2) · · · (i + j)νi+ j

and

Pν
(
SN−l+1=(1− k)SN−l | SN−l=(1+ hN−l−i )(1− k)i S0

)
=

∑l−1
j=0

(l−1
j

)
(N − i − j − 1) · · · (N − i − (l − 1))(i + 1) · · · (i + j + 1)νi+ j+1∑l

j=0
( l

j

)
(N − i − j) · · · (N − i − (l − 1))(i + 1)(i + 2) · · · (i + j)νi+ j

.

Example 4 (log utility). Figure 5 shows an example of two different 3-period
binomial trees with set values. The first tree shows the values of δ at time n when
the anticipation has a uniform distribution. The second tree, however, shows an
optimistic anticipation example. One can see how the amount of stocks in which
one should invest changes depending on the distribution of the anticipation. For
example, one would want to buy more stocks in an optimistic model because there
is a better chance of the stock increasing in price as time goes on than in the model
where all of the probabilities are the same. Negative values of δ correspond to
short-selling the asset.

n= 0 n= 1 n= 2 n= 3

i = 0

•

• i = 1

• •

• i = 2

•

i = 3

3ν0+
2ν1+

ν2

3ν0+
3ν1+

3ν2+
3ν3

ν1+2ν2+3ν3
3ν0+3ν1+3ν2+3ν3

3ν0+
ν1

3ν0+
2ν1+

ν2

ν1+ν23ν0+2ν1+ν2

ν1+
ν2

ν1+
2ν2+

3ν3

ν2+3ν3ν1+2ν2+3ν3

3ν0

3ν0+
ν1

ν13ν0+ν1

ν1

ν1+
ν2

ν2
ν1+ν2

ν2

ν2+
3ν3

3ν3ν2+3ν3

Figure 2. Pν for a 3-period binomial model.
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n= 0 n= 1 n= 2 n= 3

ν0=
1
4

•

• ν1=
1
2

• •

• ν2=
1
8

•

ν3=
1
8

15
24

9
24

2
3

1
3

5
9

4
9

3
5
2
5

4
5
1
5

1
4
3
4

Figure 3. Pν for a 3-period binomial model for a specific choice of ν.

S3= 25.90058

S2= 23.762

S1= 21 S3= 23.31052

S0= 20 S2= 21.3858

S1= 19.62 S3= 20.97947

S3= 19.24722

S3= 18.88152

n= 0 n= 1 n= 2 n= 3

Figure 4. A 3-period binomial tree showing the values of Sn ,
where the parameters are r = .032, h= .09, k= .019, v= 200.0,
and s= 20.0.

Recall from Corollary 3.3 the additional value of weak information for the log
utility is

F(v, ν)= Eν
[

ln
(

dPν

dP̃

)]
,

and the proportion is

π(v, ν)=
Eν[ln(dPν/dP̃)]

ln(v(1+ r)N )+ Eν[ln(dPν/dP̃)]
.

Note that F(v, ν) is only a function of ν, so for any fixed ν, we have that F(v, ν)
is constant. Furthermore, π(v, ν) is a decreasing function of v for any fixed ν. As
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ν0= 25%

δ2= 146.4281

δ1= 76.48093 ν1= 25%

δ0= 12.21095 δ2= 8.141736

δ1=−50.58155 ν2= 25%

δ2=−107.9549

ν3= 25%

n= 0 n= 1 n= 2 n= 3

ν= 20%

δ2= 251.9051

δ1= 192.0971 ν= 40%

δ0= 96.13333 δ2= 112.1887

δ1=−32.0822 ν= 30%

δ2=−224.84

ν= 10%

n= 0 n= 1 n= 2 n= 3

Figure 5. 3-period binomial trees showing the values of δ for
various anticipations of ν using the log utility, where the parameters
are r = .032, h= .09, k= .019, v= 200.0, and s= 20.0.

a result, the wealthier you are, the less proportion of utility you are gaining as a
result of anticipation. In a 5-period binomial model, with the four anticipations
below, we can look at the above functions as functions of v:

• Precise: {0.01, 0.01, 0.01, 0.95, 0.01, 0.01}.

• Uniform distribution:
{1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

}
.

• Conservative: {0.1, 0.2, 0.2, 0.2, 0.2, 0.1}.

• Risk-neutral: ν = P̃.
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0 200 400 600 800 1000

0
2

4
6

8
1

0
u(v)

initial wealth

precise
uniform dist.
conservative
risk-neutral

Figure 6. Value of weak information, given r = 3%, h = 8%, k = 4%,
using the log utility. The legend labels the curves in order, top to bottom.

0 200 400 600 800 1000

0
.0

0
.5

1
.0

1
.5

2
.0

F(v)

initial wealth

precise
uniform dist.
conservative
risk-neutral

Figure 7. Additional value of weak information, given r=3%, h=8%,
k = 4%, using the log utility. Legend labels curves in order.

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

π(v)

initial wealth

precise
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Figure 8. Proportion of value added, given r = 3%, h = 8%, k = 4%,
using the log utility. Legend labels curves in order.
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Figure 9. Two different 3-period binomial trees showing the values of
δ for equal anticipations of ν using the log utility (top) and the power
utility (bottom), where the constants are the same as Figure 5. In the
power utility model, γ = .5.

Example 5 (power utility). Figure 9 shows the difference between the log and
power utilities. As the log utility is a more relatively risk-averse utility function
(for γ = 0.5), the absolute value of δ tends to be smaller when compared to the
power utility function.

From Corollary 3.4 we have that the additional value for the power utility is

F(v, ν)=
vγ (1+ r)Nγ

γ ( Ẽ[(dP̃/dPν)1/(γ−1)])γ−1
Eν
[(

dP̃

dPν

)γ /(γ−1)]
−
vγ (1+ r)Nγ

γ
,
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Figure 10. Value of weak information, given r = 3%, h= 8%, k= 4%,
using the power utility. Legend labels curves in order.
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Figure 11. Additional value of weak information, given r = 3%, h =
8%, k = 4%, using the power utility. Legend labels curves in order.

and the proportion is

π(v, ν)= 1−
1

Eν[(dP̃/dPν)γ /(γ−1)] · ( Ẽ[(dP̃/dPν)1/(γ−1)])1−γ
.

For the power utility, we have the opposite relationship for a fixed ν with the
proportion remaining constant and the added value being an increasing function of
initial wealth.

Example 6 (exponential utility). We can also find the financial value of weak
information for exponential utility.

Eν[−e−aV̂N ] = e−vα(1+r)N
−
∑N

i=0 (
N
i ) p̃N−i q̃ i ln ((N

i )· p̃
n−i q̃ i/νi).
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Figure 12. Proportion of value added, given r = 3%, h= 8%, k = 4%,
using the power utility. Legend labels curves in order.

We begin by solving for λ.

Ẽ

[
1

(1+ r)N I
(

λ

(1+ r)N

dP̃

dPν

)]
= v.

We use this equation and then plug in for I :

Ẽ

[
1

(1+ r)N

−1
α

ln
(

λ

α(1+ r)N

dP̃

dPν

)]
= v.

We then solve for λ:

λ= α(1+ r)N e−vα(1+r)N
−Eν [dP̃/dPν ln(dP̃/dPν)].

Finally we can plug our I and our λ into our equation for the financial value of weak
information to solve for the value as it specifically relates to exponential utility:

u(v, ν)= Eν
[

U
(

I
(

λ

(1+ r)N

dP̃

dPν

))]
= Eν[−e−a(−1/α) ln (λ/(α(1+r)N )·(dP̃/dPν))

]

= e−vα(1+r)N
−
∑N

i=0 (
N
i ) p̃N−i q̃ i ln ((N

i )· p̃
n−i q̃ i/νi).

Appendix

The following is with respect to the general discrete case in a complete market.
As in Section 3, we denote by 9v the set of self-financing portfolios given initial
wealth v.

Theorem A.1. The discounted wealth process is a martingale under the martingale
measure Q.
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Proof. See [Runggaldier 2005]. �

Theorem A.2. Maximizing E[U (VN )] over the set of self-financing portfolios 9v

is equivalent to maximizing E[U (VN )] subject to Ẽ[U (VN )] = v, with P̃ being the
unique equivalent martingale measure.

Proof. See [Rásonyi and Stettner 2005, Lemma 4.9]. �

Theorem A.3.

V̂N = I
(

λ

(1+ r)N

dP̃

dQ

)
.

More specifically, optimal terminal wealth V̂N is attained when λ satisfies

v = Ẽ

[
1

(1+ r)N I
(

λ

(1+ r)N

dP̃

dQ

)]
.

Proof. See [Runggaldier 2005, p. 16]. �
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