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Orbigraphs: a graph-theoretic analog
to Riemannian orbifolds

Kathleen Daly, Colin Gavin, Gabriel Montes de Oca,
Diana Ochoa, Elizabeth Stanhope and Sam Stewart

(Communicated by Kenneth S. Berenhaut)

A Riemannian orbifold is a mildly singular generalization of a Riemannian
manifold that is locally modeled on Rn modulo the action of a finite group.
Orbifolds have proven interesting in a variety of settings. Spectral geometers
have examined the link between the Laplace spectrum of an orbifold and the
singularities of the orbifold. One open question in this field is whether or not a
singular orbifold and a manifold can be Laplace isospectral. Motivated by the
connection between spectral geometry and spectral graph theory, we define a
graph-theoretic analog of an orbifold called an orbigraph. We obtain results about
the relationship between an orbigraph and the spectrum of its adjacency matrix.
We prove that the number of singular vertices present in an orbigraph is bounded
above and below by spectrally determined quantities, and show that an orbigraph
with a singular point and a regular graph cannot be cospectral. We also provide a
lower bound on the Cheeger constant of an orbigraph.

1. Introduction

A Riemannian orbifold is a mildly singular generalization of a Riemannian man-
ifold. A point in an n-dimensional manifold is contained in a neighborhood that
is homeomorphic to Rn. A point in an n-dimensional orbifold is contained in a
neighborhood that is homeomorphic to a quotient of Rn under the action of a finite
group. Two useful examples of orbifolds to consider are the Zn-football (Figure 1,
left) and the Zn-teardrop (Figure 1, right):

Example 1. Let Zn act on a 2-dimensional sphere by rotations generated by a
2π/n-radian rotation about an axis passing through the center of the sphere. The
quotient of the sphere under this action is the Zn-football. Points lying on the
intersection of the sphere with the axis of rotation are fixed by all rotations. The
images in the Zn-football of these points are the conical points at the north and

MSC2010: primary 05C50, 05C20; secondary 60J10.
Keywords: graph spectrum, regular graph, directed graph, orbifold.
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Figure 1. Left: football obtained by 180-degree rotation of sphere.
Right: teardrop orbifold.

south poles of the football. If the local lift of a point in an orbifold has nontrivial
isotropy, the point is called a singular point in the orbifold. The singular set of the
Zn-football consists of the cone points at its north and south poles.

Example 2. The Zn-teardrop is topologically a 2-sphere except for a single point
whose neighborhood is locally modeled on the cone R2/Zn , where Zn acts by rota-
tions around a fixed point. Thus the Zn-teardrop’s singular set consists of the isolated
cone point. Thurston [1979] showed that unlike the Zn-football, the Zn-teardrop can-
not be obtained as the quotient of a manifold under a smooth, discrete group action.

Introduced by Satake [1956] under the name V -manifold, and later renamed
and studied as orbifolds by Thurston [1979], orbifolds have proven interesting in a
variety of settings; see [Adem et al. 2007; Gordon 2012; Hodgson and Tysk 1993],
for example. Of particular interest are results relating the eigenvalue spectrum of
the Laplace operator on a Riemannian orbifold (an orbifold endowed with a suitably
invariant Riemannian metric) to the singular set of the orbifold. For example, in
the presence of a curvature hypothesis, one of us [Stanhope 2005] showed that the
Laplace spectrum constrains the structure of the singular set. One fundamental
orbifold spectral geometry question that remains open is whether or not the Laplace
spectrum actually detects the presence of singular points.

Brooks [1991; 1999] proposes viewing k-regular graphs as combinatorial analogs
of smooth manifolds. The infinite k-regular tree Tk is viewed as the graph-theoretic
version of the universal cover of a finite k-regular graph. A finite k-regular graph 0
is studied as the quotient of Tk by the fundamental group of 0 in analogy to the
study of quotients of the universal cover of a manifold under the action of a discrete
cocompact group of isometries acting freely. In this setting Brooks obtains several
results including a characterization of Ramanujan graphs, a partial converse to
Sunada’s theorem, and links between the spectrum of a k-regular graph and the
graph’s diameter and girth.

Following Brooks’ analogy, observe that the action of a discrete, cocompact
group of isometries which is not free yields a quotient space that is an orbifold
rather than a manifold. Given the successful examination of orbifolds from the
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Figure 2. Left: a small 3-orbigraph. Right: a 3-orbigraph with 7 vertices.

perspective of spectral geometry, we seek to extend Brooks’ analogy one step further
by first proposing a graph-theoretic analog of an orbifold and, second, applying
the lens of spectral graph theory to orbifold graphs. References in the literature to
an orbifold-like class of graphs are limited. Brooks [1999] himself describes an
“orbifold graph” as a quotient of a k-regular graph under a nonfree group action.
He offers orbifold graphs as a motivating idea, but chooses to “avoid entering into
the technicalities of ‘orbifold graphs’.” Juan-Pineda, Lafont, Millan-Vossler and
Pallekonda [Juan-Pineda et al. 2011] describe an analogy between orbifolds and
objects from Bass–Serre theory [Bass 1993] called graphs-of-groups. Although the
present work has its roots in the ideas of Brooks, the graphs that we examine here
can be viewed as a generalization of the edge-index graph of a graph-of-groups.

We define an orbigraph to be a member of the following class of weighted,
directed graphs.

Definition 3. An orbigraph of degree k (k-orbigraph) is a finite, weighted, directed
graph � where the adjacency matrix A of � satisfies the following:

(i) Ai j ∈ Z≥0.

(ii)
∑

j Ai j = k.

(iii) Ai j > 0 if and only if Aj i > 0.

Figure 2 shows two examples of orbigraphs.

Remark 4. All orbigraphs discussed below will be assumed to be connected unless
noted otherwise. Condition (iii) in Definition 3 implies that a connected orbigraph
must be strongly connected. Nonzero diagonal entries in the adjacency matrix of
an orbigraph correspond to weighted loops in the orbigraph.

In Section 2 below we demonstrate the analogy between orbigraphs and orbifolds
through the following three points:

(a) The local structure of a vertex in a k-orbigraph is that of the quotient of a k-
regular graph, just as the local structure of a k-dimensional orbifold is the quotient
of a k-dimensional manifold.
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(b) Some vertices in an orbigraph have the same local structure as a vertex in a
regular graph and some do not. This leads us to the definition of regular and singular
vertices in an orbigraph — an essential piece of the analogy between orbifolds and
orbigraphs.

(c) We show that some orbigraphs can be obtained as the quotient of a finite regular
graph under an equitable partition and some cannot. This mirrors the fundamental
fact from the geometric setting that orbifolds are divided into two classes: those
that are covered by a manifold (like the football) and those that are not (like the
teardrop). Indeed, the presence of singular objects that are not merely quotients
of regular objects saves the study of orbifolds and orbigraphs from being simply a
reduced version of a known field of study.

Section 3 connects orbigraphs to the theory of Markov chains. In Section 4
Markov chain methods are used to obtain a graph-theoretic characterization of when
an orbigraph can be obtained as the quotient of a finite regular graph, and when
it cannot. This characterization makes it easy to generate examples of orbigraphs
with these properties, facilitating our later examination of how spectral results for
orbifolds carry over to the orbigraph setting. Also using Markov chain methods
we provide a lower bound on the Cheeger constant of a k-orbigraph in terms of k
and the size of its vertex set. This adds a third family to the list in [Chung 2005] of
families of directed graphs that satisfy similar bounds. It would be interesting to
know if the bound presented here is sharp, or if an improved bound could be used
to obtain a strong upper bound on the convergence of random walks on orbigraphs.
Our examination of the Cheeger constant on orbigraphs is the topic of Section 5.

In Section 6 we follow the philosophy of Brooks and ask questions from the
spectral geometry of orbifolds in the orbigraph setting. The orbigraph spectrum
discussed here is the list of eigenvalues of the adjacency matrix of an orbigraph.
Because the analogy between orbifolds and orbigraphs established in Section 2 is
strong, the questions carry over naturally and we obtain several interesting results:

(a) We show that the spectrum does not detect whether or not an orbigraph can
be obtained as the quotient of a finite k-regular graph. The analogous question for
orbifolds is still an open problem in spectral geometry.

(b) The number of singular points in an orbigraph can be bounded both above and
below by spectrally determined quantities. In the geometric setting one can seek
spectral bounds on the number of components of the singular set. In dimension 2,
the fifth author and Proctor [Proctor and Stanhope 2010] obtained a result of this
type under a curvature hypothesis.

(c) The spectrum of an orbigraph detects the presence of singular points. As
mentioned above, this question is still open in the orbifold setting.
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2. Orbigraphs as discrete orbifolds

2.1. Local structure of a k-orbigraph. The local structure of an orbigraph is that
of a quotient of a k-regular graph. There are multiple ways to define the quotienting
process for graphs. Here quotient graphs will be formed with respect to an equitable
partition. The definition given below uses the approach of Barrett, Francis and
Webb [Barrett et al. 2017] to extend the definition of an equitable partition from the
familiar setting of simple graphs to the more general setting of weighted directed
graphs. We also follow the thorough treatment of the simple graph case in Chapter 5
of [Godsil 1993].

In what follows let w(u, v) denote the weight of directed edge (u, v).

Definition 5. Let 0 be a graph (possibly directed, weighted, or both) and

P = {V1, V2, . . . , Vm}

be a partition of its vertices:

(a) We say P is an equitable partition if for all pairs i, j the number
∑

v∈Vj
w(u, v)

is the same for each element u in Vi .

(b) Given an equitable partition P on 0, the weighted directed graph with adjacency
matrix Ai j =

∑
v∈Vj

w(u, v), u in Vi , is called the quotient graph of 0 with
respect to P and will be denoted by 0/P.

Remark 6. If a group G acts on a simple graph 0 by automorphisms, the vertex
orbits of the action form an equitable partition of the vertex set of 0. This type of
equitable partition is called an orbit partition. In this case the quotient graph will
be written 0/G.

To discuss the local structure of an orbigraph we introduce further terms from
graph theory. Note that an undirected edge {v,w} of weight n in a graph will be
viewed as being equivalent to a pair of weight-n directed edges (v,w) and (w, v),
and vice versa.

Definition 7. (a) The k-star graph is the complete bipartite graph K1,k and will
be denoted by Sk . The vertex with degree k in Sk is the central vertex of Sk .

(b) The neighborhood of a vertex v in an undirected graph 0 is the subgraph of 0
including the vertex v, all vertices w adjacent to v, and all edges {v,w}.

(c) The out-neighborhood of a vertex v in a directed graph 1 is the directed
subgraph of 1 including vertex v, all vertices w at which edges initiating at v
terminate, and all directed edges (v,w) with initial vertex v.

Because the neighborhood of each vertex in a simple k-regular graph is Sk , we
view a simple k-regular graph as the graph-theoretic analog of a k-dimensional
manifold.
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Figure 3. Out-neighborhoods of the central vertex in quotients of S3.

Let G be a group of graph automorphisms of Sk and form the quotient graph Sk/G.
The central vertex c of Sk/G is the vertex in Sk/G associated to the element of
the orbit partition on Sk containing the central vertex of Sk . The out-neighborhood
of c in Sk/G is a weighted star graph with between 1 and k edges. The sum of the
weights over all edges in the out-neighborhood of c is k.

Example 8. There are only three different weighted, directed graphs that arise
as quotients of S3 by a group of graph automorphisms. Figure 3 illustrates the
out-neighborhoods of the central vertex in each of these three quotients.

Because all row sums in the adjacency matrix of a k-orbigraph � are k, the
out-neighborhood of a vertex v in � is identical to the outgoing neighborhood of
the central vertex in some quotient of a k-star. In this way, a k-star quotient provides
the local model of the neighborhood of a point in an orbigraph. Our interest in the
local structure of an orbigraph at a vertex is in the number of outgoing edges and
the weights of those edges. The terminal point of an outgoing edge is not important.
Because of this the out-neighborhood of a vertex with a loop is taken with the loop
“undone”. For example, vertex v1 in Figure 2, left, is locally modeled on the middle
graph in Figure 3.

To complete our analogy between the local structure of orbifolds and the local
structure of orbigraphs we observe that requirement (iii) in Definition 3 corresponds
to the fact that if local neighborhoods U, V in an orbifold satisfy U ∩ V 6=∅ then
we also have V ∩U 6=∅.

2.2. Singular points in an orbigraph. The key feature of the study of orbifolds
that distinguishes it from manifold theory is the presence of orbifold singular points.
We define a singular vertex in an orbigraph in the following way.

Definition 9. A vertex v of an orbigraph is singular if any outgoing edge from v

has weight greater than 1. A vertex that is not singular is called regular.

We see that regular graphs contain no singular vertices, as required by our analogy
between regular graphs and manifolds.

Example 10. Both vertices in the orbigraph in Figure 2, left, are singular. Vertices
v1, v4 and v6 in the orbigraph in Figure 2, right, are singular, and the rest are regular.
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Figure 4. Graph diagram of K4.

In contrast to the orbifold setting, singular points in an orbigraph are not marked
with an isotropy group. However we can quantify the extent to which a vertex v is sin-
gular by noting the number of outgoing edges from v that have weight greater than 1.
We can also consider the list of weights of outgoing edges from v. As mentioned in
the Introduction, graphs-of-groups offer an alternative graph-theoretic interpretation
of orbifolds. A graph-of-groups, in contrast to an orbigraph, has vertices that are
marked with a group in a way that is analogous to an orbifold isotropy group.

2.3. Good and bad orbigraphs. In Example 1 we saw that the football orbifold is
the quotient of a sphere under the smooth action of a finite group. In Example 2
it was asserted that the teardrop orbifold cannot be obtained as a quotient in this
manner. Orbifolds that can be written as the quotient of a manifold under a smooth,
discrete group action are called good. Otherwise they are called bad. Following
these ideas we define good and bad orbigraphs as follows.

Definition 11. A k-orbigraph � is said to be good if it can be obtained as the
quotient of a finite k-regular graph 0 via an equitable partition on 0. If an orbigraph
is not good it is called bad.

Example 12. The orbigraph in Figure 2, left, is good because it is the quotient of
the complete graph K4, as presented in Figure 4, by the group Z3 generated by a
2π/3-radian rotation about the center vertex. The orbigraph in Figure 2, right, is
bad. This follows from Theorem 20 below and the observation that the product of
edge weights along cycle (v1, v2, v3, v4, v5, v6, v7, v1) is 2, while the product of
edge weights along the reverse cycle (v1, v7, v6, v5, v4, v3, v2, v1) is 4.

The analogy with the covering theory of topological spaces is further strengthened
by the following two lemmas.

Lemma 13. If � is a k-orbigraph and P is an equitable partition on the vertices
of �, then �/P is a k-orbigraph.

Proof. Let A denote the adjacency matrix of �/P, where P = {V1, V2, . . . , Vm},
and let w�( · , · ) denote the weight function on directed edges in �. Because �
is an orbigraph, we know w�(u, v) is a nonnegative integer for all vertices u, v
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in �. Hence Ai j =
∑

v∈Vj
w�(u, v), for any u ∈ Vi , is a nonnegative integer. Fixing

i ∈ {1, 2, . . . ,m}, and taking u some element of Vi , consider the i-th row sum of A:∑
j

Ai j =
∑

j

∑
v∈Vj

w�(u, v)=
∑
v∈�

w�(u, v)= k.

Finally suppose Ai j > 0. Then there must a j ∈ {1, 2, . . . ,m} for which any
u ∈ Vi has w�(u, v) > 0 for some v ∈ Vj . Because � is an orbigraph, we must also
have w�(v, u) > 0. Thus Aj i > 0. �

Definition 14. We say that an orbigraph �1 covers an orbigraph �2 if there is an
equitable partition P of the vertices of �1 such that �1/P =�2.

Lemma 15. The covering relation is transitive.

Proof. Suppose�1 is an orbigraph with equitable partition P1 such that�1/P1=�2,
and �2 has an equitable partition P2 such that �2/P2 = �3. We need to show
there is an equitable partition P3 of �1 such that �1/P3 = �3. For i = 1, 2 let
Ai denote the adjacency matrix of orbigraph �i , and Pi denote the characteristic
matrix corresponding to partition Pi . By a straightforward modification of [Godsil
1993, Lemma 2.1, p. 77] to the setting of weighted, directed graphs we have that
A1 P1= P1 A2 and A2 P2= P2 A3. Thus A1 P1 P2= P1 A2 P2= P1 P2 A3. We conclude
P1 P2 defines an equitable partition on �1 with quotient orbigraph �3. �

As a consequence of the previous two lemmas we obtain the following.

Corollary 16. The quotient of any good orbigraph must also be good.

3. Orbigraphs and Markov chains

The fact that the row sum of the adjacency matrix of an orbigraph is constant provides
an immediate connection between orbigraphs and Markov chains. Following [Kelly
1979], we review ideas from the theory of Markov chains and introduce notation that
will be used hereafter. Matrix A will denote the adjacency matrix of a k-orbigraph�
with n vertices. Define P= (1/k)A. Matrix P is the transition matrix of a stationary
Markov chain, as all entries of P lie in the interval [0, 1] and all rows of P sum
to 1. Because the adjacency matrix of a k-orbigraph has right eigenvalue k (to see
this consider the eigenvector with all entries equal to 1), P has right eigenvalue 1
and stationary distribution vector π = (π1, π2, . . . , πn), with

∑n
k=1 πk = 1, for

which π P = π . By Remark 4 we know � is strongly connected so π is the unique
stationary distribution of P.

Our first result connecting orbigraphs to Markov chains is a bound on the minimal
entry of π in terms of the degree and number of vertices of an orbigraph.
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Lemma 17. Let πm be a minimal entry in stationary distribution π . Then

πm ≥
1

nkn−1 .

Proof. Let πM denote a maximal entry in π and let c be the minimal nonzero value
that appears as an entry in matrix P. Because � is strongly connected, there is a
path of length ` < n from the M-th vertex to the m-th vertex of �. This implies
that (P`)Mm is nonzero. Using this and the fact that π P = π , we have

πm =

n∑
k=1

(P`)kmπk ≥ (P`)MmπM ≥ c`πM ≥ cn−1πM .

Because P is the transition matrix associated to an orbigraph, we have c ≥ 1/k.
Also, we know that πM ≥ 1/n because the sum of the entries of π is 1. Thus
πm ≥ cn−1πM ≥ 1/(nkn−1) as required. �

Here we relate the stationary distribution of a good orbigraph to that of its finite
regular cover.

Lemma 18. Let 0 be a k-regular graph with N vertices, P = {V1, V2, . . . , Vn} be
an equitable partition of the vertices of 0, and P be the transition matrix of the
orbigraph 0/P. Let |Vi | denote the number of vertices in partition element Vi . The
stationary distribution of P is the n-tuple π , where πi = (1/N )|Vi |.

Proof. Let Q denote the transition matrix obtained by scaling the adjacency matrix
of 0 by 1/k. The result follows from the observation that the stationary distribution
of Q is the N -tuple (1/N , 1/N , . . . , 1/N ) and [Godsil 1993, Lemma 2.2, p. 78]. �

4. Characterizing good and bad orbigraphs

We use the Markov chain methods and notation from Section 3 to provide a quick
way to distinguish good orbigraphs from bad orbigraphs.

Definition 19. An orbigraph � satisfies the balanced cycle condition if the product
of the edge weights along each directed cycle v1, v2, . . . , vl, v1 in � equals the
product of the edge weights along the reverse directed cycle v1, vl, vl−1, . . . , v1.

Theorem 20. An orbigraph is good if and only if it satisfies the balanced cycle
condition.

A stationary Markov chain is said to satisfy the detailed balance equations if

πi Pi j = πj Pj i for all i, j = 1, 2, . . . , n.

The Markov chain analog of the balanced cycle condition from Definition 19
is called the Kolmogorov criterion. In particular, an orbigraph satisfies the bal-
anced cycle condition if and only if the corresponding Markov chain satisfies the
Kolmogorov criterion. We can now state a needed lemma.
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Lemma 21. A stationary Markov chain satisfies the detailed balance equations if
and only if it satisfies the Kolmogorov criterion.

Proof. This follows from combining Theorems 1.2 and 1.7 in [Kelly 1979]. �

Proof of Theorem 20. Suppose � is a good orbigraph. This implies � = 0/P,
where 0 is a k-regular graph and P = {V1, V2, . . . , Vn} is an equitable partition
on 0. Scaling the adjacency matrix of 0 by 1/k yields the symmetric transition
matrix Q of a Markov chain. We relate the stationary distribution of Q to the
stationary distribution of P, the transition matrix of �, by Lemma 18. In particular
πi = (1/N )|Vi |, where π denotes the stationary distribution of P and N is the
number of vertices in 0.

The following computation confirms that P satisfies the detailed balance equa-
tions:

πj Pj i =
1
N
|Vj |Pj i =

1
N
|Vj |

∑
k∈Vi

Q jk =
1
N

∑
l∈Vj

∑
k∈Vi

Qlk

=
1
N

∑
k∈Vi

∑
l∈Vj

Qkl =
1
N
|Vi |

∑
l∈Vj

Qkl = πi Pi j .

(The argument closely follows that of [Tian and Kannan 2006, Theorem 2.16],
which is given in the setting of lumpable Markov chains. It makes essential use of
the fact that P is an equitable partition and that Q is a symmetric matrix.) The fact
that � satisfies the balanced cycle condition now follows from Lemma 21.

Now suppose � is an orbigraph that satisfies the balanced cycle condition.
By Lemma 21, P and π satisfy the detailed balance equations πi Pi j = πj Pj i .
Multiplying by k on both sides gives πi Ai j = πj Aj i . Because A has all nonnegative
integer entries, π will have all nonnegative rational entries. Thus there is an
integer m for which mπ = (d1, d2, . . . , dn) is a vector of nonnegative integers. This
allows us to write

di Ai j = dj Aj i , (1)

an equality of products of nonnegative integers.
We now build a finite k-regular cover 0 of �. Let X be the set of nonzero,

nondiagonal entries of A. Let Y = {A11+ 1, A22+ 1, . . . , Ann + 1}. Let c be the
least common multiple of the integers in X ∪ Y. For each i = 1, 2, . . . , n we take
Vi to be a set of cdi vertices. The disjoint union V1 tV2 t · · · tVn forms the vertex
set of 0 and gives the needed vertex partition P of 0.

It remains to specify adjacency in 0 in such a way that 0/P = �. Suppose
i 6= j . For the quotient 0/P = � to be valid, each vertex in Vi must be adjacent
to Ai j vertices in Vj , and each vertex in Vj must be adjacent to Aj i vertices in Vi .
Thus the number of edges with one vertex in Vi and one vertex in Vj , which we
will denote by e{i, j}, is simultaneously Ai j |Vi | and Aj i |Vj |. The adapted detailed
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balance equations from (1) show that this requirement follows from our choice for
the sizes of Vi and Vj as

Ai j |Vi | = Ai j cdi = Aj i cdj = Aj i |Vj |.

Because Ai j divides |Vj | and Aj i divides |Vi |, we can distribute the e{i, j} edges
connecting Vi and Vj with exactly Ai j edges adjacent to each vertex in Vi and
exactly Aj i edges adjacent to each vertex in Vj . Because Ai i + 1 divides |Vi |, we
can require that all elements of Vi are adjacent to exactly Ai i other elements of Vi .
This completes the adjacency relations for 0.

By construction we observe 0/P = �. The degree of a vertex v in 0 is∑
j=1 Ai j = k; thus 0 is k-regular. Should 0 fail to be connected, any connected

component 0′ of 0 will satisfy 0′/P =�. �

Remark 22. Corollary 16 and Theorem 20 imply that if an orbigraph � satisfies
the balanced cycle condition then so does any orbigraph quotient of �. This stands
in contrast to [Tian and Kannan 2006, Example 2.17].

5. Bounding the Cheeger constant of an orbigraph

Chung [2005] defined a Cheeger constant for directed graphs and obtained lower
bounds on the Cheeger constant for both regular and Eulerian directed graphs. Using
R to denote a k-regular directed graph on n vertices and E an Eulerian directed
graph with m edges, Chung showed

h(R)≥ 2
kn

and h(E)≥ 2
m
. (2)

Here we apply Chung’s methods to obtain a lower bound on the Cheeger constant
of an orbigraph. We use notation from Section 3.

Define a function F from � to the nonnegative real numbers by

F(i, j)= πi Pi j ,

where i and j are vertices in �. This function is an example of a circulation on �;
see [Chung 2005, Lemma 3.1]. Letting S range over all nonempty proper subsets
of the vertex set of �, the Cheeger constant h(�) of � is defined as

h(�)= inf
S

∑
i∈S, j /∈S F(i, j)

min
{∑

j∈S F( j),
∑

j∈S F( j)
} ,

where F( j)=
∑

i,i→ j F(i, j) and S is the set of vertices of � that are not in S.
We have the following lower bound on the Cheeger constant of �.

Proposition 23. Let � be a k-orbigraph with n vertices. Then

h(�)≥
2

n2kn .
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Proof. We begin by bounding the numerator in the expression defining the Cheeger
constant (let πm denote a minimal entry in π ):∑

i∈S, j /∈S

F(i, j)=
∑

i∈S, j /∈S

πi Pi j ≥
∑

i∈S, j /∈S

πm Pi j ≥
1

nkn .

The last inequality follows from Lemma 17 and the observation that the smallest
possible nonzero value for an entry in P is 1/k.

To bound the denominator first observe that
∑

j∈S F( j) is no greater than the
sum of the columns in P associated to the vertices in S. It is similar for

∑
j∈S F( j).

Since the total sum of the entries in P is n, we have∑
j∈S

F( j)+
∑
j∈S

F( j)≤ n.

Thus min
{∑

v∈S F(v),
∑

v∈S F(v)
}
≤ n/2.

We see that for any choice of S the quotient in the definition of the Cheeger
constant must be greater than or equal to 2/(n2kn), completing the proof. �

Remark 24. Chung uses the inequalities in (2) to obtain convergence bounds for a
type of random walk on regular and Eulerian directed graphs. The presence of n
in the exponent in the denominator of the orbigraph bound makes it too weak to
obtain a similar orbigraph result. It would be interesting to see if a better bound on
the Cheeger constant of an orbigraph, should one exist, would allow a convergence
result similar to the regular and Eulerian cases.

6. Spectral results for orbigraphs

Because different matrices can be associated to a given graph, a variety of graph spec-
tra are examined in spectral graph theory. Here the spectrum of an orbigraph� is de-
fined to be the list of eigenvalues of the adjacency matrix of � with each eigenvalue
repeated according to its multiplicity. We will write the spectrum of an orbigraph
with n vertices as a multiset {λ1, λ2, . . . , λn}. The study of the spectral properties
of directed graphs is relatively new and has yielded interesting applications, as well
as directed graph analogs of familiar graph-theoretical results, including Cheeger’s
inequality; see [Chung 2005; Langville and Meyer 2006], for example. We focus on
developing results that relate the spectrum of an orbigraph to its orbigraph structure.

Remark 25. Just as with k-regular graphs, the spectral radius of a k-orbigraph is k.
In addition, the number of eigenvalues in the spectrum of an orbigraph (counting
multiplicity) is equal to the number of vertices in the orbigraph.

Lemma 26. Suppose orbigraph �1 covers orbigraph �2. Then the spectrum of �2

is contained in the spectrum of �1 as multisets.
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v1

v3

v2

Figure 5. The left and center orbigraphs are cospectral. The left
orbigraph is bad. The center orbigraph is good as it is covered by
the right-most graph using the indicated partition.

Proof. This follows from the argument in Lemma 2.2 of Chapter 5 in [Godsil
1993], adjusted to allow the graph carrying the equitable partition to be a weighted,
directed graph. �

Corollary 27. Any orbigraph with complex eigenvalues must be bad.

Proof. This follows from Lemma 26 and the fact that regular graphs have real
eigenvalues. �

Theorem 28. The spectrum of an orbigraph does not distinguish good orbigraphs
from bad orbigraphs.

Proof. The orbigraph on the left in Figure 5 and the orbigraph in the center of
the figure both have spectrum {−2, 0, 1, 3}. However the orbigraph on the left is
bad and the orbigraph in the center is good. To see that the left orbigraph is bad,
apply Theorem 20 and the fact that the product of the edge weights along cycle
(v1, v2, v3, v4) is not equal to the product of the edge weights of this cycle reversed.
The center orbigraph is good because it is covered by the 3-regular graph on the
right side of Figure 5 using the indicated equitable partition. �

In the following lemma a directed edge from vertex v1 to vertex v2 of weight w is
considered to contribute w-many different ways to move from v1 to v2. The length
spectrum of a graph is the finite list of nonnegative integers where the m-th number
in the list counts the number of closed walks of length m present in the graph.

Lemma 29. The eigenvalue spectrum of an orbigraph determines and is determined
by the length spectrum of the orbigraph.

Proof. Let � be a k-orbigraph, A its adjacency matrix, and wm the number of
closed walks in � of length m. We know that

wm = tr(Am) (3)
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because the diagonal of Am counts the number of closed walks of length m. However

tr(Am)=

n∑
i=1

λm
i .

Thus the eigenvalue spectrum of � uniquely determines the length spectrum of �,
and conversely by Newton’s identities [Mead 1992] the length spectrum of �
uniquely determines the eigenvalue spectrum of �. �

We now prove that the number of singular points in an orbigraph is bounded
above and below by spectrally determined quantities.

Theorem 30. Let � be a k-orbigraph with n vertices. If s is the number of singular
points in �, then we have∑n

i=1 λ
2
i − nk

k2− k
≤ s ≤

n∑
i=1

λ2
i − nk,

where λi are the eigenvalues of the adjacency matrix A of �.

Proof. First note that
∑n

i=1 λ
2
i = tr(A2) and by Lemma 29 this quantity counts the

number of closed walks of length 2 in �. A given vertex v in � has outgoing edges
with weights summing to k, each of which is matched by at least one incoming
edge. This implies the number of closed walks of length 2 starting at v is at least k.
Observing that there are n vertices in �, we obtain tr(A2) ≥ nk. Now suppose
v1 is a singular vertex in �. This vertex has at least one outgoing edge (v1, v2)

of weight greater than 1. Edge (v1, v2) contributes at least one closed walk of
length 2, beginning and ending at v2, that has not yet been counted. We conclude
that tr(A2)≥ nk+ s; thus s ≤

∑n
i=1 λ

2
i − nk.

For the lower bound, note that each singular vertex vi contributes Aj i (Ai j − 1)
extra (i.e., beyond the initial k length-2 paths) length-2 paths based at vj . Thus the
total number of extra paths contributed by vertex vi is

∑
vi∼v j

Aj i (Ai j − 1). We
bound this quantity in terms of k:∑

vi∼v j

Aj i (Ai j − 1)≤
∑
vi∼v j

k(Ai j − 1)= k
∑
vi∼vj

Ai j −
∑
vi∼vj

k ≤ k2
− k.

Hence each singular vertex contributes at most k2
− k extra walks of length 2, so

s(k2
− k)≥

∑n
i=1 λ

2
i − nk. Isolating s in this inequality completes the proof. �

Remark 31. The orbigraph with adjacency matrix k In , where In denotes the n× n
identity matrix, achieves the lower bound in Theorem 30 for all choices of k and n.
Thus this lower bound is sharp in k and n.
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Corollary 32. Suppose � is a k-orbigraph with n vertices. Then � is isomorphic
to a k-regular graph if and only if∑

i

λ2
i − nk = 0 and

∑
i

λi = 0.

Proof. A simple k-regular graph � has no self loops; thus Lemma 29 implies∑
i λi = 0. Viewing each edge {vi , vj } in � as two directed edges, (vi , vj ) and

(vj , vi ), we see each vertex in � has exactly k closed walks of length 2. Therefore∑
i λ

2
i = nk.

Conversely, assume that � is an orbigraph such that
∑

i λ
2
i = nk and

∑
i λi = 0.

Then by Theorem 30, we have s ≤ 0. As s ≥ 0 we see s = 0. Thus the outgoing
edges of each vertex in � all have weight 1. The second condition implies � has
no loops. By combining pairs of directed edges (vi , vj ) and (vj , vi ) into a single
undirected edge {vi , vj }, we obtain a simple k-regular graph. �

In the smooth setting it is not known if a manifold can have the same Laplace
spectrum as a nonmanifold orbifold. We can resolve this question in the setting of
orbigraphs.

Corollary 33. A regular graph and an orbigraph with one or more singular points
cannot be cospectral.

Proof. Suppose regular graph 0 and orbigraph � are cospectral and that � contains
s ≥ 1 singular points. By Remark 25 the largest eigenvalue in the shared spectrum
of 0 and � is the degree of regularity of each graph. Denote this largest eigenvalue
by k. In addition the shared spectrum implies that each graph has the same number
of vertices n. By the forward direction of Corollary 32, the fact that 0 is k-regular
implies

∑
i λ

2
i − nk = 0 and

∑
i λi = 0. However the backwards direction of

Corollary 32 implies s = 0, a contradiction. �
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Sparse neural codes and convexity
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Determining how the brain stores information is one of the most pressing prob-
lems in neuroscience. In many instances, the collection of stimuli for a given
neuron can be modeled by a convex set in Rd. Combinatorial objects known as
neural codes can then be used to extract features of the space covered by these
convex regions. We apply results from convex geometry to determine which
neural codes can be realized by arrangements of open convex sets. We restrict our
attention primarily to sparse codes in low dimensions. We find that intersection-
completeness characterizes realizable 2-sparse codes, and show that any realizable
2-sparse code has embedding dimension at most 3. Furthermore, we prove that
in R2 and R3, realizations of 2-sparse codes using closed sets are equivalent to
those with open sets, and this allows us to provide some preliminary results on
distinguishing which 2-sparse codes have embedding dimension at most 2.

1. Introduction

One of the fundamental problems of convex geometry is understanding the inter-
section behavior of convex sets. Classical theorems in this area include Helly’s
theorem and its many variations, which show that the presence of lower-order
intersections of convex sets in Rd can force intersections of higher order; see for
example [Amenta et al. 2017; Danzer et al. 1963; Eckhoff 1993; Matoušek 2002].
Recent work [Tancer 2013] on the representability of simplicial complexes provides
a sharp bound on the dimension in which intersection patterns of convex sets can
be realized. We consider the problem of simultaneously realizing intersection
patterns along with other relationships between convex sets, such as containment.
This problem is motivated by one of the challenges of mathematical neuroscience:
determining how the structure of a stimulus space is represented in the brain.

Many types of neurons respond to stimuli in an environment; the set of all such
stimuli is called the stimulus space X. Usually, we consider X ⊂ Rd. If we are
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considering data from n neurons {1, . . . , n} which respond to stimuli in X, the
receptive field for neuron i is the subset Ui of the stimulus space X for which
neuron i is highly responsive. Throughout this article, we assume the sets Ui

are convex. Indeed, experimental data on many types of neurons, such as place
cells [O’Keefe and Dostrovsky 1971] or orientation-tuned neurons [Hubel and
Wiesel 1959], make it evident that receptive fields are often well-approximated
by convex sets. Hence, for such neurons, the regions of stimulus space in which
multiple neurons fire can be modeled by intersections of convex sets, and thus the
mathematical theory developed by Helly, Tancer, and others can inform us about
the possible arrangements of receptive fields in a given dimension.

Helly’s theorem, however, cannot inform us about all types of receptive field
arrangements. For example, if Ui , Uj are receptive fields which intersect, the neural
data will differentiate between Ui ⊆Uj and Ui 6⊆Uj , but Helly’s theorem merely
notes that Ui and Uj intersect. We thus go beyond the usual scope of convex
geometry to consider the problem of finding arrangements of convex sets which
fully realize the information present in the neural data, including containments. This
problem was posed originally in [Curto et al. 2013b], and has been an active area
of exploration in recent years. Others such as [Chen et al. 2019; Curto et al. 2017;
Cruz et al. 2019; Amzi Jeffs 2018; Amzi Jeffs and Novik 2018] have approached
it using methods from algebra, combinatorics, and discrete geometry, but a full
solution remains out of reach. In order to address this issue, we first describe how
neural data is represented mathematically.

Definition. A neural code on n neurons is a set of binary firing patterns C ⊂ {0, 1}n,
representing neural activity. Elements of C are referred to as codewords.

The firing of a neuron is an all-or-nothing event, and so a codeword c ∈ C
represents a data point in which a specific set of neurons are simultaneously firing,
with neuron i active if ci = 1 and inactive if ci = 0. For example, the codeword
0011 represents a data point at which neurons 3 and 4 were active, while neurons 1
and 2 were not. In the receptive field context, the presence of this codeword in C
indicates that (U3 ∩U4)\(U1 ∪U2) 6=∅.

Definition. Let U = {U1, . . . ,Un} be a collection of sets in Rd. The associated
neural code C(U)⊆ {0, 1}n is the set of firing patterns representing the regions in
the arrangement

C(U) def
=

{
c ∈ {0, 1}n

∣∣∣∣ (⋂
ci=1

Ui

)
\

(⋃
cj=0

Uj

)
6=∅

}
.

Any collection of sets U in Rd gives rise to an associated neural code. However,
as we have mentioned, the receptive fields Ui are generally presumed to be convex.
One of our main motivating examples is that of place cells, whose receptive fields
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X

U1

U2

U3

000

100 110 011

010

Figure 1. An open convex realization of the code C =
{000, 100, 010, 110, 011} in R2, with each region labeled with
its corresponding codeword. This shows that C is an open convex
realizable code with d(C) ≤ 2. It can be shown that, in fact,
d(C)= 1.

are generally seen to be convex, as explained in [Curto et al. 2017]. We additionally
assume the receptive fields Ui are open, since by restricting to open sets, we force
all sets in our realization to be full-dimensional; furthermore, their intersections, if
nonempty, must also be full-dimensional. This allows us to avoid degenerate cases
which would not be meaningful in a neural context. These assumptions are consistent
with the literature [Curto et al. 2013b; 2017; Lienkaemper et al. 2017]. However,
many of our proofs will require that we shift between closed and open convex sets
that are associated to the same code. We therefore make the following definition:

Definition. If U={U1, . . . ,Un} is a collection of open (respectively, closed) convex
sets in Rd for which C= C(U), then we say that C is open (closed) convex realizable
in Rd, and that U is an open (closed) convex realization of C.

Then, for any code C, we define d(C) to be the minimum dimension d such that
C has an open convex realization in Rd, if such a dimension d exists. Figure 1
shows an open convex realization in R2 for a code C which has minimum dimension
d(C) = 1. If C is not realizable with open convex sets in any dimension, we say
d(C)=∞. Such codes do exist; see Figure 2.

Definition. The support of a vector c ∈ {0, 1}n, denoted by supp(c), is the set of
indices of value 1, or the set of all firing neurons:

supp(c) def
= {i | ci = 1}.

The support of a code C ⊆ {0, 1}n is the set of the supports of its codewords:

supp(C) def
= {supp(c) | c ∈ C}.

We assume that there are instances when none of the neurons of interest are firing;
hence, we will always assume that the codeword 00 · · · 0 is present in any code.
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110
111

101

p q

100

Figure 2. The code C = {000, 010, 001, 110, 101} is not open
convex realizable in Rd for any d <∞. If it were, we could pick
points p ∈ (U1∩U2)\U3 and q ∈ (U1∩U3)\U2. The line segment
pq is contained in U1 by convexity; to move from p to q along pq ,
we must leave U2 and enter U3. If we leave U2 before entering U3

that would indicate the presence of codeword 100, which is not in
the code; if we enter U3 before leaving U2 that would indicate the
codeword 111, which is not in the code. Since all sets are open,
these are the only possibilities.

Example. Let C = {000, 101, 110, 111}. Then supp(101) = {1, 3}, supp(111) =
{1, 2, 3}, and supp(C)= {∅, {1, 3}, {1, 2}, {1, 2, 3}}.

Recent work, for example [Lin et al. 2014], shows the utility and importance of
sparsity in neural codes. For practical reasons, our definition of “sparse” differs
slightly from the usual low average weight definition often used in coding literature;
see for example [Curto et al. 2013a]. We use instead a low maximum weight
definition:

Definition. A code C is k-sparse if |supp(c)| ≤ k for all c ∈ C.

We begin the program of studying k-sparse codes by focusing on 2-sparse codes,
where there is already rich mathematics to be found. Our fundamental motivating
questions are the following:

Question 1.1. Which 2-sparse codes are open convex realizable?

Question 1.2. If C is an open convex realizable 2-sparse code, what is its minimum
embedding dimension d(C)?

Our main result is the following characterization of which 2-sparse codes have
open convex realizations, including a dimensional bound.

Theorem 1.3. A 2-sparse code C has an open convex realization if and only if
supp(C) is intersection-complete. Furthermore, if C is realizable then d(C)≤ 3.

This answers our first question in its entirety, and partially answers the second.
Note that in this result there is no room for generality in terms of sparsity; there are
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3-sparse codes that are realizable but not intersection-complete; see for example
the code C = {0, 1}3\{001} in [Curto et al. 2013b]. In Section 2, we will prove
Theorem 1.3 using several lemmas. In particular we show in Lemma 2.6 that
for such codes it is equivalent to find a closed convex realization, as it may be
transformed to an open convex realization in R2 or R3. It immediately follows from
this and [Tancer 2013] that any 2-sparse code has a convex open realization in R3.
In Section 3, we consider the second question in more detail, and exhibit a class of
2-sparse codes with d ≤ 2, as well as a class with d = 3.

2. Realizability of 2-sparse codes

This section is dedicated to proving Theorem 1.3, which establishes that a 2-sparse
code is realizable precisely when its support is intersection-complete and, for such
codes C, d(C)≤ 3. In order to prove this theorem, we make use of the simplicial
complex of a code, which is introduced below.

Definition. A simplicial complex on a finite set S is a family 1 of subsets of S
such that if X ∈1 and Y ⊆ X, then Y ∈1.

In this paper, the set S under consideration will most often be [n]= {1, . . . , n}. In
a situation where S = {v1, . . . , vn}, we will typically refer to any set in a simplicial
complex on S by its set of indices.

Definition. The simplicial complex of a code C is the smallest simplicial com-
plex containing supp(C); this is denoted by 1(C). The k-skeleton of a simplicial
complex 1 is the simplicial complex 1k given by the collection of sets in 1 of size
at most k+ 1; see Figure 3.

If C is 2-sparse, then 1(C) consists only of 0-, 1-, and 2-element sets. We can
therefore think of 1(C) as a graph, with 1-element sets corresponding to vertices
and 2-element sets as edges between them. Note that since 1(C) is a simplicial
complex, if {i, j} ∈1(C), then both {i} and { j} must be in 1(C) as well; hence this
association is well-defined. The formal relationship between 2-sparse codes and
graphs is captured by the following definition.

v1

v2 v4

v3 v1

v2 v4

v3

Figure 3. At left, a geometric representation of simplicial complex
on S={v1, v2, v3, v4}with1={∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3},
{2, 3}, {2, 4}, {1, 2, 3}}. At right, a geometric representation of the
1-skeleton of 1.
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v1

v2

v3

Figure 4. The graph GC for C = {000, 100, 010, 110, 011}; see
Figure 1 for a realization of C.

Definition. Let C ⊂ {0, 1}n be a neural code. The graph of C, denoted by GC , is
the graph whose vertex set is [n], with i adjacent to j if {i, j} ⊆ supp(c) for some
c ∈ C; see Figure 4.

Note that GC is the 1-skeleton of 1(C). In particular, for a 2-sparse code, 1(C)
and GC contain exactly the same information because1(C) is equal to its 1-skeleton.

As we saw in Figure 2, there exist 2-sparse codes that are not convex in any
dimension. The following lemma generalizes the obstruction presented in that figure.

Lemma 2.1. Let C be a 2-sparse code. If C has a convex open realization in any
dimension, then supp(C) is intersection-complete.

Proof. Suppose C is a 2-sparse code with open convex realization U ={U1, . . . ,Un}.
Since C is 2-sparse, |supp(c)| ∈ {0, 1, 2} for every c ∈ C. If |supp(c)| is at most 1,
then supp(c)∩ supp(c′) ∈ supp(C) for any c′ ∈ C, because the intersection is either
∅ or supp(c). It then remains to show that supp(c)∩supp(c′)= {i} ∈ supp(C) when
supp(c)= {i, j} and supp(c′)= {i, k} with j 6= k. In this case, Ui ∩Uj and Ui ∩Uk

are nonempty so there exist points p ∈Ui ∩Uj and q ∈Ui ∩Uk . Consider the line
segment pq connecting p and q. Since Ui is convex, pq is contained in Ui . For
each m ∈ [n]\{i}, consider the set Lm = pq ∩Ui ∩Um ; note that any two such sets
are disjoint, and that L j and Lk are nonempty. If the sets {Lm} partition the line pq ,
then this would disconnect pq in the subspace topology, but as pq is connected,
this is impossible. Thus, there must be some point on pq which is contained in Ui

only. The existence of this point implies {i} ∈ supp(C) as desired. �

The conclusion of the previous lemma is that it is necessary for open convex
realizable 2-sparse codes to be intersection complete. In fact, this property char-
acterizes 2-sparse codes with an open convex realization; this is the content of
Theorem 1.3. To prove Theorem 1.3, we will use a method of repeatedly making
geometric augmentations to existing realizations; in order to make such augmenta-
tions without changing the underlying code, we must ensure that subset containment
relations between sets are maintained. In the 2-sparse case, the following definition
encapsulates the key relationships that must be maintained:

Definition. Let U = {U1, . . . ,Un} be a collection of sets in Rd. For any ordered
pair (Ui ,Uj ) we distinguish three possible relations between Ui and Uj :
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Type A (disjointness): Ui ∩Uj =∅; i.e., {i, j} 6⊆ supp(c) for any c ∈ C.

Type B (containment): Uj ⊆ Ui ; i.e., there exists a codeword c ∈ C(U) so that
{i, j} ⊆ supp(c) and any codeword whose support contains j must also have i in
its support.

Type C (proper intersection): Ui ∩Uj is nonempty and Uj \Ui is nonempty; i.e.,
there exist codewords c1, c2 ∈ C(U) so that {i, j} ⊆ supp(c1), j ∈ supp(c2) and
i /∈ supp(c2).

The type-A, type-B and type-C set relationships effectively characterize the
structure of a 2-sparse code; indeed, 2-sparse codes are completely determined by
the pairwise relationships of the sets in any realization. We explicitly state this in
the following proposition.

Proposition 2.2. Let U and U ′ be collections of sets in Rd so that C(U) and C(U ′)
are both 2-sparse. Then C(U)= C(U ′) if and only if for every ordered pair (i, j) the
relation between Ui and Uj is the same as the relation between U ′i and U ′j .

We now introduce the geometric underpinnings of the augmentations we will
apply to realizations of codes. In these definitions, we make use of the idea of
an ε-ball around a point p (Bε(p) = {x ∈ Rd

| ‖x − p‖ < ε}), the interior of a
set A (int(A) = {x ∈ A | Bε(x) ⊆ A for some ε > 0}), and the closure of a set
(A = {x ∈ Rd

| x is a limit point of A}).

Definition. Given ε > 0 and A ⊂ Rd, the trim of A by ε is the set

trim(A, ε) def
= int{p ∈ Rd

| Bε(p)⊆ A}.

The inflation of A by ε is the set

inflate(A, ε) def
= {a+ x | a ∈ A, x ∈ Rd with ‖x‖< ε}.

If A= {A1, . . . , An} is a collection of sets, then

trim(A, ε)= {trim(A1, ε), . . . , trim(An, ε)},

inflate(A, ε)= {inflate(A1, ε), . . . , inflate(An, ε)}.

Proposition 2.3. For any convex set A ⊂ Rd and ε > 0, the following statements
hold:

(1) trim(A, ε) is an open convex set.

(2) trim(A, ε) is contained in the interior of A.

(3) inflate(A, ε) is an open convex set.

Proof. For (1), we need only prove convexity, and we may assume trim(A, ε) is
nonempty. Let p and q be points in trim(A, ε); then Bε(p) and Bε(q) are contained
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in A, and hence so is the convex hull of their union. This convex hull contains the
line segment pq . For (2), note that trim(A, ε)⊆ trim(A, ε/2)⊆ int(A). Finally, (3)
follows from the fact that A is convex and {x ∈Rd

| ‖x‖<ε} is open and convex. �

We now show that open convex realizations of 2-sparse codes can be trimmed
down to give another open convex realization.

Lemma 2.4. Given a 2-sparse code C with an open convex realization U =
{U1, . . . ,Un}, there exists some ε > 0 so that trim(U, ε) is also a realization of C.

Proof. Our method is as follows: For each set Ui , we find an εi such that
trim(Ui , εi ) 6=∅, and for each pair {i, j} we find an εi j such that trim({Ui ,Uj }, εi j )

preserves their relationship type (type A, type B or type C). We then let ε be the
minimum of all εi and εi j , and show that trim(U, ε) is a realization of the original
code C.

To start, for each i with Ui nonempty, there must be some point p and δi > 0
with Bδi (p)⊆Ui . Let εi = δi/2. Let ε1 =mini∈[n] εi . Now, for each pair {i, j}, we
choose εi j depending on the relationship type between Ui and Uj :

Type A: If Ui ∩Uj =∅, set εi j =min{εi , εj }.

Type B: If Ui =Uj , set εi j =min{εi , εj }. If Ui (Uj , note that Uj\Ui has nonempty
interior. Thus there exists some point p and some δi j > 0 with Bδi j (p) ⊆ Uj\Ui .
Let εi j =min{δi j/2, εi }.

Type C: If Ui ∩Uj 6=∅, but neither Ui ⊆Uj nor Uj ⊆Ui is true, note that Ui ∩Uj is
open and therefore there exist a point p and ε′>0 with Bε′(p)⊆Ui∩Uj . There exist
also points pi , pj in Ui\Uj , Uj\Ui respectively, with corresponding ε̂ and ε̃ such
that Bε̂(pi )⊆Ui\Uj and Bε̃(pj )⊆Uj\Ui . Pick εi j =min{εi , εj , ε̂/2, ε̃/2, ε′/2}.

Let ε2 = mini, j εi j , and finally, let ε = min{ε1, ε2}. Since trim(U, ε) ⊂ U, and
originally there were no triple intersections, by construction it is impossible for
trim(U, ε) to have triple intersections. Thus, C(trim(U, ε)) is still 2-sparse. We now
show that C(trim(U, ε))= C.

If the codeword with support {i, j} is in C(trim(U, ε)), then

trim(Ui , ε)∩ trim(Uj , ε) 6=∅.

As trim(U, ε) ⊂ U, this implies Ui ∩Uj 6= ∅. Since C is 2-sparse, the codeword
with support {i, j} is in C. On the other hand, if the codeword with support {i, j} is
in C, then Ui ∩Uj 6=∅, and so we are in a case of type A, B or C above. By our
choice of ε, we ensure that in each case trim(Ui , ε)∩ trim(Uj , ε) 6=∅, and hence
(as the code is 2-sparse) the codeword with support {i, j} is in C(trim(U, ε)).

If a codeword with support {i} is in C(trim(U, ε)), then

trim(Ui , ε)\
⋃

j∈[n], j 6=i

trim(Uj , ε) 6=∅.
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We then know that Ui\
⋃

j∈[n], j 6=i Uj 6= ∅. If it were not, then we would have
Ui ⊆

⋃
j∈I Uj for some index set I. However, this is impossible: If |I | = 1, then

Ui ⊆ Uj , but then trim(Ui , ε) ⊆ trim(Uj , ε). If |I | > 1, then Ui ⊆
⋃

j∈I Uj . But
then the 2-sparsity of C means we would see the codewords {i, j} and {i, k} in C
for j, k ∈ I but not their intersection {i}, contradicting Lemma 2.1. Hence, the
codeword with support {i} is in C.

Now, suppose a codeword with support {i} is in C, and let J = { j |Ui ∩Uj 6=∅}.
If |J | ≤ 1 then we are in a case of type A, B, or C above, and by our choice of
ε we know there is a codeword with support {i} in C(trim(U, ε)). If |J | ≥ 2, let
j, k ∈ J. Then by our choice of ε, we know trim(Ui , ε) ∩ trim(Uj , ε) 6= ∅ and
trim(Ui , ε)∩ trim(Uk, ε) 6= ∅, and hence the codewords with supports {i, j} and
{i, k} are in trim(U, ε). By Lemma 2.1, we know the codeword with support {i} is
also in C(trim(U, ε)). �

Next, we show that a closed convex realization of a 2-sparse codes can be inflated
to create an open convex realization.

Lemma 2.5. Let C be a 2-sparse code with a closed convex realization V =
{V1, . . . , Vn} in which every set is bounded. Then there exists some ε > 0 such that
inflate(V, ε) is an open convex realization of C.

Proof. Consider the partial ordering on V given by set inclusion. We will use this
ordering to inflate the sets in V iteratively (possibly by different ε factors) and then
argue that we can obtain a uniform ε for which inflate(V, ε) is an open convex
realization of C. In this iterative process, if Vi = Vj for any i 6= j, we apply the
process simultaneously to Vi and Vj . As such, it is sufficient for our proof to assume
Vi 6= Vj for any i 6= j.

To start, begin with a fixed index i for which Vi is maximal in V with respect to
inclusion. All sets in V are closed and bounded, so for any j with Vi ∩ Vj =∅, Vi

has positive distance di, j to Vj . Let δi =minVi∩Vj=∅ di, j . Now if there are j, k 6= i
with Vj ∩ Vk 6=∅, then Vi has positive distance di, j,k to Vj ∩ Vk ; take δ′i to be the
minimum of all such di, j,k . Furthermore, let δ′′i > 0 be such that for all j with
Vj 6⊆ Vi , we have Vj 6⊆ inflate(Vi , δ

′′

i ). Finally, choose εi < min
{ 1

2δi ,
1
2δ
′

i ,
1
2δ
′′

i

}
.

These choices help guarantee that no new pairwise or triple intersections are created,
and no new containments are created.

If we replace Vi by inflate(Vi , εi ), then the code is still 2-sparse, and the three
subset relationship types for the ordered pairs (Vi , Vj ) where j 6= i are maintained:

Type A: Disjointness is preserved since εi is at most half the distance from Vi to
any set disjoint from it.

Type B: Containment is preserved since we are only making Vi bigger.

Type C: Proper intersection is preserved by our choice of εi .
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By a similar argument, the subset relationship of the ordered pair (Vj , Vi ) for any
j 6= i is also preserved after replacing Vi by inflate(Vi , εi ). Thus replacing Vi by
inflate(Vi , εi ) yields a new realization of C.

For any subsequent step in our iterative process, choose a set Vi ∈ V for which
every member of the set {Vj ∈ V | Vj ⊃ Vi } has already been inflated. Choose εi

in the same way as previously described with the additional caveat that if Vi ⊆ Vj

then εi < εj . A similar argument shows that replacing Vi by inflate(Vi , εi ) yields
a new realization of C. Once we have inflated every set in the realization we can let
ε=mini∈[n] εi and observe that inflate

(
U, 1

2ε
)

is an open convex realization of C. �

This result allows us to prove the useful fact that for 2-sparse codes, open and
closed convex realizations exist interchangeably, and we can build either type of
realization from the other.

Lemma 2.6. Let C be a 2-sparse code. Then C has an open convex realization in
Rd if and only if C has a closed convex realization in Rd.

Proof. First, let U be an open convex realization of C. Applying Lemma 2.4, there is
an ε > 0 such that U ′ = trim(U, ε) is an open realization of C. Since the closure of
each U ′i is contained in Ui (by Proposition 2.3), U ′ is an open convex realization of
C in which two sets intersect if and only if their closures do. Let V = {U ′1, . . . ,U

′
n}.

No triple intersections exist in V since these would correspond to triple intersections
in U . Thus by Proposition 2.2 it suffices to show that V preserves the relations
between sets in U ′. Disjointness is preserved since sets in U ′ intersect if and only if
their closures do. Containment is preserved under taking closures. Lastly, proper
intersection is preserved, since if Ui \Uj is nonempty then there are limit points of
Ui that are not limit points of Uj .

For the reverse direction, let V be a closed convex realization of C. For every
nonempty intersection Vi ∩ Vj , let pi, j be a point in this intersection. Furthermore,
if some set Vi is not contained in any other Vj , let pi ∈ Vi \

⋃
j 6=i Vj . Then set V

to be the convex hull of all these p′i s and p′i, j s. Replacing each Vi by Vi ∩V yields
a realization of C in which every set is closed, convex, and bounded. Applying
Lemma 2.5, we obtain an open convex realization of C in Rd. �

Although it may not be immediately clear from the proof, the condition that C is
2-sparse is necessary for Lemma 2.6 to hold. The 2-sparse condition is in fact best
possible, since there exist 3-sparse codes which have closed convex realizations
in R2, but for which open convex realizations exist only in R3 or higher. One such
example is the code

C = {0000, 1000, 0100, 0010, 0001, 1110, 1001, 0101, 0011}.

Figure 5 shows a closed realization of this code in R2, but it has no open realization
in R2; see [Curto et al. 2017] for more details.
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1 2 3

4

Figure 5. A closed realization of a code in R2 that has no open
realization in R2.

Even more strikingly, there exist codes with a closed convex realization in R2

that have no open convex realization in any dimension; see [Lienkaemper et al.
2017] for an example of such a code on five neurons. This emphasizes how special
realizations of 2-sparse codes are.

We can now use the previous lemmas to relate the convexity of a 2-sparse code C
to the convexity of its associated simplicial complex1(C). We first need a technical
lemma.

Lemma 2.7. Let U be an open convex realization of a 2-sparse code C. Then if
Uj 6⊆Uk for any k 6= j, there is a point p ∈ ∂Uj\

⋃
k 6= j Uk .

Proof. Recall that for any set U ⊂ Rd, ∂U is the boundary of U. Consider the sets
{∂Uj ∩Uk}k 6= j . These sets are disjoint: if not, then there exists p ∈ (∂Uj ∩Uk)∩

(∂Uj ∩U`). As p ∈ Uk ∩U`, there exists ε > 0 with Bε(p) ⊆ Uk ∩U`. But then
Bε(p)∩Uj 6=∅, as p ∈ ∂Uj , so Uj ∩Uk ∩U` 6=∅ contradicting that C is 2-sparse.

Now, note that the disjoint sets {∂Uj ∩Uk}k 6= j are open in the subspace topology
with respect to ∂Uj , and hence they cannot partition ∂Uj since ∂Uj is connected.
Thus, there exists p ∈ ∂Uj\

⋃
k 6= j Uk . �

Lemma 2.8. Let C be a 2-sparse code and let d ≥ 2. Then C has an open convex
realization in Rd if and only if supp(C) is intersection-complete and 1(C) has an
open convex realization in Rd.

Proof. For the forward direction, we know from Lemma 2.1 that if C has a realization
then supp(C) is intersection-complete. We will show that given a realization U of C,
we can construct a realization of GC . Since C is 2-sparse, we know C and 1(C)
must already contain the same 2-element sets, so we will show that we can adjust
the realization of C to obtain any singletons {i} which appear in 1(C) but not in C.

Let {i} ∈1(C)\ supp(C). If there exist j, k such that {i, j} and {i, k} are both in
supp(C), then as supp(C) is intersection-complete, we know {i} ∈ supp(C). Thus,
there must be exactly one j such that {i, j} ∈ supp(C). Note immediately that in
the realization U we have Ui ⊆Uj since {i, j} is the only set in the support where i
appears. It suffices to transform U so that Ui and Uj intersect, but Ui also contains
points not in any other set in the realization.

If we have Uj ⊆Ui , then Ui =Uj so Uj ∩Uk =∅ for any other k, and we can
replace Uj with an open ball properly contained in Ui to obtain the desired result.
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Otherwise, Uj may intersect many other sets in the realization, but cannot be
contained in them, since this would imply a triple intersection between the containing
set Uk , Uj , and Ui . Apply Lemma 2.4 to obtain ε > 0 for which U ′ = trim(U, ε) is
an open realization of C. Define the sets Vk = ∂U ′j ∩U ′k ; note that each Vk is closed.
Furthermore, these sets are disjoint, since if p∈ Vk∩V`, then p∈Uj∩Uk∩U` in the
original realization which is impossible for a 2-sparse code. Since ∂U ′j is connected
and the Vk are disjoint closed sets,

⋃
k 6= j Vk ( ∂U ′j ; let p ∈ ∂U ′j\

⋃
k 6= j Vk . Then

p has positive distance to all sets U ′k with k 6= j so there is some ε′ > 0 with
Bε′(p)∩U ′k =∅ for all k 6= j. Replacing U ′i with Bε′(p) will create a realization
of a code C′ with supp(C′) = supp C ∪ {i}. Repeating this step as many times as
necessary, we obtain a realization of 1(C).

For the reverse, suppose U is an open convex realization of 1(C). Note that
if {i, j} ∈ supp(1(C)), it is also in supp(C) since C is 2-sparse. Now, suppose
{i}∈ supp(1(C))\ supp(C). Then there is at most one j 6= i such that {i, j}∈ supp(C)
as C is intersection-complete. If there is such a j, replace Ui with Ui ∩Uj which
is an open convex set; if there is no such j, then remove Ui entirely. This gives a
convex realization of 1(C)\{i}, and we can repeat this operation as many times as
necessary to obtain a realization of C. �

The above lemma can be summarized as follows: realizing a 2-sparse code and
realizing its simplicial complex are equivalent, as long as supp(C) is intersection-
complete. This equivalence is our main tool in proving Theorem 1.3 and obtaining
a complete classification of which 2-sparse codes are convex in R3.

Proof of Theorem 1.3. The fact that any open convex realizable 2-sparse code must
have supp(C) that is intersection-complete follows directly from Lemma 2.1. For the
reverse direction, since supp(C) is intersection-complete, we know by Lemma 2.8
that it is sufficient to find an open convex realization for 1(C). As C is 2-sparse,
Lemma 2.6 tells us that it suffices to find a closed convex realization for 1(C).
Since 1(C) is a 1-dimensional simplicial complex, a construction of [Tancer 2013]
(see the proof of Theorem 3.1 therein) leads to a closed convex realization of a
1-dimensional simplicial complex in R3. This proves the desired result. �

Theorem 1.3 makes it very straightforward to check whether a 2-sparse code has
an open convex realization in R3. The challenge that lies ahead is determining the
minimal embedding dimension for a given 2-sparse code. We begin investigating
this problem in the next section.

3. Dimension of 2-sparse codes

We noted early on that for 2-sparse codes, the simplicial complex1(C) and the graph
GC of the pairwise intersections of the code capture the same information. In this
section, we will make heavy use of this correspondence, and construct realizations
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of various 2-sparse codes using graph-theoretic methods. Hence, throughout this
discussion we will often refer to “realizations” of a graph GC . It is important to note
that while a graph is the intersection graph of its realization, finding convex sets
whose intersection graph is the graph of concern is not sufficient here. In particular,
if a collection of convex sets has a triple with nonempty intersection then it is not,
for our purposes, a realization of any graph, since graphs only encode intersections
of order 2.

Our main result, Theorem 1.3, shows that any intersection-complete 2-sparse
code can be realized in dimension d ≤ 3. In this section, we begin the program
of classifying 2-sparse codes based on minimal embedding dimension. We focus
on distinguishing codes of dimension d = 3 from codes of dimension d ≤ 2; note
that the general problem of distinguishing 1-dimensional codes has been solved
[Rosen and Zhang 2017]. Recall from Lemma 2.8 that realizing a 2-sparse code
C is equivalent to realizing its simplicial complex 1(C) (and therefore, its graph
GC), so throughout this section we refer to realizing GC rather than C itself. Our
main contribution is that while the dimension of certain graphs can be bounded, we
find that the traditional 2-dimensional graph-theoretic distinction (planarity) is not
necessary for GC to represent a 2-dimensional code. In particular, in Proposition 3.1,
we observe d(C)≤ 2 if GC is planar, and in Proposition 3.2 if GC is not planar, one
can construct a related graph whose code has minimal embedding dimension 3.
However, planarity does not strictly govern minimal embedding dimension, as any
complete or complete bipartite graphs are realizable in R2.

The following proposition describes some common graphs which do have 2-
dimensional convex realizations, including planar graphs.

Proposition 3.1. The following graphs have an open convex realization in R2:

(1) planar graphs,

(2) the complete k-partite graph Kn1,n2,...,nk with part sizes n1, n2, . . . , nk ,

(3) any graph G with vertex set {v1, v2, . . . , vn, u1, . . . , uk} where the induced
subgraph on the vertices v1, v2, . . . , vn is complete and {v1, v2, . . . , vn} ⊇

NG(uk)⊇ NG(uk−1)⊇ · · · ⊇ NG(u1).

Proof. In all cases, we find a closed convex realization of the given graph G, which
by Lemma 2.6 implies the existence of an open convex realization. For (1), we
first recall the circle packing theorem, which says that for any planar graph G with
vertex set {v1, . . . , vn}, there exist disjoint disks C1,C2, . . . ,Cn in R2 such that Ci

is tangent to C j if and only if vi is adjacent to vj , and Ci ∩C j =∅ otherwise. See
Figure 6 for an illustration of how these disks are constructed.

For (2), we first find a realization for the complete graph Kn = K1,1,...,1 (n copies
of 1 here). Consider the line segments `1, `2, . . . , `n , where `i has endpoints (i, 0)
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v1 v2

v3

v4

v5

v6

v7

C1
C2

C3

C4

C5 C6

C7

Figure 6. A planar graph G and the corresponding closed realiza-
tion using the circle packing theorem.

and (0, n+ 1− i), and observe that `i ∩ `j 6=∅ for any i 6= j. Moreover, no three
of these lines are concurrent. This gives a closed convex realization of Kn . Now to
realize Kn1,n2,...,nk , start with a closed convex realization of Kk as constructed in the
realization of (2). Replace each line segment `i with ni disjoint parallel translates of
`i that are arbitrarily close in distance to `i , and call these segments si1, si2, . . . , sini .
Observe that by construction, si j ∩si j ′ =∅ for any j 6= j ′. Moreover, si j ∩si ′ j ′ 6=∅
for i 6= i ′ because li ∩ li ′ 6=∅ and si j and si ′ j ′ are arbitrarily close and parallel to `i

and `i ′ respectively. Moreover, if any three line segments si j , si ′ j ′, si ′′ j ′′ had a point
in common, then li , li ′, li ′′ would, which they don’t. Hence the union of the sets
{si1, si2, . . . , sini }

k
i=1 gives a closed convex realization of Kn1,n2,...,nk . See Figure 7

for examples of the constructions in the proof of (2).
It remains to prove (3). Without loss of generality, we assume NG(uk) =

{v1, v2, . . . , vr }, indexed in such a way that each set NG(u j ) is {v1, v2, . . . , vs}

`1

`3

`5

`2 `4

Figure 7. A closed convex realization of K5 (left) and a closed
convex realization of K2,4,3 (right), as constructed in the proof of
Proposition 3.1.
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`1

`2

`3

`4

`5

`′1

`′2

`′3

Figure 8. A closed convex realization of the graph G with vertices
v1, v2, v3, v4, v5, u1, u2, u3, where the induced graph on v1, . . . , v5

is complete, and N (u3) = {v1, v2, v3}, N (u2) = {v1, v2} and
N (u1)= {v1}.

for some s. To realize G, first start with a realization of Kn as in the proof of (2),
where vj is represented by `j for each j. Now, extend each line segment `j for
1 ≤ j ≤ r so that (0, j) remains as an endpoint, the slope remains the same,
but the lower endpoint has y-coordinate −k. Then, for each s with 1 ≤ s ≤ k,
introduce a line segment `′s that lies on the line in the xy-plane given by y = s, and
only intersects the line segments in the set {`′j | j ∈ NG(us)}. The line segments
`1, . . . , `n, `

′

1, . . . , `
′

k give a closed realization of G. See Figure 8 for an example
of this construction. �

Thus far, we have exhibited classes of graphs that can be realized in R2, including
any planar and some nonplanar graphs GC . We now show how to adjust any nonpla-
nar graph by edge subdivision to create a new graph that cannot be realized in R2.

Proposition 3.2. Let G be a nonplanar graph. Let G ′ be the graph obtained from
G by replacing each edge vivj by a length-2 path vi , vi j , vj (we refer to this as
the edge subdivision of G throughout). Then G ′ does not have an open convex
realization in R2, and hence its minimal embedding dimension is 3.

Proof. Suppose by contradiction that G ′ has an open convex realization in R2. Let the
graph G have vertex set {v1, v2, . . . , vn}, so G ′ has as its vertices {vi | i = 1, . . . , n}
together with vertices {vi j |vivj ∈ E(G)}, where for any i, j, the vertex vi j is adjacent
only to vi and vj . Suppose the open convex realization U of G ′ consists of the sets
{Ui } and {Ui j }, where for any i , Ui is the open convex set corresponding to vi , and
for any i 6= j with vivj ∈ E(G), Ui j is the open convex set corresponding to vi j .

First, for all i = 1, . . . , n select a point pi in Ui that does not lie in any other
sets in U . Then, for every pair i, j such that vi and vj are adjacent in G, note
that Ui ∩Ui j and Uj ∩U j i are nonempty, so we can also select points xi j and x j i

in Ui ∩Ui j and Uj ∩Ui j , respectively. Let the line segment xi j x j i intersect ∂Ui
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and ∂Uj at points pi j and p j i , respectively. Define the path Pi j from pi to pj by
concatenating the line segments pi pi j , pi j p j i , and p j i pj in that order.

Now consider another pair of indices k, l. We claim that two different paths
Pi j and Pkl can only intersect at the points pi ,pj ,pk or pl , if anywhere. To show
this, it is enough to show that among any pair of line segments, one chosen from
{pi pi j , pi j p j i , p j i pj } and one from {pk pkl, pkl plk, plk pl}, their intersection (if it
exists), must be one of the points pi , pj , pk or pl . We split this into three cases:

First, consider the intersection of pi pi j and pk pkl . If i = k then the two segments
can only intersect at pi , unless j = l, in which case the segments were the same
segments to begin with. If i 6= k, then observe that pi pi j ∈ Ui , pk pkl ∈ Uk and
Ui ∩Uk is empty because vi and vk are not adjacent in G ′. A similar argument estab-
lishes our desired result when the pair of segments in question are {pi pi j , pkl pk},
{pi j pi , pkl pk} and {pi j pi , pk pkl}.

Second, consider the intersection of pi j p j i and pkl plk . Notice that pi j p j i ⊆Ui j

and pkl plk ⊆Ukl . Since vi j and vkl are not adjacent in G ′, Ui j ∩Ukl is empty, so
the two paths in question cannot intersect.

Finally, consider the intersection of pi pi j and pkl plk . Suppose that i = k. When
j = l, the segments in question are pi pi j , pi j p j i but these are from the same path
Pi j so we need not consider this situation. When j 6= l, pi pi j ⊆ Ui ∪Ui j , and
pil pli ⊆Uil\Ui . Since j 6= l, Ui j ∩Uil =∅, and hence (Ui ∪Ui j )∩ (Uil\Ui )=∅,
so the two segments in question do not intersect. A similar argument establishes
the result when j = l. It remains to establish the desired result when i 6= l, k.
Suppose for a contradiction that pi pi j intersects pkl pkl . Since pi pi j ⊆Ui∪∂Ui , and
pkl plk ⊆Ulk , this implies (Ui∪∂Ui )∩Ulk is nonempty. However, this is impossible
because Ui ∩Ulk =∅ (because vi and vlk are not adjacent in G ′) and ∂Ui ∩Ulk =∅.

The above argument establishes that two distinct paths Pi j , Pkl can only intersect
at their endpoints. Construct a graph G ′′ on the same vertex set as G with two
vertices adjacent precisely when they are adjacent in G, but with each edge vivj

drawn precisely along the path Pi j . The graph G ′′ is a planar embedding of G,
contradicting that G is not planar. �

4. Future directions

This paper initiated the program of studying k-sparse codes, with a full characteri-
zation of the structure of 2-sparse codes. Section 2 was dedicated to a topological
and analytic investigation of such codes in order to achieve a full characterization
of realizability through Theorem 1.3, which additionally told us that any realiz-
able 2-sparse code has minimal embedding dimension at most 3. Section 3 then
began the study of differentiating 2-sparse codes by embedding dimension through
Propositions 3.1 and 3.2. The most pressing questions are how these investigations,
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which relied heavily on the graph-like structure of these codes, could generalize
when k > 2.

Question 4.1. For a particular k, how can we characterize which k-sparse codes
are realizable? More specifically, given a positive integer `, for which k-sparse
codes is d(C)= `?

In investigating the minimum embedding dimension of a k-sparse code, certain
dimension bounds can be used. For example, suppose C is a k-sparse code with
1 = 1(C), and let fd(1) be the number of codewords in 1 with support size
d + 1. Then, by applying the fractional Helly theorem, we find k > fd(1)/

(n−1
d

)
;

this was noted in [Curto et al. 2017]. Similar to this, many known bounds rely
solely on the combinatorial information in the code and in particular the simplicial
complex 1(C). While often dimension bounds are the best known results, a more
specific investigation in [Rosen and Zhang 2017] gives a full characterization of
1-dimensional codes. Our work thus focuses on distinctions between dimensions 2
and 3 for 2-sparse codes, as a beginning step towards a characterization of 2-
dimensional codes.

However, in addressing the question of whether a k-sparse code is realizable at all,
an investigation into the topology can provide insight beyond what is apparent from
the combinatorics. This is especially evident from the developments in Section 2.
The key idea there was shifting from one realization of a code to another by shrinking
or expanding sets. Indeed, this method has been applied with more generality and
great success in [Cruz et al. 2019]. The question then for k-sparse codes for k > 2 is
what analogous topological operations to realizations preserve the underlying code.

Question 4.2. Given a convex realization U ={U1, . . . ,Un} of a code C in Rd, what
topological maps can be applied to the sets Ui so that the resulting sets still form a
convex realization of C?
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The number of rational points of
hyperelliptic curves over subsets of finite fields
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We prove two related concentration inequalities concerning the number of rational
points of hyperelliptic curves over subsets of a finite field. In particular, we
investigate the probability of a large discrepancy between the numbers of quadratic
residues and nonresidues in the image of such subsets over uniformly random
hyperelliptic curves of given degrees. We find a constant probability of such a high
difference and show the existence of sets with an exceptionally large discrepancy.

1. Introduction

Let q be a prime power and let Fq be the finite field with q elements. A curve
E : y2

= f (x) (together with a point at infinity O) is called an elliptic curve over Fq if
f (x) ∈ Fq [x] is a cubic polynomial having distinct roots in the algebraic closure Fq

of Fq . The set of rational points of E in Fq is

E(Fq)= {(x, y) ∈ Fq × Fq : y2
= f (x)} ∪ {O}.

Suppose that q is odd. Using the fact that there are (q−1)/2 invertible quadratic
residues and (q − 1)/2 nonresidues in Fq , one can approximate the size of E(Fq)

as follows. For each x ∈ Fq , the probability of f (x) being a nonzero square in Fq ,
and hence contributing two points to E(Fq), is about 1

2 . With probability about 1
2

there is no point in E(Fq) having the first coordinate x ∈ Fq . Therefore, #E(Fq) is
expected to be close to q + 1. Indeed, Hasse [1936] proved that the error in this
estimate is at most 2

√
q:

|#E(Fq)− (q + 1)| ≤ 2
√

q.

Knowledge of #E(Fq) is crucial in elliptic curve cryptography (ECC), which is
considered to be more efficient than the classical cryptosystems, like RSA [Rivest
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et al. 1978]. The security of ECC depends on the difficulty of solving the elliptic
curve discrete logarithm problem (ECDLP). The best known algorithm to solve
ECDLP in finite fields is Pollard’s rho algorithm [1975], which requires O(

√
p) time

complexity, where p is the prime factor of q . However, some well-studied classes
of elliptic curves are not good candidates for ECC. For instance, if the number
of rational points of an elliptic curve E in Fp is exactly p, where p is a prime,
then the running time of solving the ECDLP is O(log p); see [Semaev 1998].
Using verifiably random elliptic curves in ECC improves security since randomly
generated curves are unlikely to be part of a weak class. Hyperelliptic curves can
also be used in cryptography; see [Cohen et al. 2006] for more details. However, the
verifiability of random hyperelliptic curves is much harder; see [Hess et al. 2001;
Satoh 2009].

In this paper, we investigate the behaviour of random hyperelliptic curves over
subsets S of Fq . We are interested in the hyperelliptic curves E : y2

= f (x) where
f (x) is a polynomial in Fq [x] of degree 4k− 1 (k ≥ 1) having distinct roots in Fq .
Denote by E(Fq , S) the rational points of E in Fq where the x-coordinate is in S; i.e.,

E(Fq , S)= {(x, y) ∈ S× Fq : y2
= f (x)}.

We remark that the point at infinity O is not included in E(Fq , S). The approximation
we have described for #E(Fq) suggests that the expected value of #E(Fq , S) is
about #S. For random hyperelliptic curves E over Fq , the probability that the error
|#E(Fq , S)− #S| is small has been extensively studied; see [Pelekis and Ramon
2017; Schmidt et al. 1995] for example.

On the other hand, it is easy to see that there exist many hyperelliptic curves of
any (positive) even degree so that the error |#E(Fp, S)− #S| is very large. Indeed,
the error is about #S when f (x) is the square of any nonconstant polynomial
in Fq [x] for any S ⊂ Fp.

However, an error bound is not obvious in the case of hyperelliptic curves of
odd degree, which we study in the probabilistic setting. Equivalently, we examine
the difference between the numbers of quadratic residues and nonresidues in the
image multiset f (S). Using 4k-wise independence, we show that all subsets S of
Fq behave similarly, in the sense that the interested discrepancy is proportional to
√

#S and has a positive probability which depends only on the degree of the curve.

Theorem 1. Given a positive integer k and ε>0, there exist δ>0 and a threshold N
such that the following holds: for every odd prime power q > N, if a curve E : y2

=

f (x) is chosen uniformly at random among all hyperelliptic curves of degree 4k−1
over Fq , then with a probability at least (4π3/2/e3)2−2k

− ε, we have

|#E(Fq , S)− #S|> δ
√

#S

for any set S ⊂ Fq with #S ≥ N.
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Theorem 2. Given a positive integer k, there exist a threshold N and ε > 0 such
that the following holds: for every odd prime power q > N, if a curve E : y2

= f (x)
is chosen uniformly at random among all hyperelliptic curves of degree 4k − 1
over Fq , then with a probability at least ε, we have

|#E(Fq , S)− #S|> 0.8577
√

k
√

#S

for any set S ⊂ Fq with #S ≥ N.

These two theorems imply that one can expect large deviation of magnitude
√

#S.
In the last section, we show that for small sets S of prime fields Fp, the error is
often much larger.

2. Preliminaries

Throughout this section, let q be an odd prime power and let n, k be positive integers
such that 4k < n ≤ q . Suppose S = {s1, . . . , sn} ⊂ Fq , and

f (x)=
4k−1∑
j=0

aj x j
∈ Fq [x]

is chosen uniformly at random.
We denote by #Q R, #N R and #R the numbers of si ∈ S such that f (si ) is an

invertible quadratic residue, a quadratic nonresidue and zero in Fq , respectively.
Then, n=#Q R+#N R+#R. It follows that, provided the curve E : y2

= f (x) forms
a hyperelliptic curve of degree 4k−1 over Fq , the discrepancy we are interested in is

|#E(Fq , S)− n| = |2 #Q R+ #R− n| = |#Q R− #N R|. (1)

This suggests we look at the random variables

X i =

(
f (si )

q

)
,

where
(a

q

)
is the Legendre symbol defined as

(
a
q

)
=


0 if a is the zero in Fq ,

1 if a is a nonzero square in Fq ,

−1 otherwise.

We note that among all polynomials f (x) ∈ Fq [x] of degree at most 3, only a
small fraction fail to form elliptic curves. Indeed, the exceptions, where f (x) has
degree strictly less than 3 or has multiple roots, contribute q3

+q2(q− 1) of all the
q4 polynomials considered. When q is large, such exceptions are negligible. This
situation generalizes to hyperelliptic curves.
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Lemma 3. Let q be a prime power, k be a positive integer and Fq [x]4k−1 be the set
of polynomials in Fq [x] of degree at most 4k−1. Then at most a 2/q fraction of the
polynomials in Fq [x]4k−1 fail to define a hyperelliptic curve of degree 4k− 1.

Proof. A polynomial in Fq [x] defines a hyperelliptic curve precisely when it is
separable, or equivalently when it is square-free because finite fields are perfect.
As shown in [Carlitz 1932], the number of monic square-free polynomials in
Fq [x] of degree 4k − 1 is q4k−1

− q4k−2. Thus, accounting for scaling, there are
(q − 1)(q4k−1

− q4k−2) polynomials in Fq [x] that define a hyperelliptic curve of
degree 4k− 1. Therefore, the fraction of those polynomials in Fq [x] of degree at
most 4k− 1 that do not is

q4k
− (q − 1)(q4k−1

− q4k−2)

q4k =
2q4k−1

− q4k−2

q4k <
2
q
. �

Hence, the probability that, among all hyperelliptic curves of degree 4k − 1
over Fq , the discrepancy (1) is larger than some δ

√
n is at least the probability that,

among all polynomials of degree at most 4k− 1 over Fq , the absolute value of the
sum of the random variables X i is larger than the same δ

√
n minus 2/q; i.e.,

P(|#E(Fq , S)− n|>δ
√

n)≥ P

(∣∣∣∣ n∑
i=1

X i

∣∣∣∣>δ√n
)
−

2
q
. (2)

In the next two subsections, we will first estimate the higher moments

Ej := E

((
1
√

n

n∑
i=1

X i

)j)
, where 1≤ j ≤ 4k,

by finding their main order, and then give lower bounds on the interested probabilities
involving the random variables X i .

2.1. Estimating E2k and E4k. Since f (x)∈Fq [x] is a random polynomial of degree
at most 4k− 1, the random variables X i exhibit 4k-wise independence. Indeed, by
solving a system of linear equations, the number of polynomials f (x) in Fq [x] of
degree at most 4k− 1 satisfying

f (si1)= r1, f (si2)= r2, . . . , f (si`)= r`

is exactly q4k−`, given `≤ 4k, r1, . . . , r` ∈ Fq and distinct i1, . . . , i` ∈ {1, . . . , n}.
Thus,

E(Xh1
i1
· · · Xh`

i` )=
∑

r1,...,r`∈Fq

P( f (si1)=r1, . . . , f (si`)=r`)
(

r1

q

)h1

· · ·

(
r`
q

)h`

=

∑
r1,...,r`∈Fq

q4k−`

q4k

(
r1

q

)h1

· · ·

(
r`
q

)h`
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=

[∑
r1∈Fq

1
q

(
r1

q

)h1
]
· · ·

[∑
r`∈Fq

1
q

(
r`
q

)h`]

=

[∑
r1∈Fq

P( f (si1)=r1)

(
r1

q

)h1
]
· · ·

[∑
r`∈Fq

P( f (si`)=r`)
(

r`
q

)h`]
= E(Xh1

i1
) · · · E(Xh`

i` ).

We also note that the random variables X i only take the values 0, 1,−1, and so
X2h−1

i = X i and X2h
i = X2

i for all h ≥ 1. Also, by convention, X0
i = 0. Therefore

we have

E(X2h−1
i )= E(X i )=

∑
r∈Fq

P( f (si )=r)
(

r
q

)
=

∑
r∈Fq

1
q

(
r
q

)
= 0,

E(X2h
i )= E(X2

i )=
∑
r∈Fq

P( f (si )=r)
(

r
q

)2

=

∑
r∈Fq

1
q

(
r
q

)2

= 1−
1
q
.

To summarize the above two observations, we have the following lemma:

Lemma 4. Let ` ≤ 4k, let h1, . . . , h` be positive integers, and let i1 . . . , i` be
distinct numbers from {1, . . . , n}. Then,

E(Xh1
i1
· · · Xh`

i` )=

{
(1− 1/q)` if h1, . . . , h` are all even numbers,
0 otherwise.

Before we estimate the general Ej , let us compute E6 (when k ≥ 2) as a toy
version:

E6 = E

(
1
√

n

n∑
i=1

X i

)6

=
1
n3

( n∑
i=1

E(X6
i )+

6!
4! 2!

∑
i 6= j

E(X4
i X2

j )+
6!

2! 2! 2!

∑
i< j<k

E(X2
i X2

j X2
k )

)

=
1
n3

(
n
(
1− 1

q

)
+ 15n(n− 1)

(
1− 1

q

)2
+ 90

(n
3

)(
1− 1

q

)3)
= 15

(
1− 1

q

)3
−

15
n

(
1− 1

q

)2(
2− 3

q

)
+

1
n2

(
1− 1

q

)(
16− 45

q
+

30
q2

)
.

We derive in the lemma below how the number 15 in the leading term can be
expressed in terms of j = 6.

Lemma 5. For 1≤ j ≤ 4k, we have

Ej =


j !

2 j/2( j/2)!
+ Oj

(1
n

)
as n→∞, if j is an even number,

0 otherwise.



760 KRISTINA NELSON, JÓZSEF SOLYMOSI, FOSTER TOM AND CHING WONG

Proof. If j is an odd number, then every term in the multinomial expansion has at
least one odd index, and hence vanishes by Lemma 4.

Suppose now that j is an even integer. Using the multinomial theorem and
Lemma 4, we have

Ej =
1

n j/2 E

(( n∑
i=1

X i

)j)
=

1
n j/2 E

( ∑
h1+···+hn= j

j !
h1! · · · hn!

n∏
t=1

Xht
t

)

=
1

n j/2

∑
h1+···+hn= j

j !
h1! · · · hn!

E

( n∏
t=1

Xht
t

)

=
1

n j/2

∑
h1+···+hn= j

hi even

j !
h1! · · · hn!

(
1−

1
q

)#{i :hi>0}

=
1

n j/2

j/2∑
m=1

(
1−

1
q

)m

H( j,m),

where

H( j,m)=
∑

h1+···+hn= j
hi even

#{i :hi>0}=m

j !
h1! · · · hn!

=

( n
m

) ∑
h′1+···+h′m= j

h′i>0 even

j !
h′1! · · · h

′
m !

is a polynomial (with integer coefficients) in n of degree m. Therefore, the leading
term of Ej comes from the summand where m = j/2. In this case, h′i = 2 for every
1≤ i ≤ j/2 and so

H( j, j/2)=
( n

j/2

) j !
2 j/2

has leading term
j !

( j/2)!2 j/2 n j/2.

It follows that

Ej =
1

n j/2

((
1− 1

q

)j/2 j !
( j/2)! 2 j/2 n j/2

+ · · ·

)
=

(
1− 1

q

)j/2 j !
( j/2)! 2 j/2 + Oj

(1
n

)
=

j !
( j/2)! 2 j/2 + Oj

(1
n

)
as n→∞. �

In particular, for each fixed k,

E2k =
(2k)!
2kk!
+ Ok

(1
n

)
is bounded uniformly in n ≥ 1. As a consequence, one can have the following
estimates, which will be used later in our proof, using Stirling’s approximation. For
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all fixed k ≥ 1, we have

2k
√

E2k ≥

√
2k
e
+ Ok

(1
n

)
(3)

and
E2

2k

E4k
≥

(√2π
e

)3
21/2−2k

+ Ok

(1
n

)
(4)

as n→∞.

2.2. Lower bounds for the probabilities.

Proposition 6. Under the setting stated in the beginning of this section, we have

P

(∣∣∣∣ 1
√

n

n∑
i=1

X i

∣∣∣∣>δ)≥ (E2k − δ
2k)2

E4k − 2δ2kE2k + δ4k (5)

for any 0< δ < 1
2 , and

P

(∣∣∣∣ 1
√

n

n∑
i=1

X i

∣∣∣∣≥ 2k
√

E2k − ε
1/2−o(1)

)
≥ ε > 0 (6)

as ε→ 0.

Proof. Let c ≥ 1 be a parameter to be determined. Using the second-moment
Markov inequality, one can show that for 0< λ < c2k,

P

(∣∣∣∣ 1
√

n

n∑
i=1

X i

∣∣∣∣> 2k
√

ck −
√
λ

)
= P

((
1
√

n

n∑
i=1

X i

)2k

− ck >−
√
λ

)

≥ P

(∣∣∣∣( 1
√

n

n∑
i=1

X i

)2k

− ck
∣∣∣∣<√λ)

≥ 1−
1
λ

E

(((
1
√

n

n∑
i=1

X i

)2k

− ck
)2)

= 1−
c2k
− 2ckE2k + E4k

λ
. (7)

To prove (5), we take λ = (ck
− δ2k)2, where δ > 0 is small. Maximizing the

right-hand side of (7) over c, we see that the maximum is

1−
c2k
− 2ckE2k + E4k

(ck − δ2k)2
=

(E2k − δ
2k)2

E4k − 2δ2kE2k + δ4k ,

when

ck
=

E4k − δ
2kE2k

E2k − δ2k .
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Now we prove (6). To make

P

(∣∣∣∣ 1
√

n

n∑
i=1

X i

∣∣∣∣> 2k
√

ck −
√
λ

)
≥ ε,

we take

λ=
c2k
− 2ckE2k + E4k

1− ε
.

Since we require c2k > λ, it follows that

c2k
− 2ckE2k + E4k < c2k

− c2kε,

and therefore

η := εck < 2E2k −
E4k

ck < 2E2k .

To compute the leading terms of 2k
√

ck −
√
λ as ε→ 0, we first use the binomial

series to expand the numerator of
√
λ as

ck

√
1−

(
2E2k

ck −
E4k

c2k

)
= ck

(
1− E2k

1
ck +

E4k − E2
2k

2
1

c2k + O
(

1
c3k

))
(8)

as c→∞. Indeed, the bracket inside the square root in (8) is small in view of
Lemma 5. To get

√
λ, we multiply (8) by

1
√

1− ε
= 1+ 1

2ε+
3
8ε

2
+ O(ε3).

Substituting ck
= η/ε, we have

ck
−
√
λ=

η

ε

[
1−

(
1+ 1

2
ε+

3
8
ε2
+O(ε3)

)(
1−

E2k

η
ε+

E4k−E2
2k

2η2 ε2
+O

(
ε3

η3

))]
= E2k−

1
2
η+

(
E2

2k−E4k

2
+

E2k

2
η−

3
8
η2
)
ε

η
+O

(
ε2

η2

)
.

We may now take η satisfying
√
ε� η� 1 so that the terms in the last line are

indeed arranged in decreasing order of magnitude. Therefore,

2k
√

ck −
√
λ=

2k
√

E2k − ε1/2−o(1) = 2k
√

E2k − ε
1/2−o(1)

as ε→ 0, establishing (6). �

3. Proofs of the theorems

Proof of Theorem 1. Write n = #S, as in Section 2. Given ε > 0, we choose N large
enough so that 2/N < ε/3, and the error appearing in (4) has an absolute value less
than ε/3.
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Since E4k > E2k ≥
1
2 , there exists a small δ > 0 such that∣∣∣∣ (1− δ2k/E2k)

2

1− 2δ2k(E2k/E4k)+ δ4k(1/E4k)
− 1

∣∣∣∣< ε

3
E4k

E2
2k

.

Together with (2), (5) and (4), we have

P(|#E(Fq , S)− n|>δ
√

n)≥ P

(∣∣∣∣ n∑
i=1

X i

∣∣∣∣>δ√n
)
−

2
q

≥
E2

2k

E4k

(1− δ2k/E2k)
2

1− 2δ2k(E2k/E4k)+ δ4k(1/E4k)
−
ε

3

≥
E2

2k

E4k
−
ε

3
−
ε

3
≥

(√
2π
e

)3

21/2−2k
− ε,

as desired. �

Proof of Theorem 2. Similarly we write n=#S. Using the estimate (3), we choose N
so large and ε so small that the following lower bound implied by (6) is large:

2k
√

E2k − ε
1/2−o(1) > 0.8577

√
k.

Here 0.8577 is a number strictly smaller than
√

2/e. Now, increasing N if necessary,
we also have 2/N < ε/2. Then, by (2) and (6), we have

P
(
|#E(Fq , S)− n|>0.8577

√
k
√

n
)
≥ P

(∣∣∣∣ n∑
i=1

X i

∣∣∣∣>0.8577
√

k
√

n
)
−

2
q

≥ P

(∣∣∣∣ n∑
i=1

X i

∣∣∣∣>( 2k
√

E2k − ε
1/2−o(1))

√
n
)
−
ε

2

≥
ε

2
. �

4. Sets with exceptionally large discrepancy

So far we have considered sets of arbitrarily large size. We will show, as one
may expect, that if n is a constant, then for each prime p large enough, there is a
probability α>0 that the error is much larger than

√
n for β

(p
n

)
of the subsets S⊂Fp

of size n. In particular, for each n, there is a probability 2−n−1 that a randomly
chosen subset S ⊂ Fp of size n has the following property — a randomly chosen
monic separable cubic f over Fp has a probability 2−n−1 so that f (S) consists only
of nonzero quadratic residues or quadratic nonresidues.

Let F be the set of monic, separable cubics over Fp. Note that #F = p3
− p2.

Let m, n be constants independent of p such that n− 2m >
√

n. We construct a
bipartite graph G with

(p
n

)
“S-vertices” in one partition, each associated with a
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set S ⊂ Fp of size n, and p3
− p2 “ f -vertices” in the other, each associated with

an f ∈ F. We draw an edge between the vertex corresponding to f and the vertex
corresponding to S when ∣∣∣∣∑

si∈S

(
f (si )

p

)∣∣∣∣≥ n− 2m.

Fix f ∈ F , and let Q⊂ Fp be the set of points mapped by f to a nonzero quadratic
residue, and N ⊂ Fp be those points mapped to a nonresidue. Let p/2+ A f be the
size of the larger of these two sets. Then the degree of the vertex associated to f
in G is at least ( p/2−A f

m

)( p/2+A f

n−m

)
. (9)

By Hasse’s theorem we have A f ≤
√

p, and so (9) is bounded below by( p/2−
√

p
m

)( p/2−
√

p
n−m

)
=

( p
n

)[( n
m

)
2−n
+ o(1)

]
as p→∞. Thus the number of edges in our graph, E , is at least( p

n

)[( n
m

)
2−n
+ o(1)

]
(p3
− p2).

Now if only β
(p

n

)
of the S-vertices achieve degree at least α(p3

− p2), then we have

E ≤ β
( p

n

)
(p3
− p2)+

( p
n

)
(1−β)α(p3

− p2),

and so
β ≥

1
1−α

[( n
m

)
2−n
−α+ o(1)

]
> 0

as p→∞, provided that α > 0 is small enough.
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Space-efficient knot mosaics for
prime knots with mosaic number 6

Aaron Heap and Douglas Knowles

(Communicated by Kenneth S. Berenhaut)

In 2008, Kauffman and Lomonaco introduced the concepts of a knot mosaic and
the mosaic number of a knot or link K, the smallest integer n such that K can
be represented on an n-mosaic. In 2018, the authors of this paper introduced
and explored space-efficient knot mosaics and the tile number of K, the smallest
number of nonblank tiles necessary to depict K on a knot mosaic. They determine
bounds for the tile number in terms of the mosaic number. In this paper, we focus
specifically on prime knots with mosaic number 6. We determine a complete list
of these knots, provide a minimal, space-efficient knot mosaic for each of them,
and determine the tile number (or minimal mosaic tile number) of each of them.

1. Introduction

Mosaic knot theory was first introduced in [Lomonaco and Kauffman 2008] and
was later proven to be equivalent to tame knot theory in [Kuriya and Shehab 2014].
The idea of mosaic knot theory is to create a knot or link diagram on an n× n grid
using mosaic tiles selected from the collection of 11 tiles shown below. The knot
or link projection is represented by arcs, line segments, or crossings drawn on each
tile. These tiles are identified, respectively, as T0, T1, T2, . . . , T10. Tile T0 is a blank
tile, and we refer to the rest collectively as nonblank tiles.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

A connection point of a tile is a midpoint of a tile edge that is also the endpoint
of a curve drawn on the tile. A tile is suitably connected if each of its connection
points touches a connection point of an adjacent tile. An n × n knot mosaic, or
n-mosaic, is an n× n matrix whose entries are suitably connected mosaic tiles. As
is customary in the literature of knot mosaic theory, the term “knot mosaic” is used

MSC2010: primary 57M25; secondary 57M27.
Keywords: knots, knot mosaic, mosaic number, tile number, crossing number, space-efficient.
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trefoil knot Hopf link figure-8 knot

Figure 1. Examples of knot mosaics.

for the mosaic, even when the resulting diagram on the mosaic depicts a link. See
Figure 1 for some examples.

When listing prime knots with crossing number 10 or less, we will use the
Alexander–Briggs notation, matching the table of knots in [Rolfsen 1976]. This
notation names a knot according to its crossing number with a subscript to denote
its order amongst all knots with that crossing number. For example, the 74 knot
is the fourth knot with crossing number 7 in Rolfsen’s table of knots. For knots
with crossing number 11 or higher, we use the Dowker–Thistlethwaite name of the
knot. This also names a knot according to its crossing number, with an “a” or “n”
to distinguish the alternating and nonalternating knots and a subscript that denotes
the lexicographical ordering of the minimal Dowker–Thistlethwaite notation for the
knot. For example 11a7 is the seventh alternating knot with crossing number 11,
and 11n3 is the third nonalternating knot with crossing number 11. For more details
on these and other relevant information on traditional knot theory, we refer the
reader to [Adams 1994].

The mosaic number of a knot or link K is the smallest integer n for which
K can be represented as an n-mosaic. The mosaic number has previously been
determined for every prime knot with crossing number 8 or less. For details, see
[Lee, Ludwig, Paat, and Peiffer 2018]. In particular, it is known that the unknot has
mosaic number 2, the trefoil knot has mosaic number 4, the 41, 51, 52, 61, 62, and 74

knots have mosaic number 5, and all other prime knots with crossing number 8 or
less have mosaic number 6. In this paper, we determine the rest of the prime knots
that have mosaic number 6, which includes prime knots with crossing numbers
from 9 up to 13. This confirms, in the case where the mosaic number is m = 6,
a result of [Howards and Kobin 2018], where they find that the crossing number
is bounded above by (m− 2)2

− 2 if m is odd, and by (m− 2)2
− (m− 3) if m is

even. We also determine that not all knots with crossing number 9 (or higher) have
mosaic number 6.

Another number associated to a knot mosaic is the tile number of a mosaic,
which is the number of nonblank tiles used to create the mosaic. From this we
get an invariant called the tile number t (K ) of a knot or link K, which is the least
number of nonblank tiles needed to construct K on a mosaic of any size. In [Heap
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and Knowles 2018], the authors explored the tile number of a knot or link and
determined strict bounds for the tile number of a prime knot K in terms of the
mosaic number m ≥ 4. Specifically, if m is even, then 5m−8≤ t (K )≤m2

−4. If m
is odd, then 5m−8≤ t (K )≤m2

−8. It follows immediately that the tile number of
the trefoil knot must be 12, and the tile number of the prime knots mentioned above
with mosaic number 5 must be 17. The authors also listed several prime knots with
mosaic number 6 that have the smallest possible tile number t (K )= 22, which we
summarize in Theorem 1. In this paper, we confirm that this list is complete. Knot
mosaics in which the tile number is realized for each of these mosaics are given in
[Heap and Knowles 2018] and also in the table of mosaics in the online supplement
of this paper.

Theorem 1 [Heap and Knowles 2018]. The following knots have the given tile
numbers:

(a) Tile number 4: unknot.

(b) Tile number 12: trefoil knot.

(c) Tile number 17: 41, 51, 52, 61, 62, 74.

(d) Tile number 22: 63, 71, 72, 73, 75, 76, 77, 81, 82, 83, 84, 87, 88, 89, 813, 95, 920.

Finally, in [Heap and Knowles 2018], the authors determine all of the possible
layouts for any prime knot on an n-mosaic for n ≤ 6. In this paper, we complete
that work by determining which prime knots can be created from those layouts.

We also point out that throughout this paper we make significant use of the
software package Knotscape [Thistlethwaite and Hoste 1999] to verify that a given
knot mosaic represents a specific knot. Without this program, we would not have
been able to complete the work.

2. Space-efficient knot mosaics

Two knot mosaic diagrams are of the same knot type (or equivalent) if we can
change one to the other via a sequence of mosaic planar isotopy moves that are
analogous to the planar isotopy moves for standard knot diagrams. An example
of this is shown in Figure 2. A complete list of all of these moves is given and
discussed in [Lomonaco and Kauffman 2008; Kuriya and Shehab 2014]. We will
make significant use of these moves throughout this paper, as we attempt to reduce
the tile number of mosaics in order to construct knot mosaics that use the least
number of nonblank tiles.

A knot mosaic is called minimal if it is a realization of the mosaic number of
the knot depicted on it. That is, if a knot with mosaic number m is depicted on
an m-mosaic, then it is a minimal knot mosaic. A knot mosaic is called reduced

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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Figure 2. Example of mosaic planar isotopy moves.

if there are no unnecessary, reducible crossings in the knot mosaic diagram. See
[Adams 1994] for more on reduced knot diagrams.

We have already defined the tile number of a mosaic and the tile number of a
knot or link. A third type of tile number is the minimal mosaic tile number tM(K )

of a knot or link K, which is the smallest number of nonblank tiles needed to
construct K on a minimal mosaic. That is, it is the smallest possible tile number of
all possible minimal mosaic diagrams for K. Much like the crossing number of a
knot cannot always be realized on a minimal mosaic (such as the 61 knot), the tile
number of a knot cannot always be realized on a minimal mosaic. Note that the tile
number of a knot or link K is certainly less than or equal to the minimal mosaic
tile number of K ; that is, t (K )≤ tM(K ). The fact that the tile number of a knot is
not necessarily equal to the minimal mosaic tile number of the knot is confirmed
later in Theorem 8. However, for prime knots, it is shown in [Heap and Knowles
2018] that tM(K )= t (K ) when tM(K )≤ 27.

A knot n-mosaic is space-efficient if it is reduced and the tile number is as small
as possible on an n-mosaic without changing the knot type of the depicted knot,
meaning that the tile number cannot be decreased through a sequence of mosaic
planar isotopy moves. A knot mosaic is minimally space-efficient if it is minimal
and space-efficient. The first four knot mosaics of the Borromean rings depicted in
Figure 2 are not space-efficient because we can decrease the tile number through the
depicted mosaic planar isotopy moves. In Figure 3, both mosaics are knot mosaic
diagrams of the 51 knot. The first knot mosaic is not space-efficient, but the second
knot mosaic is minimally space-efficient.

In addition to the original 11 tiles T0–T10, we will also make use of nondeter-
ministic tiles, such as those in Figure 4, when there are multiple options for the
tiles that can be placed in specific tile locations of a mosaic. For example, if a tile
location must contain a crossing tile T9 or T10 but we have not yet chosen which,
we will use the nondeterministic crossing tile. Similarly, if we know that a tile
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Figure 3. Space-inefficient and minimally space-efficient knot
mosaics of 51.

Figure 4. Nondeterministic crossing tile and a nondeterministic
tile with four connection points.

location must have four connection points but we do not know if the tile is a double
arc tile (T7 or T8) or a crossing tile (T9 or T10), we will indicate this with a tile that
has four connection points.

In [Heap and Knowles 2018], the authors provide the possible tile numbers (and
the layouts that result in these tile numbers) for all prime knots on a space-efficient
6-mosaic.

Theorem 2 [Heap and Knowles 2018]. If we have a space-efficient 6-mosaic of
a prime knot K for which either every column or every row is occupied, then
the only possible values for the tile number of the mosaic are 22, 24, 27, and 32.
Furthermore, any such mosaic of K is equivalent (up to symmetry) to one of the
following mosaics:

In order to determine all prime knots with mosaic number 6 and their minimal
mosaic tile numbers, we need to determine which prime knots can be depicted on a
knot mosaic with one of the layouts above. To help us with this, we make a few
simple observations. All of these are easy to verify, and any rotation or reflection
of these scenarios is also valid.

Consider the upper, right 3× 3 corner of any space-efficient mosaic of a prime
knot with mosaic number 6 and tile number 22, 27, or 32. (That is, we are
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C C

A B

D

Figure 5. A partially filled block and a filled block, respectively.

considering every option except those with tile number 24.) It must be one of the
two options in Figure 5. All other 3× 3 corners are a rotation of one of these. We
will refer to the first option as a partially filled block and the second option as a
filled block.

Observation 1. In any space-efficient 6-mosaic of a prime knot, the tile in position
C of a partially filled block is either a crossing tile or double arc T7.

This is easy to see, as it must be a tile with four connection points, and the only
space-efficient mosaics that results from using the double arc T8 are composite
knots or links with more than one component. In Figure 6, the first two examples
are valid possibilities, but the third one is not.

Observation 2. In any space-efficient 6-mosaic of a prime knot, there must be at
least two crossing tiles in a filled block.

If there are no crossing tiles in positions A, B, C , and D of the mosaic, then the
mosaic is not space-efficient or it is a link with more than one component. Each
one that is not a link reduces to one of the last two partially filled block options
in Figure 6. If there is only one crossing tile and it is in position A, B, or D,
then the mosaic is not space-efficient. For each option, if we fill the remaining
tile positions with double arc tiles so that the block is suitably connected and we
avoid the obvious inefficiencies we get the options shown in Figure 7. They are
equivalent to each other via a simple mosaic planar isotopy move that rolls the
crossing through each of these positions, and they all reduce to the first partially
filled block in Figure 6. If there is only one crossing tile and it is in position C , then
the mosaic is also not space-efficient and reduces to either of the first two options
in Figure 6.

Figure 6. The first two examples are the only valid possibilities
for a partially filled block.
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Figure 7. Suitably connected filled blocks with one crossing in
position A, B, or D. None are space-efficient.

Observation 3. In a filled block in any space-efficient 6-mosaic of a prime knot,
there are only two distinct possibilities for two crossing tiles, two distinct possibili-
ties for three crossing tiles, and one possibility for four crossing tiles and they are
shown below:

We will refer to the five filled blocks in Observation 3 together with the first
two partially filled blocks in Figure 6 (and reflections and rotations of them) as
building blocks. The observations provide a way for us to easily build all of the
space-efficient 6-mosaics, as long as the tile number is 22, 27, or 32, but not 24.

Observation 4. In any space-efficient 6-mosaic of a prime knot, there is at most
one of the filled block with four crossing tiles or the filled block with two crossings
in positions A and C .

It is quite simple to verify that if there is more than one filled block with four
crossings or more than one filled block with two crossings in positions A and C ,
the resulting mosaic must be a link with more than one component. If we use the
indicated filled building block with two crossing tiles together with a filled block
with four crossing tiles, the resulting mosaic will also be a link with more than one
component. Several examples of these are pictured in Figure 8 with the second link
component in each mosaic colored differently from the first link component.

Figure 8. These layouts will always be multicomponent links.
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3. All prime knots with mosaic number 6

We are now ready to determine the tile number of every prime knot with mosaic
number 6. Theorem 2 says that the only possible tile numbers are 22, 24, 27, and 32.
In order to determine which knots have these tile numbers, we simply compile a
list of the prime knots that can fit within each of the layouts given in Theorem 2.
Because we already know the tile number of every prime knot with crossing number
7 or less, we can restrict our search to knots with crossing number 8 or more. The
process is simple, and the above observations help us tremendously. If the tile
number is 22, 27, or 32, we use the building blocks. In the case of the mosaics with
tile number 24, we look at all possible placements, up to symmetry, of eight or more
crossing tiles within the mosaics and fill the remaining tile positions with double arc
tiles so as to avoid composite knots and nonreduced knots. Once the mosaics are
completed, we then eliminate any links, any duplicate layouts that are equivalent to
others via obvious mosaic planar isotopy moves, and any mosaics for which the
tile number can easily be reduced by a simple mosaic planar isotopy move. Finally,
we use Knotscape to determine what knots are depicted in the mosaic by choosing
the crossings so that they are alternating, as well as all possible nonalternating
combinations. We provide minimally space-efficient knot mosaics for every prime
knot with mosaic number less than or equal to 6 in the table of knots in the online
supplement.

We have already listed several prime knots with tile number 22 in Theorem 1.
This next theorem asserts that the list is complete.

Theorem 3. The only prime knots K with tile number t (K )= 22 are

(a) 63,

(b) 71, 72, 73, 75, 76, 77,

(c) 81, 82, 83, 84, 87, 88, 89, 813,

(d) 95, and 920.

In order to obtain the minimally space-efficient knot mosaic for 73, we had to
use eight crossings. None of the possible minimally space-efficient knot mosaics
with 22 nonblank tiles and exactly seven crossings produced 73. The fewest number
of nonblank tiles needed to represent 73 with only seven crossings is 24, and one
such mosaic is given in Figure 9, along with a minimally space-efficient mosaic of
73 with eight crossings. In summary, on a minimally space-efficient knot mosaic,
for the tile number (or minimal mosaic tile number) to be realized, it might not be
possible for the crossing number to be realized. This is also the case with 81, 83, 87,
88, and 89, as nine crossing tiles are required to represent these knots on a mosaic
with tile number 22.

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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Figure 9. The 73 knot as a minimally space-efficient knot mosaic
with eight crossing tiles and as a knot mosaic with seven crossing
tiles.

Proof. We simply build the first two tile configurations (both with 22 nonblank
tiles) in Theorem 2 using the 3×3 building blocks, eliminate any that do not satisfy
the observations, choose specific crossing types, and see what we get. Whatever
prime knots with eight or more crossings are missing are the ones we know cannot
have tile number 22.

We begin with the first mosaic layout given in Theorem 2. Up to symmetry, there
are only six possible configurations of this layout with eight crossings, and they
are given in Figure 10. Notice that some of these are links that can be eliminated,
including Figures 10(d) and (f). Furthermore, Figures 10(b) and (c) are equivalent
to each other via a mosaic planar isotopy move that shifts one of the crossing tiles to
a diagonally adjacent tile position. This leaves us with only three possible distinct
configurations of eight crossings from this first layout, Figures 10(a), (b), and (e).

Now we do the same thing with the second mosaic layout given in Theorem 2
with 22 nonblank tiles. Up to symmetry, there are six possible configurations of this
layout with eight crossings, and they are given in Figure 11. Again, Figures 11(d)
and (f) are links, and Figures 11(b) and (c) are equivalent to each other. This
leaves us again with only three possible configurations of eight crossings from
this second layout, and they are Figures 11(a), (b), and (e). Moreover, each one
of these is equivalent to the corresponding mosaics in Figure 10 via a few mosaic
planar isotopy moves that shift the crossings in the lower-left building block into
the lower-right building block of the mosaic.

(c)(b)(a) (d) (f)(e)

Figure 10. Possible placements of eight crossing tiles in the first
layout with tile number 22.
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(a) (b) (c) (e)(d) (f)

Figure 11. Possible placements of eight crossing tiles in the second
layout with tile number 22.

This leaves us with only three distinct possible layouts for a minimally space-
efficient 6 × 6 mosaic with eight crossings and tile number 22. If we choose
crossings for the configuration in Figure 10(a) so that they are alternating, we get
the 813 knot. If we choose crossings for the configuration in Figure 10(b) so that
they are alternating, we get the 84 knot. Finally, if we choose crossings for the
configuration in Figure 10(e) so that they are alternating, we get the 82 knot. If we
examine all possible nonalternating choices for each one, all of the resulting knots
have crossing number 7 or less. (The minimally space-efficient knot mosaic for 73

must have eight crossing tiles and can be obtained by a choice of nonalternating
crossings within any of the three distinct possible layouts in Figure 10.)

Now we go through the same process using nine crossing tiles. Up to symmetry,
there are only four possible configurations of these layouts with nine crossings, and
they are given in Figure 12. The mosaic in Figure 12(c) is equivalent to the mosaic
in Figure 12(b) via a few mosaic planar isotopy moves that shift the crossings in
the lower-left building block into the lower-right building block of the mosaic. This
leaves us with only three possible configurations of nine crossing tiles.

If we choose crossings for the configuration in Figure 12(a) so that they are
alternating, we get the 920 knot. If we examine all possible nonalternating choices
for the crossings, most of the resulting knots have crossing number 7 or less, but we
do get some additions to our list of prime knots with tile number 22 and crossing
number 8. In particular, we get 87, 88, and 89. (We also get 84, which was previously
obtained with only eight crossings.) If we choose crossings for the configuration in
Figure 12(b) so that they are alternating, we get the 95 knot. Again, if we examine

(b)(a) (d)(c)

Figure 12. Possible placements of nine crossings with tile number 22.
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the possible nonalternating choices for the crossings, we get two additional prime
knots with tile number 22 and crossing number 8, and they are 81 and 83. Finally,
if we choose crossings for the configuration in Figure 12(d), we get the exact same
knots as we did for Figure 12(a).

By Observation 4, we cannot place more than nine crossing tiles on any mosaic
with 22 nonblank tiles. We have now found every possible prime knot with tile
number 22 and eight or more crossings, and they are exactly those listed in the
theorem. All other prime knots with crossing number at least 8 must have tile
number larger than 22. �

We now know precisely which prime knots have tile number 22 or less. Our next
goal is to determine which prime knots have tile number 24.

Theorem 4. The only prime knots K with tile number t (K )= 24 are

(a) 85, 86, 810, 811, 812, 814, 816, 817, 818, 819, 820, 821,

(b) 98, 911, 912, 914, 917, 919, 921, 923, 926, 927, 931,

(c) 1041, 1044, 1085, 10100, 10116, 10124, 10125, 10126, 10127, 10141, 10143, 10148,
10155 and 10159.

We will show that 86 must have nine crossing tiles to fit on a mosaic with tile
number 24. None of the possible minimally space-efficient knot mosaics with
exactly eight crossings produce these knots. Similarly, the minimally space-efficient
mosaics for 912, 919, 921, and 926 require 10 crossings.

Proof. We search for all of the prime knots that have tile number 24. In this particular
case, the observations at the beginning of this section do not apply, meaning we
cannot use the building blocks as we did in the proof of Theorem 3. We know from
Theorem 2 that any prime knot with tile number 24 has a space-efficient mosaic,
like the third layout there. We simply look at all possible placements of eight or
more crossings within that layout, choose the type of each crossing, and keep track
of the resulting prime knots.

First, we look at all possible placements, up to symmetry, of eight crossings
within the mosaic and, we fill the remaining tile positions with double arc tiles so
as to avoid composite knots and unnecessary loops. After eliminating any links and
any duplicate layouts that are equivalent to others via simple mosaic planar isotopy
moves, we get 17 possible layouts, which are shown in Figure 13. Not all of these
will result in distinct knots, and in most cases it is not difficult to see that they will
result in the same knot. However, we include all of them here because they differ
by more than just simple symmetries or simple mosaic planar isotopy moves.

Choosing specific crossings so that the knots are alternating, we obtain only 14
distinct knots as shown in the following table:
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q)

Figure 13. Only possible layouts, after elimination, with eight
crossing tiles for a prime knot with tile number 24.

Figure 13 knot Figure 13 knot

(a) 81 (j) 811

(b), (c) 82 (k) 812

(d) 84 (l) 813

(e) 85 (m), (n) 814

(f), (g) 87 (o) 816

(h) 88 (p) 817

(i) 810 (q) 818

Not all of these have tile number 24. We already know 81, 82, 84, 87, 88, and 813

have tile number 22. Each of the others have tile number 24. The nonalternating
knots 819, 820, and 821 are obtained by choosing nonalternating crossings in a few
of these. Those pictured in the table of knots come from the layout in Figure 13(p).
Mosaics for all of these are given in the table of knots in the online supplement. The
only knots with crossing number 8 that we have not yet found are 86 and 815, and now
we know that they cannot be represented with eight crossings and 24 nonblank tiles.

We now turn our attention to mosaics with nine crossings. Just as before, we
look at all possible placements, up to symmetry, of nine crossings, eliminate
any composite knots, unnecessary loops, links and any duplicate layouts that are
equivalent to others via simple mosaic planar isotopy moves. In the end, we get

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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(a) (b) (c) (d)

(e) (f) (g)

Figure 14. Only possible layouts, after elimination, with nine
crossing tiles for a prime knot with tile number 24.

seven possible layouts, which are shown in Figure 14. Choosing specific crossings
for each layout, in order, so that the knots are alternating, we obtain the seven knots
98, 911, 914, 917, 923, 927, and 931, all of which have tile number 24. If we look at all
possible choices for nonalternating crossings, the only knot with tile number 24 that
arises but did not show up with only eight crossing tiles is the 86 knot, whose knot
mosaic in the table of knots comes from the layout in Figure 14(a). All other prime
knots that arise using nonalternating crossings have been exhibited as a minimally
space-efficient mosaic with fewer crossings or fewer nonblank tiles.

Now we do the same for 10 crossings. Again, we observe all possible placements
of 10 crossings on the third mosaic in Theorem 2, and after eliminating any links
and duplicate layouts up to reflection, rotation, or equivalencies via simple mosaic
planar isotopy moves, we end up with five possible layouts, shown in Figure 15.

We begin with Figure 15(a). Choosing specific crossings so that the knot is alter-
nating, we obtain the 10116 knot. If we look at all possible choices for nonalternating
crossings, the only prime knots that we get with tile number 24 are the nonalternating
knots 10124, 10125, 10141, 10143, 10155, and 10159. We do the same with Figure 15(b)
and get the alternating knot 10100. For the nonalternating choices, we get almost
all of the same ones we just obtained, but we do not get any new additions to our
list of knots. For Figure 15(c), with alternating crossings we get 1041, and with
nonalternating crossings we get 919 and 921 as the only new additions to our list.
Neither of these came from considering only nine crossings. Now we observe
the mosaic in Figure 15(d). By alternating the crossings, we obtain 1044, and by
using nonalternating crossings, the only new additions to our list are 912 and 926.
Finally, we end with Figure 15(e). Assigning alternating crossings, we get 1085,
and assigning nonalternating crossings, we get 10126, 10127, and 10148.
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(a) (b) (c) (d) (e)

Figure 15. Only possible layouts, after elimination, with 10 cross-
ing tiles for a prime knot with tile number 24.

Finally, we can place 11 or 12 crossing tiles into the layout with 24 nonblank
tiles, but the space-efficient results will always be a link with more than one
component. Therefore, no minimally space-efficient prime knot mosaics arise from
this consideration. We have considered every possible placement of crossing tiles
on the third layout in Theorem 2 and have found every possible prime knot with
tile number 24 and eight or more crossings, and they are exactly those listed in
the theorem. Minimally space-efficient mosaics for all of these knots are given in
the table of knots in the online supplement. All other prime knots with crossing
number at least 8 must have tile number larger than 24. �

We now know precisely which prime knots have tile number less than or equal
to 24, and we are ready to determine which prime knots with mosaic number 6
have tile number 27. We see our first occurrence of knots with crossing number
larger than 10, and we use the Dowker–Thistlethwaite name of the knot.

Theorem 5. The only prime knots K with mosaic number 6, tile number t (K )= 27,
and minimal mosaic tile number tM(K )= 27 are

(a) 815,

(b) 91, 92, 93, 94, 97, 99, 913, 924, 928, 937, 946, 948,

(c) 101, 102, 103, 104, 1012, 1022, 1028, 1034, 1063, 1065, 1066, 1075, 1078, 10140,
10142, 10144,

(d) 11a107, 11a140, and 11a343.

Notice that this theorem is only referring to prime knots with mosaic number 6.
There are certainly prime knots with tile number 27 and mosaic number 7 that are
not included in this theorem. Also, the requirement that the tile number equals the
minimal mosaic tile number is necessary here. As far as we know now (and will
verify below), there are knots with mosaic number 6 and tile number 27 which have
minimal mosaic number 32. Some of these are listed in the next theorem. Finally,
notice that up to this point we have determined the tile number for every prime knot
with crossing number 8 or less.

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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(a) (b) (c) (d) (e) (f) (g)

Figure 16. The seven building blocks resulting from the observa-
tions at the beginning of this section.

Again we claim that the minimally space-efficient mosaics for 93, 94, 913, 937,
946, and 948 must have 10 crossing tiles. The minimally space-efficient mosaics
for 97, 99, and 924 must have 11 crossing tiles. None of the possible minimally
space-efficient knot mosaics with exactly nine crossing tiles produce these knots.
Similarly, the minimally space-efficient mosaics for 101, 103, 1012, 1022, 1034, 1063,
1065, 1078, 10140, 10142, and 10144 require 11 crossing tiles.

Proof. Similar to what we did in the proof of Theorem 3, we search for all of
the prime knots that have mosaic number 6 and tile number 27, which have a
space-efficient mosaic as depicted in the fourth layout of Theorem 2. We simply
build this layout using the 3× 3 building blocks that result from the observations at
the beginning of this section, shown again in Figure 16. We then choose specific
crossing types for each crossing tile and see what knots we get.

For bookkeeping purposes, we note that the knot 815 has tile number 27, and this
is the only knot with crossing number 8 for which we have not previously found
the tile number. A minimally space-efficient mosaic for it is included in the table of
knots in the online supplement. We now know the tile number for every prime knot
with crossing number 8 or less, and from here we restrict our search to mosaics
with nine or more crossing tiles.

Before we get started placing crossing tiles, we make a few more simple obser-
vations that apply to this particular case and help us reduce the number of possible
configurations. Observe that if we place a partially filled building block with no
crossing adjacent to the filled building block with two crossing tiles in Figure 16(c),
the resulting mosaic will always reduce to a mosaic with tile number 22. The same
result holds if the two blocks are not adjacent and one of the adjacent blocks is the
filled building block with three crossings depicted in Figure 16(e). The mosaics in
Figure 17 exhibit these scenarios. The same result also holds if the partially filled
building block with one crossing is combined with two of the filled building blocks
with two crossing tiles shown in Figure 16(c). Depending on the placement of these
two filled blocks, the result will be equivalent to either Figure 17(a) or Figure 17(b)
via a simple mosaic planar isotopy move that shifts the crossing in the partially
filled block to another block.

First, we consider nine crossing tiles with the above observations in mind, together
with the observations at the beginning of this section. Up to symmetry, there are

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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(a) (b)

Figure 17. These two mosaics are not minimally space-efficient.

only nine possible configurations of the building blocks after we eliminate the links,
duplicate layouts that are equivalent to others via simple mosaic planar isotopy
moves, and any mosaics for which the tile number can easily be reduced by a simple
mosaic planar isotopy move. They are shown in Figure 18. Not all of these will
result in distinct knots, and in several cases it is not difficult to see that they will
result in the same knot. However, we include all of them here because they differ
by more than just symmetries or a simple mosaic planar isotopy move.

Choosing specific crossings so that the knots are alternating, we obtain only
seven distinct knots. The only ones with tile number 27 are Figure 18(a), which
gives the 91 knot, Figure 18(b), which gives us 92, and Figures 18(h) and (i),
which give us 928. Each of the remaining layouts give knots with tile number less
than 27. In particular, Figures 18(c) and (d) are 98, Figures 18(e) and (f) are 917,
and Figure 18(g) is 920. None of these configurations give nonalternating knots
with crossing number 9.

Second, we do the same for 10 crossings. Again, we use the building blocks to
build all possible configurations of the crossings, and up to symmetry, there are only

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 18. Only possible layouts, after elimination, with nine
crossing tiles for a prime knot with tile number 27.
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(a) (b) (c) (d) (e) (f)

Figure 19. Only possible layouts, after elimination, with 10 cross-
ing tiles for a prime knot with tile number 27.

six possibilities after eliminating any links and duplicate layouts that are equivalent
via simple mosaic planar isotopy moves. These are shown in Figure 19.

Choosing specific crossings so that the knots are alternating, we obtain only
five distinct knots, all of which have tile number 27. In particular, Figure 19(a)
becomes the 102 knot, Figure 19(b) becomes 104, Figures 19(c) and (d) become 1028,
Figure 19(e) becomes 1066, and Figure 19(f) becomes 1075. Choosing nonalternating
crossings, we also get some knots with crossing number 9, but we do not obtain any
nonalternating knots with crossing number 10. We can get 93 from Figure 19(a), 94

from Figure 19(b), 913 from Figure 19(c), and 937, 946, and 948 from Figure 19(f).
All other knots that are obtained by considering nonalternating crossings can be
drawn with fewer crossings or a lower tile number.

Third, we consider the case where the mosaic has 11 crossing tiles. In this
instance, we end up with the five possible layouts shown in Figure 20, and again,
not all of these are distinct. Choosing alternating crossing in each layout results in
three distinct knots with crossing number 11. Figures 20(a) and (b) become 11a107,
Figures 20(c) and (d) become 11a140, and Figure 20(e) becomes 11a343. (Note
that, for knots with crossing number greater than 10, we are using the Dowker–
Thistlethwaite name of the knot.) Choosing nonalternating crossings in each of the
layouts results in several knots with crossing number 9 or 10. In particular, we can
obtain the knots 924, 1063, 1065, 1078, 10140, 10142, and 10144 from Figure 20(a).
We can obtain 97, 99, 1012, 1022, and 1034 from Figure 20(c). And we can obtain
101 and 103 from Figure 20(e). All of these are shown in the table of knots in the
online supplement. All other knots that are obtained by considering nonalternating
crossings can be drawn with fewer crossings or a lower tile number.

Finally, by Observation 4 we do not need to consider 12 or more crossing tiles
in this layout, as no minimally space-efficient prime knot mosaics arise from this
consideration. We have considered every possible placement of nine or more
crossing tiles on the fourth layout in Theorem 2 and have found every possible
prime knot with mosaic number 6 and tile number 27. They are exactly those listed
in the theorem. All other prime knots with crossing number at least 9 and mosaic
number 6 must have minimal mosaic tile number 32. �

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf


784 AARON HEAP AND DOUGLAS KNOWLES

(a) (b) (c) (d) (e)

Figure 20. Only possible layouts, after elimination, with 11 cross-
ing tiles for a prime knot with tile number 27.

Now we know the tile number for every prime knot with crossing number less
than or equal to 8. Theorems 3, 4, and 5 tell us the tile number of some of the prime
knots with crossing numbers 9, 10, and 11. Furthermore, we know that all other
prime knots with mosaic number 6 must have minimal mosaic tile number 32 but
not necessarily tile number 32. One problem that complicates the next step is that,
as of the writing of this paper, we do knot know the mosaic number of all prime
knots with crossing number 9 or more. That is, we do not know all prime knots
with mosaic number 6. For this reason, we need to go through the same process
as we did in the preceding proofs to determine which prime knots have mosaic
number 6 and minimal mosaic tile number 32. By doing this, we will also be able to
determine which prime knots have mosaic number greater than 6. The good news is
that this is the final step in determining which prime knots have mosaic number 6 or
less and determining the tile number or minimal mosaic tile numbers of all of these.

Theorem 6. The only prime knots K with mosaic number 6 and minimal mosaic
tile number tM(K )= 32 are

(a) 910, 916, 935,

(b) 1011, 1020, 1021, 1061, 1062, 1064, 1074, 1076, 1077, 10139,

(c) 11a43, 11a44, 11a46, 11a47, 11a58, 11a59, 11a106, 11a139, 11a165, 11a166, 11a179,
11a181, 11a246, 11a247, 11a339, 11a340, 11a341, 11a342, 11a364, 11a367,

(d) 11n71, 11n72, 11n73, 11n74, 11n75, 11n76, 11n77, 11n78,

(e) 12a119,12a165, 12a169, 12a373, 12a376, 12a379, 12a380, 12a444,12a503, 12a722,
12a803, 12a1148, 12a1149, 12a1166,

(f) 13a1230, 13a1236, 13a1461, 13a4573,

(g) 13n2399, 13n2400, 13n2401, 13n2402, and 13n2403.

Notice again our restriction to prime knots with mosaic number 6. Additionally,
notice that this theorem only refers to the minimal mosaic tile number of the knot,
not the tile number. Again, this is because we only know that these two numbers
are equal when they are less than or equal to 27. Some of these knots may have
(and actually do have) tile number less than 32.
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Figure 21. Only possible layout, after elimination, with nine cross-
ing tiles for a prime knot with minimal mosaic tile number 32.

We claim that the minimally space-efficient mosaics for 910, 916, 1020, 1021, and
1077 need 11 crossing tiles. The minimally space-efficient mosaics for 935, 1011,
1062, 1064, 1074, 10139, 11a106, 11a139, 11a166, 11a181, 11a341, 11a342, and 11a364

need 12 crossing tiles. And the minimally space-efficient mosaics for 1061, 1076,
11a44, 11a47, 11a58, 11n76, 11n77, 11n78, 11a165, 11a246, 11a339, 11a340, 12a119,
12a165, 12a169, 12a376, 12a379, 12a444, 12a803, 12a1148, and 12a1166 need 13 crossing
tiles.

Proof. We simply go through the same process that we did in the previous proof.
We search for all of the prime knots that have mosaic number 6 and minimal mosaic
tile number 32. Whatever prime knots that do not show up in this process and that
we have not previously determined the tile number for must have mosaic number
greater than 6. We know from Theorem 2 that any prime knot with mosaic number 6
and minimal mosaic tile number 32 has a space-efficient mosaic with the fifth and
final layout shown there.

As we have done several times previously, we use the building blocks to achieve
all possible configurations, up to symmetry, of nine or more crossings within this
mosaic. For this particular layout, we can only use the filled blocks, not the partially
filled blocks. We can eliminate any layouts that do not meet the requirements of the
observations, any multicomponent links, any duplicate layouts that are equivalent
to others via simple mosaic planar isotopy moves, and any mosaics for which the
tile number can easily be reduced by a simple mosaic planar isotopy move.

First, in the case of nine crossings, after we eliminate the unnecessary layouts we
end up with only one possibility, and it is shown in Figure 21. However, once we
choose specific crossings in an alternating fashion, it is the knot 98, which has tile
number 24. Nothing new arises from considering nonalternating crossings either.

Second, we do the same for 10 crossings, and we end up with five possible
layouts, shown in Figure 22. Choosing alternating crossings in each one, we again
fail to get any prime knots with minimal mosaic tile number 32. Figure 22(a) is 101,
Figure 22(b) and (c) are 1034, and Figures 22(d) and (e) are 1078. Nothing new
arises from considering nonalternating crossings either.

Third, we consider the case where the mosaic has 11 crossing tiles. In this
instance, we end up with the 10 possible layouts shown in Figure 23. With alternating
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(a) (b) (c) (d) (e)

Figure 22. Only possible layouts, after elimination, with 10 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.

crossings, the first layout is 11a140, which we already know has tile number 27. The
remaining layouts, given alternating crossings, lead to six distinct knots with minimal
mosaic tile number 32, and with nonalternating crossings we get 10 additional
knots that have minimal mosaic tile number 32. In particular, Figure 23(b) with
alternating crossings is 11a43 and with nonalternating crossings can be made into
11n71, 11n72, 11n73, 11n74, and 11n75. Figures 23(c) and (d) are 11a46 when using
alternating crossings and can be made into 916 or 1077 with nonalternating crossings.
Figures 23(e) and (f) are 11a59 when using alternating crossings and can be made
into 1020 with nonalternating crossings. Figures 23(g) and (h) are 11a179 when
using alternating crossings and can be made into 910 or 1021 with nonalternating
crossings. Figure 23(i) with alternating crossings is 11a247, and Figure 23(j) with
alternating crossings is 11a367. Neither of these last two provide new knots to our
list when considering nonalternating crossings.

Fourth, we consider the possibilities where the mosaic has 12 crossing tiles. In
this case, we end up with the seven possible layouts shown in Figure 24. With
alternating crossings, these layouts lead to five distinct knots with minimal mosaic

(b) (c) (d)(a) (e)

(f) (g) (h) (i) (j)

Figure 23. Only possible layouts, after elimination, with 11 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 24. Only possible layouts, after elimination, with 12 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.

tile number 32, and with nonalternating crossings we get 13 additional knots that
have minimal mosaic tile number 32. In particular, Figures 24(a) and (b) with
alternating crossings are 12a373 and with nonalternating crossings can be made into
1062, 1064, 10139, 11a106, or 11a139. Figures 24(c) and (d) are 12a380 when using
alternating crossings and can be made into 1011, 11a166, or 11a341 with nonalternat-
ing crossings. Figure 24(e) is 12a503 when using alternating crossings and can be
made into 935, 1074, or 11a181 with nonalternating crossings. Figure 24(f) is 12a722

when using alternating crossings and can be made into 11a364 with nonalternating
crossings. Figure 24(g) with alternating crossings is 12a1149 and with nonalternating
crossings can be 11a342.

Fifth, we consider what happens when we place 13 crossing tiles on the mosaic.
In this instance, we end up with the six possible layouts shown in Figure 25. With
alternating crossings, the layouts lead to four distinct knots with minimal mosaic
tile number 32, and with nonalternating crossings we get 26 additional knots that
have minimal mosaic tile number 32. In particular, Figure 25(a) with alternating
crossings is 13a1230 and with nonalternating crossings can be made into 11a44,
11a47, 11n76, 11n77, 11n78, 12a119, 13n2399, 13n2400, 13n2401, 13n2402, or 13n2403.

(a) (b) (c) (d) (e) (f)

Figure 25. Only possible layouts, after elimination, with 13 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.
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Figure 26. The 910 knot represented as a minimally space-efficient
6-mosaic with minimal mosaic tile number 32 and as a space-
efficient 7-mosaic with tile number 27.

Figures 25(b) and (c) are 13a1236 when using alternating crossings and can be made
into 1061, 1076, 11a58, 11a165, 11a340, 12a165, 12a376, or 12a444 with nonalternating
crossings. Figures 25(d) and (e) are 13a1461 when using alternating crossings and
can be made into 11a246, 11a339, 12a169, 12a379, or 12a1148 with nonalternating
crossings. Figure 25(f) is 13a4573 when using alternating crossings and can be made
into 12a803 or 12a1166 with nonalternating crossings.

Finally, by Observation 4, we do not need to consider 14 or more crossing tiles in
this layout. We have considered every possible placement of nine or more crossing
tiles on the final layout of Theorem 2 and have found every possible prime knot
with mosaic number 6 and minimal mosaic tile number 32. �

Because of the work we have completed, we now know every prime knot with
mosaic number 6 or less. We also know the tile number or minimal mosaic tile
number of each of these prime knots. In the table of knots in online supplement, we
provide minimally space-efficient knot mosaics for all of these. These preceding
theorems lead us to the following interesting consequences.

Corollary 7. The prime knots with crossing number at least 9 not listed in
Theorems 3, 4, 5, or 6 have mosaic number 7 or higher.

Theorem 8. The tile number of a knot is not necessarily equal to the minimal
mosaic tile number of a knot.

Proof. According to Theorem 6, the minimal mosaic tile number for 910 is 32.
However, on a 7-mosaic, this knot can be represented using only 27 nonblank
tiles, as depicted in Figure 26. Also note that, as a 7-mosaic, this knot could
be represented with only nine crossings, whereas 11 crossings were required to
represent it as a 6-mosaic. �
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Shabat polynomials and monodromy groups of
trees uniquely determined by ramification type
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A dessin d’enfant or dessin is a bicolored graph embedded into a Riemann surface.
Acyclic dessins can be described analytically by preimages of Shabat polynomials
and algebraically by their monodromy groups. We determine the Shabat polynomi-
als and monodromy groups of planar acyclic dessins that are uniquely determined
by their ramification types.

1. Introduction

Popularized by Grothendieck in his “Esquisse d’un programme”, the theory of
dessins reaches across and connects multiple disciplines, including graph theory,
topology, geometry, algebra and complex analysis. Our motivation for this paper is
rooted in one of the fundamental questions in the theory of dessins — that is, how to
distinguish classes of dessins by means of topological, algebraic or combinatorial
invariants. In this paper, we focus our attention on this question by studying dessins
which are also trees. Since such dessins by any measure might be considered among
the simplest, it is worthwhile to have a complete catalog of the Belyi maps and
monodromy groups to which they correspond.

Our main objective in this paper is to determine the Shabat polynomials (up
to isomorphism) and monodromy groups corresponding to every known planar
connected acyclic dessin uniquely determined by its ramification type, the complete
list of which was given in [Shabat and Zvonkin 1994]. We begin in Section 1 by
providing the main result of the paper, followed by definitions and notation needed
to describe the class of dessins with which we are concerned, as well as some
necessary background about Shabat polynomials and wreath products. Readers
already acquainted with these subjects may wish to read Section 1A and skip
Section 1B. In Section 2 we provide a unique (up to isomorphism) Shabat polynomial
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Keywords: dessins d’enfant, Shabat polynomials, monodromy groups, Belyi maps, trees, wreath

products.
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for each ramification type corresponding to exactly one (planar) bicolored tree; in
Section 3 we provide the monodromy groups for each such ramification type. In
Section 4, we suggest future directions that may be taken from the results presented
here.

1A. Main results. Here, we state the main result of the paper in the following
theorem. The remainder of this section provides the background and preliminaries
for the rest of the paper. Theorem 1.1 lists the ramification types which correspond to
exactly one dessin which is a tree, along with the associated monodromy groups and
Shabat polynomials. Theorem 1.1 contains every such ramification type, as asserted
in [Shabat and Zvonkin 1994]. In Sections 2 and 3, we argue that Theorem 1.1 lists
the correct Shabat polynomials and monodromy groups.

Theorem 1.1. The following list includes all seven ramification types (degrees of
black vertices followed by degrees of white vertices) that produce exactly one dessin
which is a tree (see [Shabat and Zvonkin 1994]). Each ramification type given on
the list is followed by (a) the Shabat polynomial (unique up to isomorphism) and
(b) the monodromy group for the dessin.

(1) Œr I 1r �

(a) zr

(b) Cr

(2) Œ2r ; 1I 2r ; 1�

(a) 1
2
.1C cos..2r C 1/ arccos.z///

(b) D2.2rC1/, where Dm denotes the dihedral group of order m

(3) Œ2r I 2r�1; 12�

(a) 1
2
.1C cos.2r arccos.z///

(b) D2.2r/

(4) Œsr�1; t I r; 1.r�1/.s�1/C.t�1/� for r > 1, t > 0

(a) .1� z/t
�Pr�1

kD0

�
t
s

�
k

zk

k!

�s
(b)

8̂̂̂<̂
ˆ̂:

Cr oCs; s D t ;

Sn=d oCd ; s ¤ t; r even;
An=d oCd ; s ¤ t; r odd and t

d
is odd;

.An=d /
d ÌC2d ; s ¤ t; r odd, t

d
even;

where nD s.r � 1/C t , d D gcd.s; t/.

(5) Œr; t; 1rCt�2I 2rCt�1� , r; t > 1
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jD0

�
t�1Cj

t�1

�
zj
��Pt�1

jD0

�
r�1Cj
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rCt�1

rCj
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(b)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

A2r�1 �C2; r D t; r odd;
S2r�1 �C2; r D t; r even;
ArCt�1 oC2; r 6D t; both odd;
R2; r 6D t; both even;
SrCt�1 oC2; r 6D t; else;

where Rm denotes the index-2 subgroup of Sn=m o Cm such that, for all
.�1; : : : ; �m;g/ 2Rm, the permutation �1�2 � � � �m is even.

(6) Œr2; 14r�3I 32r�1�

(a) �3
p

3 i Sr .z/.1�Sr .z//
�
Sr .z/�

1
2
.1� i

p
3/
�

(b)
�

A2r�1 oC3; r odd;
R3; r even

(7) Œ33; 15I 27�

(a) � 4
531441

.z� 1/z3.2z2C 3zC 9/3.8z4C 28z3C 126z2C 189zC 378/

(b) A7 oC2

1B. Background and preliminaries. We begin by providing a terse exploration of
the object known as a dessin. For more detailed and comprehensive literature on
the subject, see [Shabat and Zvonkin 1994; Wood 2006]. For the purposes of this
paper, we begin with the observation that dessins may be realized by meromorphic
functions known as Belyi maps. The arithmetic dynamics of these Belyi maps have
been studied in some cases [Anderson et al. 2018].

Definition 1.2. Let X be a compact Riemann surface. A Belyi map is a meromor-
phic function F WX ! P1.C/ that is unramified outside of f0; 1;1g. That is, all
critical values of F are contained in f0; 1;1g. Here we may consider P1.C/ as
just C[f1g.

Grothendieck’s notion of a dessin d’enfant or dessin for short is a way to combi-
natorially characterize Belyi maps. If F is a Belyi map, then F�1.Œ0; 1�/, that is,
the preimage of the interval Œ0; 1�, has the structure of a bicolored connected graph
embedded in X. The basic structure of the bicolored graph �F associated with a
Belyi map F is given when we identify F�1.0/ as the set of black vertices, F�1.1/

as the set of white vertices, F�1..0; 1// as the set of edges and F�1.P1.C/� Œ0; 1�/

as the set of faces. Note that the degrees of the black and white vertices of �F cor-
respond to the multiplicities of the roots of F and F �1, respectively. Furthermore,
the dessin �F recovered from a Belyi map F is planar if and only if F is defined
on P1.C/, while �F is a tree if and only if F is a polynomial. Throughout this
paper, we assume X D P1.C/.

These structure of �F can be captured by the notion of a dessin, the relatively
simple combinatorial characterization given by Grothendieck.
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Definition 1.3. A dessin d’enfant or dessin is a connected bicolored graph equipped
with a cyclic ordering of the edges (oriented counterclockwise) around each vertex.

Given a Belyi map F, it is not difficult to use the procedure described above
to visualize the dessin �F to which F corresponds. However, recovering a Belyi
map from a given dessin is a much more difficult proposition. Given a dessin �F ,
a corresponding Belyi map F can be determined (uniquely up to isomorphism
over C[f1g) by considering the degrees of the vertices of �F and the resulting
system of polynomial equations involving roots and poles of F. Various methods
of calculating Belyi maps may be found in [Couveignes 1994; Matiyasevich 1996;
Schneps 1994; Sijsling and Voight 2014].

Definition 1.4. A Shabat polynomial is a polynomial F W C! C whose critical
values are contained in f0; 1g.

That is, a Shabat polynomial is a Belyi map which has only one pole (which is at
infinity); hence, its corresponding dessin will be a tree. (Shabat polynomials can be
defined more broadly as in [Shabat and Zvonkin 1994] as generalized Chebyshev
polynomials which have at most two critical values. Without loss of generality, we
choose in this paper to identify the two critical values 0 and 1.)

Definition 1.5. We say that two Shabat polynomials F;G are isomorphic if there
exist ˛ 2 C� and ˇ 2 C such that F.z/DG.˛zCˇ/.

Assume we have a dessin which is a tree and we label the edges with the numbers
1; 2; : : : ; n. We can associate the dessin with a pair of permutations �0, �1 2 Sn,
where n is number of edges, such that the cycles of �0 correspond to the cyclic
ordering (read counterclockwise) of the edges around the black vertices and the
cycles of �1 correspond to the ordering (read counterclockwise) of the edges around
the white vertices. For example, see Figure 1, where we have a bicolored tree, whose
edges are labeled 1; 2; : : : ; 7 inducing a pair of permutations �0; �1 2 S7 associated
with the black and white vertices, respectively. In general, by �0 (respectively, �1),
we mean the product of the cycle permutations associated with the edges about all
of the black (respectively, white) vertices. The group that �0 and �1 generate is a
central focus of this paper.

Definition 1.6. The monodromy group of a dessin with n edges is h�0; �1; �1i, the
group generated by �0; �1; �1 2Sn, where �0; �1 are as described in the preceding
paragraph and �1 is such that �0�1�1 D 1.

We remark that since �1D .�0�1/
�1, we may remove it from the generating set

for the monodromy group, but we keep it in the definition to be consistent with the
wider literature on this subject, which goes well beyond the consideration of Shabat
polynomials. For the remainder of the paper, when we refer to the generators of the
monodromy group, we are talking about �0 and �1. When a dessin is connected,
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1

2

3 4

5

6

7

Figure 1. A dessin determined by the pair of permutations �0 D

.1; 3; 2/.4; 7; 5/ and �1 D .3; 4/.5; 6/ whose monodromy group
h�0; �1i is isomorphic to GL3.F2/, a transitive subgroup of S7.

its monodromy group will be a transitive subgroup of Sn, where n is the number of
edges in the dessin.

To every dessin, we may associate an invariant known as its ramification type.
The ramification type of a dessin with n edges is given by the three partitions of n

corresponding to the degrees of the black vertices, the degrees of the white vertices
and the degrees of the faces. In the case of a dessin having one face, the latter
partition is simply nD n. Since we focus exclusively on dessins with one face in
this paper, we will omit from the notation for ramification type the last partition
corresponding to the degrees of the faces.

Definition 1.7. The ramification type of a dessin with n edges (and exactly one
face) consists of the two partitions of n

Œb
ˇ1

1
b
ˇ2

2
� � � b

ˇk

k
Iw

˛1

1
w
˛2

2
� � �w

˛`

`
�

written in exponential notation, where b1, b2, : : : , bk are the distinct degrees of the
black vertices, w1, w2, : : : , w` are the distinct degrees of the white vertices, ˇi

is the number black vertices of degree bi and ˛i is the number white vertices of
degree wi .

Note that b
ˇ1

1
b
ˇ2

2
� � � b

ˇk

k
and w˛1

1
w
˛2

2
� � �w

˛`

`
are both partitions of n, where n

is the number of edges, and these two partitions correspond to the cycle type of �0

and �1, respectively.
While each dessin has a unique ramification type, one may ask how many distinct

dessins (or equivalently nonisomorphic Shabat polynomials) are associated with a
given ramification type. Our focus in this paper will be narrowed to ramification
types which admit unique dessins.

We sometimes use the concept of tree composition to decompose a dessin into
smaller dessins. Composition will also help us compute new Shabat polynomials
as it corresponds with the usual polynomial composition. It is an easy exercise in
calculus to show that the composition of two Shabat polynomials is again a Shabat
polynomial.
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Figure 2. Top, left: P, with two vertices marked square� and trian-
gle 4. Top, right: Q, with black vertices marked �, white vertices
marked 4. Bottom: The composition P ıQ of two dessins P, Q.

Many of the dessins that we study can be constructed by a composition process
given by Adrianov and Zvonkin [1998]. Given two dessins, P and Q, we begin
the composition P ıQ by first distinguishing two vertices of P — label them with
a square and a triangle. The vertices of Q will be preimages of the square and
triangle, so we mark every black vertex of Q with a square and similarly every
white vertex of Q with a triangle. The process of composition is as follows:

(1) Replace each edge of Q with the union of the path from the square to the
triangle in P along with every branch connected to that path.

(2) Adjoin to each square (resp., triangle) vertex of Q the union of every branch
connected to the square (triangle) in P except for the one in the path to the
triangle (square). Do this as many times as the degree of the vertex.

The resulting graph should resemble n copies of P arranged in the shape of Q,
where n is the number of edges of Q. We demonstrate this process in Figure 2.

Remark 1.8. Let GP , GQ denote the respective monodromy groups of P and Q.
According to a theorem of Adrianov and Zvonkin [1998], the monodromy group of
P ıQ is a subgroup of GQ oGP , where o denotes the wreath product.

This process also gives a way to compute Shabat polynomials. If p; q are
the respective Shabat polynomials of P;Q such that p.0/;p.1/ 2 f0; 1g then the
Shabat polynomial of P ıQ is p ıq (where ı denotes the conventional composition
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of functions, i.e., .f ı g/.x/ D f .g.x//). Later on, when we compute Shabat
polynomials of more complicated dessins, we will make extensive use of this fact.

We will often call upon the idea of the wreath product of groups to describe our
monodromy groups. The composition process produces dessins whose monodromy
groups are subgroups of wreath products. While there are numerous examples for
which the containment is proper, often equality of the groups is achieved. As far as
the present authors can tell, the exact conditions that ensure equality are not known.

Definition 1.9. Let d be a positive integer. Let G � Sd and H be groups. Let K

be the direct product of d copies of H. If hD .h1; : : : ; hd / 2K, then we define the
action of � 2G on K by � � hD .h�.1/; : : : ; h�.d//. The wreath product of H by
G is the semidirect product K ÌG with respect to the action above, and we denote
this group by H oG.

In this paper, G is typically Cd , the cyclic group of order d .

2. Shabat polynomials for trees uniquely determined by ramification type

In this section, we summarize the list of Shabat polynomials (up to isomorphism)
corresponding to dessins which are trees and are uniquely determined by ramification
type. The complete list of ramification types for such dessins was given in [Shabat
and Zvonkin 1994]. For the Shabat polynomials corresponding to these ramification
types, we adopt the convention described in Definition 1.7.

Proposition 2.1. The ramification types Œr I 1r �, Œ2r ; 1I 2r ; 1�, Œ2r I 2r�1; 12� have
respective Shabat polynomials

zr ; 1
2
.1C cos..2r C 1/ arccos.z///; 1

2
.1C cos..2r/ arccos.z///;

all unique up to isomorphism.

This result is already well known in the literature and can be found on pages 3–4
of [Shabat and Zvonkin 1994]. See Figure 3.

Proposition 2.2 [Adrianov 2007]. Up to isomorphism, the unique Shabat polyno-
mial for the ramification type Œsr�1; t I r; 1.r�1/.s�1/C.t�1/� is

F.z/D .1� z/t
�r�1X

kD0

�
t

s

�
k

zk

k!

�s

;

where
.a/k D a.aC 1/.aC 2/ � � � .aC k � 1/

denotes the Pochhammer symbol.

The proof for this proposition can be found in [Adrianov 2007].
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- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

z! z8Im.z/

Re.z/

Figure 3. The dessin with ramification type Œ8I 18�.

Proposition 2.3. Let r > 1. Up to isomorphism, the Shabat polynomial for the tree
having ramification type

Œr; t; 1rCt�2
I 2rCt�1�

with a black vertex of degree r located at z D 0 and a black vertex of degree t

located at z D 1 is given by

F.z/D 4zr
�rCt�1

r

�
2F1.t � 1; r I r C 1I z/

�

�
1� .1� z/tzr

�rCt�1

t�1

�
2F1.1; r C t I r C 1I z/

�
;

where 2F1 is the hypergeometric function defined by

2F1.a; bI cI z/D

1X
nD0

.a/n.b/n

.c/n

zn

n!
:

!1.0 !0.5 0.5 1.0

!1.5

!1.0

!0.5

0.5

1.0

1.5

Im!z"

$

Im.z/

Re.z/

Figure 4. The dessin obtained by the Shabat polynomial given in
Proposition 2.2 when s D 6, r D 5, t D 3.
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0.2 0.4 0.6 0.8 1.0
Re�z�

�1.0

�0.5

0.5

1.0

Im�z� z � 4 �1� z� z

Figure 5. The dessin (path graph) obtained by the Shabat polyno-
mial ˇ.z/D 4z.1� z/.

0.5 1.0

- 0.4

- 0.2

0.2

0.4

Im.z/ z! z5.15z2� 35zC 21/

Re.z/

Figure 6. The tree obtained by the Shabat polynomial in
Proposition 2.2 where s D 1; r D 3; t D 5.

Proof. Let Sr;t .z/ be the Shabat polynomial for the ramification type Œt;1r�1Ir;1t�1�.
By Proposition 2.2, with s D 1,

Sr;t .z/D .1� z/t
r�1X
jD0

�
t � 1C j

t � 1

�
zj :

Consider the map ˇ.z/D 4z.1�z/ with the dessin�ˇ (see Figure 5) and Sr;t .z/

with the dessin �S (see Figure 6). The composition ˇ.z/ ı Sr;t .z/ is a Shabat
polynomial that produces the dessin obtained by coloring the vertices of �S to
black and adding a white vertex of degree 2 inside every edge (in other words,
replacing every edge of �S with �ˇ). Note the number of edges in Sr;t .z/ is
r C t � 1. The composition produces the new dessin �F (see Figure 7) and Shabat
polynomial F.z/D ˇ.z/ıSr;t .z/ with ramification type Œr; t; 1rCt�2I 2rCt�1�, and
therefore F.z/ equals

4zr .1� z/t
�r�1X

jD0

� t�1Cj

t�1

�
zj

��t�1X
jD0

�r�1Cj

r�1

��rCt�1

rCj

�
.�1/j zj

�
;
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0.5 1.0
Re�z�

�0.4

�0.2

0.2

0.4

Im�z�z � �4 �z � 1�3 �15 z4 � 10 z3 � 6 z2 � 3 z � 1� ��15 z4 � 10 z3 � 6 z2 � 3 z � 1� �z � 1�3 � 1�

Figure 7. The tree obtained by the Shabat polynomial in
Proposition 2.3 with r D 5; t D 3.

which can be rewritten in terms of hypergeometric functions, as in the statement of
the present proposition. �

Proposition 2.4. The Shabat polynomial for the unique tree having ramification
type

Œr2; 14r�3
I 32r�1�

with two black vertices of degree r located at z D 0 and z D 1 is given by

F.z/D .T ıSr /.z/;

where
T .z/D�3i

p
3z.1� z/.zC �/; �D 1

2
.�1C i

p
3/;

and

Sr .z/D .1� z/r
r�1X
jD0

�
r � 1C j

r � 1

�
zj :

F.z/ is unique up to isomorphism.

Proof. First we will show that T .z/ WD �3i
p

3z.1� z/.zC �/ corresponds to a
3-star with a white center and black leaves at z D 0 and z D 1. Considering T .z/,
we see immediately three distinct roots of multiplicity 1 at z D 0, 1, 1

2
.1� i

p
3/

representing three black leaves in �F . Next we consider the derivative of T .z/,

T 0.z/D�3i
p

3.�C 2.1� �/z� 3z2/;

which has a single root of multiplicity 2 (note that the discriminant of T 0.z/ is
zero). Since the multiplicity of the black vertices is 1, we may assume that the
multiple root in T 0.s/ must refer to a root of multiplicity 3 in F.z/ � 1, repre-
senting the white vertex of degree 3. Therefore, T .z/ must be a 3-star with black
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0.5 1.0
Re�z�

�0.2

0.2

0.4

Im�z�z � 3 z4 �20 z3 � 70 z2 � 84 z � 35� �� �20 z3 � 70 z2 � 84 z � 35� z4 � 1� �2 � �20 z3 � 70 z2 � 84 z � 35� z4 � 3 � ��

Figure 8. An illustration of the tree derived from the Shabat poly-
nomial in Proposition 2.4 where r D 4.

leaves at z D 1 and z D 0. We can now use the idea of composition to replace
every edge of the tree having Shabat polynomial Sr .z/ WD Sr;r .z/, where Sr;t .z/

is the polynomial as defined in the proof of Proposition 2.3, with the 3-star by
computing the composition .T ı Sr /.z/. This will add a white vertex of degree
3 and an additional black leaf for every edge. Note that Sr .z/ corresponds to a
tree with 2r � 1 edges and 4r � 2 vertices. Therefore �F will have 2r � 1 white
vertices of degree 3 and 4r � 3 black leaves, in addition to the two black vertices
of degree r .

Note: An anonymous referee pointed out that we may go one step further here
by letting z0 WD i

p
3z� �2. A quick computation shows that Sr .z0/D Sr .1� z0/.

One can also show that Sr .z/ D 1 � Sr .1 � z/ using the following argument.
Observe that 0 is a root of order r of Sr .z/ and 1� Sr .1� z/. Further observe
that 1 is a root of order r of Sr .z/� 1 and 1� Sr .1� z/� 1. Thus we deduce
that Sr .z/D 1�Sr .1� z/ using the uniqueness of the Shabat polynomial from
Proposition 2.2. Hence, Sr .z0/D 1�Sr .z

0/. A few simple calculations yield the
equality T .Sr .z0//D T .Sr .z

0//, which implies T .Sr .z
0// 2QŒz�. �

Proposition 2.5. For the tree with ramification type Œ33; 15I 27�, a black vertex of
degree 3 at z D 0 and a black vertex of degree 1 at z D 1, the Shabat polynomial is

F.z/D� 4
531441

.z� 1/z3.2z2
C 3zC 9/3.8z4

C 28z3
C 126z2

C 189zC 378/:

Proof. We can write F.z/D .ˇ ıf /.z/, where

ˇ.z/D 4z.1� z/ and f .z/D� 1
729
.z� 1/.9C 3zC 2z2/3;

which is the Shabat polynomial for ramification type Œ32; 1I 3; 14� obtained by letting
r D 3, s D 3, t D 1 in Proposition 2.2. �
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�1.0 �0.5 0.5 1.0
Re�z�

�2

�1

1

2

Im�z�z �
4 �1� z� z3 �2 z2 � 3 z � 9�3 �8 z4 � 28 z3 � 126 z2 � 189 z � 378�

531441

Figure 9. An illustration of the tree described in Proposition 2.5.

3. Monodromy groups for trees uniquely determined by ramification type

In this section, we provide proofs for the monodromy groups associated with each
ramification type listed in Theorem 1.1. In all of our proofs, we proceed by choosing
a particular labeling of the edges of the dessin. Though the monodromy group does
not depend on the choice of labels, some choices better illustrate how �0 and �1

generate the monodromy group.

Proposition 3.1. The ramification types Œr I 1r �, Œ2r ; 1I 2r ; 1�, and Œ2r I 2r�1; 12�

have respective monodromy groups Cr , D2.2rC1/, and D2.2r/, where Dm denotes
the dihedral group of order m.

Proof. The first ramification type gives the r -star dessin with monodromy group
generated by an r -cycle and the identity permutation. It follows that the monodromy
group is the cyclic group Cr . The second and third ramification types yield the
path dessins with 2r C 1 and 2r edges respectively. We handle these two cases
simultaneously, since the argument is essentially the same. The dessins in Figure 10
are examples of path dessins.

In both cases, the generators of the groups �0 and �1 have order 2, and the
respective �1’s have order 2rC1 and 2r . Since in this case �1D .�0�1/

�1D�1�0,
we may view the monodromy group as h�0, �1i. We let n denote the order of �1;
note that n is either 2r C 1 or 2r depending on the ramification type. The relations
�2

0
D �r

1 D 1 and �0�1 D .�0�1/�0 D .�1�0/
�1�0 D .�1/

�1�0 hold. The
conclusion is that the monodromy groups of these dessins are isomorphic to the
dihedral groups of order 2n. �

1 2 3 1 2 3 4

Figure 10. The path dessins of 3 and 4 edges, respectively.
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1
2

3

4 5

6 7

8

9

10
11

1213

Figure 11. An example of a dessin from Proposition 3.2, where
r D 4, s D 3, t D 4.

Proposition 3.2. Assume r > 1. The ramification type Œsr�1; t I r; 1.r�1/.s�1/C.t�1/�

has nD .r � 1/sC t edges and a unique tree with monodromy group G, with

G Š

8̂̂̂<̂
ˆ̂:

Cr oCs; s D t ;

Sn=d oCd ; s ¤ t , r even;
An=d oCd ; s ¤ t , r is odd and t

d
is odd;

.An=d /
d ÌC2d ; s ¤ t; r odd, t

d
even,

where d D gcd.s; t/.

Proof. The ramification type Œsr�1; t I r; 1.r�1/.s�1/C.t�1/� produces a tree of diam-
eter 4 with nD .r � 1/sC t edges in the nondegenerate cases. See Figure 11.

In general, �0 is the product of one t-cycle and .r�1/-many s-cycles and �1 is
an r -cycle. We label our edges so that we compute the permutations �0; �1; �1 as

�0 D .1; : : : ; t/.t C 1; : : : ; t C s/

� .t C sC 1; : : : ; t C 2s/ � � � .t C .r � 2/sC 1; : : : ; t C .r � 1/s/;

�1 D .1; t C 1; t C sC 1; t C 2sC 1; : : : ; t C .r � 2/sC 1/;

��1
1 D �0�1 D .1; 2; : : : ; n/:

(Note that we go left to right when computing permutation products.)

Case 1: s D t D)G D Cr oCs . Assume s D t . Then our dessin is the composition
of an s-star with an r -star, which means G is a subgroup of Cr oCt by Remark 1.8.
Define �i WD ��i

0
�1�

i
0
. Referring to the above where we already computed �0

and �1, we see
�0 D .1; t C 1; 2t C 1; : : : ; .r � 1/t C 1/D �1;

�1 D .2; t C 2; 2t C 2; : : : ; .r � 1/t C 2/;
:::

�t�1 D .t; 2t; 3t; : : : ; r t/:
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Each �i is an r -cycle and generates Cr . Since the �i’s partition f1; 2; : : : ; r tg,
they must commute with each other and we see that together they generate C t

r .
Also, �0 is a product of t-cycles satisfying ��1

0
�i�0 D �iC1, where the subscripts

are reduced modulo t . These relations are sufficient to recognize that G contains
h�0; �1; �2; : : : ; �t�1i Š Cr oCt .

Case 2: s ¤ t , gcd.s; t/ D 1 D) G D An for r; t odd and G D Sn otherwise.
Assume that gcd.s; t/D 1, with s or t > 1. It is known that a permutation group con-
taining .1; 2; 3/ and .1; 2; : : : ; n/ contains An; see Lemma A.1. Our goal is to show
that An �G � Sn and then use a parity argument to determine which containment
is improper. Given that �0�1D .1; 2; : : : ; n/ 2G, we proceed to show .1; 2; 3/ 2G.

Assume t D 1 and s > 1. We claim � WD .��1
0
��1

1
�0/.�1�1�

�1
1 / D .1; 2; 3/.

Since t D 1, we know �0 is a product of .r � 1/ s-cycles, while �1, ��1
1

remain
r -cycles. We see that

�D .��1
0 ��1

1 �0/.�1�1�
�1
1 /

D .1; .r � 2/sC 3; : : : ; 2sC 3; sC 3; 3/.2; 3; sC 3; 2sC 3; : : : ; .r � 2/sC 3/:

One may verify that �.1/D 2, �.2/D 3, �.3/D 1 and, for k > 3, �.k/D k. It
follows that An �G.

If t D 2, we have � s
0
D .1; 2/ 2G. Since G contains the transposition .1; 2/ and

the cycle .1; 2; : : : ; n/, we have Sn �G.
Now suppose t � 3, we first set k to be the smallest positive integer such

that k satisfies k � 0 (mod s) and k � �1 (mod t). The existence of such
a number is guaranteed by the Chinese remainder theorem. We claim � WD

.��1
1
�k

0
�1/�

k
0
.��1

1
��2k

0
�1/D .1; 2; 3/. Notice that

.��1
1 �k

0 �1/�
k
0 .�
�1
1 ��2k

0 �1/D .tC1; t; : : : ; 3; 2/.1; t; : : : ; 3; 2/.tC1; 2; 3; : : : ; t/2:

One may verify that �.1/D 2, �.2/D 3, �.3/D 1 and �.k/D k for k > 3. Thus
�D .1; 2; 3/ 2G and therefore An �G.

For every triple s; t such that gcd.s; t/D 1 and s or t > 1, we have shown that
An � G. Since we also have G � Sn, by index considerations G is either the
symmetric or alternating group of appropriate order. Otherwise if r or t is even, �0,
being the product of a t -cycle and .r�1/ s-cycles, is an odd permutation (note s must
be odd if t is even), so GŠSn. Since both �0 and �1 are even permutations when r

and t are odd, we deduce that G�An and thus the double inclusion gives us GŠAn.

Case 3: In this final case, we assume gcd.s; t/D d > 1. This tree is the composition
P ıQ, where P is the d -star and Q is the dessin corresponding to the passport��

s

d

�r�1

;
t

d
I r; 1.r�1/.s=d�1/C.t=d�1/

�
:
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Hence, the monodromy group G is a subgroup of the wreath product GQ o Cd ,
where GQ is the monodromy group for Q.

Consider the partition of f1; : : : ; ng into the d sets

f1; d C 1; : : : ; n� d C 1g; f2; d C 2; : : : ; n� d C 2g; : : : ; fd; 2d; : : : ; ng;

each of size n
d

, and denote them by P1; : : : ;Pd respectively. Recall that �0 is the
disjoint product of a t-cycle and .r � 1/ s-cycles, and moreover every element in
f1; 2; : : : ; ng is moved by exactly one of these cycles under the canonical group
action. Because d divides both s and t , we know � WD �d

0
is the disjoint product

of d t
d

-cycles and d.r � 1/ s
d

-cycles. Moreover, each disjoint cycle of � permutes
elements in exactly one of the Pi while fixing the rest. Similarly, because d

divides n, we know �d
1 is the disjoint product of d n

d
-cycles, and each disjoint

cycle of �d
1 likewise permutes elements in exactly one of the Pi . Note that �1

permutes only the elements of P1.
Let k be the smallest positive integer such that k satisfies k� 0

�
mod s

d

�
and k�

�1
�
mod t

d

�
. One may verify that � WD��1

1
�k�1�

k��1
1
��2k�1D .1; dC1; 2dC1/.

(Note that in the case where t D d , we let � WD .��1��1
1
�/.�d

1�1�
�d
1 / and proceed

with the same argument.)
We can conclude that the subgroup

N D h�; ��d
1 ��d

1; �
�2d
1 ��2d

1 ; : : : ; �
�.n�d/
1 ��n�d

1 ; �1i

is isomorphic to Sn=d when r is even and isomorphic to An=d when r is odd
(see Lemma A.4). Furthermore, we observe that N , ��1

1 N�1, ��2
1 N�2

1, : : : ,
��dC1
1 N�d�1

1 are all isomorphic to Sn=d or An=d (depending on whether r is even
or odd) and ��iC1

1 N� iC1
1 permutes elements of Pi . Hence

H WD hN; ��1
1 N�1; �

�2
1 N�2

1; : : : ; �
�dC1
1 N�d�1

1 i Š

�
.Sn=d /

d if r even,
.An=d /

d if r odd.

One can check that ��1
0

H�0DH and ��1
1

H�1DH. Hence, H GG. Observe that
�1 2H. Therefore, H�1 generates the quotient group GnH. When r is even, the
smallest power of �1 in H is d , when r is odd and n

d
is odd, the smallest power

of �1 in H is d , and when r is odd and n
d

is even, the smallest power of �1 in H

is actually 2d . (Note that when r is odd, the parities of t
d

and n
d

are the same.) In
order to show that G is isomorphic to a semidirect product, we will use the splitting
lemma. In our case, if we can find an element of H�1 of order d or 2d (depending
on the case), we have shown G is a semidirect product.

First we consider the case where r is even. In this case, observe that

.d; 2d; 3d; : : : ; n/�1.1; 2; 3; 4; : : : ; n/

D .1; 2; : : : ; d/.d C 1; d C 2; : : : ; 2d/ � � � .n� d C 1; n� d C 2; : : : ; n/:
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Figure 12. P and Q on the left; P ıQ on the right.

Hence, there is an element of order d in GnH and G Š .Sn=d /
d Ì Cd by the

splitting lemma for semidirect products, and in fact GŠSn=d oCd . This also shows
that H�1 contains an element of order d in the case where r and n

d
are odd since

the cycle .d; 2d; 3d; : : : ; n/ is an element of An in this case. Therefore, when n
d

and r are odd, G Š .An=d /
d ÌCd and in fact G ŠAn=d oCd .

Now we consider the case where r is odd and n
d

is even. Observe that

.2d; 3d; : : : ; n/�1.1; 2; 3; : : : ; n/

D .1; 2; 3; : : : ; 2d/.2d C 1; 2d C 2; : : : ; 3d/ � � � .n� d C 1; n� d C 2; : : : ; n/:

Hence, there is an element of order 2d in GnH and thus G Š .An=d /
d ÌC2d . �

Proposition 3.3. Let r; t > 1. The ramification type Œr; t; 1rCt�2I 2rCt�1� produces
a unique tree with monodromy group G, where

G Š

8̂̂̂̂
<̂̂
ˆ̂̂̂:

A2r�1 �C2; r D t; r odd;
S2r�1 �C2; r D t; r even;
ArCt�1 oC2; r 6D t; both odd;
R2; r 6D t; both even;
SrCt�1 oC2; r 6D t; else;

where R2 denotes the index-2 subgroup of SrCt�1 oC2 such that �1�2 is an even
permutation for all .�1; �2;g/ 2R2.

Proof. First, we note that this dessin is the composition P ıQ, where P is the
2-star and Q is the dessin of Proposition 3.2 with s D 1. See Figure 12.

Let GQDh.1; 2; : : : ; r/; .r; rC1; : : : ; rC t�1/i be the monodromy group of Q.
By Proposition 3.2, we know that

GQ Š

�
ArCt�1; r; t both odd;
SrCt�1; otherwise:

The dessin with ramification type Œr; t; 1rCt�2I 22r�1� is the composition of P

and Q, and so its monodromy group G satisfies G �GQ oC2 by Remark 1.8. We
consider G in two cases: r D t and r 6D t .
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Case 1: r 6D t . In the first case, we have r 6D t . We label our edges in such a way that

�0 D .1; 2; : : : ; r/.r ; r C 1; : : : ; r C t � 1/;

�1 D .1; 1/.2; 2/ � � � .r C t � 1; r C t � 1/:

Note that �0 is the disjoint product of an r -cycle with a t-cycle; call these cycles
�1 and �2 respectively. Consider the embedding � WG! SrCt�1 oC2 given by

�0 7! .�1; �2; 0/;

�1 7! .id; id; 1/:

Note that ��1
1
�0�1 is mapped to .�2; �1; 0/. Apply Lemma A.5 to nD r C t � 1

(assume n� 5 for now), �1; �2 2 SrCt�1. We have GQ D h�1; �2i �An as noted
above. Lemma A.5 implies

ArCt�1 oC2 � �.G/� SrCt�1 oC2:

When r; t are odd, both �1 and �2 are even permutations, and we see that �.G/Š
ArCt�1 oC2. When r and t have different parity, we know h�1; �2i Š SrCt�1, so
�.G/Š SrCt�1 oC2. When r; t are both even, for any .�1; �2;g/ 2 �.G/, �1 and
�2 will share the same parity. Since we can take �1 D �1, an odd permutation, we
see that �.G/ is properly contained in between ArCt�1 oC2 and SrCt�1 oC2. It is
in fact the group R2 described earlier after Theorem 1.1. In the finite number of
cases where r C t � 1< 5, one can verify the result by hand.

Case 2: r D t . In the second case, we consider r D t . We can label our dessin in
such a way that

�0 D .1; 2; : : : ; r/.1; 2; : : : ; r/;

�1 D .1; r C 1/.2; r C 2/ � � � .r � 1; 2r � 1/.r; r/.r C 1; 1/ � � � .2r � 1; r � 1/:

Observe that

�
.2r�1/
1 D .1; 1/ � � � .2r � 1; 2r � 1/;

�1 D �1�0�
�1
1 D .r; r C 1; : : : ; 2r � 1/.r ; r C 1; : : : ; 2r � 1/;

�2 D �
.2r�1/
1 �1 D .1; r C 1/.1; r C 1/

� .2; r C 2/.2; r C 2/ � � � .r � 1; 2r � 1/.r � 1; 2r � 1/.r/.r/;

and GQ D h�
.2r�1/
1 ; �1; �2i is a subgroup of S2r�1 �Z2. Furthermore,

�3 D �2�1�0�
�1
1 ��1

2 D .1; 2; : : : ; r/.1; 2; : : : ; r/:

By Proposition 3.2, we see that h�1; �3i is S2r�1 if r even and A2r�1 if r odd, and
thus we have our result. �
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Figure 13. Top, left: P, with vertices marked. Top, right: Q, with
vertices marked. Bottom: An example of the composition for r D 3.

Proposition 3.4. The ramification type Œr2; 14r�3I 32r�1� produces a unique tree
with monodromy group G, where

G Š

�
A2r�1 oC3; r odd;
R3; r even;

where R3 denotes the index-2 subgroup of S2r�1 oC3 such that �1�2�3 is an even
permutation for all .�1; �2; �3;g/ 2R3.

Proof. The procedure here is similar to the proof of the previous proposition. We
observe that this dessin is the composition P ıQ, where P is the 3-star with
ramification type Œ13I 3� and Q is the dessin from Proposition 3.2 where s D 1,
r D t . See Figure 13.

We can label the dessin so that

�0 D .1; 2; : : : ; r/.r ; r C 1; : : : ; 2r � 1/;

�1 D .1; 1; O1/.2; 2; O2/ � � � .2r � 1; 2r � 1; 12r � 1/:

Note that �0 is the product of two r -cycles (call them �1 and �2 respectively)
and that �1 is the product of .2r � 1/ 3-cycles. Consider the embedding � WG!
S2r�1 oC3 defined by

�0 7! .�1; �2; id; 0/;

�1 7! .id; id; id; 1/:

Under this homomorphism, successive conjugations of �0 by �1 are mapped to
.id; �1; �2; 0/ and .�2; id; �1; 0/. Applying Lemma A.5 to �1; �2, and �.G/, we
have A2r�1 oC3 � �.G/. When r is odd, both �1 and �2 are even permutations,
so A2r�1 oC3 � �.G/, giving a double inclusion. When r is even, we consider the
quotient group

.S2r�1 oC3/=.A2r�1 oC3/Š C2 �C2 �C2:
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Observe that when r is even, �.G/�R3 and .�1; �2; id; 0/ is equal to .1; 1; 0/ in
the quotient group �.G/=A2r�1 oC3. We similarly have .0; 1; 1/ and .1; 0; 1/ in
the quotient group. Hence, we see that �.G/ is an index-2 subgroup of S2r�1 oC3

and thus �.G/�R3. �
Proposition 3.5. The ramification type Œ33; 15I 27� produces a unique tree with
monodromy group G ŠA7 oC2.

Proof. This is a sporadic case that may be verified by hand. �

4. Future directions

The reader will notice that there are some obvious pathways left open by this paper.
In Theorem 1.1 each entry refers to a tree uniquely determined by ramification type.
For each entry there exists a Shabat polynomial with rational coefficients. However,
we were not able to find a closed form expression for the coefficients of the rational
Shabat polynomial given for the tree with ramification type Œr2; 14r�3I 32r�1�.

As for another direction of further inquiry, we note that the present paper focuses
exclusively on (planar) trees uniquely determined by ramification type. However,
we know that there exists an exhaustive list of ramification types that produce
exactly two distinct trees, and perhaps there are other such lists for ramification
types that produce larger numbers of trees [Shabat and Zvonkin 1994]. At the very
least, it would be interesting to see the complete list of monodromy groups for
ramification types that produce two trees in comparison with the completion of
Theorem 1.1. Finally, it would also be of interest to see similar results for classes
of dessins having at least one cycle or for dessins with genus greater than 1.

Appendix

In this section we prove a few technical results used in the paper. We learned of the
following results (Lemmas A.1, A.2, A.3, A.4) and their proofs from Keith Conrad.
Recall that we multiply permutations left to right.

Lemma A.1. For n � 5, the subgroup generated by .1; 2; 3/ and .1; 2; : : : ; n/
contains An.

We prove this lemma through a sequence of lemmas.

Lemma A.2. For n� 5, every element of An is a product of 3-cycles.

Proof. The set of 3-cycles is a conjugacy class that is a subset of An. Therefore, the
subgroup generated by the set of 3-cycles is a normal subgroup of An. Since An

is simple for n � 5, we conclude that the set of 3-cycles generates An and every
element of An is a product of 3-cycles. �
Lemma A.3. For n� 5, the group An is generated by elements of the form .1; 2; k/.
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Proof. First observe that An is generated by 3-cycles of the form .1; i; j /. This is
easily seen by observing that for any 3-cycle .a; b; c/ not containing 1, we have
.a; b; c/D .1; b; c/.1; a; b/. By Lemma A.2 we see that An is generated by 3-cycles
of the form .1; i; j /.

Now we consider the 3-cycles of the form .1; 2; k/. Since .1; 2; k/�1D .1; k; 2/,
any 3-cycle with 1 and 2 is generated by 3-cycles of the form .1; 2; k/. For a 3-cycle
.1; i; j / not containing 2, we have .1; i; j / D .1; 2; j /.1; 2; i/.1; 2; j /.1; 2; j /.
Hence, every element of An is generated by elements of the form .1; 2; k/. �

Lemma A.4. For n� 5, the consecutive 3-cycles .i; iC1; iC2/ with 1� i � n�2

generate An.

Proof. This can be shown to be true for A5 by computation. We proceed to prove
this for n> 5 by induction.

Assume this is true for An. Consider AnC1. By induction, we know that cycles
of the form .i; iC1; iC2/ generate the elements .1; 2; k/ for 3� k � n. Therefore,
by Lemma A.3, we need only show that we can generate .1; 2; nC 1/ in order
to show that cycles of the form .i; i C 1; i C 2/ generate AnC1. Observe that
.1; 2; nC 1/ D .1; 2; n/.1; 2; n� 1/.n� 1; n; nC 1/.1; 2; n/.1; 2; n� 1/ and thus
we have proven our result. �

Now we proceed with the proof of Lemma A.1

Proof of Lemma A.1. Let � D .1; 2; : : : ; n/. Observe that

��k.1; 2; 3/�k
D .�k.1/; �k.2/; �k.3//D .kC 1; kC 2; kC 3/

if 0�k�n�3. Thus by Lemma A.4, .1; 2; 3/ and .1; 2; : : : ; n/ generate a subgroup
that contains An. �

Lemma A.5. Suppose that �0; �1 2 Sn with h�0; �1i �An with n� 5.

(1) If j�0j 6D j�1j, then � D h.�0; �1/; .�1; �0/i must contain An �An.

(2) � D h.�0; �1; id/; .id; �0; �1/; .�1; id; �0/i must contain An �An �An.

Proof. Suppose that id ¤ � 2 An. Observe that h��1�� W � 2 Ani is a normal
subgroup of An. If n� 5, then An is simple and therefore, An D h�

�1�� W � 2Ani.
First, we consider statement (1). Suppose that .�; id/ 2 �. We want to show that

An�hidi is a subgroup of �. There is a homomorphism proj WSn�Sn!Sn, which is
a projection from the first component. Since An � h�0; �1i, we have proj.�/�An.
Therefore, for all � 2 An there exists � 0 2 Sn such that .�; � 0/ 2 �. Conjugating
.�; id/ by all .�; � 0/ shows that An � hidi � �. Note that the same argument can be
used to show hidi �An � � via projection in the other component. Statement (1)
then follows as long as � ¤ id exists. Furthermore, the argument to establish
statement (2) would proceed in an identical fashion, presuming �¤ id exists.
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To establish existence of � in the case of statement (1), we claim that there exists
an element of the form .�; id/2� , where � 6D id. Without loss of generality, assume
j�0j> j�1j, and then consider .�0; �1/

j�1j; .�1; �0/
j�1j, in which case we may let

�D �
j�1j

0
.

Now we prove such an element exists in the case of statement (2) for n> 2. If
j�0j¤ j�1j, then the proof is analogous to the argument for statement (1). Otherwise
j�0j D j�1j D r and we want to find some element � 2An such that j�j−r . One
can show that such a � exists by proving that, for n> 2, there must be some prime q

not dividing j�0j D r . One can show q exists by using the fact that

n<
X
p�n

p prime

p for n> 2:

Using all three generators of �, one can produce the element .�k1

0
; �; �

k2

1
/ 2A3

n,
where k1; k2 2Z. By raising this element to the r -th power, we produce the element
.id; �r ; id/ 2 � and let �D �r. �

Corollary A.6. Let H be a simple group. Suppose �0; �1 2 Sn with h�0; �1i �H.

(1) If j�0j 6D j�1j, then � D h.�0; �1/; .�1; �0/i must contain H �H.

(2) � D h.�0; �1; id/; .id; �0; �1/; .�1; id; �0/i must contain H �H �H.

Remark A.7. In [Adrianov et al. 1997], Adrianov, Kochetkov, and Suvorov classify
all the possible primitive, and thus simple, monodromy groups of plane trees.
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On some edge Folkman numbers, small and large
Jenny M. Kaufmann, Henry J. Wickus and Stanisław P. Radziszowski

(Communicated by Kenneth S. Berenhaut)

Edge Folkman numbers Fe(G1,G2; k) can be viewed as a generalization of more
commonly studied Ramsey numbers. Fe(G1,G2; k) is defined as the smallest order
of any Kk-free graph F such that any red-blue coloring of the edges of F contains
either a red G1 or a blue G2. In this note, first we discuss edge Folkman numbers
involving graphs Js = Ks − e, including the results Fe(J3, Kn; n+ 1) = 2n− 1,
Fe(J3, Jn; n) = 2n − 1, and Fe(J3, Jn; n + 1) = 2n − 3. Our modification of
computational methods used previously in the study of classical Folkman numbers
is applied to obtain upper bounds on Fe(J4, J4; k) for all k > 4.

1. Overview

For a graph F, we say that F→ (G1,G2) if in any red-blue coloring of the edges
of F, there exists a red G1 or a blue G2. The classical Ramsey numbers can be
defined using this arrowing notation as R(G1,G2) = min{n | Kn → (G1,G2)}.
If graph F is Kk-free and F → (G1,G2), then we write F → (G1,G2; k). If
graph Gi is complete, we may write |V (Gi )| in place of Gi ; for example, instead
of F → (Ks, Kt ; k) we could write F → (s, t; k). Given graphs G1,G2 and an
integer k > 1, we define the set of edge Folkman graphs by

Fe(G1,G2; k)= {F | F→ (G1,G2) and Kk 6⊆ F},

and we will denote by Fe(G1,G2; k;m) the set of such Folkman graphs with
m vertices. The edge Folkman number Fe(G1,G2; k) is the smallest m such that
Fe(G1,G2; k;m) is nonempty. A theorem by Folkman [1970] states that if k >
max{s, t}, then Fe(s, t; k) = Fe(Ks, Kt ; k) exists. One may easily notice that for
graphs G1 and G2, if k> R(G1,G2), then Fe(G1,G2; k)= R(G1,G2). Henceforth,
in the sequel we will focus on the cases for k ≤ R(G1,G2).

In general, the Ramsey numbers R(G,H) are difficult to compute, and Fe(G,H ;k)
for k < R(G,H) still more so. The graph J3 = P3, however, leads to much
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easier cases. The arrowing F → (J3,H) is equivalent to the question, “Does
the removal of every matching sK2 from F leave a subgraph containing H?” In
Section 2, we present constructions which witness upper bounds on Fe(J3;Kn; n+1),
Fe(J3; Jn; n+ 1), and Fe(J3; Jn; n), and then we show that these bounds are tight.

In Section 3, we use computational methods modified from prior work on
Fe(3, 3; 4) to determine values of Folkman numbers Fe(J4, J4; k) for k > 6, and
bounds on Fe(J4, J4; k) for k = 5, 6. These are obtained with the help of techniques
used in satisfiability (SAT) and MAX-CUT, both of which are well-studied problems
in computer science. The cases of Fe(J4, J4; k) lie between the much-studied
Fe(3, 3; k) and little-studied Fe(4, 4; k). We also present up-to-date history of
bounds on the former, namely Fe(3, 3; 4).

2. Arrowing (J3, Kn) and (J3, Jn)

Let the graph K2n denote the complete graph K2n with removed perfect matching;
i.e., K2n = K2n − nK2.

Proposition 1. For all n ∈ N, n ≥ 2, we have K2n−1 + K1→ (J3, Kn).

Proof. We will first show that, for each n≥ 2, in any red-blue edge coloring of K2n−1

avoiding red J3= P3, every vertex v∈V (K2n−1) belongs to a blue Kn−1. We proceed
by induction. The claim is obvious for n = 2. Next, consider any red-blue coloring
of K2n avoiding red J3. Fix any v1 ∈ V (K2n ), and let v2 be the vertex not adjacent
to v1. If v1 is redly adjacent to some vertex w1, then let {w1, w2} be nonadjacent;
otherwise, choose an independent set {w1, w2} arbitrarily, but v1 6∈ {w1, w2}. The
restriction of this coloring to K2n −{v1, v2} = K2n−1 is a red-blue coloring avoiding
red J3, so by induction w2 is part of some blue Kn−1 ⊂ K2n −{v1, v2}. Since v1 is
adjacent to all vertices in K2n − {v1, v2} and is bluely adjacent to all its vertices,
possibly except w1, together with this blue Kn−1 it forms a blue Kn . By induction,
the statement holds for all n.

Similarly, we prove the statement of the proposition by induction. Clearly, any
red-blue edge coloring of K21 + K1 has either a red J3 or a blue K2. For n ≥ 3,
consider any red-blue coloring of the graph K2n−1 + K1 without any red J3. Let
{x} = V (K1). If any vertex v is redly adjacent to x , choose an independent set
{v1, v2} so that v2 = v; otherwise, choose an independent set {v1, v2} arbitrarily.
We have shown that in the restriction of this coloring to K2n−1 , v1 is in a blue Kn−1.
Vertex v2 cannot be part of this Kn−1. Since x is adjacent to all vertices in V (K2n−1),
and is bluely adjacent to all such vertices (except perhaps v2), it is in a blue Kn .
Thus, K2n−1 + K1→ (J3, Kn). �

Theorem 2. For all k > n ≥ 2 we have Fe(J3, Kn; k)= 2n− 1.

Proof. We notice that R(J3, Kn)= 2n− 1, as listed in [Radziszowski 2017]. For
k= n+1, this gives the lower bound 2n−1≤ Fe(J3, Kn; n+1), while Proposition 1
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provides a witness for the upper bound. For larger k the claim follows directly from
definitions since Fe(J3, Kn; k) is nonincreasing in k. �

Theorem 3. For all n ≥ 3 we have

Fe(J3, Jn; k)=


4 if k = n = 3,
2n− 3 if k > n > 2,
2n− 1 if k = n and n > 3.

Proof. For the special case of k=n=3, it can be easily checked that K1,3→ (J3, J3);
hence it gives the upper bound. Clearly, three vertices are not enough for a suitable
Folkman graph, so Fe(J3, J3; 3)= 4.

For the case k>n>2, as in Theorem 3, the lower bound Fe(J3, Jn; n+1)≥2n−3
for any k ≥ n follows from R(J3, Jn)= 2n− 3; see [Radziszowski 2017]. For the
upper bound, we will prove that K2n−3 + K3→ (J3, Jn). Consider any red-blue
coloring of the graph K2n−3 + K3 avoiding red J3. Let {x, y, z} = V (K3) and let e
be the edge {x, y}. By Proposition 1, the restriction of this coloring to the subgraph
K2n−2+K1= K2n−3+(K3−e)must include a blue Kn−1. Since Kn−1 6⊂ K2n−3+K1,
this blue Kn−1 must include exactly one of x or y; without loss of generality it
includes x and not y. But in the original coloring, y is bluely adjacent to all or
all but one of the vertices in the blue Kn−1, so y is part of a blue Jn . Hence
Fe(J3, Jn; k)= 2n− 3 for all k > n.

Finally we consider the case of k = n for n > 3. Consider any Kn-free graph G
with |V (G)| = 2n−2. Color the edges of G as follows: take a maximum matching
R ⊆ E(G), color all of its edges in red, and color all edges in G − R blue. This
coloring contains no red J3. We will show that either it contains no blue Jn , or that
G ⊆ Kn−2+ nK1.

Suppose that G contains a blue Jn and let S ⊂ V (G) be the vertices of the Jn .
Since G does not contain Kn , there exist nonadjacent vertices x, y ∈ S. Every edge
in R must be incident to a vertex in S = V (G)− S, implying that |R| ≤ |S| = n−2.
Now consider any pair of adjacent vertices s, t ∈ S (one of which may be x or y).
Since s and t are adjacent, at least one must be incident to a red edge, since
otherwise we could add the edge {s, t} to R and obtain a matching larger than R.
Since |R| ≤ |S| − 2, there exist two vertices in S neither of which is incident to
a red edge; then these vertices must be x and y. Furthermore, any other vertex
in S is adjacent to x and y, so it must be incident to some red edge. Therefore,
|R| = n− 2= |S|.

For any two vertices s ′, t ′ ∈ S, there exist vertices s, t ∈ S distinct from x and y,
such that {s, s ′} and {t, t ′} are red edges. We must have that s ′ and t ′ are nonadjacent,
since otherwise we could obtain a matching larger than R by taking R, removing
edges {s, s ′} and {t, t ′}, and replacing them with edges {x, s}, {y, t}, and {s ′, t ′}.
Additionally, if (without loss of generality) x is adjacent to s ′ ∈ S, then we could
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obtain a matching larger than R by replacing edge {s, s ′} with edges {x, s ′} and
{y, s}. Thus, the vertex set S ∪ {x, y} does not induce any edges, implying that
G ⊆ Kn−2+ nK1.

We can edge color Kn−2+ nK1 in a way that avoids red J3 and blue Jn simply
by coloring only one edge in the Kn−2 red. Thus, Kn−2+ nK1 6→ (J3, Jn). Then
there is no graph G on 2n − 2 vertices such that G → (J3, Jn; n), which gives
the lower bound Fe(J3, Jn; n) ≥ 2n − 1. For the upper bound we consider the
graph K2n−1 + K1. Let {x} = V (K1) and let vertices v1, v2 be nonadjacent. By
Proposition 1, any red-blue coloring of K2n−1+K1 with no red J3 contains a blue Kn .
This blue Kn can include at most one of v1, v2, and therefore at most one of {v1, x}
and {v2, x}. Hence, consider the subgraph K2n−2 + K 3 ⊂ K2n−1 + K1 constructed
by removing the edges {v1, x} and {v2, x}. Next, observe that any coloring of
K2n−2+K 3 with no red J3 therefore contains a blue Jn . So K2n−2+K 3→ (J3, Jn),
and thus, Fe(J3, Jn; n)= 2n− 1. �

3. Folkman numbers Fe(J4, J4; k)

3.1. Cases for k ≥ 6. In order to find upper bounds on Fe(J4, J4; k) for k ≥ 6 we
reduced the corresponding arrowings to instances of the Boolean satisfiability (SAT)
problem, which has been extensively studied. In particular, this approach had been
previously used by Shetler, Wurtz, and the third author to test arrowing of (K3, J4).
We applied it instead to the question of whether G 6→ (J4, J4), as follows: We map
the edges E(G) to the variables of a Boolean formula φG , so that the color of an
edge e is represented by the value of its corresponding Boolean variable. Then for
each J4 consisting of edges e1, e2, e3, e4, e5, we add to φG two clauses,

(e1+ e2+ e3+ e4+ e5)∧ (ē1+ ē2+ ē3+ ē4+ ē5).

Then G 6→ (J4, J4) if and only if φG is satisfiable. We solved many such instances
of satisfiability problem for formulas φG with the SAT-solver MiniSAT [Eén and
Sörensson 2004]. The results of these computations lead to the next theorem.

Theorem 4. It holds that

Fe(J4, J4; k)=
{

10 for k ≥ 8,
11 for k = 7,

and 11≤ Fe(J4, J4; 6)≤ 14.

Proof. It is known that R(J4, J4)= 10, see [Chvátal and Harary 1972], and hence
Fe(J4, J4; k)≥ 10 for all k ≥ 4, and Fe(J4, J4; k)= 10 for k ≥ 11. A computation
using MiniSAT determined that the graph G = K4+ K2,2,2 satisfies G→ (J4, J4).
Since |V (G)| = 10 and G is K8-free, using previous comments we obtain that
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Fe(J4, J4; 8)= 10. Because Fe(J4, J4; k) is nonincreasing in k, we also obtain that
Fe(J4, J4; k)= 10 for k = 9 and k = 10.

To find the lower bound for Fe(J4, J4; 7), we tested all nonisomorphic graphs
on 10 vertices found with nauty [McKay and Piperno 2014]. We ignored graphs
containing K7 and those which are K5-free (since it would contradict Fe(3, 3; 5)=15
[Piwakowski et al. 1999]). Testing exhaustively all 1806547 such graphs via φG

with MiniSAT revealed that Fe(J4, J4; 7; 10)=∅, and thus Fe(J4, J4; 7)≥ 11. A
computation using MiniSAT determined that the graph F = K2+ K3,2,2,2 satisfies
F → (J4, J4). Since |V (F)| = 11 and F is K7-free, much as before we obtain
Fe(J4, J4; 7) ≤ 11. Lastly, we determined using MiniSAT that the graph H =
C5+ K3,3,3 satisfies H→ (J4, J4). Since |V (H)| = 14 and H is K6-free, we have
Fe(J4, J4; 6)≤ 14. �

The exact value of Fe(J4, J4; 6) possibly could be determined as above with a
larger effort using similar computational techniques.

3.2. Fe(J4, J4; 5) and MAX-CUT. Our attempts to use MiniSAT to find a graph G
witnessing an upper bound on Fe(J4, J4; 5) were unsuccessful, as the SAT-solver
slowed down significantly when we tested larger graphs. However, we managed
to obtain the bound Fe(J4, J4; 5) ≤ 1297 using a modification of an idea and
computational approach of Dudek and Rödl [2008] for studying Fe(3, 3; 4), which
itself is based on an idea of Goodman [1959].

For a red-blue coloring of a graph G, we define Tdiff(v) and Tsame(v), respectively,
to be the number of triangles containing v in which the edges incident to v are
different colors or the same color. Let t be the number of triangles in G, and let m be
the number of monochromatic triangles in G. In each nonmonochromatic triangle,
there are two vertices v1, v2 for which the edges incident to it are different colors.
Then

∑
v∈G Tdiff(v)= 2(t−m) counts each nonmonochromatic triangle in G twice.

Furthermore,
∑

v∈G Tsame(v) = t + 2m gives the number of nonmonochromatic
triangles plus three times the number of monochromatic triangles. Therefore,

6m = 2
∑
v∈G

Tsame(v)−
∑
v∈G

Tdiff(v). (1)

Observe that if 3m > |E(G)|, then the ratio of edges in monochromatic triangles
to edges is greater than 1, implying that there is some edge e which is part of two
distinct monochromatic triangles. Therefore, if for every red-blue coloring of G we
have

2|E(G)|< 2
∑
v∈G

Tsame(v)−
∑
v∈G

Tdiff(v), (2)

then G→ (J4, J4).
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We now recall a method for linking arrowing triangles to the MAX-CUT problem,
first proposed by Dudek and Rödl [2008]. Let HG be the graph created as follows:
We map every edge e of G to vertex ve of H, so that V (HG) = E(G). Then for
any two vertices ve, v f in V (HG), we add the edge {ve, v f } if and only if their
corresponding edges e and f are a part of some triangle in G. Note that any
red-blue coloring of E(G) corresponds to a bipartition V (HG)= B ∪ R of vertices
of HG , inducing an edge cut C, for which any nonmonochromatic triangle in G
has exactly two edges in C. For any graph F, let MC(F)=MAX-CUT(F) denote
the maximum number of edges in F between the partite sets of any bipartition of
V (F). Letting MC(HG) be the size of the cut C, we have

MC(HG)=
∑
v∈G

Tdiff(v)≤MC(HG). (3)

Clearly, any edge in HG has both endpoints in the same partite set B or R if and
only if it is not in C. The above considerations lead to the following theorem.

Theorem 5. If MC(HG) < 2t (G)− 2|E(G)|/3, then G→ (J4, J4).

Proof. For any graph G whose edges are arbitrarily colored red and blue, consider
the cut C of HG as described above. Using (1) and (3), one can easily show that∑

v∈G

Tsame(v)= |E(HG)| −MC(HG)= 3t −MC(HG).

Now from the assumption we have 2|E(G)| < 2(3t − MC(HG)) − (MC(HG)).
Finally, using (2) and its implication we conclude that G→ (J4, J4). �

For large graphs H, finding tight upper bounds for MC(H) is computationally
expensive. For this reason, we used the following weakening of Theorem 5 for
vertex-transitive graphs G. Its advantage is that it allows us to detect conditions for
which Theorem 5 can be applied much faster.

Theorem 6. Let G be a vertex-transitive d-regular graph, where Gv denotes the
graph induced in G by the neighbors of vertex v. If we have

MC(Gv) <
2
3 |E(Gv)| −

1
3 d,

then G→ (J4, J4).

Proof. This is following the same argument as in an alternative approach to bounding
Folkman numbers used by Lu [2008] and Spencer [1988]. Here, however, with an
additional term d/3, we need to use the observation made above between equalities
(1) and (2). �

MAX-CUT is among Karp’s original 21 NP-hard problems [1972]. In order to
find good bounds on MC(HG) and MC(Gv) for graphs G of our interest, we used
the eigenvalue and semidefinite programming approximations of MAX-CUT. This
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approach was used by several authors, including Lu [2008], Dudek and Rödl [2008],
and Lange et al. [2014] to obtain upper bounds on Fe(3, 3; 4) (see Section 3.3 for a
historical summary).

We applied Theorems 5 and 6 to many graphs of different types. We found an
interesting positive instance using the following construction described in [Lu 2008].
For positive integers n and s, s < n, define S = {si (mod n) | i = 0, 1, . . . , n− 1}.
Then, if n − 1 ∈ S, let L(n, s) be the graph with vertex set Zn and edge set
{{x, y} | x − y ∈ S}. Clearly, the graphs L(n, s) are vertex-transitive.

Theorem 7. Fe(J4, J4; 5)≤ 1297.

Proof. For the graph L(1297, 8), which is 216-regular, we found that it satisfies the
assumptions of both Theorems 5 and 6, using two MAX-CUT bounding methods:
the eigenvalue method and the SDP approach. We used our Java library and
associated programs, including the eigs function in Matlab and the SDP solver
SDP-LR [Helmberg and Rendl 2000]. An easy (computer) test shows that the graph
L(1297, 8) is K5-free, and hence it is a witness of the upper bound. �

We wish to note that recently (and after this work was completed) a much better
bound of 51 on Fe(J4, J4; 5) was obtained in [Xu et al. 2018]. The latter bound
did not require any computations. We also would like to recall the bound on
Fe(J4, J4; 4) obtained in [Lu 2008], as follows.

Proposition 8. Fe(J4, J4; 4)≤ 30193.

The bound in Proposition 8 is mentioned by Lu [2008] in his paper on Fe(3, 3; 4)
as a side result, without any comments on the approach. However, we communicated
with the author who confirmed that the main idea of his approach was similar to
one in this work.

3.3. History of the Folkman number Fe(3, 3; 4). Table 1 below summarizes the
history of bounds on the edge Folkman number Fe(3, 3; 4)= Fe(K3, K3; 4), which
is the smallest unknown classical Folkman number, sometimes also called the most
wanted. This table builds on an earlier Table 5 by Xu and the third author [Xu and
Radziszowski 2016], where further extensive comments about the progress related
to Fe(3, 3; 4) can be found. The new entries in Table 1 here are lower bounds
13, 14 and 20. The bound Fe(3, 3; 4) ≥ 14 can be obtained as follows: removal
of any independent set of three vertices from any graph in Fe(3, 3; 4) must yield
a 5-chromatic K4-free graph, but Nenov [1984] proved (without using computer
algorithms) that any such graph has at least 11 vertices. Fe(3, 3; 4)≥ 13 is implied
in the same way by an earlier result of Nenov [1983]. In contrast, the currently
best-known lower bound of 20 was obtained by Bikov and Nenov [2017] using
CPU-intensive computations.
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year lower/upper who/whatbounds

1967 any? [Erdős and Hajnal 1967]
1970 exist [Folkman 1970]
1972 11 – implicit in [Lin 1972], implied by Fe(3, 3; 5)≥ 10
1975 – 1010? Erdős [1975] offers $100 for proof
1983 13 – implied by a result of [Nenov 1983]
1984 14 – implied by a result of [Nenov 1984]
1986 – 8 · 1011 [Frankl and Rödl 1986]
1988 – 3 · 109 [Spencer 1988]
1999 16 – Piwakowski, Radziszowski and Urbański,

implicit in [Piwakowski et al. 1999]
2007 19 – [Radziszowski and Xu 2007]
2008 – 9697 [Lu 2008]
2008 – 941 [Dudek and Rödl 2008]
2012 – 100? Graham offers $100 for proof
2014 – 786 Lange, Radziszowski and Xu [Lange et al. 2014]
2017 20 – [Bikov and Nenov 2017]

Table 1. History of bounds on the Folkman number Fe(3, 3; 4).

For any graph G with t triangles and graph HG as defined in Section 3.2, one can
easily observe that G→ (K3, K3) if and only if MC(HG)< 2t ; see also [Dudek and
Rödl 2008]. Thus, computational techniques to find upper bounds for MAX-CUT
may lead to good upper bounds on Fe(3, 3; 4), including the first such result by
Dudek and V. Rödl [2008]. Lange, Xu, and the third author used the SDP MAX-
CUT approximation to obtain an upper bound on MC(HG) for a particular K4-free
graph G on 786 vertices, and used it to show that G→ (K3, K3).

We made numerous attempts to lower this bound by trying to find a smaller
K4-free graph G for we could obtain the bound MC(HG) < 2t . Among the graphs
tested were the graphs G(n, r) considered in [Dudek and Rödl 2008], the graphs
L(n, s) from [Lu 2008], and their variations. In particular, we tested a generalization
of L(n, s) to Galois fields GF(pk), in addition to graphs constructed by adjoining
various pairs of circulant graphs in a variety of ways. Our efforts have convinced
us that these methods are unlikely to yield any major improvement on this bound.

The well-known K4-free graph G127= L(127, 5) was studied by several authors;
see for example [Radziszowski and Xu 2007; Xu and Radziszowski 2016]. In
particular, it was conjectured by Exoo that G127→ (K3, K3). Needless to say, we
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were not successful in proving Exoo’s conjecture, because otherwise it would imply
that Fe(3, 3; 4)≤ 127.

Computations. Some of the results in this paper were found through the use of
various computational methods. This involved a large library of functions, including
graph manipulation, construction of various types of graphs, and tests for graph
arrowing. Graphs were represented in a variety of ways, including two-dimensional
Boolean arrays, lists of edges for sparse graphs, and the g6-format of [McKay
and Piperno 2014]. Our code was written in Java and executed on Unix and
Windows systems. For our final results, Matlab and SDP-LR [Helmberg and Rendl
2000; Rendl et al. 2010] were used to calculate eigenvalue and SDP MAX-CUT
approximations, respectively. MiniSAT [Eén and Sörensson 2004] was used to
solve satisfiability problems. We also made use of lists of nonisomorphic graphs
with special properties found with nauty [McKay and Piperno 2014].
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Weighted persistent homology
Gregory Bell, Austin Lawson, Joshua Martin,

James Rudzinski and Clifford Smyth

(Communicated by Józef H. Przytycki)

We introduce weighted versions of the classical Čech and Vietoris–Rips com-
plexes. We show that a version of the Vietoris–Rips lemma holds for these
weighted complexes and that they enjoy appropriate stability properties. We also
give some preliminary applications of these weighted complexes.

1. Introduction

Topological data analysis (TDA) provides a means for the power of algebraic
topology to be used to better understand the shape of a data set. In the traditional
approach to TDA, isometric balls of a fixed radius r > 0 are centered at each data
point in some ambient Euclidean space. One then constructs the nerve of the union
of these balls and computes the simplicial homology of this nerve. Computationally,
this approach is infeasible for large data sets or high-dimensional data, so instead one
computes the so-called Vietoris–Rips complex, which is the flag complex over the
graph obtained by placing an edge between any pair of vertices that are at distance
no more than 2r from each other. The key idea of TDA is to allow the radius of these
balls to vary and to compute simplicial homology for each value of this radius to
create a topological profile of the space. This profile is encoded in either a barcode
or a persistence diagram. Topological features such as holes or voids that exist for a
relatively large interval of radii are said to persist and are believed to be more impor-
tant than more transient features that exist for very short intervals of radii. (There
are, however, important exceptions to this rule of thumb; see [Bendich et al. 2016].)

In the traditional model, the radius of each ball is the same and can be modeled
by the linear function of time r(t) = r t . In this paper, we consider a model of
computing persistent homology in which the radius of each ball is allowed to be a
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different monotonic function rx(t) at each point x . In this way we can emphasize
certain data points by assigning or weighting them with larger and/or more quickly
growing balls and de-emphasize others by weighting them with smaller and/or
more slowly growing balls. This is appropriate in the case of a noisy data set, for
instance, as an alternative to throwing away data that fails to meet some threshold
of significance. Various other methods of enhancing persistence with weights have
been considered; see, e.g., [Buchet et al. 2016; Edelsbrunner and Morozov 2013;
Petri et al. 2013; Ren et al. 2017; 2018].

The weighted model we propose fits into the framework of generalized persis-
tence in the sense of [Bubenik et al. 2015]. We show that it enjoys many of the
properties familiar from the techniques of traditional persistent homology. We prove
a weighted Vietoris–Rips lemma (Theorem 3.2) that relates our weighted Čech and
Rips complexes in the same way that they are related in the case of isometric balls.
We also show that the persistent homology computed over weighted complexes is
stable with respect to small perturbations of the rates of growth and/or the points in
the data set (Theorem 4.1). Moreover, packages for computing persistent homology
such as Javaplex [Adams et al. 2014] and Perseus [Mischaikow and Nanda 2013]
are capable of handling our weighted persistence with the same complexity as
unweighted persistence by merely adjusting inputs to the package functions.

As a proof of concept, we apply our methods to the Modified National Institute
of Standards and Technology (MNIST) data set of handwritten digits translated into
pixel information. Our method proves more effective than isometric persistence
in finding the number 8 from among these handwritten digits. (We chose 8 for its
unique 1-dimensional homology among these digits.) We found our methods to
be 95.8% accurate as opposed to isometric persistence’s 92.07% accuracy. This
experiment was chosen to demonstrate the performance of weighted persistence
over usual persistence, but it should be noted that neither method approaches the
accuracy of state-of-the art computer vision and we make no claim that we are
improving on known methods.

In Section 2, we provide the background definitions that are needed for what
follows and describe our weighted persistence model. In Section 3 we prove the
weighted Vietoris–Rips lemma and indicate how persistent homology packages can
be used to compute weighted persistence. In Section 4 we establish our stability
results. Our experiments on MNIST data appear in Section 5. We end with some
remarks and questions for further study.

2. Preliminaries

We begin by defining some terminology and setting our notation. We will assume
some familiarity with simplicial homology and the basic ideas of topological data
analysis. For details, we refer to [Edelsbrunner and Harer 2010; Rotman 1988].
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In algebraic topology, simplicial homology is a tool that assigns to any simplicial
complex K a collection of Z-modules H0(K ), H1(K ), . . . , called homology groups,
in such a way that the rank of Hn(K ) describes the number of “n-dimensional
holes” in K. For our purposes, we replace the standard definition in terms of
Z-modules with vector spaces (usually over the field with two elements, for ease of
computation). We therefore refer to homology vector spaces instead of homology
groups. We do not attempt to define Hn(K ) here, but instead refer to any text in
algebraic topology, such as [Rotman 1988].

Let U be a collection of sets. We define the nerve N (U) to be the abstract simpli-
cial complex with vertex set U with the property that the subset {U0,U1, . . . ,Un}

of U spans an n-simplex in N whenever
⋂n

i=0 Ui 6=∅.
Let (X, d) be a metric space. We define Br (x) = {y ∈ X | d(x, y) < r} and

Br (x)= {y ∈ X | d(x, y)≤ r} to be the open and closed balls of radius r about x ,
respectively. (Note that we’re abusing notation since in a general metric space
Br (x) is not necessarily the closure of the open ball, usually denoted by Br (x)).
We most often consider examples where X is a subset of Rd and d(x, y)= ‖x− y‖
is the Euclidean distance between x and y. For a real number r ≥ 0, we define the
Čech complex of X at scale r by Čech(r)=N {Br (x) | x ∈ X}.

We generalize this construction by allowing the radius of the ball around each
element x to depend on x . Let r : X → [0,∞) be any function. We define the
weighted r-Čech complex Čech(r) of X by Čech(r)=N {B r(x)(x)}.

In practice, it is difficult to determine whether an intersection of balls is nonempty.
A much simpler construction to use is the Vietoris–Rips complex. For a given
parameter r ≥ 0 the Vietoris–Rips complex is the flag complex of the 1-skeleton
of the Čech complex; i.e., a collection of n + 1 balls forms an n-simplex in the
Vietoris–Rips complex if and only if the balls are pairwise intersecting. For the
Vietoris–Rips complex we identify each ball with its center, so that the Vietoris–Rips
complex at scale r is VR(r)={σ ⊂ X | diam(σ )≤ 2r}. Similarly, if r : X→[0,∞),
the weighted r-Vietoris–Rips complex is

VR(r)= {σ ⊂ X | d(x, y)≤ r(x)+ r(y) for all x, y ∈ σ with x 6= y}.

Fix r : X → [0,∞) and consider the simplicial complex Čech(r) (or VR(r)).
Using simplicial homology with field coefficients, one can associate homology
vector spaces H∗(Čech(r)) to these simplicial complexes. Whenever t0 ≤ t1 there is
a natural inclusion map of simplicial complexes given by ι : Čech(t0r)→ Čech(t1r)
(or the corresponding inclusion of the Vietoris–Rips complexes). By functoriality,
there is an induced linear map on homology ι∗ : H∗ Čech(t0r))→ H∗ Čech(t1r).

Let X ⊂ Rd be finite. Although we defined the weighted complexes above for
any function r : X→ [0,∞), we want to study the persistence properties of these
weighted complexes. For example, in the case of the weighted Čech complex, we



826 G. BELL, A. LAWSON, J. MARTIN, J. RUDZINSKI AND C. SMYTH

want to study the evolution of homology as the radii of the balls grow to infinity. One
straightforward way to do this would be to simply scale our weighted complexes
linearly in the same way that one usually scales the isometric balls in persistent
homology. We prefer a more flexible approach, which we describe in terms of
radius functions.

Let C1
+
= C1
+
([0,∞)) denote the collection of differentiable bijective functions

φ : [0,∞)→ [0,∞) with positive first derivative. By a radius function on X we
mean a function r : X→ C1

+
. We denote the image function r(x) by rx .

For t ≥ 0, we define the Čech and Vietoris–Rips complexes at scale t by

Čechr(t)=N {B rx (t)(x)}

and

VRr(t)= {σ ⊂ X | d(x, y)≤ rx(t)+ ry(t) for all x, y ∈ σ with x 6= y},

respectively. We define the entry function,

fX,r(y)=min
x∈X
{r−1

x (d(y, x))}. (1)

This function captures the scale t at which the point y ∈ Rd is first captured by
some ball B rx (t)(x); we have fX,r(y) = t if and only if y ∈ B rx (t)(x) for some x
in X and y 6∈

⋃
x∈X Brx (t)(x). Thus we have the following proposition.

Proposition 2.1. Let X be a finite subset of some Euclidean space Rd. Suppose that
r and fX,r are defined as above. Then,

f −1
X,r([0, t])=

⋃
x∈X

B(x, rx(t)).

It follows from the nerve lemma, see for example [Hatcher 2002, Corollary 4G.3],
that Čechr(t) is homotopy equivalent to f −1

X,r([0, t]).

3. A weighted Vietoris–Rips lemma

The Vietoris–Rips complex is much easier to compute than the Čech complex in
high dimensions. To determine whether n+ 1 balls form an n-simplex in the Čech
complex, we must check whether the balls intersect, a computationally complex
problem. To determine whether n+ 1 balls Bri (xi ) form a simplex in the Vietoris–
Rips complex is computationally easy; only

(n+1
2

)
conditions d(xi , x j ) ≤ ri + rj

need be checked. Furthermore, if there are m points in X , it may be necessary
to check all 2m subcollections of balls to determine the Čech complex, whereas
determining the Rips complex will only require checking

(m
2

)
pairs of points.

Our weighted Čech and Vietoris–Rips complexes are similar in spirit to weighted
alpha complexes [Edelsbrunner and Harer 2010, III.4]. Both constructions seek to
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permit “balls” with different sizes. Our constructions are simpler from a conceptual
standpoint since the alpha complexes are built as subcomplexes of the Delaunay
complex, which comes from the Voronoi diagram. Moreover, our complexes
are computationally simple; indeed our method of finding weighted Vietoris–Rips
complexes requires only marginally more computation than the unweighted Vietoris–
Rips complex.

In particular, Javaplex and Perseus can compute regular (unweighted) persistent
homology given input of a distance matrix M with Mi, j = d(xi , x j ). Inputting
Mi, j = d(xi , x j )/(ri+rj ) allows these packages to compute the persistent homology
with rxi (t)= ri t in the same time.

In computational problems it is common to use the Vietoris–Rips complex instead
of the Čech complex to simplify the calculational overhead. The following theorem
justifies this decision by saying that the Vietoris–Rips complex is “close” to the
weighted Čech complex.

The classical Vietoris–Rips lemma can be stated as follows:

Theorem 3.1 [de Silva and Ghrist 2007]. Let X be a set of points in Rd and let
t > 0. Then

VR(t ′)⊆ Čech(t)⊆ VR(t)

whenever 0< t ′ ≤ t (
√

2d/(d + 1))−1.

The main result of this section is an extension of this result to the weighted case.

Theorem 3.2 (weighted Vietoris–Rips lemma). Let X be a set of points in Rd. Let
r : X→ (0,∞) be the corresponding weight function and let t > 0. Then

VR(t ′r)⊆ Čech(t r)⊆ VR(t r)

whenever 0< t ′ ≤ t (
√

2d/(d + 1))−1.

Proof. The second containment Čech(t r)⊆ VR(t r) follows from the fact that the
weighted Vietoris–Rips complex is the flag complex of the weighted Čech complex.

To show that VR(t ′r) ⊂ Čech(t r), we suppose there is some finite collection
σ = {xk}

`
k=0 ⊆Rd with ` > 0 that is a simplex in VR(t ′r) and show that this is also

a simplex in Čech(t r). We have ‖xi − x j‖2 ≤ t ′(r(xi )+ r(x j )) whenever i 6= j .
Define a function f : Rd

→ R by

f (y)= max
0≤ j≤`

{
‖x j − y‖2

r(x j )

}
.

Clearly, f is continuous and f (y)→∞ as ‖y‖2→∞. Thus f attains a minimum
(say at y0) on some compact set containing Conv({xk}

`
k=0). (Here Conv(S) is the

convex hull of the set S ⊆Rd.) We must have ‖xi − y0‖2/r(xi )= f (y0) for at least



828 G. BELL, A. LAWSON, J. MARTIN, J. RUDZINSKI AND C. SMYTH

one of the vertices xi . By reordering the vertices, we may assume that

f (y0)=
1

r(x j )
‖x j − y0‖2 if 0≤ j ≤ n,

f (y0) >
1

r(x j )
‖x j − y0‖2 if n < j ≤ `.

Let

g(y)= max
0≤ j≤n

{
1

r(x j )
‖x j − y‖2

}
,

h(y)= max
n< j≤`

{
1

r(x j )
‖x j − y‖2

}
.

Now we wish to show that y0 ∈ Conv({x j }
n
j=0). To this end we apply the

separation theorem [Matoušek 2002] to obtain: either y0 ∈ Conv({x j }
n
j=0) or there

is a v ∈ Rd and a C < 0 such that v x j ≥ 0 for all 0≤ j ≤ n and v y0 < C . Thus if
y0 6∈ Conv({x j }

n
j=0) there is a v ∈ Rd such that v(x j − y0) > 0 for 0 ≤ j ≤ n. We

suppose that there is such a v and derive a contraction.
Since

‖x j − (y0+ λv)‖
2
2 = ‖x j − y0‖

2
2− 2λv(x j − y0)+ λ

2
‖v‖22

for each 0≤ j ≤ n, it follows that g(y0+ λv) < f (y0) for all 0< λ < λ1, where

λ1 = min
0≤ j≤n

{
2v(x j − y0)

‖v‖22

}
.

Since h(y) is continuous and h(y0)< f (y0), there exists a λ2 such that h(y0+λv)<

f (y0) for 0< λ < λ2. Thus, there exists a λ > 0 such that

f (y0+ λv)=max{g(y0+ λv), h(y0+ λv)}< f (y0),

contradicting the minimality of y0.
By Carathéodory’s theorem [Matoušek 2002] and reordering of vertices if neces-

sary, y0 is a convex combination of some subcollection of vertices {x j }
m
j=0, where

m ≤min{d, n}. It is not possible that m = 0. If so, then y0 = x0 and

f (y0)=
1

r(x0)
‖x0− y0‖2 = 0

and f is identically zero. Since σ has dimension at least 1, it contains a vertex
x1 6= x0. It follows that

f (y0)= f (x0) >
1

r(x1)
‖x1− x0‖2 > 0,

which is a contradiction.
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Let x̂ j = x j − y0 for all 0≤ j ≤ m. Note that

‖x̂ j‖
2
2 = r(x j )

2 f (y0)
2. (2)

Since y0 ∈ Conv({x j }
m
j=0), we know y0 =

∑m
j=0 aj x j for some set of nonnegative

real numbers a0, . . . , am that sum to 1. Thus
∑m

j=0 aj x̂ j = 0. By relabeling, we
may assume that a0r(x0) ≥ aj r(x j ) when j > 0. Necessarily a0 > 0 (otherwise
aj = 0 for all 0≤ j ≤ m, a contradiction). Then,

x̂0 =−

m∑
j=0

aj

a0
x̂ j

and so

r(x0)
2 f (y0)

2
= ‖x̂0‖

2
2 =−

m∑
j=0

ai

a0
x̂0 x̂ j .

Among the indices 1, 2, . . . ,m, there is some j0 such that

1
d

r(x0)
2 f (y0)

2
≤

1
m

r(x0)
2 f (y0)

2
≤−

a j0

a0
x̂0 x̂ j0 . (3)

We must have a j0 > 0. (Otherwise, f (y0) = 0, which, as shown earlier, is a
contradiction.) By reordering, we may assume j0 = 1. Putting (1) and (2) together,
we find

f (y0)
2
(

r(x0)
2
+

2a0r(x0)
2

a1d
+ r(x1)

2
)

= f (y0)
2r(x0)

2
+

2a0 f (y0)
2r(x0)

2

a1d
+ f (y0)

2r(x1)
2

≤ ‖x̂0‖
2
2− 2x̂0 x̂1+‖x̂1‖

2
2

= ‖x̂0− x̂1‖
2
2

= ‖x0− x1‖
2
2

≤ (t ′(r(x0)+ r(x1)))
2.

We will now show that

f (y0)
2

t ′
≤

(r(x0)
2
+ r(x1)

2)2

r(x0)2+ 2a0r(x0)2/(a1d)+ r(x1)2
≤

2d
d + 1

.

It suffices to show, after cross-multiplying the right-hand inequality, that(
d − 1+ 4

a0

a1

)
r(x0)

2
− 2(d + 1)r(x0)r(x1)+ (d − 1)r(x1)

2
≥ 0.

Since
a0

a1
≥

r(x1)

r(x0)
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we get(
d − 1+ 4

a0

a1

)
r(x0)

2
− 2(d + 1)r(x0)r(x1)+ (d − 1)r(x1)

2

≥

(
d − 1+ 4

r(x1)

r(x0)

)
r(x0)

2
− 2(d + 1)r(x0)r(x1)+ (d − 1)r(x1)

2

= (d − 1)(r(x0)− r(x1))
2
≥ 0,

as desired. Our assumption that t ′ ≤ t (
√

2d/(d + 1))−1 implies f (y0)≤ t and thus

y0 ∈
⋂̀
i=0

B t r(xi )(xi ).

Therefore σ ∈ Čech(t r) and we are done. �

4. Stability

In this section we discuss the stability of our weighted persistence. Let X and
Y be finite subsets of Rd with corresponding radii functionals r : X → C1

+
and

s : Y → C1
+

. Informally, we show that if (X, r) and (Y, s) are “close”, i.e., are small
perturbations of each other, then the corresponding entry functions fX,r and fY,s,
see (1), are also “close” and hence the associated persistence diagrams must also be
“close”. We’ll now make the definitions of these various types of closeness precise.

Let η ⊆ X × Y be a relation such that for every x ∈ X there is a y ∈ Y with
(x, y) ∈ η and for every y ∈ Y there is an x ∈ X with (x, y) ∈ η. We measure the
closeness of X and Y with respect to η by

‖η‖ := max
(x,y)∈η

d(x, y).

If L is any compact set and h : L→ R is continuous let

‖h‖L :=max
x∈L
|h(x)|.

Let K be a compact subset of Rd that contains X ∪ Y. The closeness of r and s is
measured by

D(r, s)η,K := max
(x,y)∈η

‖r−1
x − s−1

y ‖[0,diam(K )].

The closeness of fX,r and fY,s is measured by ‖ fX,r − fY,s‖K . We also define
S(r)K :=maxx∈X ‖(r−1

x )′‖[0,diam(K )].
As is common, we measure the closeness of persistence diagrams by the bottle-

neck distance. We’ll give the definition of this metric in the remarks leading up to
Theorem 4.5.
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Theorem 4.1. In the above notation we have the following bound on entry functions
(see (1)):

‖ fX,r − fY,s‖K ≤ D(r, s)η,K +‖η‖max(S(r)K , S(s)K )

Proof. There is some point z in the compact set K and some points x ∈ X and
y ∈ Y so that

‖ fX,r − fY,s‖K = | fX,r(z)− fY,s(z)| = |r−1
x (d(z, x))− s−1

y (d(z, y))|.

We first suppose r−1
x (d(z, x)) ≥ s−1

y (d(z, y)). Let x ′ ∈ X such that (x ′, y) ∈ η.
Since fX,r is a minimum, r−1

x ′ (d(z, x ′))≥ r−1
x (d(z, x)) and we have

‖ fX,r − fY,s‖K

≤ |r−1
x ′ (d(z, x ′))− s−1

y (d(z, y))|

≤ |r−1
x ′ (d(z, x ′))− s−1

y (d(z, x ′))| + |s−1
y (d(z, x ′))− s−1

y (d(z, y))|. (4)

Since d(z, x ′) ∈ [0, diam(K )],

|r−1
x ′ (d(z, x ′))− s−1

y (d(z, x ′))| ≤ D(r, s)η,K .

Since |d(z, x ′)− d(z, y)| ≤ d(x ′, y) ≤ ‖η‖ we apply the mean value theorem to
obtain the bound

|s−1
y (d(z, x ′))− s−1

y (d(z, y))| ≤ ‖η‖‖(s−1
y )′‖[0,diam(K )] ≤ ‖η‖max(S(r)K , S(s)K ).

Together, these last two bounds give the bound of the theorem. A similar argument
gives the same bound if r−1

x (d(z, x))≤ s−1
y (d(z, y)). �

If one has free choice of the perturbed set (Y, s) it is clear that ‖ fX,r − fY,s‖K

can be made arbitrarily large. This could be done, say by adding a point to Y that
is arbitrarily far from any point in X or by making one sy arbitrarily larger than
any rx . The upper bound of Theorem 4.1 is also a bound on how extreme such
perturbations may be.

We have the following immediate corollary of Theorem 4.1.

Corollary 4.2. If the radii functions are all linear, i.e., if there are positive constants
rx and sy for all x ∈ X and y ∈ Y such that rx(t)= rx t and sy(t)= sy t , then

‖ fX,r − fY,s‖K ≤ diam(K ) max
(x,y)∈η

∣∣∣∣ 1
rx
−

1
sy

∣∣∣∣+‖η‖max
(

max
x∈X

1
rx
,max

y∈Y

1
sy

)
.

For our next two corollaries, let X and Y have the same cardinality and let
m : X→ Y be a bijection. We now consider each point x ∈ X as being perturbed
to a point m(x) ∈ Y and hence set η = {(x,m(x)) : x ∈ X}. We have the following
point-stability result in which the points are perturbed but the weight functions stay
the same.
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Corollary 4.3 (point-stability). If only the locations of the points are perturbed and
the radius functions stay the same, i.e., sm(x)(t)= rx(t) for all x ∈ X , then

‖ fX,r − fY,s‖K ≤max
x∈X

d(x,m(x))‖(r−1
x )′‖[0,diam(k)].

Proof. We follow the proof of Theorem 4.1. Take x ′ ∈ X such that m(x ′)= y. Then
Sy = rx ′ and the first term in the upper bound in inequality (4) is 0. Since the second
term in that upper bound is bounded above by d(x ′,m(x ′))‖(r−1

x ′ )
′
‖[0,diam(K )], the

bound of the corollary holds. �

The next corollary is a weight-function stability result concerning a case in
which the points stay the same (Y = X and m(x)= x) but the weight functions are
perturbed.

Corollary 4.4 (weight-function stability). If only the radii functions are perturbed
and the points stay the same, then

‖ fX,r − fX,s‖K ≤max
x∈X
‖r−1

x − s−1
x ‖[0,diam(K )].

Proof. Again following the proof of Theorem 4.1 we take x ′ =m(x ′)= y. Now the
second term in the upper bound of (4) is 0 and the first term is |r−1

y − s−1
y |, where

t = d(z, y). The corollary follows. �

We now show the stability of the persistence diagrams of fX,r under perturbations
of X and r . Let f : K → [0,∞) be a real-valued function on a compact set
K ⊆Rd. The persistence diagram of f , dgm( f ), is a multiset of points in [0,+∞]2

recording the appearance and disappearance of homological features in f −1([0, t])
as t increases. Each point (b, d) in the diagram tracks a single homological feature,
recording the scale t = b at which the feature first appears and the scale t = d
at which it disappears [Edelsbrunner and Harer 2010]. It should also be noted
that if one considers the birth-death pair as an interval, we obtain the barcode
as seen in [Zomorodian and Carlsson 2005] (see Figures 2 and 3). Given two
functions f, g : K→[0,∞], let P=dgm( f ) and Q=dgm(g) be the corresponding
persistence diagrams (where as usual we include all points along the diagonal in P
and Q). We let N denote the set of all bijections from P to Q. We recall that the
bottleneck distance between the diagrams [Edelsbrunner and Harer 2010] is given by

dB(dgm( f ), dgm(g))= inf
γ∈N

sup
x∈P
‖x − γ (x)‖∞.

Theorem 4.5 [Cohen-Steiner et al. 2007, Theorem 6.9]. Suppose X is a triangula-
ble space and that f : X → R and g : X → R are tame, continuous functions. If
| f − g| is bounded, then for each n

dB(dgmn( f ), dgmn(g))≤ ‖ f − g‖∞,
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where dB denotes the bottleneck distance and dgmn( f ) denotes the n-th persistence
diagram of the filtration of f .

We refer to [Edelsbrunner and Harer 2010] for the technical definitions of tame
and triangulable. Note that as our spaces are nerves of balls around finite collections
of points, they are finite simplicial complexes. Hence they are triangulable and only
admit tame functions. Thus for our setting we get the following corollary.

Corollary 4.6. Let X and Y be finite subsets of Rd and let r : X → C1
+

and
s : Y → C1

+
. Suppose that η ⊆ X × Y is a relation as above and K is a compact

subset of Rd containing X and Y. Then for each n,

dB(dgmn( fX,r), dgmn( fY,s))≤ D(r, s)η,K +‖η‖max(S(r)K , S(s)K ).

5. MNIST 8’s recognition

In this section, we give an application of weighted persistence to a simple computer
vision problem. We apply our methods to the Modified National Institute of
Standards and Technology (MNIST) data set of handwritten digits. We should em-
phasize that this application is simply a proof of concept; our methods to detect the
handwritten number 8 fall well short of state-of-the-art methods [Cires,an et al. 2012].

The MNIST data set consists of handwritten digits (0 through 9) translated
into pixel information. Each data point contains a label and 784 other values
ranging from 0 to 255 that correspond to a 28 by 28 grid of pixels. The values 0
through 255 correspond to the intensity of the pixels in gray-scale with 0 meaning
completely black and 255 meaning completely white. Considering the digits from
0 through 9, unweighted persistence would easily be able to classify these numbers
as having zero, one, or two holes, provided they are written precisely; however, real
handwritten digits present a challenge. Consider an 8 as in Figure 1. Unweighted
persistence would pick up on two holes, but one of those holes might be slightly
too small and ultimately considered insignificant; see Figure 3. Our methods are
able to pick up on both holes and would count them as significant; see Figure 2.
We chose to work with the digit 8 due to its unique homology.

Figure 1. An 8 converted to a 28 by 28 grid of pixels.



834 G. BELL, A. LAWSON, J. MARTIN, J. RUDZINSKI AND C. SMYTH

0 0.5 1 1.5 2 2.5 3

Figure 2. Weighted persistence on the image from Figure 1
produces a barcode that clearly has two long bars in dimension 1.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 3. Unweighted persistence on the image from Figure 1
produces a barcode that has one long bar (in 1-homology). The
second-longest bar is hard to distinguish (in length) from the rest.

To begin, we convert each 28 by 28 to a set of points in the plane. We treat the
location of a value in the matrix as a location in the plane. That is, the value in the
i-th row, j-th column corresponds to the point (i, j). The weight on each point is
exactly its corresponding pixel intensity. Using this set of points and corresponding
weights we calculate persistent homology via weighted Rips complexes. We test
this method’s performance against the unweighted case where all nonzero pixel
values have the uniform weight of 1; again we calculate persistence in this case via
Rips complexes.

We compare weighted persistence to unweighted persistence by measuring the
accuracy of classifying 8’s. Notice in the barcodes that the deciding factor in
determining an 8 is the ability to distinguish the length of the second longest
bar from the length of the third longest and smaller bars. For this reason, we
consider the ratio of the third longest bar to the second longest bar. We will say
(arbitrarily) that a barcode represents an 8 if this ratio is less than 1

2 . For each of
the 42,000 handwritten digits in the MNIST data set, we compute both weighted
and unweighted persistence and collect the predictions. We obtain the confusion
matrices as in Table 1.

Notice that the weighted persistence has an accuracy rate of 95.8% whereas
unweighted persistence had an accuracy of 92.07%. A full summary can be seen
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weighted persistence unweighted persistence

predicted not 8 predicted 8 predicted not 8 predicted 8

not 8 36487 1450 35869 2068
is 8 633 3430 1261 2802

Table 1. The confusion matrices show that weighted persistence
outperforms its unweighted counterpart.

weighted persistence unweighted persistence

accuracy 0.9504 0.9207
sensitivity 0.9618 0.9455
specificity 0.8442 0.6896

pos. predicted value 0.9829 0.9660
neg. predicted value 0.7029 0.5754

prevalence 0.9033 0.9033
balanced accuracy 0.9030 0.8176

Table 2. Weighted and unweighted persistence compared.

in Table 2. We view this result as promising for potential future applications of
weighted persistence.

6. Concluding remarks and open questions

The method of weighted persistence satisfies the appropriate Vietoris–Rips lemma,
is stable under small perturbations of the points, or the weights, or both, and can
be successfully applied to data such as the MNIST data set to improve upon usual
persistence. Furthermore, it is just as easy to calculate weighted persistence for
balls growing at linear rates as it is to calculate regular persistence. We conclude
the paper with some further observations and questions.

One can imagine weighted persistence as interpolating between two extreme
approaches to a data set that is partitioned into data D and noise N. More precisely,
we consider a noisy data set X . Various methods exist to filter X into data D and
noise N. Traditional persistence can be applied to D ∪ N in two ways. We can
either assign the same radius to every point of D∪ N or we can throw the points of
N out entirely and compute persistence on D alone. Using weighted persistence,
we can assign the radius 0 to each point of N and compute weighted persistence
of D ∪ N. It is easy to see that this will differ from persistence of D itself only in
dimension 0. By gradually increasing the N -radii from 0 to 1, our stability results
can be interpreted as producing a continuum of barcodes/persistence diagrams that
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interpolate between the usual persistence applied to D and the usual persistence
applied to D ∪ N (in dimensions above 0); see [Lawson 2016].

As mentioned in the Introduction, weighted persistence fits into the framework
of generalized persistence in the sense of [Bubenik et al. 2015]. This direction was
explored in detail in [Martin 2016].

Finally, it would be interesting to apply weighted persistence to the MNIST data
set to determine its effectiveness in distinguishing the 1-homology of the other nine
digits. One complication is that the number 4 presents an interesting challenge
since it is appropriate to write it both as a simply connected space and as a space
with nontrivial H1. Distinguishing 1-homology creates three clusters of digits from
which we could use other machine-learning techniques to create an ensemble and
make accurate predictions.
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Leibniz algebras with
low-dimensional maximal Lie quotients

William J. Cook, John Hall, Vicky W. Klima and Carter Murray
(Communicated by Ravi Vakil)

Every Leibniz algebra has a maximal homomorphic image that is a Lie algebra.
We classify cyclic Leibniz algebras over an arbitrary field. Such algebras have the
1-dimensional abelian Lie algebra as their maximal Lie quotient. We then give
examples of Leibniz algebras whose associated maximal Lie quotients exhaust
all 2-dimensional possibilities.

1. Introduction

The theory of Leibniz algebras has blossomed since the pioneering work [Loday
1993]. Transitioning from Lie to Leibniz algebras is similar to transitioning from
commutative to noncommutative rings. Both transitions drop one defining property,
leading to many new and interesting structures. In a Leibniz algebra we keep a
version of the Jacobi identity but no longer assume that multiplication is alternating,
and hence it is not necessarily skew-symmetric either. To truly understand an
algebraic structure one needs a varied collection of illuminating examples. In this
paper we seek to provide a small collection of examples of non-Lie (left) Leibniz
algebras.

In [Scofield and Sullivan 2014] the authors provide a classification of cyclic
Leibniz algebras over the complex field. We offer a variant of their proof which
avoids the use of n-th roots and thus provides a complete classification of cyclic
Leibniz algebras over arbitrary fields. In addition, we construct two classes of non-
cyclic Leibniz algebras with nonisomorphic 2-dimensional maximal Lie quotients,
exhausting all possibilities for such quotients.

The paper is structured as follows: after providing some background in Section 2,
we use Section 3 to construct and classify all cyclic Leibniz algebras over an
arbitrary field. The next two sections present examples of Leibniz algebras with
both nonabelian (Section 4) and abelian (Section 5) 2-dimensional maximal Lie
quotients.
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2. Background

Let F be a field. For our purposes it suffices to consider only finite-dimensional
vector spaces over F.

Definition 2.1. Let L be a vector space equipped with a bilinear map [ · , · ] :
L × L→ L , called a bracket, such that for all x, y, z ∈ L the (left) Leibniz identity
[x, [y, z]] = [[x, y], z]+ [y, [x, z]] holds. Then L is called a (left) Leibniz algebra.

Briefly, a (left) Leibniz algebra is an algebra whose left multiplication operators
are derivations. Similarly we could assume that right multiplication operators are
derivations and define the notion of a right Leibniz algebra. Just as with many other
algebraic constructions our choice of left versus right is arbitrary. All of our results
for left Leibniz algebras can easily be translated to results for right Leibniz algebras.
For the remainder of the paper Leibniz algebra will mean left Leibniz algebra.

Notice that the Leibniz identity could replace the Jacobi identity in the definition
of a Lie algebra. In fact, the left Leibniz identity, the corresponding right Leibniz
identity [[y, z], x] = [y, [z, x]] + [[y, x], z], and the Jacobi identity [[x, y], z] +
[[y, z], x] + [[z, x], y] = 0 are all equivalent if we assume our bracket is bilinear
and alternating, that is, [x, x] = 0 for all x . We refer the reader to [Demir et al.
2014] for more details concerning basic definitions related to Leibniz algebras.

Definition 2.2. For L a Leibniz algebra, Leib(L)= spanF{[x, x] | x ∈ L}.

We have that L is a Lie algebra if and only if Leib(L)= {0}. Notice that Leib(L)
is a (two-sided) ideal of L . Moreover, L/Leib(L) is the largest quotient of L that
is a Lie algebra. Specifically, if I is any ideal of L such that L/I is a Lie algebra,
then Leib(L)⊆ I. Here we use the term ideal in the familiar Lie algebra sense: a
subalgebra I of a Leibniz algebra L is a (two-sided) ideal of L if and only if [L , I ]
and [I, L] are both contained in I. We write I G L when I is an ideal of L .

Many other definitions extend directly from Lie to Leibniz algebras. As a second
example, we say L is an abelian Leibniz algebra if and only if [L , L] = {0}, that
is, if [x, y] = 0 for all x, y ∈ L . The definitions of nilpotency and solvability also
carry over without modification.

Definition 2.3. Recall that L1
= L and L j+1

= [L , L j
] for j ≥ 1 gives us the lower

central series. L is nilpotent of class n if Ln+1
= {0} but Ln

6= {0}. In particular, L
is nilpotent if Ln

={0} for some n≥ 1. Likewise, L(0)= L and L( j+1)
=[L( j), L( j)

]

for j ≥ 0 gives us the derived series. L is solvable if L(n) = {0} for some n ≥ 0.

The proofs of many basic results given in introductory Lie algebra texts such as
[Erdmann and Wildon 2006] apply just as well to Leibniz algebras. In particular,
abelian implies nilpotent and nilpotent implies solvable. Recall that rad(L) is the
largest solvable ideal of L . As with Lie algebras, this is just the sum of all ideals I
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of L such that I itself is a solvable algebra. Likewise, nil(L) is the largest nilpotent
ideal.

The notion of internal direct sum for Leibniz algebras also carries over from
Lie theory. As with Lie algebras, if L = L1⊕ · · · ⊕ Ln is an internal direct sum
of Leibniz algebras, each L i is in fact an ideal of L and L is isomorphic to the
external direct sum of Leibniz algebras L1, . . . , Ln , defined in the obvious way.

Definition 2.4. Let L be a Leibniz algebra with subalgebras L1, . . . , Ln . We write
L = L1⊕· · ·⊕ Ln , an internal direct sum of Leibniz algebras, if L = L1⊕· · ·⊕ Ln

as subspaces and [x, y] = 0 for any x ∈ L i and y ∈ L j , where i 6= j .

It is not hard to show that for Ij G L j , we have

(L1⊕ · · ·⊕ Ln)/(I1⊕ · · ·⊕ In)∼= (L1/I1)⊕ · · ·⊕ (Ln/In)

with the direct sum on the right an external direct sum. Likewise,

Z(L1⊕ · · ·⊕ Ln)= Z(L1)⊕ · · ·⊕ Z(Ln),

Leib(L1⊕ · · ·⊕ Ln)= Leib(L1)⊕ · · ·⊕Leib(Ln),

[L1⊕ · · ·⊕ Ln, L1⊕ · · ·⊕ Ln] = [L1, L1]⊕ · · ·⊕ [Ln, Ln].

Some important definitions from Lie theory require minor modifications as we
move to Leibniz algebras. For example, if we apply the Lie theory definitions
of simple and semisimple algebras directly to Leibniz algebras, both simple and
semisimple Leibniz algebra would necessarily be Lie and thus there would be
nothing new to consider. We modify these definitions for Leibniz algebras as follows:

Definition 2.5. Let L be a Leibniz algebra. L is simple if and only if [L , L] 6=
Leib(L) and {0}, Leib(L), and L are the only ideals of L . L is semisimple if and
only if rad(L)= Leib(L).

When L is also a Lie algebra, Leib(L)= {0}, so these definitions collapse back
down to the usual definitions for a Lie algebra. In fact, these definitions guarantee
that L is simple (resp. semisimple) as a Leibniz algebra if and only if L/Leib(L)
is simple (resp. semisimple) as a Lie algebra.

When working with Lie algebras, taking powers of elements is uninteresting:
x1
= x and then x2

= [x, x] = 0 because of the alternating axiom. In Leibniz
algebras much more is possible. We fix the notation x1

= x , x2
= [x, x], and in

general, xn+1
= [x, xn

] for n ≥ 1. Consider the following basic, well known result:

Lemma 2.6. Let L be a Leibniz algebra and x, y ∈ L. Then [[x, x], y] = 0 and
more generally [xn, y] = 0 for all n ≥ 2. Moreover, the only potentially nonzero
n-th power of x is

xn
= [x, [x, . . . , [x, x] · · · ]]︸ ︷︷ ︸

n times

.
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Proof. The Leibniz identity states that [x, [x, y]] = [[x, x], y]+ [x, [x, y]] so that
0= [[x, x], y]. Assume inductively that [xn, z] = 0 for any z ∈ L and some n ≥ 2.
The Leibniz identity states that [x, [xn, y]] = [[x, xn

], y] + [xn, [x, y]]. By our
inductive hypothesis, we have [x, 0] = [xn+1, y] + 0 so that [xn+1, y] = 0.

Finally, the only first and second powers of x are x1
= x and x2

= [x, x]. Third
powers of x can be written either as x3 or [[x, x], x]=0. Assume that all k-th powers
of x other than xk are 0 where 1≤k<n and letw be some n-th power of x . Thenw=
[u, v], where u and v are k-th and `-th powers of x such that k+`= n. By induction,
if u 6= 0 and v 6= 0, we must have u = xk and v = x`. So either k ≥ 2 and thus
w= [u, v] = [xk, v] = 0 or k = 1 and we have w= [u, v] = [x, x`] = x`+1

= xn. �

We can see that generally Leibniz algebras are not power associative. Notice that
for a right Leibniz algebra we would have that the only potentially nonzero powers
would be of the form [[· · · [x, x], . . . , x], x]. This means that if an algebra was both
a left and right Leibniz algebra, the only nonzero power could be x2

= [x, x]. In
fact, L = spanF{x, x2

}, where [x, x] = x2, [x, x2
] = [x2, x] = [x2, x2

] = 0, gives
an example of a simultaneously left and right Leibniz algebra which is not a Lie
algebra.

3. Cyclic Leibniz algebras

A cyclic Leibniz algebra is a Leibniz algebra that can be generated from a single
element. We do not consider cyclic Lie algebras since the only cyclic Lie algebras
are either the trivial algebra {0} or the 1-dimensional abelian Lie algebra. Scofield
and Sullivan [2014] have classified complex cyclic Leibniz algebras. In this section,
we give a similar construction which allows us to classify cyclic (left) Leibniz
algebras over an arbitrary field.

Definition 3.1. Let L be a Leibniz algebra. L is cyclic if and only if there exists
some x ∈ L such that L = 〈x〉 = spanF{x

k
| k = 1, 2, . . . }. If L = 〈x〉, we call x a

generator of L .

The trivial algebra {0} = 〈0〉 is cyclic. Likewise, any 1-dimensional algebra is
cyclic as it is generated by any nonzero element.

Let L 6= {0} be a cyclic (left) Leibniz algebra and fix a generator x 6= 0. By
definition L = 〈x〉 = {xk

| k = 1, 2, . . . } and since L is finite-dimensional, we
must have that {x, x2, . . . , xn+1

} is linearly dependent for some n ≥ 1. Let n be
the smallest such power. This means that {x, x2, . . . , xn

} is linearly independent
and xn+1 can be written as a linear combination of {x, . . . , xn

}. Consequently all
higher powers of x can be written as a linear combination of x, x2, . . . , xn. Thus
β = {x, x2, . . . , xn

} is a basis for L and so dim(L)= n.
We have xn+1

∈ L = 〈x〉 = spanF{x, x2, . . . , xn
}. Let xn+1

=
∑n

i=1 ci x i , where
ci ∈ F. When dim(L) = n > 1, Lemma 2.6 guarantees 0 = [x, 0] = [x, [xn, x]].
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Applying the Leibniz identity and Lemma 2.6 once more yields

0=[x, [xn, x]]=[[x, xn
], x]+[xn, x2

]=[xn+1, x]+0=c1x2
+

n∑
i=2

ci [x i , x]=c1x2.

Since dim(L) = n > 1, we conclude x2
6= 0 and thus c1 = 0. Therefore, xn+1

=∑n
i=2 ci x i , a summation that does not involve i = 1.
It turns out that the necessary condition xn+1

=
∑n

i=2 ci x i for some c2, . . . , cn ∈F

is also sufficient for any n-dimensional cyclic Leibniz algebra L = 〈x〉.

Proposition 3.2. Fix n ≥ 1 and c2, . . . , cn ∈ F and let L = spanF{x, x2, . . . , xn
}

be an n-dimensional vector space. Define a bilinear operation on the basis
{x, x2, . . . , xn

} as follows: [x, x j
] = x j+1 for 1 ≤ j < n, [x, xn

] =
∑n

i=2 ci x i ,
and [xk, x`] = 0 for k ≥ 2, 1≤ `≤ n. Then L = 〈x〉 is a cyclic Leibniz algebra.

Proof. Clearly L is a cyclic algebra equipped with a bilinear operation. It just
remains to verify the Leibniz identity. It is enough to do so on our basis. We note
that when n = 1, we have xn+1

= x2
= 0 and the Leibniz identity is

[x, [x, x]] = [x, 0] = 0= 0+ 0= [0, x] + [x, 0] = [[x, x], x] + [x, [x, x]].

Assume n > 1and let 1≤ i, j, k ≤ n.
If i ≥ 2, then

[x i , [x j , xk
]] = 0= 0+ 0= [0, xk

] + [x j , 0] = [[x i , x j
], xk
] + [x j , [x i , xk

]].

If i = 1 and j = 1, then

[x, [x, xk
]] = 0+[x, [x, xk

]] = [x2, xk
]+ [x, [x, xk

]] = [[x, x], xk
]+ [x, [x, xk

]].

If i = 1 and 2≤ j < n, then

[x, [x j , xk
]] = [x, 0] = 0= 0+ 0

= [x j+1, xk
] + [x j , xk+1

] = [[x, x j
], xk
] + [x j , [x, xk

]].

If i = 1 and j = n > 1, then

[x, [xn, xk
]] = [x, 0] = 0

=

n∑
m=2

cm[xm, xk
] = [xn+1, xk

] + 0= [[x, xn
], xk
] + [xn, [x, xk

]].

Notice that here we used the fact that our sum begins at m = 2 so [xm, xk
] = 0. �

For n > 0 fix a cyclic Leibniz algebra L with basis β = {x, x2, . . . , xn
}. Next,

we will further investigate the structure of this algebra by considering Leib(L)
and the derived series of L . Note that by definition x2

∈ Leib(L). But then since
Leib(L) is an ideal of L , x j

∈ Leib(L) for all j ≥ 2. Since brackets among
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elements of L never result in an element involving x itself, we conclude Leib(L)=
span{x2, x3, . . . , xn

} = [L , L], an abelian Leibniz algebra of dimension n− 1. It
quickly follows that the derived series for L is given by

L(0) = L ) L(1) = [L , L] = span{x2, x3, . . . , xn
}) L(2) = {0}.

The series goes to zero and thus cyclic Leibniz algebras are always solvable.
We next consider the lower central series of the cyclic Leibniz algebra L = 〈x〉

with basis β = {x, x2, . . . , xn
} and xn+1

=
∑n

i=2 ci x i . First consider the case when
xn+1
= 0, that is, when c2 = c3 = · · · = cn = 0. Then keeping in mind that only

left multiplication by x can yield a nonzero result, we have

[L , span{xm, xm+1, . . . , xn
}] = span{[x, xm

], [x, xm+1
], . . . , [x, xn

]}

= span{xm+1, . . . , xn
}.

This means that L j
= span{x j , . . . , xn

} for 1 ≤ j ≤ n and Ln+1
= {0}. In other

words, L is nilpotent of class n.
Next assume that xn+1

6= 0. In particular, assume cj = 0 for all j < k and ck 6= 0.
Let 1≤ m ≤ k and consider [L , span{xm, . . . , xn

}]. Again, only left multiplication
by x yields a nonzero result so that

[L , span{xm, . . . , xn
}] = span{xm+1, . . . , xn, xn+1

}.

If m < k, we have xn+1
=
∑n

`=k c`x` ∈ span{xm+1, . . . , xn
} so that

[L , span{xm, . . . , xn
}] = span{xm+1, . . . , xn

}.

If m = k, we have xn+1
= ck xk

+
∑n

`=k+1 c`x` with ck 6= 0. Thus

span{xm+1, . . . , xn+1
} = span{xk+1, . . . , xn+1

} = span{xk, . . . , xn
}

and in this case [L , span{xk, . . . , xn
}] = span{xk, . . . , xn

}. In particular,

[L , span{xm, . . . , xn
}] = span{xmin(k,m+1), . . . , xn

}.

This means Lm
= span{xm, . . . , xn

} for 1 ≤ m < k and Lk
= Lk+1

= · · · =

span{xk, . . . , xn
}. Proposition 3.3 summarizes our findings.

Proposition 3.3. Let L be an n-dimensional cyclic Leibniz algebra. Then either L
is nilpotent of class n or L ) L2 ) · · ·) Lk

= Lk+1
= · · · 6= {0} for some 2≤ k ≤ n.

In this case, we say that L is cyclic of type k. Moreover, let x be any generator
for L. Then L is nilpotent if and only if xn+1

= 0. If L is not nilpotent and is of
type k, then xn+1

=
∑n

`=k c`x` for some ck, . . . , cn ∈ F and ck 6= 0. In particular,
nilpotency and type do not depend on the choice of generator.
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As we turn our attention towards a classification of cyclic Leibniz algebras,
again let L 6= {0} be an n-dimensional cyclic Leibniz algebra generated by x with
basis β = {x, x2, . . . , xn

} and xn+1
=
∑n

j=2 cj x j . Using an approach introduced
in [Batten Ray et al. 2014], we consider the left multiplication operator Lx : L→ L
defined by Lx(z) = [x, z]. We have Lx(x j ) = x j+1 for 1 ≤ j < n and Lx(xn) =∑n

j=2 cj x j . Thus we get the following coordinate matrix relative to the basis β:

[Lx ]β =



0 0 · · · · · · 0 0 0
1 0 · · · · · · 0 0 c2
...
. . .

. . .
...
...

...
...

. . .
. . . 0 0

...

0
. . . 1 0 cn−1

0 0 · · · · · · 0 1 cn


.

The matrix [Lx ]β is the companion matrix to the polynomial

p(t)= tn
− cntn−1

− · · ·− c2t

and thus the linear operator Lx has characteristic polynomial p(t). Note that the
polynomial p(t) is in direct correspondence with our defining relation for xn+1.

Suppose that y =
∑n

i=1 bi x i
∈ L . Then

Ly(x j )=

[ n∑
i=1

bi x i , x j
]
=

n∑
i=1

bi [x i , x j
] = b1[x, x j

] = b1x j+1

since [x i , x j
] = 0 for i ≥ 2. This means [Ly]β = b1[Lx ]β . With only small,

obvious modifications, the standard approach to determining the characteristic
polynomial for a companion matrix, see, for example, [Hoffman and Kunze 1971,
Theorem 1, page 228], shows that the matrix [Ly]β , and thus the linear operator Ly ,
has characteristic polynomial

tn
− b1cntn−1

− b2
1cn−1tn−2

− · · ·− bn−1
1 c2t.

Note that if y is a generator for L , using the correspondence between the char-
acteristic polynomial of Ly and our defining relation for yn+1, we see yn+1

=∑n
i=2 bn−i

1 ci yi .
In summary for n ≥ 2 and any (c2, . . . , cn) ∈ Fn−1 there is an n-dimensional

cyclic Leibniz algebra L with generator x such that {x, x2, . . . , xn
} is a basis for

L and xn+1
=
∑n

j=2 cj x j. If y is any other generator with y =
∑n

i=1 bi x i then
{y, y2, . . . , yn

} is a basis for L and yn+1
=
∑n

j=2 bn− j
1 cj y j. For n ≥ 2, define an

equivalence relation on Fn−1 such that (c2, . . . , cn) ∼ (bn−1c2, bn−2c3, . . . , bcn)

for any b ∈ F. Denote the equivalence classes as [(c2, . . . , cn)]. This equivalence
relation allows a simple classification of cyclic Leibniz algebras.
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Theorem 3.4. Up to isomorphism the only cyclic Leibniz algebras of dimensions 0
and 1 are the trivial {0} algebra and the 1-dimensional abelian Lie algebra. For
n ≥ 2, up to isomorphism there is exactly one n-dimensional cyclic Leibniz algebra
associated with each equivalence class [(c2, . . . , cn)], where (c2, . . . , cn) ∈ Fn−1.

The nilpotent cyclic Leibniz algebras are associated with the class [(0, . . . , 0)] =
{(0, . . . , 0)}. Cyclic Leibniz algebras of type k are associated with the class
[(0, . . . , 0, ck, . . . , cn)] for some ck, . . . , cn ∈F with ck 6=0. In this case, dim(Lk)=

n− k+ 1 and Lk
= Lk+1

= · · · .
The classification of complex cyclic Leibniz algebras obtained in [Scofield and

Sullivan 2014] split isomorphism classes of cyclic Leibniz algebras into cases of
nilpotent or type k. For algebras of type k, they insist on a normalized generator
such that ck = 1. Note that their equivalence class [(ck+1, . . . , cn)] corresponds to
our class [(0, . . . , 0, 1, ck+1, . . . , cn)]. By avoiding this normalization we no longer
need the existence of roots of unity and our equivalence relation is much simpler.

As in our construction, Batten Ray et al. [2014] identify the matrix for the left
multiplication operator as a companion matrix to the polynomial p(t). They use
this observation as a tool to develop several important properties of cyclic Leibniz
algebras. In particular they give a construction of the unique Cartan subalgebra for
each cyclic Leibniz algebra, L , and in the process describe all maximal subalgebras
of L as well as the minimal ideals of L and the unique maximal ideal of L .

4. A class of non-Lie, noncyclic Leibniz algebras

In this section we introduce a class of noncyclic Leibniz algebras and study their
properties. Fix some n ≥ 1 and let L be the (n+1)-dimensional vector space with
basis β = {x, x2, . . . , xn, y}. To determine a bilinear operation on L it is enough
to specify how multiplication works on basis elements.

Example 4.1. Let L be the algebra with basis β = {x, x2, . . . , xn, y} and the
bilinear bracket defined on the basis elements as follows:

(1) [x, x j
] = x j+1, 1≤ j < n.

(2) [x, xn
] = xn+1

= 0.

(3) [xk, x j
] = [xk, y] = 0 for all 2≤ k ≤ n and 1≤ j ≤ n.

(4) [x, y] = x , [y, x j
] = − j x j for 1≤ j ≤ n.

(5) [y, y] = 0.

To see that L is a Leibniz algebra, we need to verify that the Leibniz identity
holds. First, notice that 〈x〉 = span{x, x2, . . . , xn

} forms an n-dimensional cyclic,
nilpotent Leibniz subalgebra. Likewise, 〈y〉= span{y} forms a 1-dimensional cyclic
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Leibniz subalgebra which is an abelian Lie algebra. Thus we only need to check
the Leibniz identity among triples of basis elements which involve both x and y.

First, we consider triples that involve two occurrences of y:

• For 1≤ j ≤ n,

[y, [y, x j
]] = 0+ [y, [y, x j

]] = [0, x j
] + [y, [y, x j

]] = [[y, y], x j
] + [y, [y, x j

]].

• For 2≤ j ≤ n,

[x j , [y, y]] = [x j , 0] = 0= 0+ 0= [0, y] + [y, 0] = [[x j , y], y] + [y, [x j , y]],

and for j = 1,

[x, [y, y]] = [x, 0] = 0= x − x = [x, y] + [y, x] = [[x, y], y] + [y, [x, y]].

• For 2≤ j ≤ n,

[y, [x j , y]] = [y, 0] = 0= 0+ 0= [0, y] + [x j , 0] = [[y, x j
], y] + [x j , [y, y]],

and for j = 1,

[y, [x, y]]= [y, x]=−x =−[x, y]+0=[−x, y]+[x, 0]= [[y, x], y]+[x, [y, y]].

Finally, we consider triples that involve one occurrence of y:

• Note that [y, x j
]=− j x j holds even when j =n+1 since xn+1

= 0. Let 1≤ k≤n.

• For 2≤ j ≤ n,

[y, [x j , xk
]]=[y,0]=0=− j[x j , xk

]=[− j x j , xk
]+0=[[y, x j

], xk
]+[x j , [y, xk

]],

and for j = 1,

[y, [x, xk
]] = [y, xk+1

] = −(k+ 1)xk+1

= [−x, xk
] + [x,−kxk

] = [[y, x], xk
] + [x, [y, xk

]].

• For 2≤ j ≤ n,

[x j , [y, xk
]] = 0= 0+ 0= [0, xk

] + [y, 0] = [[x j , y], xk
] + [y, [x j , xk

]],

and for j = 1,

[x, [y, xk
]] = [x,−kxk

] = −kxk+1
= xk+1

− (k+ 1)xk+1

= [x, xk
] + [y, xk+1

] = [[x, y], xk
] + [y, [x, xk

]].

• For 2≤ j ≤ n,

[x j , [xk, y]] = 0= 0+ [xk, 0] = [[x j , xk
], y] + [xk, [x j , y]],
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and for j = 1 and k ≥ 2,

[x, [xk, y]] = [x, 0] = 0= [xk+1, y] + 0= [[x, xk
], y] + [xk, [x, y]].

When j = k = 1,

[x, [x, y]] = 0+ [x, [x, y]] = [[x, x], y] + [x, [x, y]].

We use the remainder of this section to investigate the structure of the Leibniz
algebra L described in Example 4.1. Let us begin by determining the lower central
series of L , Leib(L), and the derived series for L . Since none of the brackets output
a y, [L , L] must be contained in 〈x〉 = span{x, x2, . . . , xn

}. We have seen that
[−y, x]= x ∈[L , L] and therefore 〈x〉⊆[L , L] and hence L2

=[L , L]=〈x〉. In fact,
it follows by induction that Lk

=〈x〉 for k≥ 2. We then have the lower central series

L = span{x, x2, . . . , xn, y}) L2
= L3

= · · · = span{x, x2, . . . , xn
} 6= {0},

and thus L is not nilpotent.
Next observe B = span{x j

| j ≥ 2} is an abelian ideal of codimension 2 in L so
that B ⊆ Leib(L). Also, L/B is a Lie algebra and thus Leib(L) ⊆ B. Therefore
Leib(L)= B = span{x j

| j ≥ 2}. Furthermore, since

[x +Leib(L), y+Leib(L)] = [x, y] +Leib(L)= x +Leib(L),

we have that L/Leib(L) is the nonabelian 2-dimensional Lie algebra. In addition,
the derived series is given by

L(0) = L ) L(1) = 〈x〉) L(2) = Leib(L)= span{x j
| j ≥ 2}) L(3) = {0}

and thus L is solvable.
Could it be that L is simply a sum of cyclic Leibniz algebras? Recall that for

a cyclic Leibniz algebra C , C/Leib(C) is the 1-dimensional abelian Lie algebra.
Thus if M =C1⊕· · ·⊕C` is a Leibniz algebra direct sum of cyclic Leibniz algebras
C1, . . . ,C`, then

M/Leib(M)= (C1⊕ · · ·⊕C`)/(Leib(C1)⊕ · · ·⊕Leib(C`))
∼= (C1/Leib(C1))⊕ · · ·⊕ (C`/Leib(C`))

and so M/Leib(M) is a direct sum of 1-dimensional abelian Lie algebras. In other
words, M/Leib(M) is the `-dimensional abelian Lie algebra. Since L/Leib(L)
is not abelian, L is neither cyclic nor a (Leibniz algebra) direct sum of cyclic
subalgebras.

Also, since L is solvable, L= rad(L) and so L is (unsurprisingly) not semisimple.
Additionally, span{xm, xm+1, . . . , xn

} for 1 ≤ m ≤ n are easily seen to be ideals.
In particular, span{x, x2, . . . , xn

} is an ideal distinct from {0}, Leib(L), and L so
that L is not simple. In summary:
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Theorem 4.2. The Leibniz algebra L = span{x, x2, . . . , xn, y} with bracket struc-
ture given in Example 4.1 is not nilpotent, semisimple, or simple. But L is solvable.
Its maximal Lie algebra homomorphic image, L/Leib(L), is the nonabelian 2-
dimensional Lie algebra. Consequently L is not a (Leibniz algebra) direct sum of
cyclic Leibniz algebras.

5. Adjoining a module

In this section we offer a second class of examples. By first extending the familiar
Lie algebra construction of adjoining a module to an algebra to the context of
Leibniz algebras and then considering adjoining a cyclic module to a nilpotent
cyclic Leibniz algebra, we obtain a class of algebras with similar properties to
those of the previous section except here we will have that the maximal Lie algebra
homomorphic image is abelian.

Definition 5.1. Let L be a Leibniz algebra and M a vector space over F equipped
with bilinear maps [ , ] : L ×M→ M and [ , ] : M × L→ M (a left and a right
action) such that for all a, b ∈ L and m ∈ M the following hold:

(1) [a, [b,m]] = [[a, b],m] + [b, [a,m]].

(2) [a, [m, b]] = [[a,m], b] + [m, [a, b]].

(3) [m, [a, b]] = [[m, a], b] + [a, [m, b]].

We note that if L is a Lie algebra with L-module M and action x ·m for x ∈ L
and m ∈ M, then the left action [x,m] = x ·m and the right action [m, x] = −x ·m
turn M into a module viewing L as merely a Leibniz algebra.

Example 5.2. Let L=span{x, x2, . . . , xn
} be the n-dimensional nilpotent cyclic Leib-

niz algebra. Consider the vector space M = span(β) with basis β={y1, y2, . . . , yn}.
Let 2≤ j≤n and 1≤k≤n and define [x j , yk]=0. When k<n, define [x, yk]= yk+1

and let [x, yn] = 0. For convenience let yn+1 = 0 so that [x, yk] = yk+1 for all
1≤ k ≤ n. Finally, let [yk, x j

] = 0 for all 1≤ j ≤ n and 1≤ k ≤ n. In other words,
the right action of L on M is trivial, whereas x acts in cyclic fashion on the left.

With these definitions, M is an L-module. To see this we must verify the relations
in Definition 5.1. In relation (1), all terms are zero unless a = b = x . In this case
relation (1) becomes [x, [x,m]] = [[x, x],m] + [x, [x,m]], which is clearly true
since [[x, x],m] = [x2,m] = 0. Relations (2) and (3) hold because all terms are
zero as they each involve the trivial right action of L .

We show in the following proposition that for L a Leibniz algebra and M an L-
module, the vector space direct sum L⊕M becomes a Leibniz algebra if for x1, x2 ∈

L and m1,m2 ∈ M we define [x1+m1, x2+m2] = [x1, x2] + [x1,m2] + [m1, x2].
Notice that in the definition of the bracket on L ⊕M, [x1, x2] is the bracket in L ,
[x1,m2] is the left action of L on M, and [m1, x2] is the right action of L on M.
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Proposition 5.3. Let L be a Leibniz algebra and M an L-module. The vector space
direct sum L ⊕ M becomes a Leibniz algebra if for x1, x2 ∈ L and m1,m2 ∈ M
we define [x1 +m1, x2 +m2] = [x1, x2] + [x1,m2] + [m1, x2]. Moreover, L is a
subalgebra and M is an abelian ideal of L ⊕M.

Proof. It is obvious that the bracket on L ⊕M is bilinear. We need to verify the
Leibniz identity. Let x1, x2, x3 ∈ L and m1,m2,m3 ∈ M. Consider the following
brackets:

[x1+m1, [x2+m2, x3+m3]]︸ ︷︷ ︸
LMA

= [x1+m1, [x2, x3] + [x2,m3] + [m2, x3]]

= [x1, [x2, x3]]︸ ︷︷ ︸
LeibnizA

+ [x1, [x2,m3]]︸ ︷︷ ︸
1A

+ [x1, [m2, x3]]︸ ︷︷ ︸
2A

+ [m1, [x2, x3]]︸ ︷︷ ︸
3A

,

[[x1+m1, x2+m2], x3+m3]︸ ︷︷ ︸
LMB

= [[x1, x2], x3+m3] + [[x1,m2], x3+m3] + [[m1, x2], x3+m3]

= [[x1, x2], x3]︸ ︷︷ ︸
LeibnizB

+ [[x1, x2],m3]︸ ︷︷ ︸
1B

+ [[x1,m2], x3]︸ ︷︷ ︸
2B

+ [[m1, x2], x3]︸ ︷︷ ︸
3B

,

[x2+m2, [x1+m1, x3+m3]]︸ ︷︷ ︸
LMC

= [x2+m2, [x1, x3]] + [x2+m2, [x1,m3]] + [x2+m2, [m1, x3]]

= [x2, [x1, x3]]︸ ︷︷ ︸
LeibnizC

+ [m2, [x1, x3]]︸ ︷︷ ︸
2C

+ [x2, [x1,m3]]︸ ︷︷ ︸
1C

+ [x2, [m1, x3]]︸ ︷︷ ︸
3C

.

The module axioms 1, 2, and 3 for M guarantee that 1A= 1B+1C, 2A= 2B+2C,
and 3A=3B+3C. The Leibniz identity for L guarantees that LeibnizA=LeibnizB+

LeibnizC. Putting these together we see that LMA=LMB+LMC and so the Leibniz
identity holds on L ⊕M. �

Taking L and M as defined in Example 5.2, let

K = L ⊕M = span{x, x2, . . . , xn, y1, . . . , yn}.

We have that K is a Leibniz algebra using the above construction and can now
investigate the structure of this algebra.

For x ∈ L and m ∈ M, we have [x + m, x + m] = [x, x] + [x,m] + [m, x].
Therefore,

Leib(L ⊕M)= Leib(L)⊕ span{[x,m] + [m, x] | x ∈ L and m ∈ M},
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where⊕ represents a vector space direct sum. Furthermore, we know that Leib(L)=
span{x2, . . . , xn

} and all brackets (i.e., actions) between L and M either output 0
or something in span{y2, . . . , yn}. In fact,

[x, yk] + [yk, x] = yk+1+ 0= yk+1 ∈ span{[x,m] + [m, x] | x ∈ L and m ∈ M}

for 1≤ k ≤ n. Therefore, Leib(K )= span{x2, . . . , xn, y2, . . . , yn}.
Next we explicitly calculate the lower central series for K. First, looking at the

brackets for K we see that they never output any power of x smaller than x2 and
never output y1. Thus [K , K ] ⊆ span{x2, . . . , xn, y2, . . . , yn}. But by definition,
Leib(K )⊆ [K , K ]. Therefore, [K , K ] = Leib(K )= span{x2, . . . , xn, y2, . . . , yn}.
We claim that K `

= span{x`, . . . , xn, y`, . . . , yn} for 1≤ `≤ n and {0} = K n+1
=

K n+2
= . . . so that K is nilpotent of class n. We proceed by induction; notice

that [x, K `
] = span{x`+1, . . . , xn+1, y`+1, . . . , yn+1}, where for convenience we

let xm
= ym = 0 for m > n. Also, [x j , K `

] = [y, K `
] = {0} for j ≥ 2. The result

follows and from it we observe that L is nilpotent.
Note that we could forgo the explicit construction of the lower central series and

still arrive at the nilpotency of K by applying a theorem of [Bosko et al. 2011].
Every left multiplication by an element of L on K is nilpotent and trivially left
multiplication on K by elements from M is nilpotent. Therefore since L∪M is a Lie
set (i.e., it is closed under brackets and spans K ), Jacobson’s refinement of Engel’s
theorem for Leibniz algebras [Bosko et al. 2011] shows K = L ⊕M is nilpotent.

Next we examine the structure of the cyclic subalgebras of K. Let

z =
n∑

i=1

ai x i
+

n∑
j=1

bj yj ∈ K.

Then

z2
= [z, z] = a1

n−1∑
i=1

ai x i+1
+a1

n−1∑
j=1

bj y j+1=

n∑
i=2

a1ai−1x i
+

n∑
j=2

a1b j−1 yj ,

z3
= [z, z2

] = a1

n−1∑
i=2

a1ai−1x i+1
+a1

n−1∑
j=2

a1b j−1 y j+1=

n∑
i=3

a2
1ai−2x i

+

n∑
j=3

a2
1b j−2 yj .

In general,

z` =
n∑

i=`

a`−1
1 ai−`+1x i

+

n∑
j=`

a`−1
1 b j−`+1 yj for 1≤ `≤ n and z` = 0 for ` > n.

As a consequence, if a1= 0, then z2
= 0. If a1 6= 0 and 1≤ `≤ n then the coefficient

of x` in z` is a`−1
1 a`−`+1= a`1 6= 0. In all cases zn+1

= 0 and thus by Proposition 3.3
all cyclic subalgebras, 〈z〉, are nilpotent. For n > 1 they are either trivial (z = 0),
1-dimensional (z 6= 0 but a1 = 0), or n-dimensional (a1 6= 0). For n = 1, they are
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either trivial or 1-dimensional. Our understanding of the cyclic subalgebras of K
plays a key role in understanding the structure of this Leibniz algebra.

Theorem 5.4. The Leibniz algebra K = span{x, x2, . . . , xn, y1, y2, . . . , yn} with
brackets given in Example 5.2 and Proposition 5.3 is neither semisimple nor simple.
But K is nilpotent of class n and solvable. Its maximal Lie algebra homomorphic
image, K/Leib(K ), is the 2-dimensional abelian Lie algebra. Also, for n > 1, K is
not a (Leibniz algebra) direct sum of cyclic Leibniz algebras.

Proof. We have already seen that K is nilpotent. Since K is nilpotent, it is also
solvable. Referring back to definitions, it is obvious that K is neither simple nor
semisimple. By definition,

K/Leib(K )= span{x +Leib(K ), y1+Leib(K )}.
Notice that

[x+Leib(K ), y1+Leib(K )] = [x, y1]+Leib(K )= y2+Leib(K )= 0+Leib(K ),

since y2 ∈ Leib(K ). Hence K/Leib(K ) is the 2-dimensional abelian Lie algebra.
Suppose that K is a (Leibniz algebra) direct sum of cyclic Leibniz algebras. We

have seen previously that if C = C1⊕ · · ·⊕C` is a direct sum of cyclic algebras
then

C/Leib(C)= C1/Leib(C1)⊕ · · ·⊕C`/Leib(C`)

and that each Ci/Leib(Ci ) is the 1-dimensional abelian algebra. Thus if K is a
(Leibniz algebra) direct sum of cyclic subalgebras, it must be a sum of exactly
dim(K/Leib(K ))= 2 subalgebras. Considering that cyclic subalgebras of K have
dimensions 0, 1, and n and that dim(K )= 2n, we must have two cyclic subalgebras
of dimension n. Suppose that K = 〈z1〉⊕ 〈z2〉, where

z1 =

n∑
i=1

ai x i
+

n∑
j=1

bj yj , z2 =

n∑
i=1

ci x i
+

n∑
j=1

dj yj .

Since these are n-dimensional subalgebras we must have a1 6= 0 and c1 6= 0. But
then

[z1, z2] = a1

n−1∑
i=1

ci x i+1
+ a1

n−1∑
j=1

dj y j+1.

Notice that the coefficient of x2 in [z1, z2] is a1c1 6= 0. Since [z1, z2] 6= 0, this is
not a Leibniz algebra direct sum (contradiction). �

Note that when n = 1, K = span{x, y1} where [x, x] = [x, y1] = [y1, x] =
[y1, y1] = 0 so K is the 2-dimensional abelian Lie algebra and is in this trivial
situation a direct sum of cyclic subalgebras. For example, one such decomposition
is K = 〈x〉⊕ 〈y1〉.
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Spectra of Kohn Laplacians on spheres
John Ahn, Mohit Bansil, Garrett Brown,
Emilee Cardin and Yunus E. Zeytuncu

We study the spectrum of the Kohn Laplacian on the unit spheres in Cn and revisit
Folland’s classical eigenvalue computation. We also look at the growth rate of the
eigenvalue counting function in this context. Finally, we consider the growth rate
of the eigenvalues of the perturbed Kohn Laplacian on the Rossi sphere in C2.

1. Introduction

Background. The unit sphere S2n−1
⊂Cn is a CR manifold (of hypersurface type)

with the CR structure induced from the ambient space. By following the standard
setting we define the tangential Cauchy–Riemann complex with the operators ∂̄b and
∂̄∗b on the spaces of square integrable (0, q)-forms L2

(0,q)(S
2n−1). (For simplicity we

restrict our attention to (0, q) forms instead of (p, q) forms.) The Kohn Laplacian
(or ∂̄b-Laplacian)

�b = ∂̄b∂̄
∗

b + ∂̄
∗

b ∂̄b

is a linear, closed, densely defined self-adjoint operator from L2
(0,q)(S

2n−1) to itself.
The analytic properties of this second-order differential operator are closely related
to the geometry of the underlying manifold (although we work here on S2n−1, the
same setup works on other CR manifolds). We refer the reader to [Chen and Shaw
2001, Chapter 7] for the details of this setup.

Spherical harmonics. We now list definitions and theorems that are needed in the
rest of the paper. For a detailed study of spherical harmonics we refer the reader to
[Axler et al. 1992].

We say a complex polynomial p(z) is homogeneous of degree k if p(λz)=λk p(z)
for all z 6= 0. Similarly, p(z, z̄) is called homogeneous of bidegree (p, q) if
f (λ1z, λ2 z̄)= λp

1λ
q
2 p(z, z̄) for all z 6= 0. We say a twice-differentiable function f

MSC2010: primary 32V05; secondary 32V30.
Keywords: Kohn Laplacian, spherical harmonics, Gershgorin’s circle theorem.
This work is supported by NSF (DMS-1659203). The work of Cardin is also partially supported by a
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is harmonic if 4 f = 0, where the Laplacian is defined by

4 f = 4
n∑

i=1

∂2 f
∂zi∂ z̄i

.

A spherical harmonic is the restriction to S2n−1 of a complex polynomial that is
harmonic on Cn. We use Hk(C

n) to denote the space of all harmonic, homoge-
neous polynomials of degree k on Cn and Hp,q(C

n) for the space of all harmonic,
homogeneous polynomials of bidegree (p, q). Similarly we use Hk(S

2n−1) and
Hp,q(S

2n−1) to denote the restrictions of these spaces on S2n−1. The following
decomposition theorem is fundamental in our study of �b on L2(S2n−1).

Theorem 1.1 [Klima 2004, Theorem 3.7]. The spaces Hp,q(S
2n−1) are pairwise

orthogonal, and

L2(S2n−1)=

∞⊕
p,q=0

Hp,q(S
2n−1).

By using a standard counting argument one obtains the following formula for
the dimensions of the spaces of spherical harmonics.

Lemma 1.2 [Klima 2004, Corollary 3.10]. For p, q ≥ 1,

dim(Hp,q(S
2n−1))=

(n+ p−1
p

)(n+q−1
q

)
−

(n+ p−2
p−1

)(n+q−2
q−1

)
=
(n− 1)(n+ p+ q − 1)

pq

(n+ p−2
p−1

)(n+q−2
q−1

)
.

Notation. In the rest of the note we use the standard � and O notation to denote
asymptotic lower and upper bounds, respectively. That is, given two functions f
and g, we say f = �(g) if there exists a constant c > 0 such that f (x) ≥ cg(x)
as x →∞. Similarly, f = O(g) if there exists c > 0 such that f (x) ≤ cg(x) as
x→∞. Finally, we say f =2(g) if f =�(g) and f = O(g).

Results. Folland [1972] computed the eigenvalues and eigenforms of �b on
L2
(0,q)(S

2n−1) by using unitary representations.

Theorem 1.3. Hp,q(S
2n−1) is an eigenspace for ∂̄∗b ∂̄b with the associated eigen-

value 2q(p+ n− 1).

In Section 2 of this note we go over these computations on the space of square
integrable functions (i.e., L2(S2n−1)) by using spherical harmonics and present
eigenvalue computations in an accessible way. This more elementary approach
enables us to write code1 in SymPy that computes the eigenvalues of �b and other
similar second-order differential operators defined on L2(S2n−1). Furthermore, by

1The code can be downloaded at https://goo.gl/kBsUzA.

https://goo.gl/kBsUzA
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using the explicit forms of the eigenvalues and formulas for the dimensions of spher-
ical harmonic subspaces of L2(S2n−1), we study the growth rate for the counting
function of the eigenvalues. For m ∈ Z, let N (m) be the number of eigenvalues of
�b on L2(S2n−1) that are less than or equal to m, counting multiplicity.

Theorem 1.4. There exists a real c > 0 so that 1
c mn
≤ N (m) ≤ cmn; that is,

N (m)=2(mn).

In other words, here we prove that

lim sup
m→∞

N (m)
mn ∈ (0,∞).

It would be interesting to compute the exact limit and check if it is related to the
surface area of S2n−1. Indeed, in the case of the Laplace–Beltrami operator, Weyl’s
law states that this ratio is the surface area of S2n−1.

In addition to the induced CR structure from the ambient manifold, one can
define different intrinsic CR structures on a given manifold; see [Boggess 1991,
Chapter 8]. The most famous example of these abstract CR manifolds is the Rossi
sphere. It is known that the Rossi sphere is not globally CR embeddable into any Cn

[Burns 1979]. This can be seen by explicitly studying the perturbed Kohn Laplacian
(defined by the abstract CR structure) and looking at its essential spectrum. In
[Abbas et al. 2019], the authors studied the bottom of the spectrum of the perturbed
Kohn Laplacian by using spherical harmonics. In the last section of this note we
continue this study and provide the growth rate of the largest eigenvalues from each
subspace of spherical harmonics.

2. Eigenvalues of �b on L2(S2n−1)

Explicit eigenvalue computation. Since ∂̄∗b is identically zero on L2(S2n−1), �b

simplifies on L2(S2n−1) as

�b = ∂̄
∗

b ∂̄b.

Before we compute the eigenvalues we present the operators ∂̄b and ∂̄∗b in coordinate
forms. A smooth differential 1-form ω on S2n−1 can be expressed as

ω =

n∑
k=1

(Ak dzk + Bk dz̄k)= A1 dz1+ B1 dz̄1+ · · ·+ An dzn + Bn dz̄n,

where Ak, Bk ∈ C∞(Cn). As computed in [Folland 1972], for a smooth function f
on S2n−1 we have

∂̄b f =
n∑

i=1

(
∂ f
∂ z̄i
− zi

n∑
a=1

z̄a
∂ f
∂ z̄a

)
dz̄i .
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Furthermore, following the normalization of inner products as in [Folland 1972]
we have

〈dz̄i , dz̄ j 〉 = 2δi j and 〈dzi , dz̄ j 〉 = 0.

Using integration by parts, we obtain the following expression for the adjoint
operator.

Lemma 2.1. For a smooth 1-form ω =
∑n

k=1(Ak dzk + Bk dz̄k),

∂̄∗bω =−2
n∑

i=1

(
∂

∂zi
Bi −

n∑
a=1

∂

∂za
za z̄i Bi

)
.

Proof. Let g be a smooth function on S2n−1. Since we are working on a compact
manifold, we don’t get any boundary terms when we integrate by parts:〈
∂̄∗b

( n∑
k=1

(Ak dzk + Bk dz̄k)

)
, g
〉

=

〈 n∑
k=1

(Ak dzk + Bk dz̄k), ∂̄bg
〉

=

〈 n∑
k=1

Ak dzk +

n∑
k=1

Bk dz̄k,

n∑
i=1

(
∂g
∂ z̄i
− zi

n∑
a=1

z̄a
∂g
∂ z̄a

)
dz̄i

〉

= 2
n∑

i=1

〈
Bi ,

∂g
∂ z̄i
− zi

n∑
a=1

z̄a
∂g
∂ z̄a

〉

= 2
n∑

i=1

(〈
Bi ,

∂g
∂ z̄i

〉
−

n∑
a=1

〈
Bi , zi z̄a

∂g
∂ z̄a

〉)

= 2
n∑

i=1

(
−

〈
∂

∂zi
Bi , g

〉
+

n∑
a=1

〈
∂

∂za
za z̄i Bi , g

〉)

=−2
n∑

i=1

(〈
∂

∂zi
Bi , g

〉
−

n∑
a=1

〈
∂

∂za
za z̄i Bi , g

〉)

=−2
n∑

i=1

〈
∂

∂zi
Bi −

n∑
a=1

∂

∂za
za z̄i Bi , g

〉

=

〈
−2

n∑
i=1

(
∂

∂zi
Bi −

n∑
a=1

∂

∂za
za z̄i Bi

)
, g
〉
.

By comparing the beginning and ending of the identity we prove the lemma. �

Before we look at the action of �b on a square integrable function we look at
the action of two other operations on the spherical harmonics.
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Lemma 2.2. If f ∈Hp,q(S
2n−1), then

n∑
k=1

zk
∂ f
∂zk
= p f and

n∑
k=1

z̄k
∂ f
∂ z̄k
= q f.

Proof. Consider a polynomial f ∈ Hp,q . So f is harmonic homogeneous of
bidegree p, q. Then for each monomial term g = zα1

1 · · · z
αn
n z̄β1

1 · · · z̄
βn
n of f , we

have
n∑

k=1

zk
∂g
∂zk
=

n∑
k=1

(αk)g =
( n∑

k=1

αk

)
g = pg,

n∑
k=1

z̄k
∂g
∂ z̄k
=

n∑
k=1

(βk)g =
( n∑

k=1

βk

)
g = qg.

So each monomial term g is scaled by p or q. By the linearity of differential
operators, f is scaled by p or q as well. �

By combining the lemmas above we obtain the eigenvalues of �b.

Theorem 1.3. Hp,q(S
2n−1) is an eigenspace for ∂̄∗b ∂̄b with the associated eigen-

value 2q(p+ n− 1).

Proof. For f ∈Hp,q(S
2n−1),

∂̄∗b ∂̄b f = ∂̄∗b

[ n∑
i=1

(
∂ f
∂ z̄i
− zi

n∑
a=1

z̄a
∂ f
∂ z̄a

)
dz̄i

]

= ∂̄∗b

[ n∑
i=1

(
∂ f
∂ z̄i
− zi q f

)
dz̄i

]

=−2
n∑

i=1

[
∂

∂zi

(
∂ f
∂ z̄i
− zi q f

)
−

n∑
a=1

∂

∂za
za z̄i

(
∂ f
∂ z̄i
− zi q f

)]

=−2
n∑

i=1

[(
∂2 f
∂zi∂ z̄i

−
∂

∂zi
zi q f

)
−

n∑
a=1

(
∂

∂za
za z̄i

∂ f
∂ z̄i
−

∂

∂za
za z̄i zi q f

)]

=−2
n∑

i=1

∂2 f
∂zi∂ z̄i

+ 2
n∑

i=1

∂

∂zi
zi q f + 2

n∑
i=1

n∑
a=1

∂

∂za
za z̄i

∂ f
∂ z̄i

.

We start with the first term. Because f is harmonic, we know

0=4( f )= 4
n∑

i=1

∂2 f
∂zi∂ z̄i

.
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Thus, we have

0=
n∑

i=1

∂2 f
∂zi∂ z̄i

=−2
n∑

i=1

∂2 f
∂zi∂ z̄i

.

For the second and third terms, we apply the product rule:

2
n∑

i=1

∂

∂zi
zi q f = 2q

n∑
i=1

∂

∂zi
zi f

= 2q
n∑

i=1

(
zi
∂ f
∂zi
+ f

)

= 2q
[ n∑

i=1

zi
∂ f
∂zi
+

n∑
i=1

f
]
= 2q(p+ n) f,

2
n∑

i=1

n∑
a=1

∂

∂za
za z̄i

∂ f
∂ z̄i
= 2

n∑
a=1

∂

∂za
za

n∑
i=1

z̄i
∂ f
∂ z̄i

= 2
n∑

a=1

∂

∂za
zaq f

= 2q
n∑

a=1

(
za
∂ f
∂za
+ f

)
= 2q(p+ n) f.

Now recall that on S2n−1 we have z1 z̄1+ · · ·+ zn z̄n = 1. Thus,
n∑

a=1

n∑
i=1

zi z̄i f =
n∑

a=1

f = n f.

We also go over the following explicit computation (again by using linearity we
can assume f is a monomial and f = zα1

1 · · · z
αn
n z̄β1

1 · · · z̄
βn
n ):

n∑
a=1

za
∂

∂za

n∑
i=1

zi z̄i f =
n∑

a=1

za
∂

∂za
(z1 z̄1+ · · ·+ zn z̄n) f

=

n∑
a=1

za

(
∂

∂za
z1 z̄1 f + · · ·+

∂

∂za
za z̄a f + · · ·+

∂

∂za
zn z̄n f

)

=

n∑
a=1

za

(
αa

za
z1 z̄1 f + · · ·+

αa + 1
za

za z̄a f + · · ·+
αa

za
zn z̄n f

)

=

n∑
a=1

((αa)z1 z̄1 f + · · ·+ (αa + 1)za z̄a f + · · ·+ (αa)zn z̄n f )
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=

n∑
i=1

(α1+ · · ·+ (αi + 1)+ · · ·+αn)zi z̄i f

=

n∑
i=1

(p+ 1)zi z̄i f = (p+ 1)
n∑

i=1

zi z̄i f = (p+ 1) f.

We are now ready to compute the fourth term of the ∂̄∗b ∂̄b f expansion:

−2
n∑

i=1

n∑
a=1

∂

∂za
za z̄i zi q f =−2q

( n∑
a=1

∂

∂za
za

n∑
i=1

zi z̄i f
)

=−2q
( n∑

a=1

(
za

∂

∂za
+ I
) n∑

i=1

zi z̄i f
)

=−2q
( n∑

a=1

za
∂

∂za

n∑
i=1

zi z̄i f +
n∑

a=1

n∑
i=1

zi z̄i f
)

=−2q(p+ 1+ n) f.

Returning to our original computation of ∂̄∗b ∂̄b f , we now have

∂̄∗b ∂̄b f

=−2
n∑

i=1

∂2 f
∂zi∂ z̄i

+ 2
n∑

i=1

∂

∂zi
zi q + 2

n∑
i=1

n∑
a=1

∂

∂za
za z̄i

∂ f
∂ z̄i
− 2

n∑
i=1

n∑
a=1

∂

∂za
za z̄i zi q

= 0+ 2q(p+ n) f + 2q(p+ n) f − 2q(p+ 1+ n) f

= 2q(p+ n− 1) f. �

Asymptotics of counting function. We now look at the counting function N (m).

Definition 2.3. For m ∈ Z, let N (m) be the number of eigenvalues of �b on
L2(S2n−1) that are less than or equal to m, counting multiplicity.

Similar functions and relations between their asymptotics and geometry of the
underlying manifold were studied in [Métivier 1981; Fu 2005; 2008]. In particular
in some cases the growth rate of N (m) carries information about the type of the
manifold [Fu 2005; 2008]. Furthermore, in the case of the Laplace–Beltrami
operator, Weyl’s law states that the limit of the ratio N (m)/mn gives the surface
area of S2n−1. Before we state our result, we recall Lemma 1.2.

Lemma 1.2. For p, q ≥ 1,

dim(Hp,q(S
2n−1))=

(n− 1)(n+ p+ q − 1)
pq

(n+ p−2
p−1

)(n+q−2
q−1

)
.
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Note that ignoring multiplicity would induce a function with linear growth.
Indeed for any even m̂ with m ≥ m̂ > 2(n− 1), we can solve m̂ = 2q(p+ n− 1)
after fixing q = 1. Additionally, by convention, we set N (m)= 0 when m < 0.

We note that when n = 1, the eigenvalue of ∂̄∗b ∂̄b is equal to 0. Indeed, when
n = 1 and when p and q are both nonzero, Lemma 1.2 gives us that the dimension
of Hp,q is 0. This is because the only harmonic homogeneous polynomials on C

are of the form z p or z̄q , which belong to Hp,0 or H0,q , respectively. Thus, Hp,q is
nontrivial only when either p or q is zero. However, on such spaces, the eigenvalue
of ∂̄∗b ∂̄b on Hp,q is 0.

Lemma 2.4. There exists a real constant c > 0 so that cmn
≤ N (m); that is,

N (m) ∈�(m).

Proof. Fix even m; then N (m)− N (m− 2) is the multiplicity of the eigenvalue m,
since all the eigenvalues are even by Theorem 1.3. This requires computing the sum
of the dimensions of all Hp,q(S

2n−1) such that the pair (p, q) satisfies the equation
E(p, q)=m, where E(p, q)= 2q(p+n−1). Now assuming m > 2(n−1), there
exists a positive integer solution p = p̂ to E(p, q) = m when q = 1. Define the
solution set A = {(p, q) | E(p, q)= m}. Then we have

N (m)− N (m− 2)=
∑

(p,q)∈A

dimHp,q ≥ dimH p̂,1.

Note that dimH p̂,1 =�(mn−1), which follows from Lemma 1.2. Namely, since
asymptotically p̂ = m/2, we have

dimH p̂,1(S2n−1) =
(n− 1)(n+ p̂)

p̂

(n+ p̂−2
n−1

)(n−1
n−1

)
≥

(n+ p̂−2
n−1

)
≥

1
(n− 1)!

p̂n−1

=�

(
m
2

)n−1

=�(mn−1).

Putting it all together, we have

2N (m)≥ N (m)+ N (m− 1)=
m∑

j=0

(N ( j)− N ( j − 2))

≥

m∑
j=0

�( jn−1)≥�(mn). �

Lemma 2.5. There exists a real constant c > 0 so that N (m) ≤ cmn; that is,
N (m)= O(mn).

Proof. Again, fix an even m and inspect N (m)−N (m−2). Note that asymptotically,
we can let our eigenvalue equation be E(p, q) = 2qp. Thus, asymptotically we
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have

N (m)− N (m−2)=
∑

(p,q)∈A

dimHp,q .
∑

(p,q)∈A

(p+q)(pq)n−2
= σ(m)O(mn−2),

where σ(m) is the sum of all divisors of m. Thus, we have

N (m).
∑
x≤m

2xn−2σ(x). 2mn−2
∑
x≤m

σ(x)= O(mn).

The last equality follows since
∑

x≤m σ(x)= O(m2). A proof of this fact can be
found in Chapter 3.6 of [Apostol 1976]. �

By combining the last two lemmas we obtain the following statement.

Theorem 1.4. There exists a real c > 0 so that 1
c mn
≤ N (m) ≤ cmn; that is,

N (m)=2(mn).

We note that the constants in Lemma 2.4, Lemma 2.5, and Theorem 1.4 do
depend on the dimension n. This dependence also agrees with the explicit constants
calculated by Weyl for the Laplace–Beltrami operator.

3. Spectra of other second-order differential operators on L2(S2n−1)

Another interesting class of second-order differential operators are sum of squares
operators Mb, introduced in the fourth chapter of [Klima 2004]. These operators
capture half of the action of �b on S3; in higher dimensions they lead to the study
of various possible perturbations of �b.

We define the sum of squares operator Mb on L2(S2n−1) as

Mb =−(M12 M12+M13 M13+ · · ·+M1n M1n),

where M1k = z̄1(∂/∂zk)− z̄k(∂/∂z1) and M1k = z1(∂/∂ z̄k)− zk(∂/∂ z̄1). Note that
one can easily consider Mik for i 6= 1; for simplicity we focus on the case i = 1.

For any f ∈ Hp,q(S
2n−1), the specific degrees of the zk, z̄k may vary. For

example, both z2
1z2 z̄3

1 z̄2
2 and z1z2

2 z̄2
1 z̄3

2 are in H3,5(S
3). In previous arguments, such

specificity was unnecessary, but we find that for Mb, the eigenvalues can directly
depend on the exact degrees of the zk, z̄k . To that end, for nonnegative integer
tuples p = (p1, . . . , pn) and q = (q1, . . . , qn), we use H∗p,q(Cn) to denote the
space of all harmonic, homogeneous polynomials where pk is the degree of zk ,
and qk is the degree of z̄k . Then we use H∗p,q(S2n−1) to denote the restriction of
this space on S2n−1. For example, now z2

1z2 z̄3
1 z̄2

2 ∈H
∗

(2,1),(3,2)(S
3) but z1z2

2 z̄2
1 z̄3

2 ∈

H∗(1,2),(2,3)(S
3). Note that H∗p,q(S2n−1) is a subspace of H p̄,q̄(S

2n−1), where p̄ =∑n
i=1 pi and q̄ =

∑n
i=1 qi . Now for certain H∗p,q(S2n−1), we have the following

result.
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Lemma 3.1. Consider two nonnegative integer tuples p = (p1, . . . , pn) and q =
(q1, . . . , qn). Suppose that for each 1 ≤ k ≤ n, at least one of pk or qk is 0. Then
the eigenvalue of Mb on H∗p,q(S2n−1) is

p1

n∑
k=2

qk + q1

n∑
k=2

pk + (n− 1)q1+

n∑
k=2

qk .

Proof. Take f ∈H∗p,q(S2n−1), where pk = 0 or qk = 0 for each k. By linearity, we
can inspect the action of each −M1k M1k piece of Mb on f . We have

−M1k M1k f =−
(

z̄1
∂

∂zk
− z̄k

∂

∂z1

)(
z1
∂

∂ z̄k
−zk

∂

∂ z̄1

)
f

=−z̄1
∂

∂zk
z1
∂

∂ z̄k
f + z̄1

∂

∂zk
zk
∂

∂ z̄1
f + z̄k

∂

∂z1
z1
∂

∂ z̄k
f − z̄k

∂

∂z1
zk
∂

∂ z̄1
f

=−z1 z̄1
∂

∂zk

∂

∂ z̄k
f + z̄1

∂

∂ z̄1

∂

∂zk
zk f + z̄k

∂

∂ z̄k

∂

∂z1
z1 f −zk z̄k

∂

∂z1

∂

∂ z̄1
f

= 0+ z̄1
∂

∂ z̄1

∂

∂zk
zk f + z̄k

∂

∂ z̄k

∂

∂z1
z1 f −0

= z̄1
∂

∂ z̄1

(
zk
∂

∂zk
+ I
)

f + z̄k
∂

∂ z̄k

(
z1
∂

∂z1
+ I
)

f

= z̄1
∂

∂ z̄1
zk
∂

∂zk
f + z̄1

∂

∂ z̄1
f + z̄k

∂

∂ z̄k
z1
∂

∂z1
f + z̄k

∂

∂ z̄k
f

= q1 pk f +q1 f +qk p1 f +qk f.

Thus, we have

Mb( f )=
n∑

k=2

−M1k M1k f =
n∑

k=2

(q1 pk + q1+ qk p1+ qk) f

=

( n∑
k=2

q1 pk +

n∑
k=2

q1+

n∑
k=2

qk p1+

n∑
k=2

qk

)
f

=

(
q1

n∑
k=2

pk + (n− 1)q1+ p1

n∑
k=2

qk +

n∑
k=2

qk

)
f. �

The above lemma tells us that z2
1z2 z̄3

1 z̄2
2 ∈H

∗

(2,1),(3,2)(S
3) has eigenvalue 2(2)+

3(1)+ (2− 1)(3)+ (2) = 12. On the other hand, z1z2
2 z̄2

1 z̄3
2 ∈ H∗(1,2),(3,2)(S

3) has
eigenvalue 1(2) + 3(2) + (2 − 1)(3) + (2) = 13. More generally, the lemma
tells us that Hp,0(S

2n−1) is in the null space of Mb for all p ∈ N. Furthermore,
the eigenvalue of Mb on H∗0,q(S

2n−1) is (n − 1)q1 + q2 + · · · + qn . On other
Hp,q(S

2n−1) spaces, computational results suggest that we have integer eigenvalues,
and matrix representations follow a pattern as well. We will leave the investigation
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of other eigenvalues to a future study. We invite the interested reader to see other
computational results by downloading our code.2

4. Eigenvalues of �t
b on the Rossi sphere

Previously in [Abbas et al. 2019], the authors studied the spectrum of the perturbed
Kohn Laplacian �t

b on the Rossi sphere. They obtained an upper bound for the
lowest eigenvalue for�t

b on each Hk(S
3). In our project, we look at the asymptotics

of the spectrum of the (perturbed) Kohn Laplacian on the Rossi sphere, in particular
the asymptotics of λmax

k , the maximum eigenvalue of �t
b on Hk(S

3).
In [Abbas et al. 2019] the authors prove tridiagonal representation results for

spaces of homogeneous polynomials of odd degree, H2k−1(S
3). However, their

proof actually works for arbitrary degrees, Hk(S
3). We restate the steps to construct

the tridiagonal matrix representations here, and one can refer to [Abbas et al. 2019]
for details. We first recall the definition of differential operators L,L, and �t

b
on L2(S3).

Definition 4.1. We define L and L as

L = z̄1
∂

∂z2
− z̄2

∂

∂z1
,

L= z1
∂

∂ z̄2
− z2

∂

∂ z̄1
,

�t
b =−Lt

1+ |t |2

(1− |t |2)2
Lt .

The motivation for these operators arises from the CR-manifold (S3,Lt), which
is not CR-embeddable [Rossi 1965]. Note that Lt = L+ t̄L and |t |< 1.

Theorem 4.2 [Abbas et al. 2019]. Let { f0, . . . , fk} be an orthogonal basis for
H0,k(S

3). Then {Lσ f0, . . . ,Lσ fk} is an orthogonal basis for Hσ,k−σ (S
3).

The proof of Theorem 4.2 follows from induction on inner products. The main
two steps are the fact that −L is the adjoint of L, and that LL scales elements of
Hp,q(S

3) by a constant factor based on their bidegree.
Now one can consider an orthogonal basis { f0, . . . , fk} for H0,k(S

3) and define
the following two subspaces for even k:

Vi = span{ fi , L2 fi , L4 fi , . . . ,Lk−2 fi , Lk fi },

Wi = span{L fi , L3 fi , L5 fi , . . . ,Lk−3 fi , Lk−1 fi },

2The code can be downloaded at https://goo.gl/kBsUzA.

https://goo.gl/kBsUzA
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and similarly for odd k:

Vi = span{ fi , L2 fi , L4 fi , . . . ,Lk−3 fi , Lk−1 fi },

Wi = span{L fi , L3 fi , L5 fi , . . . ,Lk−2 fi , Lk fi }.

The motivation to define such spaces follows by inspecting the expanded form
of �t

b, which is equal to LL+LL+L2
+L2 up to constants. Previous work has

shown that LL and LL scale elements of Hp,q(S
3) by a constant factor, and the

actions of L2 and L2 suggest that invariant subspaces will involve basis elements
that differ by 2 j applications of L. Indeed, it was shown in [Abbas et al. 2019] that
�t

b is invariant on Vi and Wi . On these finite-dimensional invariant subspaces one
can obtain a matrix representation for the second-order operator �t

b.

Theorem 4.3 [Abbas et al. 2019]. The matrix representation of �t
b, m(�t

b), on
Vi ,Wi ⊂Hk(S

3) is

h


d1 u1

−t̄ d2 u2

−t̄ d3
. . .

. . .
. . . uk−1

−t̄ dk

 ,

where h is a constant and on Vi ,

u j =−4t · ( j)(2 j − 1)(k− j)(2k− 1− 2 j),

dj = (2 j − 1)(2k+ 1− 2 j)+ 4|t |2( j − 1)(k+ 1− j);
on Wi ,

u j =−4t · ( j)(2 j + 1)(k− j)(2k− 1− 2 j),

dj = 4( j)(k− j)+ |t |2(2 j − 1)(2k+ 1− 2 j).

Moreover, the matrix above is similar to

B =


d1 c1

c1 d2 c2

c2 d3
. . .

. . .
. . . ck−1

ck−1 dk

 ,

where cj = (−t̄ · u j )
1/2
= |t |

√
−u j/t .

After recalling these results, we also introduce the numerical range of a matrix.

Definition 4.4. Given an n × n square matrix A, we define its numerical range
W (A)= {〈Ax, x〉 | x ∈ Cn, ‖x‖ = 1}.
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Also recall that λmax
k denotes the maximum eigenvalue of m(�t

b) on Hk(S
3). We

first prove the following lower bound.

Lemma 4.5. There exists a real constant c > 0 so that 1
c k2
≤ λmax

k ; that is, λmax
k =

�(k2).

Proof. For a square matrix A, sup W (A) is an upper bound for the eigenvalues of A.
Furthermore, if A is Hermitian then the maximum eigenvalue equals sup W (A).

Let A=m(�t
b) on Wi . By the above discussion, since A is similar to a Hermitian

matrix B, it suffices to show that sup W (B)=�(k2).
Fix x = ek/2 for k even, and x = e(k+1)/2 for k odd. Since 〈Bei , ej 〉 = a′i j , by the

above matrix representation we have that for k even

〈Bek/2, ek/2〉 = Bk/2,k/2 = dk/2

= 4
(k

2

)(
k− k

2

)
+ |t |2

(
2k

2
− 1
)(

2k+ 1− 2k
2

)
= k2
+ |t |2(k− 1)(k+ 1)

=�(k2).

A similar result follows for k odd. Now since 〈Bek/2, ek/2〉 ∈ W (B), we have
sup W (B)=�(k2). �

For the lower bound we invoke Gershgorin’s circle theorem.

Theorem 4.6 [Gershgorin 1931]. Suppose A is a complex square matrix, and Ri is
the sum of the absolute values of the off-diagonal entries in the i-th row. Then every
eigenvalue of A must lie within one of the closed discs D(ai i , Ri )⊂ C.

Recall that m(�t
b) on Vi ,Wi is similar to the real symmetric matrix B. Since B

is Hermitian, Theorem 4.6 will give us interval bounds on the real line. Furthermore,
the tridiagonal structure of B makes these bounds tight.

Lemma 4.7. There exists a real constant c > 0 so that λmax
k ≤ ck2; that is, λmax

k =

O(k2).

Proof. Applying Theorem 4.6 on B, we have

D(bi i , Ri )= (di − (ci−1+ ci ), di + (ci−1+ ci )),

since the i-th row of B has only two off-diagonal entries, ci−1 and ci , both of
which are nonnegative by Theorem 4.3. Note that for the extremal cases of the
first and last rows, the radii of these discs will involve only one off-diagonal entry.
Now it suffices to show that an upper bound for Mi = di + ci−1+ ci is O(k2). By
inspection, ci−1, and ci are O(k2) because ui−1, ui are O(k4). Since di is O(k2)

as well, we have our result. �

By combining the last two lemmas we obtain the following statement.
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Theorem 4.8. There exists a real c > 0 so that 1
c k2
≤ λmax

k ≤ ck2; that is, λmax
k =

2(k2).

In addition to the asymptotics λmax
k , we computed λmax

k explicitly by using SymPy.
Similar codes also work to compute the largest eigenvalues of other operators, such
as Mb, on finite-dimensional invariant spaces.

Finally we note that, in this section we studied perturbed Kohn Laplacians on S3.
One can define similar perturbations on higher-dimensional spheres and investigate
the corresponding spectra. Although in higher dimensions the Boutet de Monvel
theorem [1975] guarantees embeddability of strongly pseudoconvex abstract CR
manifolds, it would be still worthwhile to compute the distribution of eigenvalues.
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Pairwise compatibility graphs:
complete characterization for wheels

Matthew Beaudouin-Lafon, Serena Chen, Nathaniel Karst,
Denise Sakai Troxell and Xudong Zheng

(Communicated by Ann N. Trenk)

A simple graph G is a pairwise compatibility graph (PCG) if there exists an
edge-weighted tree T with positive weights and nonnegative numbers dmin and
dmax such that the leaves of T are exactly the vertices of G, and uv is an edge
in G if and only if the sum of weights of edges on the unique path between u
and v in T is at least dmin and at most dmax. We show that a wheel on n vertices is
a PCG if and only if n ≤ 8, settling an open problem proposed by Calamoneri
and Sinaimeri (SIAM Review 58:3 (2016), 445–460). Our approach is based on
unavoidable binary classifications of the edges in the complement of wheels that
are PCGs. (Note: during the review process of our work, we learned that the
same result has been obtained independently with an alternative proof.)

1. Introduction

Edge-weighted rooted trees are common graph models used in phylogenetics, a
branch of biology that studies the evolutionary history and relationships of sets of
taxa, i.e., organisms sharing similar characteristics (e.g., species, populations). In
such a phylogenetic tree, a leaf represents a taxon, an internal vertex represents a
possible common ancestor of its descendant leaves, and the weight of an edge may
be interpreted as the length of the evolutionary history separating the species or
populations represented by its two incident vertices. One of the first illustrations of
a phylogenetic tree appeared in Charles Darwin’s groundbreaking work [1859].

In computational biology, the problem of reconstructing an optimal phylogenetic
tree from a given set of taxa is complex [Calamoneri and Sinaimeri 2016], and so re-
searchers have focused on constrained instances of this problem. For example, since
very large and very small distances between pairs of taxa in the evolutionary history
may have a negative impact on the performance of reconstruction algorithms, bound-
ing these distances is a natural constraint [Kearney et al. 2003]. In graph-theoretical
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terms, let G be a graph where each vertex represents a taxon and uv be an edge in G
if the evolutionary distance between vertices u and v is within an acceptable range.
One is interested in finding an edge-weighted tree T with positive weights and
nonnegative numbers dmin and dmax such that the set of leaves of T is exactly the set
of vertices of G, and uv is an edge in G if and only if the sum of weights of edges
on the unique path between u and v in T is at least dmin and at most dmax. If such
T, dmin and dmax exist, then we say that G is a pairwise compatibility graph (PCG)
with witness tree T bounded by dmin and dmax, or simply G = PCG(T, dmin, dmax).
For any two vertices u and v in G (not necessarily adjacent), d(u, v) will denote
the sum of weights of the edges on the unique path in T between the leaves u and
v (for simplicity, we omitted the subscript in dT (u, v) which is traditionally used
to denote the weighted distance between any pair of vertices u and v in T ).

The literature suggests that the PCG recognition problem is difficult, and it has
been conjectured to be NP-hard [Durocher et al. 2015]. Since no complete charac-
terization of PCGs is currently known, a large portion of the existing research has
focused on determining whether particular graphs are PCGs or not. The following
are some examples of the known classes of PCGs: graphs with at most seven vertices
[Calamoneri et al. 2013a; Phillips 2002]; bipartite graphs with at most eight vertices
[Mehnaz and Rahman 2013]; cycles, single-chord cycles, cacti, tree power graphs,
Steiner and phylogenetic k-power graphs [Mehnaz and Rahman 2013; Yanhaona
et al. 2009]; trees, ladders, triangle-free outerplanar 3-graphs [Salma et al. 2013];
Dilworth 2 graphs [Calamoneri and Petreschi 2014]; split matrogenic graphs and
certain superclasses [Calamoneri et al. 2013b]. Some particular graphs that are not
PCGs have also been identified: a nonbipartite circular arc graph on 8 vertices, a
bipartite graph on 15 vertices, and a planar graph on 20 vertices [Yanhaona et al.
2009; 2010]. Recently, two results involving the complement Gc of a graph G
provided additional tools in the study of PCGs [Hossain et al. 2017]: if Gc is acyclic
then G is a PCG; if Gc contains two vertex-disjoint chordless cycles without an
edge simultaneously incident to both cycles, then G is not a PCG. One instance
relevant to our work is the class of k-leaf power graphs which are PCGs, where
dmin = 0 and dmax = k. It is well known that these graphs are strongly chordal, i.e.,
chordal and sun-free [Farber 1983]; however, the converse is not true [Bibelnieks
and Dearing 1993]. In fact, no complete characterization of k-leaf power graphs is
known except when k ≤ 4 [Brandstädt and Le 2006; Brandstädt et al. 2008; Dom
et al. 2004; 2005; Rautenbach 2006].

From the references above and from our recent experience, we have learned
that many of the existing results concerning the PCG recognition problem required
determination and clever, nontrivial approaches to generate witness trees or to
show that none exist. Nevertheless, the efforts behind these approaches may not be
readily apparent since they often describe witness trees without providing a clear
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discussion of what drives their particular structures. Perhaps for these reasons there
are still many open problems in the area, as mentioned in the comprehensive survey
[Calamoneri and Sinaimeri 2016], including the following:

Open Problem 1. Find other graph classes that do not belong to the PCG class.

Open Problem 2. It is not known whether or not wheels on at least eight nodes
are PCGs.

We add one more class for Open Problem 1 while settling Open Problem 2 in
our main result:

Theorem 1.1. Wheels on n vertices are PCGs if and only if n ≤ 8.

We will be using the following notation throughout this work. The wheel Wn

with order n ≥ 4 has vertices w1, w2, . . . , wn , edges wiwn for i = 1, 2, . . . , n− 1,
edges wiwi+1 for i = 1, 2, . . . , n− 2, and edge w1wn−1. The cycle induced by the
vertices w1, w2, . . . , wn−1 is called the rim of the wheel.

Figure 1 shows the wheel W8 and a witness tree T bounded by dmin = 5.5 and
dmax = 7.5, that is, W8 = PCG(T, 5.5, 7.5). This claim can be easily verified using
the information in Table 1, where for each entry (i, j), the corresponding column
header is d(wi , wj ) for T in Figure 1 (pairs in bold correspond to the edges in W8).

w1

w
2

w
2

w
1

w

2.5

4 1

1

1

1

32 1 32

8

w
4

w
6

w
7

w
5

w
3

w
3

w
4

w
5

w
6

w
7w

8

Figure 1. Wheel W8 on the left and a witness tree T on the right
with W8 = PCG(T, 5.5, 7.5).

3 4 5 5.5 6 6.5 7 7.5 8 9

(2,4) (2,6) (2,5) (2,8) (2,3) (1,8) (1,2) (3,8) (1,4) (1,3)
(5,7) (2,7) (3,5) (7,8) (4,5) (4,8) (1,7) (6,8) (1,5) (1,6)

(3,7) (4,6) (6,7) (5,8) (3,4) (3,6)
(4,7) (5,6)

Table 1. For each entry (i, j), the corresponding column header is
d(wi , wj ) for T in Figure 1 (pairs in bold correspond to the edges
in W8).
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Figure 2. Edges in W8 are solid black, light edges in (W8)
c are

dashed and heavy edges in (W8)
c are thick gray.

Generating this witness tree for W8 was far from trivial. A brute-force computation
approach was infeasible due to the large number of trees with eight leaves and
the infinite number of choices for their edge-weights and bounds. We relied on
potential binary classifications of the edges in the complement (W8)

c of W8, more
specifically, which edge uv in (W8)

c could be light, i.e., d(u, v) < dmin, and which
could be heavy, i.e., d(u, v) > dmax. Using general results that do not require the
knowledge of an exact witness tree and bounds, we generated the configuration
of light and heavy edges given on the left-most graph in Figure 2, where edges in
W8 are solid black, light edges in (W8)

c are dashed, and heavy edges in (W8)
c are

thick gray. The center and right-most graphs in this figure are provided for clarity
and show W8 together with only light and with only heavy edges, respectively. The
exact steps to obtain this configuration are omitted, as they are similar to the steps
presented in the proof of Theorem 2.6 in Section 2. From this configuration, we
were able to obtain the witness tree T and bounds in Figure 1 by inspection.

Recall that all graphs with at most seven vertices are PCGs. Theorem 1.1 will
follow, given that we have shown here that W8 is also a PCG and will show in
Section 2 that no Wn for n ≥ 9 is a PCG.

During the review process of our work, we learned that Theorem 1.1 has been
verified independently in the arXiv manuscript [Baiocchi et al. 2017] which was later
presented as the conference extended abstract [Baiocchi et al. 2018]. In [Baiocchi
et al. 2018], the edges of a PCG are colored black, and edges in the complement
are colored red if they are light and white if they are heavy. Several forbidden
tricolored structures are identified. The general approach assumes that Wn for n ≥ 9
is a PCG and these forbidden structures are used in an exhaustive case discussion
to reach a contradiction. Our approach is similar in the sense that it focuses on
certain unavoidable binary configurations of edges and, indeed, one of the forbidden
structures identified in [Baiocchi et al. 2018] (namely f-c(2K2)a, coincides with
the configuration H5 described in our Lemma 2.4). Nevertheless, we believe our
proof streamlines the case discussion by generating a sequence of unavoidable light
edges until the forbidden configuration H5 is achieved.
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x

v

u y

x

v

u y

Figure 3. Configuration H1 (left), where xy is an edge in Gc

and d(u, v)≥d(v, x), implies H2 (right), as shown in Lemma 2.2.

2. Wheels with more than eight vertices are not PCGs

Key to our discussion is the following useful result that allows for distance compar-
isons between certain pairs of leaves in general edge-weighted trees.

Result 2.1 [Yanhaona et al. 2010]. Let T be an edge-weighted tree and let u, v, x
be three leaves in T such that d(u, v) = max{d(u, v), d(v, x), d(x, u)}. If y is a
leaf other than u, v, x , then d(x, y)≤ d(u, y) or d(x, y)≤ d(v, y). �

We will apply Result 2.1 to the witness trees of certain PCGs in Lemmas 2.2,
2.3 and 2.4. These lemmas will be vital tools used to show that Wn is not a PCG
when n ≥ 9 in Theorem 2.6. We first extend the definitions of light and heavy edges
mentioned in Section 1 to general PCGs; that is, given G = PCG(T, dmin, dmax), we
say that an edge uv in Gc is light if d(u, v) < dmin and is heavy if d(u, v) > dmax.
Any future figures will continue using the conventions given in Figure 2: edges in G
are solid black, light edges in Gc are dashed, and heavy edges in Gc are thick gray.

Lemma 2.2. Let G = PCG(T, dmin, dmax). If G and Gc contain the edges in the
configuration H1 in Figure 3 (left), where xy is an edge in Gc and d(u, v)≥ d(v, x),
then xy must be light as indicated in the configuration H2 in Figure 3 (right).

Proof. Since d(u, v) ≥ d(v, x) and xu is light, we have d(u, v) = max{d(u, v),

d(v, x), d(x, u)}. By Result 2.1, d(x, y) ≤ d(u, y) or d(x, y) ≤ d(v, y). But
d(u, y) ≤ dmax and d(v, y) ≤ dmax because uy and vy are edges in G, therefore
d(x, y)≤ dmax. This latter inequality combined with the fact that xy is an edge in
Gc implies d(x, y) < dmin and therefore xy is light. �

Lemma 2.3. Let G = PCG(T, dmin, dmax). If G and Gc contain the edges in the
configuration H3 in Figure 4 (left), where uv is an edge in Gc, then uv must be light
as indicated in the configuration H4 in Figure 4 (right).

Proof. Suppose by contradiction that uv is heavy. Since xu and vx are edges in G,
we must have d(x, u) ≤ dmax and d(v, x) ≤ dmax; hence d(u, v) = max{d(u, v),

d(v, x), d(x, u)} and by Result 2.1, d(x, y)≤ d(u, y) or d(x, y)≤ d(v, y). But uy
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y

x

u v

y

x

u v

Figure 4. Configuration H3 (left), where uv is an edge in Gc,
implies H4 (right), as shown in Lemma 2.2.

and vy are light, that is, d(u, y) < dmin and d(v, y) < dmin, which would imply
d(x, y) < dmin, contradicting the fact that d(x, y)≥ dmin as xy is an edge in G. �

For later discussions, it is important to note the differences between the vertex
labels in Figures 3 and 4 (e.g., v and x are the only vertices of degree 3 in each
respective figure). These labels were chosen so that Result 2.1 could be readily
applied in the proofs of Lemmas 2.2 and 2.3, respectively.

Lemma 2.4. Let G = PCG(T, dmin, dmax). G and Gc cannot contain the configu-
ration H5 of Figure 5.

Proof. Suppose by contradiction that G and Gc contain the configuration H5. Since
xu and vx are light, we must have d(x, u) < dmin and d(v, x) < dmin. But uv is an
edge in G, so we have d(u, v)≥dmin. Hence d(u,v)=max{d(u,v),d(v, x),d(x,u)}

and by Result 2.1, d(x, y)≤ d(u, y) or d(x, y)≤ d(v, y). But uy and vy are light,
that is, d(u, y) < dmin and d(v, y) < dmin, which would imply d(x, y) < dmin,
contradicting the fact that d(x, y)≥ dmin as xy is an edge in G. �

In the proof of Theorem 2.6, we will assume by contradiction that Wn is a PCG
for some n ≥ 9 and apply Lemmas 2.2 and 2.3 repeatedly until a contradiction to
Lemma 2.4 is reached. To be able to set this argument in motion, we need to verify
the existence of a particular light edge. For each p = 2, 3, . . . , n− 3, we define a
p-light edge in (Wn)

c to be a light edge with ends connected by a path on the rim of
Wn with exactly p edges (note that a p-light edge is also an (n−p−1)-light edge).

Lemma 2.5. If n ≥ 5 and Wn = PCG(T, dmin, dmax), then there exists a p-light
edge for each p = 2, 3, . . . , n− 3.

u x

v y

Figure 5. Forbidden configuration H5 in Lemma 2.4.
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Proof. Let Wn = PCG(T, dmin, dmax) with n ≥ 5. Since p-light edges are (n−p−1)-
light edges, it is enough to verify the lemma for p= 2, 3, . . . , b(n−1)/2c. We will
proceed by induction on p.

The rim of Wn is a chordless cycle; hence Wn is not chordal and consequently
not strongly chordal. Recall from Section 1 that k-leaf power graphs are strongly
chordal so Wn is not a k-leaf power graph; that is, dmin > 0 and there exists at least
one light edge (if there are no light edges, then uv would be an edge in G if and
only if 0≤ d(u, v)≤ dmax, and hence Wn would be a k-leaf power graph). Choose
a light edge with ends that minimize the distance on the rim of Wn (i.e., the number
of edges on the shortest path between these ends using only edges on the rim) over
all light edges, and let m be this smallest distance. We may assume without loss of
generality that w1wm+1 is this selected light edge and d(wm+1, wn) ≥ d(w1, wn)

(if not, rotate and/or reverse the labels on the rim). Clearly, 2≤ m ≤ b(n− 1)/2c.
If m > 2, since w1wm is an edge in (Wn)

c and d(wm+1, wn) ≥ d(w1, wn), then
applying Lemma 2.2 with u = wm+1, v = wn , x = w1, y = wm would imply
xy = w1wm is light with ends connected by a path on the rim with m − 1 edges,
which contradicts the minimality of m. Hence m = 2; that is, w1w3 is light with
ends connected by the path w1w2w3 on the rim. Thus, there is a 2-light edge in Wn ,
and the basis of the induction has been established.

Assume for 2 ≤ p < b(n − 1)/2c that there exists a p-light edge and we will
show that there exists a (p+1)-light edge, concluding our inductive argument.
Rotate and/or reverse the labels on the rim so that w1wp+1 is this p-light edge and
d(wp+1, wn) ≥ d(w1, wn). Note that since n ≥ 5 and p < b(n − 1)/2c, we have
p+2< b(n−1)/2c+2≤n−1 so w1wp+2 is an edge in (Wn)

c. Applying Lemma 2.2
with u = wp+1, v = wn , x = w1, y = wp+2 we conclude that xy = w1wp+2 is a
(p+1)-light edge, and so our induction is complete. �

We can confirm that this lemma holds in the instance of W8 presented in
Figure 2; for example, w1w3 is a 2- and 5-light edge, and w1w4 is a 3- and 4-light
edge.

Applications of Lemma 2.2 similar to the two discussed in the proof of Lemma 2.5
will occur multiple times in the proof of Theorem 2.6, and so we will use the
abbreviated notation (i, j, k) 2.2

−→( j, k) to indicate that wjwk is an edge in (Wn)
c,

d(wi , wn)≥ d(wj , wn), and setting u = wi , v = wn , x = wj , y = wk we have the
configuration H1 in Figure 3 (left); therefore applying Lemma 2.2 implies xy =
wjwk is light. With this notation, the two applications of Lemma 2.2 in the proof
of Lemma 2.5 would simply read (m+1,1,m) 2.2

−→(1,m) and (p+1,1, p+2) 2.2
−→

(1, p+2), respectively. In the same spirit, we also define the abbreviated notation
(i, j, k) 2.3

−→(i, j) to indicate that wiwj is an edge in (Wn)
c and setting u = wi ,

v =wj , x =wn , y =wk we have the configuration H3 in Figure 4 (left); therefore
applying Lemma 2.3 implies uv = wiwj is light.



878 M. BEAUDOUIN-LAFON, S. CHEN, N. KARST, D. S. TROXELL AND X. ZHENG

Theorem 2.6. If n ≥ 9, then Wn is not a PCG.

Proof. Let n ≥ 9 and suppose by contradiction that Wn = PCG(T, dmin, dmax). From
Lemma 2.5, there exists a 4-light edge. We may assume without loss of generality
that w2w6 is a 4-light edge and that d(w6, wn) ≥ d(w2, wn) (if not, rotate and/or
reverse the labels on the rim). The proof proceeds by adding light edges forced by
Lemmas 2.2 and 2.3 until we reach the configuration H5 featured in Figure 5, which
would contradict Lemma 2.4. We begin by observing that (6, 2, 5) 2.2

−→(2, 5) and
(6, 2, 7) 2.2

−→(2, 7). The three current light edges are shown in the configuration G1

of Figure 6. We split the discussion into two cases:

Case 1: Suppose d(w5, wn) ≥ d(w2, wn). Hence (5, 2, 4) 2.2
−→(2, 4), with current

light edges shown in the configuration G2 of Figure 6. In addition, (4, 7, 2) 2.3
−→(4, 7)

and (5, 7, 2) 2.3
−→(5, 7), with current light edges shown in the configuration G3 of

Figure 6. Let us first examine the subcase where d(w7, wn) < d(w2, wn). Since
n ≥ 9, we have that w1w7 is an edge in (Wn)

c and is in fact a light edge, since
(2, 7, 1) 2.2

−→(7, 1). We then have (1, 4, 7) 2.3
−→(1, 4) and (1, 5, 7) 2.3

−→(1, 5). The
current light edges are shown in the configuration G4 of Figure 6 and therefore we
reached the configuration H5 with u=w1, v=w2, x=w4, y=w5 (boxed vertices),
a contradiction. We now focus on the remaining subcase where d(w7, wn) ≥

d(w2, wn) and reset our current light edges to those shown in configuration G3 of
Figure 6. First observe that (7, 2, 8) 2.2

−→(2, 8). We then have (4, 8, 2) 2.3
−→(4, 8)

and (5, 8, 2) 2.3
−→(5, 8). The current light edges are shown in the configuration G5

of Figure 6 and therefore we reached the configuration H5 with u = w4, v = w5,
x = w7, y = w8 (boxed vertices), a contradiction.

Case 2: Suppose d(w5,wn)< d(w2,wn) and reset our current light edges to those
shown in configuration G1 of Figure 6. Hence (2, 5, 1) 2.2

−→(5, 1) and (2, 5, 3) 2.2
−→

(5, 3) with current light edges shown in the configuration G6 of Figure 6. Let us
first examine the subcase where d(w5, wn) ≥ d(w1, wn), thus (5, 1, 6) 2.2

−→(1, 6).
The current light edges are shown in the configuration G7 of Figure 6 and there-
fore we reached the configuration H5 with u = w1, v = w2, x = w5, y = w6

(boxed vertices), a contradiction. We now focus on the remaining subcase where
d(w5, wn) < d(w1, wn) and reset our current light edges to those shown in con-
figuration G6 of Figure 6. First observe that (1, 5, n − 1) 2.2

−→(5, n − 1). We
then have (2, n − 1, 5) 2.3

−→(2, n − 1) and (3, n − 1, 5) 2.3
−→(3, n − 1). Now we

have (6, n − 1, 2) 2.3
−→(6, n − 1) (note that w6wn−1 is an edge in (Wn)

c since
n ≥ 9) and can finally conclude that (3, 6, n − 1) 2.3

−→(3, 6). The current light
edges are shown in the configuration G8 of Figure 6 and therefore we reached
the configuration H5 with u = w2, v = w3, x = w5, y = w6 (boxed vertices), a
contradiction.

Since contradictions were reached in all possible cases, the theorem holds. �
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Figure 6. Configurations from the proof of Theorem 2.6.

A series of steps based on Lemmas 2.2, 2.3, and 2.4, similar to the ones de-
scribed in the proof of Theorem 2.6, could be applied to W8 to construct complete
configurations of light and heavy edges that do not contain H5 of Figure 5. After
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Figure 7. Invalid configuration for W8 and (W8)
c in Lemma 2.7.

exhaustive case discussions (omitted for the sake of brevity), we found only two
of these configurations, namely the configurations in Figures 2 and 7. The former
allowed us to prove that W8 is a PCG as shown in Section 1. Interestingly, the latter
is not a valid configuration for W8 and (W8)

c as verified in Lemma 2.7.

Lemma 2.7. If W8 = PCG(T, dmin, dmax), then its corresponding light and heavy
edges cannot be described by the configuration in Figure 7 (up to rotating and/or
reversing the vertex labels on the rim).

Proof. Suppose the lemma does not hold. We examine three cases:

Case 1: d(w1, w2) = max{d(w1, w2), d(w2, w8), d(w8, w1)}. Apply Result 2.1
with u = w1, v = w2, x = w8, y = w5 to conclude d(w8, w5) ≤ d(w1, w5)

or d(w5, w8) ≤ d(w2, w5). But w1w5 and w2w5 are light which would imply
d(w8, w5) < dmin, contradicting the fact that w8w5 is an edge in W8.

Case 2: d(w2, w8) = max{d(w1, w2), d(w2, w8), d(w8, w1)}. Apply Result 2.1
with u = w2, v = w8, x = w1, y = w4 to conclude d(w1, w4) ≤ d(w2, w4) or
d(w1, w4) ≤ d(w8, w4). If d(w1, w4) ≤ d(w2, w4), then d(w1, w4) < dmin since
w2w4 is light; if d(w1, w4)≤ d(w8, w4), then d(w1, w4)≤ dmax since w8w4 is an
edge in W8; both options contradict the fact that w1w4 is heavy.

Case 3: d(w8, w1)=max{d(w1, w2), d(w2, w8), d(w8, w1)}. Given the symmetry
of the configuration in Figure 7, this case can be verified as in Case 2 if we rotate
the vertex labels around the rim one unit counterclockwise and then reverse their
order clockwise.

Since contradictions were reached in all possible cases, the lemma holds. �

3. Closing remarks

We proved that W8 is a PCG, but Wn for n ≥ 9 are not PCGs, settling an open
problem proposed in [Calamoneri and Sinaimeri 2016]. The difficulty in showing
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W8 is a PCG stemmed from the many degrees of freedom one has in constructing
potential witness trees — as both the tree’s structure and its edge weights must be
specified, the collection of candidate witness trees is both very large and highly
varied. A natural direction for future work would be to ask whether some subfamilies
of trees could be conclusively ruled out as witness trees. Our results followed from
a series of lemmas concerning light and heavy edges. While considerably distanced
from the properties of any underlying witness tree, this layer of abstraction is
nonetheless extremely useful. We have presented here a collection of general tools
concerning configurations of heavy and/or light edges, but this set is by no means
exhaustive — indeed, Lemma 2.7 hints at other families of forbidden subgraphs.
We hope to see expanded results, both in terms of composition and complexity of
such configurations, in the months and years to come.
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of stock prices in discrete market models
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An explicit formula is derived for the value of weak information in a discrete-time
model that works for a wide range of utility functions, including the logarithmic
utility and power utility. We assume a complete market with a finite number
of assets and a finite number of possible outcomes. Explicit calculations are
performed for a binomial model with two assets.

1. Introduction

Suppose an investor knows the distribution of the prices of the stocks in the market
at a future time and this investor wants to optimize her or his expected utility from
wealth at that future time. Our basic question is: What is the financial value of this
information?

Much of the research into utility optimization and the financial value of weak
information has been looked at previously in a continuous time setting [Baudoin
2003; Baudoin and Nguyen-Ngoc 2004]. The purpose of this paper is to investigate
how to optimize a stock portfolio given weak information in a discrete-time setting.
It should be stressed that the results we obtain are new and cannot be obtained as a
consequence of the results in [Baudoin 2003; Baudoin and Nguyen-Ngoc 2004].

We will assume that the market is complete. We will also assume that there are
no transactions costs. For a definition of complete markets, see [Björk 2009]. The
main tool we use in finding the optimal expected utility given the weak information
on future stock prices is the martingale method; see [Shreve 2004]. The reader
might recognize that the problem treated here is related to robust utility maximiza-
tion problems, as discussed in [Gilboa and Schmeidler 1989] and later works in
mathematical finance by H. Föllmer, A. Gundel and S. Weber.

MSC2010: 91G10.
Keywords: anticipation, mathematical finance, financial value of weak information, portfolio

optimization, discrete market models, insider trading.

883

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-5
http://dx.doi.org/10.2140/involve.2019.12.883


884 AMIRAN / BAUDOIN / BROCK / COSTER / CRAVER / EZEAKA / MARIANO / WISHART

As with classical results in this field, we will be looking at the expected utility
as opposed to the expected wealth. This is an important difference to note since
utility functions allow us to include an individual’s attitude towards risk.

2. Utility functions

There are many different utility functions used in mathematics and economics to
measure an individual’s happiness or satisfaction. We denote our utility functions
by U. We require that a utility function is strictly concave, strictly increasing, and
continuously differentiable. We assume as in [Baudoin 2003] that

lim
x→0

U ′(x)=+∞ and lim
x→∞

U ′(x)= 0. (1)

These conditions are sufficient for a utility function to exhibit risk aversion, to
satisfy the law of diminishing marginal utility, and to guarantee that an increase in
wealth results in an increase in utility. Further, when discussing the risk aversion of
our utility functions, we use the absolute and relative risk aversion functions; see
[Meyer and Meyer 2005]. We will be looking specifically at three different types
of utility functions:

(i) Log utility: U (x)= ln(x), x > 0. The log utility function has a constant relative
risk aversion of 1. This implies the individual will always take on a constant
proportion of risk with respect to their wealth.

(ii) Power utility: U (x)= xγ /γ for −∞< γ < 0 and 0< γ < 1 and x > 0. The
power utility function also has a constant relative risk aversion, but the constant
value is 1− γ . Thus, the power utility function is less risk-averse compared to the
log utility function for 0< γ < 1. In this case, the constant γ reflects the relative
risk aversion with the individual becoming more risk-averse as γ approaches 0. If
−∞<γ <0, the individual is more risk-averse than an individual whose preferences
can be described by the logarithmic utility function. As γ approaches −∞, the
individual becomes more and more risk-averse.

(iii) Exponential utility: U (x) = −e−αx for α > 0 and x ∈ R. The exponential
utility function has a constant absolute risk aversion of 1. Thus, the individual with
an exponential utility function will assume a constant amount of risk rather than a
constant proportion of risk with respect to their wealth. Notice that the exponential
utility function does not satisfy the condition (1), but it is still an interesting function
to note, and our results still hold true for this function.

3. Modeling the financial value of weak information on discrete-time
complete markets with a discrete state space

Setup. Suppose we have a market with d financial assets, and a sample space
�1 = {ω1, . . . , ωM} of possible outcomes of all the asset prices after one time
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period. For all probability measures P, we always assume P(ωj ) > 0 for all
j ∈ {1, . . . ,M}. This is not a restriction since if P(ωj ) = 0, then we exclude ωj

from �1. Let N be our final time period, and let ESn ∈ Rd denote the asset prices
at time n where n ∈ {0, 1, . . . , N }. Further, let the random variable Vn denote the
value of the portfolio at time n. Denote the initial wealth of the investor V0 by v.
Without loss of generality we can assume one of the assets is a risk-free asset. We
define r to be the rate of return of the risk-free asset. We will denote by M the
set of equivalent1 probability measures under which discounted stock prices are
martingales. Furthermore, we will assume our market is free from arbitrage. Thus,
we can assume that the set M is nonempty. For a complete market, M is a singleton,
say M= {P̃}, where P̃ is the unique probability measure under which discounted
stock prices are martingales; see [Björk 2009] for more details about arbitrage,
completeness, and equivalent martingale measures. We denote by 9v the set of
self-financing portfolios given initial wealth v. The probability measure P̃ basically
represents the “knowledge” of the uninformed investor. Notice that by Jensen’s
inequality this is the same as having no information at all, since it is optimal to
invest in the risk-free asset only.

3.1. Weak anticipation. Now suppose we have some weak anticipation (weak
information) regarding the prices of assets at our final time period. That is to say,
we know the distribution of ESN . We will denote this distribution by ν. Let � denote
the path space of the (M-dimensional) stock price process { ESn}1≤n≤N . Further, let
A be the (finite) set of possible asset prices at time N. Note |A| ≤ M N.

Definition. The probability measure Pν defined by

Pν(ω) :=
∑
Ex∈A

P̃(ω | ESN=Ex) ν( ESN=Ex)

is called the minimal probability measure associated with the weak information ν,
where P̃ ∈M is an (remember M is a singleton in a complete market) equivalent
martingale measure.

In the sense of the following proposition, Pν is minimal in the set of probability
measures Q equivalent to P such that Q( ESN=Ex) = ν( ESN=Ex) for all Ex ∈ A. We
denote this set by Eν.

Proposition 3.1. Let φ be a convex function. Then

min
Q∈Eν

Ẽ

[
φ

(
dQ

dP̃

)]
= Ẽ

[
φ

(
dPν

dP̃

)]
,

where dQ/dP̃ denotes the Radon–Nikodym derivative of Q with respect to P̃.
1In our finite discrete sample space, by equivalent we simply mean, for all i ∈ {1, 2, . . . ,M},

Q(ωi ) > 0.
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Proof. Let Ex ∈A and Q ∈ Eν be given. Then,

Ẽ

[
dQ

dP̃

∣∣∣∣ ESN=Ex
]
=
ν(ESN=Ex)

P̃(ESN=Ex)
.

Let φ be a convex function. Then from the conditional version of Jensen’s inequality

φ

(
ν(ESN=Ex)

P̃(ESN=Ex)

)
= φ

(̃
E

[
dQ

dP̃

∣∣∣∣ ESN=Ex
])
≤ Ẽ

[
φ

(
dQ

dP̃

) ∣∣∣∣ ESN=Ex
]
.

Taking the expected value on both sides, we get

Ẽ

[
φ

(
ν(SN )

P̃(SN )

)]
= Ẽ

[
φ

(
dPν

dP̃

)]
≤ Ẽ

[
φ

(
dQ

dP̃

)]
,

and the result is proved. �

3.2. Value of weak information. Since an insider’s anticipation has a different
final time distribution than an uninformed investor’s, it is natural to find a way to
characterize the value of this information. Since we focused on maximizing our
utility of wealth rather than the monetary value of wealth, we will define our value
accordingly.

Definition. The financial value of weak information is the lowest expected utility
that can be gained from anticipation. We write

u(v, ν)= min
Q∈Eν

max
ψ∈9v

EQ
[U (VN )].

Our main theorem is the following:

Theorem 3.2. The financial value of weak information in a complete market is

u(v, ν)= max
ψ∈9v

Eν[U (VN )] = Eν
[

U
(

I
(

λ(v)

(1+ r)N

dP̃

dPν

))]
,

where λ(v) is determined by

Ẽ

[
1

(1+ r)N I
(

λ(v)

(1+ r)N

dP̃

dPν

)]
= v,

where P̃ ∈M is the unique probability measure under which the prices are martin-
gales. Moreover, the optimal wealth at time n, V̂n , is given by

V̂n =
1

(1+ r)N−n

∑
ω∈�

I
(

λ(v)

(1+ r)N

dP̃

dPν
(ω)

)
P̃(ω | ESn) for n ∈ {0, 1, . . . , N }.

At time n, the optimal amount to purchase of the i-th linearly independent asset is

δi
n =

M∑
j=1

(D−1
n+1)i, j V̂n+1(ωj ) for n ∈ {0, 1, . . . , N − 1},
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where

Dn+1 =


S1

n+1(ω1) S2
n+1(ω1) · · · SM

n+1(ω1)

S1
n+1(ω2) S2

n+1(ω2) · · · SM
n+1(ω2)

...
...

...

S1
n+1(ωM) S2

n+1(ωM) · · · SM
n+1(ωM)


is the matrix of M linearly independent asset prices at time n+1, (D−1

n+1)i, j rep-
resents the element (i, j) of the matrix D−1

n+1, and V̂n+1 comes from the above
equation.

Proof. We will proceed by rewriting maxψ∈9v EQ
[U (VN )]. In order to do this, we

need the convex conjugate Ũ (y) :=maxx>0[U (x)− xy]; see [Karatzas et al. 1991].
We form the Lagrangian for solving maxψ∈9v EQ

[U (VN )] by

L(λ)= EQ
[U (VN )] + λ

[
v− EQ

[
dP̃

dQ

VN

(1+ r)N

]]
.

Now using Ũ, substituting in for VN from the martingale method (see the Appendix),
and doing algebra, we can rewrite our Lagrangian as

L(λ)= λv+ Ẽ

[
dQ

dP̃
Ũ
(

λ

(1+ r)N

dP̃

dQ

)]
.

Thus, we deduce

u(v, ν)= min
Q∈Eν

min
λ>0

[
λv+ Ẽ

[
dQ

dP̃
Ũ
(

λ

(1+ r)N

dP̃

dQ

)]]
=min

λ>0

[
λv+ min

Q∈Eν
Ẽ

[
dQ

dP̃
Ũ
(

λ

(1+ r)N

dP̃

dQ

)]]
.

Since the convexity of Ũ implies the function mapping z 7→ zŨ
(
λ/((1+ r)N z)

)
is

convex, we can use Proposition 3.1 to get

u(v, ν)=min
λ>0

[
λv+ Ẽ

[
dPν

dP̃
Ũ
(

λ

(1+ r)N

dP̃

dPν

)]]
.

Taking the derivative now with respect to λ and setting it equal to 0, we find

v = Ẽ

[
1

(1+ r)N I
(

λ∗(v)

(1+ r)N

dP̃

dPν

)]
,

where λ∗(v) is the minimizer. Now,

u(v, ν)= λ∗(v)v+ Ẽ

[
dPν

dP̃
Ũ
(

λ∗(v)

(1+ r)N

dP̃

dPν

)]
= Eν

[
U
(

I
(

λ∗(v)

(1+ r)N

dP̃

dPν

))]
.
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Thus, we have shown the first part of the theorem. Now note that the discounted opti-
mal wealth process {V̂n/(1+ r)n}0≤n≤N is a martingale under P̃ (see the Appendix).
As a result,

V̂n =
1

(1+ r)N−n Ẽ[V̂N | ESn] =
1

(1+ r)N−n

∑
ω∈�

I
(

λ(v)

(1+ r)N

dP̃

dPν
(ω)

)
P̃(ω | ESn)

for all n ∈ {0, 1, . . . , N }. Further, note that wealth is determined by your portfolio
from the previous time period and the current prices. Thus,

V̂n+1 = Dn+1Eδn,

so we have

D−1
n+1V̂n+1 = Eδn. �

Remark. We know from [Björk 2009] that the matrix of all asset prices in the
complete market has rank M. Therefore, we can choose M linearly independent
assets to invest in. Further, note that the optimal amount to purchase for each asset
is only unique when M = d .

Definition. We define the additional value of weak information as the extra utility
gained from investing with anticipation instead of just putting all of your wealth in
the risk-free asset, which we define by

F(v, ν)= u(v, ν)−U (v(1+ r)N ).

Definition. We also define the ratio of added value to the total value by

π(v, ν)=
F(v, ν)
u(v, ν)

= 1−
U (v(1+ r)N )

u(v, ν)
.

As a consequence of Theorem 3.2 we obtain the following interpretation of the
additional value of weak information for the log utility function.

Corollary 3.3. The additional value of weak information for the log utility function
is given by the relative entropy of ν with respect to P̃ESN

:

F(v, ν)= Eν
[

ln
(

dν
dP̃ESN

)]
.

Proof. We first solve for λ:

v= Ẽ

[
1

(1+ r)N I
(

λ

(1+ r)N

dP̃

dPν

)]
= Ẽ

[
1

(1+ r)N

(1+ r)N

λ

dPν

dP̃

]
=⇒ λ=

1
v
.
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Substituting for λ in our value of weak information equation, we thus have

u(v, ν)= Eν
[

U
(

I
(

λ

(1+ r)N

dP̃

dPν

))]
= Eν

[
ln
(
(1+ r)N

1/v
dPν

dP̃

)]
= ln(v(1+ r)N )+ Eν

[
ln
(

dPν

dP̃

)]
.

This implies the additional value of weak information for the log utility is

F(v, ν)= Eν
[

ln
(

dPν

dP̃

)]
= Eν

[
ln
(

dν
dP̃ESN

)]
,

where the last equality follows from the definition of Pν. �

Just like the log utility, we can also find the financial value of weak information
for the power utility.

Corollary 3.4. The value of weak information for the power utility function is given
by

u(v, ν)=
vγ (1+ r)Nγ

γ ( Ẽ[(dP̃/dPν)1/(γ−1)])γ−1
Eν
[(

dP̃

dPν

)γ /(γ−1)]
.

Proof. We now will solve for the value of λ:

Ẽ

[
1

(1+ r)N

(
λ

(1+ r)N

dP̃

dPν

)1/(γ−1)]
=v =⇒ λ=

(
v(1+ r)Nγ /(γ−1)

Ẽ[(dP̃/dPν)1/(γ−1)]

)γ−1

.

Substituting in for λ, we get

u(v, ν)= Eν
[

U
(

I
(

λ

(1+ r)N

dP̃

dPν

))]
= Eν

[
1
γ

((
v(1+ r)Nγ /(γ−1)

Ẽ[(dP̃/dPν)1/(γ−1)]

)γ−1 1
(1+ r)N

dP̃

dPν

)γ /(γ−1)]
=

vγ (1+ r)Nγ

γ ( Ẽ[(dP̃/dPν)1/(γ−1)])γ−1
Eν
[(

dP̃

dPν

)γ /(γ−1)]
. �

4. Complete markets: the binomial model

Single-period binomial model. We first will focus on a single-period binomial
model with two assets: one risk-free asset with payoff 1+ r , and one risky asset
with payoffs S0(1+ h) if the stock goes up, and S0(1− k) if the stock goes down,
where we assume S0 > 0 and k < 1. In order to have an arbitrage-free market, we
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ν0= 50%

δ0= 12.21095

ν1= 50%

n= 0 n= 1

Figure 1. An example of a single-period binomial model using
the log utility, where the parameter values are r = .032, h= .09,
k= .019, v= 200.0, and s= 20.0.

require h > r >−k. Since there is only one risky asset, we will denote the amount
of units owned of the risky asset at time n by δn .

Figure 1 shows a basic single-period binomial using the log utility. It represents
the amount of stock you should buy initially, δ0. From here there are only two
outcomes for our final time; the stock price will either go up or down.

Example 1 (log utility). When looking at the log utility function, we begin by
maximizing E[U (VN )] with respect to δ. We then are able to obtain our equation
for the optimal number of shares with respect to wealth, δ̂, in a single-period
model:

δ̂0 =
v(1+ r)(ν0(h− r)+ ν1(−k− r))

−s(h− r)(−k− r)
.

Example 2 (power utility). As in the log utility case, we solve for our optimal
number of shares with respect to wealth, δ̂0, in a single-period model:

δ̂0 =
((ν0(h− r))1/(γ−1)

− (ν1(−k− r))1/(γ−1))(1+ r)v
(ν1(−k− r))1/(γ−1)s(−k− r)− (ν0(h− r))1/(γ−1)s(h− r)

.

Example 3 (exponential utility). Similarly to the previously examined utilities, we
solve for the optimal number of shares with respect to wealth, δ̂, in a single-period
model for the exponential utility:

δ̂0 =
ln (ν0(h− r))− ln (−ν1(−k− r))

s(h+ k)
.

N-period binomial model. In binomial models, everything can be explicitly com-
puted. For instance, the following proposition gives the formula for the transition
probabilities of the minimal probability Pν. It is easy to establish by using the
formula for conditional probabilities and straightforward combinatorial arguments.
We note that {Sn}1≤n≤N is a Markov chain under the probability Pν.
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Proposition 4.1. Let l ∈ {1, . . . , N − 1} and i ∈ {0, . . . , N − l}. Then

Pν
(
SN−l+1=(1+ h)SN−l | SN−l=(1+ hN−l−i )(1− k)i S0

)
=

∑l−1
j=0

(l−1
j

)
(N − i − j) · · · (N − i − (l − 1))(i + 1)(i + 2) · · · (i + j)νi+ j∑l

j=0
( l

j

)
(N − i − j) · · · (N − i − (l − 1))(i + 1)(i + 2) · · · (i + j)νi+ j

and

Pν
(
SN−l+1=(1− k)SN−l | SN−l=(1+ hN−l−i )(1− k)i S0

)
=

∑l−1
j=0

(l−1
j

)
(N − i − j − 1) · · · (N − i − (l − 1))(i + 1) · · · (i + j + 1)νi+ j+1∑l

j=0
( l

j

)
(N − i − j) · · · (N − i − (l − 1))(i + 1)(i + 2) · · · (i + j)νi+ j

.

Example 4 (log utility). Figure 5 shows an example of two different 3-period
binomial trees with set values. The first tree shows the values of δ at time n when
the anticipation has a uniform distribution. The second tree, however, shows an
optimistic anticipation example. One can see how the amount of stocks in which
one should invest changes depending on the distribution of the anticipation. For
example, one would want to buy more stocks in an optimistic model because there
is a better chance of the stock increasing in price as time goes on than in the model
where all of the probabilities are the same. Negative values of δ correspond to
short-selling the asset.

n= 0 n= 1 n= 2 n= 3

i = 0

•

• i = 1

• •

• i = 2

•

i = 3

3ν0+
2ν1+

ν2

3ν0+
3ν1+

3ν2+
3ν3

ν1+2ν2+3ν3
3ν0+3ν1+3ν2+3ν3

3ν0+
ν1

3ν0+
2ν1+

ν2

ν1+ν23ν0+2ν1+ν2

ν1+
ν2

ν1+
2ν2+

3ν3

ν2+3ν3ν1+2ν2+3ν3

3ν0

3ν0+
ν1

ν13ν0+ν1

ν1

ν1+
ν2

ν2
ν1+ν2

ν2

ν2+
3ν3

3ν3ν2+3ν3

Figure 2. Pν for a 3-period binomial model.
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n= 0 n= 1 n= 2 n= 3

ν0=
1
4

•

• ν1=
1
2

• •

• ν2=
1
8

•

ν3=
1
8

15
24

9
24

2
3

1
3

5
9

4
9

3
5
2
5

4
5
1
5

1
4
3
4

Figure 3. Pν for a 3-period binomial model for a specific choice of ν.

S3= 25.90058

S2= 23.762

S1= 21 S3= 23.31052

S0= 20 S2= 21.3858

S1= 19.62 S3= 20.97947

S3= 19.24722

S3= 18.88152

n= 0 n= 1 n= 2 n= 3

Figure 4. A 3-period binomial tree showing the values of Sn ,
where the parameters are r = .032, h= .09, k= .019, v= 200.0,
and s= 20.0.

Recall from Corollary 3.3 the additional value of weak information for the log
utility is

F(v, ν)= Eν
[

ln
(

dPν

dP̃

)]
,

and the proportion is

π(v, ν)=
Eν[ln(dPν/dP̃)]

ln(v(1+ r)N )+ Eν[ln(dPν/dP̃)]
.

Note that F(v, ν) is only a function of ν, so for any fixed ν, we have that F(v, ν)
is constant. Furthermore, π(v, ν) is a decreasing function of v for any fixed ν. As
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ν0= 25%

δ2= 146.4281

δ1= 76.48093 ν1= 25%

δ0= 12.21095 δ2= 8.141736

δ1=−50.58155 ν2= 25%

δ2=−107.9549

ν3= 25%

n= 0 n= 1 n= 2 n= 3

ν= 20%

δ2= 251.9051

δ1= 192.0971 ν= 40%

δ0= 96.13333 δ2= 112.1887

δ1=−32.0822 ν= 30%

δ2=−224.84

ν= 10%

n= 0 n= 1 n= 2 n= 3

Figure 5. 3-period binomial trees showing the values of δ for
various anticipations of ν using the log utility, where the parameters
are r = .032, h= .09, k= .019, v= 200.0, and s= 20.0.

a result, the wealthier you are, the less proportion of utility you are gaining as a
result of anticipation. In a 5-period binomial model, with the four anticipations
below, we can look at the above functions as functions of v:

• Precise: {0.01, 0.01, 0.01, 0.95, 0.01, 0.01}.

• Uniform distribution:
{1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

}
.

• Conservative: {0.1, 0.2, 0.2, 0.2, 0.2, 0.1}.

• Risk-neutral: ν = P̃.
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0 200 400 600 800 1000

0
2

4
6

8
1

0

u(v)

initial wealth

precise
uniform dist.
conservative
risk-neutral

Figure 6. Value of weak information, given r = 3%, h = 8%, k = 4%,
using the log utility. The legend labels the curves in order, top to bottom.

0 200 400 600 800 1000

0
.0

0
.5

1
.0

1
.5

2
.0

F(v)

initial wealth

precise
uniform dist.
conservative
risk-neutral

Figure 7. Additional value of weak information, given r=3%, h=8%,
k = 4%, using the log utility. Legend labels curves in order.

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

π(v)

initial wealth

precise
uniform dist.
conservative
risk-neutral

Figure 8. Proportion of value added, given r = 3%, h = 8%, k = 4%,
using the log utility. Legend labels curves in order.
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ν0= 25%

δ2= 146.4281

δ1= 76.48093 ν1= 25%

δ0= 12.21095 δ2= 8.141736

δ1=−50.58155 ν2= 25%

δ2=−107.9549

ν3= 25%

n= 0 n= 1 n= 2 n= 3

ν0= 25%

δ2= 1198.038

δ1= 445.6094 ν1= 25%

δ0= 155.1425 δ2= 60.08356

δ1= 5.909925 ν2= 25%

δ2=−22.47464

ν3= 25%

n= 0 n= 1 n= 2 n= 3

Figure 9. Two different 3-period binomial trees showing the values of
δ for equal anticipations of ν using the log utility (top) and the power
utility (bottom), where the constants are the same as Figure 5. In the
power utility model, γ = .5.

Example 5 (power utility). Figure 9 shows the difference between the log and
power utilities. As the log utility is a more relatively risk-averse utility function
(for γ = 0.5), the absolute value of δ tends to be smaller when compared to the
power utility function.

From Corollary 3.4 we have that the additional value for the power utility is

F(v, ν)=
vγ (1+ r)Nγ

γ ( Ẽ[(dP̃/dPν)1/(γ−1)])γ−1
Eν
[(

dP̃

dPν

)γ /(γ−1)]
−
vγ (1+ r)Nγ

γ
,
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Figure 10. Value of weak information, given r = 3%, h= 8%, k= 4%,
using the power utility. Legend labels curves in order.
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uniform dist.
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Figure 11. Additional value of weak information, given r = 3%, h =
8%, k = 4%, using the power utility. Legend labels curves in order.

and the proportion is

π(v, ν)= 1−
1

Eν[(dP̃/dPν)γ /(γ−1)] · ( Ẽ[(dP̃/dPν)1/(γ−1)])1−γ
.

For the power utility, we have the opposite relationship for a fixed ν with the
proportion remaining constant and the added value being an increasing function of
initial wealth.

Example 6 (exponential utility). We can also find the financial value of weak
information for exponential utility.

Eν[−e−aV̂N ] = e−vα(1+r)N
−
∑N

i=0 (
N
i ) p̃N−i q̃ i ln ((N

i )· p̃
n−i q̃ i/νi).
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Figure 12. Proportion of value added, given r = 3%, h= 8%, k = 4%,
using the power utility. Legend labels curves in order.

We begin by solving for λ.

Ẽ

[
1

(1+ r)N I
(

λ

(1+ r)N

dP̃

dPν

)]
= v.

We use this equation and then plug in for I :

Ẽ

[
1

(1+ r)N

−1
α

ln
(

λ

α(1+ r)N

dP̃

dPν

)]
= v.

We then solve for λ:

λ= α(1+ r)N e−vα(1+r)N
−Eν [dP̃/dPν ln(dP̃/dPν)].

Finally we can plug our I and our λ into our equation for the financial value of weak
information to solve for the value as it specifically relates to exponential utility:

u(v, ν)= Eν
[

U
(

I
(

λ

(1+ r)N

dP̃

dPν

))]
= Eν[−e−a(−1/α) ln (λ/(α(1+r)N )·(dP̃/dPν))

]

= e−vα(1+r)N
−
∑N

i=0 (
N
i ) p̃N−i q̃ i ln ((N

i )· p̃
n−i q̃ i/νi).

Appendix

The following is with respect to the general discrete case in a complete market.
As in Section 3, we denote by 9v the set of self-financing portfolios given initial
wealth v.

Theorem A.1. The discounted wealth process is a martingale under the martingale
measure Q.
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Proof. See [Runggaldier 2005]. �

Theorem A.2. Maximizing E[U (VN )] over the set of self-financing portfolios 9v

is equivalent to maximizing E[U (VN )] subject to Ẽ[U (VN )] = v, with P̃ being the
unique equivalent martingale measure.

Proof. See [Rásonyi and Stettner 2005, Lemma 4.9]. �

Theorem A.3.

V̂N = I
(

λ

(1+ r)N

dP̃

dQ

)
.

More specifically, optimal terminal wealth V̂N is attained when λ satisfies

v = Ẽ

[
1

(1+ r)N I
(

λ

(1+ r)N

dP̃

dQ

)]
.

Proof. See [Runggaldier 2005, p. 16]. �
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