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Orbigraphs: a graph-theoretic analog
to Riemannian orbifolds

Kathleen Daly, Colin Gavin, Gabriel Montes de Oca,
Diana Ochoa, Elizabeth Stanhope and Sam Stewart

(Communicated by Kenneth S. Berenhaut)

A Riemannian orbifold is a mildly singular generalization of a Riemannian
manifold that is locally modeled on R"” modulo the action of a finite group.
Orbifolds have proven interesting in a variety of settings. Spectral geometers
have examined the link between the Laplace spectrum of an orbifold and the
singularities of the orbifold. One open question in this field is whether or not a
singular orbifold and a manifold can be Laplace isospectral. Motivated by the
connection between spectral geometry and spectral graph theory, we define a
graph-theoretic analog of an orbifold called an orbigraph. We obtain results about
the relationship between an orbigraph and the spectrum of its adjacency matrix.
We prove that the number of singular vertices present in an orbigraph is bounded
above and below by spectrally determined quantities, and show that an orbigraph
with a singular point and a regular graph cannot be cospectral. We also provide a
lower bound on the Cheeger constant of an orbigraph.

1. Introduction

A Riemannian orbifold is a mildly singular generalization of a Riemannian man-
ifold. A point in an n-dimensional manifold is contained in a neighborhood that
is homeomorphic to R*. A point in an n-dimensional orbifold is contained in a
neighborhood that is homeomorphic to a quotient of R" under the action of a finite
group. Two useful examples of orbifolds to consider are the Z,,-football (Figure 1,
left) and the Z,-teardrop (Figure 1, right):

Example 1. Let Z, act on a 2-dimensional sphere by rotations generated by a
27 /n-radian rotation about an axis passing through the center of the sphere. The
quotient of the sphere under this action is the Z,-football. Points lying on the
intersection of the sphere with the axis of rotation are fixed by all rotations. The
images in the Z,-football of these points are the conical points at the north and

MSC2010: primary 05C50, 05C20; secondary 60J10.
Keywords: graph spectrum, regular graph, directed graph, orbifold.
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Figure 1. Left: football obtained by 180-degree rotation of sphere.
Right: teardrop orbifold.

south poles of the football. If the local lift of a point in an orbifold has nontrivial
isotropy, the point is called a singular point in the orbifold. The singular set of the
Z,-football consists of the cone points at its north and south poles.

Example 2. The Z,-teardrop is topologically a 2-sphere except for a single point
whose neighborhood is locally modeled on the cone R2 /Z,, where Z, acts by rota-
tions around a fixed point. Thus the Z,,-teardrop’s singular set consists of the isolated
cone point. Thurston [1979] showed that unlike the Z,,-football, the Z,,-teardrop can-
not be obtained as the quotient of a manifold under a smooth, discrete group action.

Introduced by Satake [1956] under the name V-manifold, and later renamed
and studied as orbifolds by Thurston [1979], orbifolds have proven interesting in a
variety of settings; see [Adem et al. 2007; Gordon 2012; Hodgson and Tysk 1993],
for example. Of particular interest are results relating the eigenvalue spectrum of
the Laplace operator on a Riemannian orbifold (an orbifold endowed with a suitably
invariant Riemannian metric) to the singular set of the orbifold. For example, in
the presence of a curvature hypothesis, one of us [Stanhope 2005] showed that the
Laplace spectrum constrains the structure of the singular set. One fundamental
orbifold spectral geometry question that remains open is whether or not the Laplace
spectrum actually detects the presence of singular points.

Brooks [1991; 1999] proposes viewing k-regular graphs as combinatorial analogs
of smooth manifolds. The infinite k-regular tree 7} is viewed as the graph-theoretic
version of the universal cover of a finite k-regular graph. A finite k-regular graph I
is studied as the quotient of 7 by the fundamental group of I" in analogy to the
study of quotients of the universal cover of a manifold under the action of a discrete
cocompact group of isometries acting freely. In this setting Brooks obtains several
results including a characterization of Ramanujan graphs, a partial converse to
Sunada’s theorem, and links between the spectrum of a k-regular graph and the
graph’s diameter and girth.

Following Brooks’ analogy, observe that the action of a discrete, cocompact
group of isometries which is not free yields a quotient space that is an orbifold
rather than a manifold. Given the successful examination of orbifolds from the
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Figure 2. Left: a small 3-orbigraph. Right: a 3-orbigraph with 7 vertices.

perspective of spectral geometry, we seek to extend Brooks’ analogy one step further
by first proposing a graph-theoretic analog of an orbifold and, second, applying
the lens of spectral graph theory to orbifold graphs. References in the literature to
an orbifold-like class of graphs are limited. Brooks [1999] himself describes an
“orbifold graph” as a quotient of a k-regular graph under a nonfree group action.
He offers orbifold graphs as a motivating idea, but chooses to “avoid entering into
the technicalities of ‘orbifold graphs’.” Juan-Pineda, Lafont, Millan-Vossler and
Pallekonda [Juan-Pineda et al. 2011] describe an analogy between orbifolds and
objects from Bass—Serre theory [Bass 1993] called graphs-of-groups. Although the
present work has its roots in the ideas of Brooks, the graphs that we examine here
can be viewed as a generalization of the edge-index graph of a graph-of-groups.

We define an orbigraph to be a member of the following class of weighted,
directed graphs.

Definition 3. An orbigraph of degree k (k-orbigraph) is a finite, weighted, directed
graph Q where the adjacency matrix A of 2 satisfies the following:
(i) Ajj € Zsy.
(ii) Zj Ajj=k.
(iii) A;; > 01if and only if Aj; > 0.
Figure 2 shows two examples of orbigraphs.

Remark 4. All orbigraphs discussed below will be assumed to be connected unless
noted otherwise. Condition (iii) in Definition 3 implies that a connected orbigraph
must be strongly connected. Nonzero diagonal entries in the adjacency matrix of
an orbigraph correspond to weighted loops in the orbigraph.

In Section 2 below we demonstrate the analogy between orbigraphs and orbifolds
through the following three points:

(a) The local structure of a vertex in a k-orbigraph is that of the quotient of a k-
regular graph, just as the local structure of a k-dimensional orbifold is the quotient
of a k-dimensional manifold.
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(b) Some vertices in an orbigraph have the same local structure as a vertex in a
regular graph and some do not. This leads us to the definition of regular and singular
vertices in an orbigraph — an essential piece of the analogy between orbifolds and
orbigraphs.

(c) We show that some orbigraphs can be obtained as the quotient of a finite regular
graph under an equitable partition and some cannot. This mirrors the fundamental
fact from the geometric setting that orbifolds are divided into two classes: those
that are covered by a manifold (like the football) and those that are not (like the
teardrop). Indeed, the presence of singular objects that are not merely quotients
of regular objects saves the study of orbifolds and orbigraphs from being simply a
reduced version of a known field of study.

Section 3 connects orbigraphs to the theory of Markov chains. In Section 4
Markov chain methods are used to obtain a graph-theoretic characterization of when
an orbigraph can be obtained as the quotient of a finite regular graph, and when
it cannot. This characterization makes it easy to generate examples of orbigraphs
with these properties, facilitating our later examination of how spectral results for
orbifolds carry over to the orbigraph setting. Also using Markov chain methods
we provide a lower bound on the Cheeger constant of a k-orbigraph in terms of &
and the size of its vertex set. This adds a third family to the list in [Chung 2005] of
families of directed graphs that satisfy similar bounds. It would be interesting to
know if the bound presented here is sharp, or if an improved bound could be used
to obtain a strong upper bound on the convergence of random walks on orbigraphs.
Our examination of the Cheeger constant on orbigraphs is the topic of Section 5.

In Section 6 we follow the philosophy of Brooks and ask questions from the
spectral geometry of orbifolds in the orbigraph setting. The orbigraph spectrum
discussed here is the list of eigenvalues of the adjacency matrix of an orbigraph.
Because the analogy between orbifolds and orbigraphs established in Section 2 is
strong, the questions carry over naturally and we obtain several interesting results:

(a) We show that the spectrum does not detect whether or not an orbigraph can
be obtained as the quotient of a finite k-regular graph. The analogous question for
orbifolds is still an open problem in spectral geometry.

(b) The number of singular points in an orbigraph can be bounded both above and
below by spectrally determined quantities. In the geometric setting one can seek
spectral bounds on the number of components of the singular set. In dimension 2,
the fifth author and Proctor [Proctor and Stanhope 2010] obtained a result of this
type under a curvature hypothesis.

(c) The spectrum of an orbigraph detects the presence of singular points. As
mentioned above, this question is still open in the orbifold setting.
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2. Orbigraphs as discrete orbifolds

2.1. Local structure of a k-orbigraph. The local structure of an orbigraph is that
of a quotient of a k-regular graph. There are multiple ways to define the quotienting
process for graphs. Here quotient graphs will be formed with respect to an equitable
partition. The definition given below uses the approach of Barrett, Francis and
Webb [Barrett et al. 2017] to extend the definition of an equitable partition from the
familiar setting of simple graphs to the more general setting of weighted directed
graphs. We also follow the thorough treatment of the simple graph case in Chapter 5
of [Godsil 1993].
In what follows let w(u, v) denote the weight of directed edge (u, v).

Definition 5. Let I' be a graph (possibly directed, weighted, or both) and
PZ{V17 VZ,’Vm}
be a partition of its vertices:

(a) We say P is an equitable partition if for all pairs i, j the number ) eV, w(u, v)
is the same for each element u in V;.

(b) Given an equitable partition P on I', the weighted directed graph with adjacency
matrix A;; = Zuev,- w(u, v), u in V;, is called the quotient graph of I' with
respect to P and will be denoted by I"/P.

Remark 6. If a group G acts on a simple graph I'" by automorphisms, the vertex
orbits of the action form an equitable partition of the vertex set of I'. This type of
equitable partition is called an orbit partition. In this case the quotient graph will
be written '/ G.

To discuss the local structure of an orbigraph we introduce further terms from
graph theory. Note that an undirected edge {v, w} of weight n in a graph will be
viewed as being equivalent to a pair of weight-n directed edges (v, w) and (w, v),
and vice versa.

Definition 7. (a) The k-star graph is the complete bipartite graph K ; and will
be denoted by Si. The vertex with degree k in Sy is the central vertex of Sg.

(b) The neighborhood of a vertex v in an undirected graph I' is the subgraph of I"
including the vertex v, all vertices w adjacent to v, and all edges {v, w}.

(c) The out-neighborhood of a vertex v in a directed graph A is the directed
subgraph of A including vertex v, all vertices w at which edges initiating at v
terminate, and all directed edges (v, w) with initial vertex v.

Because the neighborhood of each vertex in a simple k-regular graph is S, we
view a simple k-regular graph as the graph-theoretic analog of a k-dimensional
manifold.
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O—-0 =0

Figure 3. Out-neighborhoods of the central vertex in quotients of Ss3.

Let G be a group of graph automorphisms of S; and form the quotient graph S/ G.
The central vertex ¢ of S;/G is the vertex in S;/ G associated to the element of
the orbit partition on Sj containing the central vertex of S;. The out-neighborhood
of ¢ in S;/ G is a weighted star graph with between 1 and k edges. The sum of the
weights over all edges in the out-neighborhood of c is k.

Example 8. There are only three different weighted, directed graphs that arise
as quotients of S3 by a group of graph automorphisms. Figure 3 illustrates the
out-neighborhoods of the central vertex in each of these three quotients.

Because all row sums in the adjacency matrix of a k-orbigraph 2 are k, the
out-neighborhood of a vertex v in €2 is identical to the outgoing neighborhood of
the central vertex in some quotient of a k-star. In this way, a k-star quotient provides
the local model of the neighborhood of a point in an orbigraph. Our interest in the
local structure of an orbigraph at a vertex is in the number of outgoing edges and
the weights of those edges. The terminal point of an outgoing edge is not important.
Because of this the out-neighborhood of a vertex with a loop is taken with the loop
“undone”. For example, vertex vy in Figure 2, left, is locally modeled on the middle
graph in Figure 3.

To complete our analogy between the local structure of orbifolds and the local
structure of orbigraphs we observe that requirement (iii) in Definition 3 corresponds
to the fact that if local neighborhoods U, V in an orbifold satisfy U NV # & then
we also have VNU # @.

2.2. Singular points in an orbigraph. The key feature of the study of orbifolds
that distinguishes it from manifold theory is the presence of orbifold singular points.
We define a singular vertex in an orbigraph in the following way.

Definition 9. A vertex v of an orbigraph is singular if any outgoing edge from v
has weight greater than 1. A vertex that is not singular is called regular.

We see that regular graphs contain no singular vertices, as required by our analogy
between regular graphs and manifolds.

Example 10. Both vertices in the orbigraph in Figure 2, left, are singular. Vertices
v1, v4 and vg in the orbigraph in Figure 2, right, are singular, and the rest are regular.
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Figure 4. Graph diagram of K.

In contrast to the orbifold setting, singular points in an orbigraph are not marked
with an isotropy group. However we can quantify the extent to which a vertex v is sin-
gular by noting the number of outgoing edges from v that have weight greater than 1.
We can also consider the list of weights of outgoing edges from v. As mentioned in
the Introduction, graphs-of-groups offer an alternative graph-theoretic interpretation
of orbifolds. A graph-of-groups, in contrast to an orbigraph, has vertices that are
marked with a group in a way that is analogous to an orbifold isotropy group.

2.3. Good and bad orbigraphs. In Example 1 we saw that the football orbifold is
the quotient of a sphere under the smooth action of a finite group. In Example 2
it was asserted that the teardrop orbifold cannot be obtained as a quotient in this
manner. Orbifolds that can be written as the quotient of a manifold under a smooth,
discrete group action are called good. Otherwise they are called bad. Following
these ideas we define good and bad orbigraphs as follows.

Definition 11. A k-orbigraph € is said to be good if it can be obtained as the
quotient of a finite k-regular graph I" via an equitable partition on I'. If an orbigraph
is not good it is called bad.

Example 12. The orbigraph in Figure 2, left, is good because it is the quotient of
the complete graph K4, as presented in Figure 4, by the group Z3 generated by a
2m /3-radian rotation about the center vertex. The orbigraph in Figure 2, right, is
bad. This follows from Theorem 20 below and the observation that the product of
edge weights along cycle (v, vy, v3, v4, Vs, Vg, V7, V1) is 2, while the product of
edge weights along the reverse cycle (vy, vy, ve, Vs, V4, V3, U2, V1) is 4.

The analogy with the covering theory of topological spaces is further strengthened
by the following two lemmas.

Lemma 13. If Q is a k-orbigraph and P is an equitable partition on the vertices
of Q, then QP is a k-orbigraph.

Proof. Let A denote the adjacency matrix of 2/P, where P = {V|, V,, ..., V,,},
and let wq (-, -) denote the weight function on directed edges in 2. Because 2
is an orbigraph, we know wgq(u, v) is a nonnegative integer for all vertices u, v
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in 2. Hence A;; = Zuevj wgq(u, v), for any u € V;, is a nonnegative integer. Fixing

i€{l,2,..., m}, and taking u some element of V;, consider the i-th row sum of A:
Z Aij = Z Z wo(u, v) = Z wo(u, v) =k.
J Jj vey; veQ

Finally suppose A;; > 0. Then there must a j € {1, 2, ..., m} for which any
u € V; has wq(u, v) > 0 for some v € V;. Because €2 is an orbigraph, we must also
have wqo (v, u) > 0. Thus Aj; > 0. [l

Definition 14. We say that an orbigraph €2; covers an orbigraph €2, if there is an
equitable partition P of the vertices of €2 such that Q;/P = Q5.

Lemma 15. The covering relation is transitive.

Proof. Suppose €21 is an orbigraph with equitable partition P; such that 2; /P; = Q2»,
and 2, has an equitable partition P, such that Q,/P, = Q3. We need to show
there is an equitable partition P3 of €2; such that Q/P3 = Q3. Fori = 1,2 let
A; denote the adjacency matrix of orbigraph €2;, and P; denote the characteristic
matrix corresponding to partition P;. By a straightforward modification of [Godsil
1993, Lemma 2.1, p. 77] to the setting of weighted, directed graphs we have that
A1 Pl = P1A2 and Asz = P2A3. Thus A1 P1 P2 = P1A2P2 = P1 P2A3. We conclude
P; P, defines an equitable partition on €2 with quotient orbigraph 3. U

As a consequence of the previous two lemmas we obtain the following.

Corollary 16. The quotient of any good orbigraph must also be good.

3. Orbigraphs and Markov chains

The fact that the row sum of the adjacency matrix of an orbigraph is constant provides
an immediate connection between orbigraphs and Markov chains. Following [Kelly
1979], we review ideas from the theory of Markov chains and introduce notation that
will be used hereafter. Matrix A will denote the adjacency matrix of a k-orbigraph €2
with n vertices. Define P = (1/k)A. Matrix P is the transition matrix of a stationary
Markov chain, as all entries of P lie in the interval [0, 1] and all rows of P sum
to 1. Because the adjacency matrix of a k-orbigraph has right eigenvalue k (to see
this consider the eigenvector with all entries equal to 1), P has right eigenvalue 1
and stationary distribution vector & = (1, 72, ..., T,), with ZZZI i = 1, for
which 7 P = . By Remark 4 we know €2 is strongly connected so 7 is the unique
stationary distribution of P.

Our first result connecting orbigraphs to Markov chains is a bound on the minimal
entry of 7 in terms of the degree and number of vertices of an orbigraph.
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Lemma 17. Let 7, be a minimal entry in stationary distribution 7. Then

1

>_
ﬂm_nkn_l.

Proof. Let my; denote a maximal entry in 7 and let ¢ be the minimal nonzero value
that appears as an entry in matrix P. Because €2 is strongly connected, there is a
path of length £ < n from the M-th vertex to the m-th vertex of 2. This implies
that (P)p,, is nonzero. Using this and the fact that 7 P = v, we have

n
=Y (P Vimmic = (PYrmmm = ¢’y = "'y,
k=1

Because P is the transition matrix associated to an orbigraph, we have ¢ > 1/k.
Also, we know that my; > 1/n because the sum of the entries of 7 is 1. Thus
T > "y > 1/(nk™ 1) as required. O

Here we relate the stationary distribution of a good orbigraph to that of its finite
regular cover.

Lemma 18. Let I' be a k-regular graph with N vertices, P = {V, Va, ..., V,} be
an equitable partition of the vertices of ', and P be the transition matrix of the
orbigraph U /P. Let |V;| denote the number of vertices in partition element V;. The
stationary distribution of P is the n-tuple w, where m; = (1/N)|V;|.

Proof. Let Q denote the transition matrix obtained by scaling the adjacency matrix
of I' by 1/k. The result follows from the observation that the stationary distribution
of Q isthe N-tuple (1/N,1/N, ..., 1/N) and [Godsil 1993, Lemma 2.2, p. 78]. J

4. Characterizing good and bad orbigraphs

We use the Markov chain methods and notation from Section 3 to provide a quick
way to distinguish good orbigraphs from bad orbigraphs.

Definition 19. An orbigraph 2 satisfies the balanced cycle condition if the product
of the edge weights along each directed cycle vy, vo, ..., v;, v; in Q equals the
product of the edge weights along the reverse directed cycle vy, vy, v;—1, ..., V.

Theorem 20. An orbigraph is good if and only if it satisfies the balanced cycle
condition.

A stationary Markov chain is said to satisfy the detailed balance equations if
niP,-j:anji foralli,j:1,2,...,n.

The Markov chain analog of the balanced cycle condition from Definition 19
is called the Kolmogorov criterion. In particular, an orbigraph satisfies the bal-
anced cycle condition if and only if the corresponding Markov chain satisfies the
Kolmogorov criterion. We can now state a needed lemma.
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Lemma 21. A stationary Markov chain satisfies the detailed balance equations if
and only if it satisfies the Kolmogorov criterion.

Proof. This follows from combining Theorems 1.2 and 1.7 in [Kelly 1979]. ]

Proof of Theorem 20. Suppose €2 is a good orbigraph. This implies Q = I'/P,
where I' is a k-regular graph and P = {Vy, V,, ..., V,} is an equitable partition
on I'. Scaling the adjacency matrix of I by 1/k yields the symmetric transition
matrix Q of a Markov chain. We relate the stationary distribution of Q to the
stationary distribution of P, the transition matrix of €2, by Lemma 18. In particular
m; = (1/N)|V;|, where w denotes the stationary distribution of P and N is the
number of vertices in I'.

The following computation confirms that P satisfies the detailed balance equa-
tions:

1 1 1
7j Pji :ﬁ|Vj|Pji :ﬁ|‘/j| Z ij:ﬁzz Quk

keV; leV keV;

=LY Y ou=1 VY Qu=mPy.

keV; leV; leV;

(The argument closely follows that of [Tian and Kannan 2006, Theorem 2.16],
which is given in the setting of lumpable Markov chains. It makes essential use of
the fact that P is an equitable partition and that Q is a symmetric matrix.) The fact
that €2 satisfies the balanced cycle condition now follows from Lemma 21.

Now suppose €2 is an orbigraph that satisfies the balanced cycle condition.
By Lemma 21, P and 7 satisfy the detailed balance equations 7; P;; = m; Pj;.
Multiplying by k on both sides gives ; A;; = m;A;;. Because A has all nonnegative
integer entries, w will have all nonnegative rational entries. Thus there is an
integer m for which mm = (dy, da, . . ., d,,) is a vector of nonnegative integers. This
allows us to write

diAij =djAji, (1)

an equality of products of nonnegative integers.

We now build a finite k-regular cover I of Q2. Let X be the set of nonzero,
nondiagonal entries of A. Let Y ={A1+ 1, Axx+1,..., Ay + 1}. Let ¢ be the
least common multiple of the integers in X UY. Foreachi = 1,2, ..., n we take
Vi to be a set of cd; vertices. The disjoint union V; LV, L. - -1V, forms the vertex
set of I" and gives the needed vertex partition P of I'.

It remains to specify adjacency in I' in such a way that I'/P = Q. Suppose
i # j. For the quotient I'/P = 2 to be valid, each vertex in V; must be adjacent
to A;; vertices in V;, and each vertex in V; must be adjacent to A;; vertices in V;.
Thus the number of edges with one vertex in V; and one vertex in V;, which we
will denote by ey; j), is simultaneously A;;|V;| and A;;|V;|. The adapted detailed
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balance equations from (1) show that this requirement follows from our choice for
the sizes of V; and V; as

AijlVil = Ajjed; = Ajicd; = Aji| V.

Because A;; divides |V;| and Aj; divides |V;|, we can distribute the e(; ;; edges
connecting V; and V; with exactly A;; edges adjacent to each vertex in V; and
exactly Aj;; edges adjacent to each vertex in V;. Because A;; + 1 divides |V;|, we
can require that all elements of V; are adjacent to exactly A;; other elements of V;.
This completes the adjacency relations for I.

By construction we observe I'/P = Q. The degree of a vertex v in I is
> j=1 Aij = k; thus I" is k-regular. Should I' fail to be connected, any connected
component I' of " will satisfy I''/P = Q. ([

Remark 22. Corollary 16 and Theorem 20 imply that if an orbigraph 2 satisfies
the balanced cycle condition then so does any orbigraph quotient of €2. This stands
in contrast to [Tian and Kannan 2006, Example 2.17].

5. Bounding the Cheeger constant of an orbigraph

Chung [2005] defined a Cheeger constant for directed graphs and obtained lower
bounds on the Cheeger constant for both regular and Eulerian directed graphs. Using
R to denote a k-regular directed graph on n vertices and E an Eulerian directed
graph with m edges, Chung showed

h(R)> 2 and h(E)> 2. @)
kn m

Here we apply Chung’s methods to obtain a lower bound on the Cheeger constant
of an orbigraph. We use notation from Section 3.
Define a function F from 2 to the nonnegative real numbers by

F(@, j) =7 Py,
where i and j are vertices in $2. This function is an example of a circulation on 2;

see [Chung 2005, Lemma 3.1]. Letting S range over all nonempty proper subsets
of the vertex set of €2, the Cheeger constant /(€2) of €2 is defined as

_ Dies. jes F. )
h(2) =inf - ,
€ lrS1 min{zjes F(J')ije§F(j)}

where F(j) = Zi,i—>j F(, j) and S is the set of vertices of € that are not in S.
We have the following lower bound on the Cheeger constant of €.

Proposition 23. Let Q2 be a k-orbigraph with n vertices. Then

Q) = —
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Proof. We begin by bounding the numerator in the expression defining the Cheeger
constant (let i, denote a minimal entry in 7):

1

Z F@,j) = Z 7 Pij > Z T Fij 2 — o

ieS,j¢s ieS,j¢s ieS,j¢Ss

The last inequality follows from Lemma 17 and the observation that the smallest
possible nonzero value for an entry in P is 1/k.

To bound the denominator first observe that ) | jes F(J) is no greater than the
sum of the columns in P associated to the vertices in S. It is similar for ) jes FO.
Since the total sum of the entries in P is n, we have

SF()+ Y F(j)=n.

jes jes
Thus min {}", s F(), Y ,c5 FW)} <n/2.

We see that for any choice of S the quotient in the definition of the Cheeger
constant must be greater than or equal to 2/(n?k"), completing the proof. (]

Remark 24. Chung uses the inequalities in (2) to obtain convergence bounds for a
type of random walk on regular and Eulerian directed graphs. The presence of n
in the exponent in the denominator of the orbigraph bound makes it too weak to
obtain a similar orbigraph result. It would be interesting to see if a better bound on
the Cheeger constant of an orbigraph, should one exist, would allow a convergence
result similar to the regular and Eulerian cases.

6. Spectral results for orbigraphs

Because different matrices can be associated to a given graph, a variety of graph spec-
tra are examined in spectral graph theory. Here the spectrum of an orbigraph 2 is de-
fined to be the list of eigenvalues of the adjacency matrix of 2 with each eigenvalue
repeated according to its multiplicity. We will write the spectrum of an orbigraph
with n vertices as a multiset {1, A2, ..., A,}. The study of the spectral properties
of directed graphs is relatively new and has yielded interesting applications, as well
as directed graph analogs of familiar graph-theoretical results, including Cheeger’s
inequality; see [Chung 2005; Langville and Meyer 2006], for example. We focus on
developing results that relate the spectrum of an orbigraph to its orbigraph structure.

Remark 25. Just as with k-regular graphs, the spectral radius of a k-orbigraph is k.
In addition, the number of eigenvalues in the spectrum of an orbigraph (counting
multiplicity) is equal to the number of vertices in the orbigraph.

Lemma 26. Suppose orbigraph 21 covers orbigraph Q2,. Then the spectrum of 2,
is contained in the spectrum of 21 as multisets.
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Figure 5. The left and center orbigraphs are cospectral. The left
orbigraph is bad. The center orbigraph is good as it is covered by
the right-most graph using the indicated partition.

"0

Proof. This follows from the argument in Lemma 2.2 of Chapter 5 in [Godsil
1993], adjusted to allow the graph carrying the equitable partition to be a weighted,
directed graph. (]

Corollary 27. Any orbigraph with complex eigenvalues must be bad.

Proof. This follows from Lemma 26 and the fact that regular graphs have real
eigenvalues. ([

Theorem 28. The spectrum of an orbigraph does not distinguish good orbigraphs
from bad orbigraphs.

Proof. The orbigraph on the left in Figure 5 and the orbigraph in the center of
the figure both have spectrum {—2, 0, 1, 3}. However the orbigraph on the left is
bad and the orbigraph in the center is good. To see that the left orbigraph is bad,
apply Theorem 20 and the fact that the product of the edge weights along cycle
(v1, v2, V3, V) is not equal to the product of the edge weights of this cycle reversed.
The center orbigraph is good because it is covered by the 3-regular graph on the
right side of Figure 5 using the indicated equitable partition. U

In the following lemma a directed edge from vertex v; to vertex v, of weight w is
considered to contribute w-many different ways to move from v to v,. The length
spectrum of a graph is the finite list of nonnegative integers where the m-th number
in the list counts the number of closed walks of length m present in the graph.

Lemma 29. The eigenvalue spectrum of an orbigraph determines and is determined
by the length spectrum of the orbigraph.

Proof. Let Q be a k-orbigraph, A its adjacency matrix, and w,, the number of
closed walks in €2 of length m. We know that

w,, = tr(A™) (3)
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because the diagonal of A counts the number of closed walks of length m. However
n
tr(A™) = Z A,
i=1

Thus the eigenvalue spectrum of €2 uniquely determines the length spectrum of €2,
and conversely by Newton’s identities [Mead 1992] the length spectrum of €2
uniquely determines the eigenvalue spectrum of €2. U

We now prove that the number of singular points in an orbigraph is bounded
above and below by spectrally determined quantities.

Theorem 30. Let Q2 be a k-orbigraph with n vertices. If s is the number of singular
points in 2, then we have

& Z)\Z_nk

k2 —
where A; are the eigenvalues of the adjacency matrix A of 2.

Proof. First note that ) __, kl.z = tr(A?) and by Lemma 29 this quantity counts the
number of closed walks of length 2 in 2. A given vertex v in €2 has outgoing edges
with weights summing to k, each of which is matched by at least one incoming
edge. This implies the number of closed walks of length 2 starting at v is at least k.
Observing that there are n vertices in Q, we obtain tr(A?) > nk. Now suppose
vp is a singular vertex in €2. This vertex has at least one outgoing edge (vy, v2)
of weight greater than 1. Edge (v;, vy) contributes at least one closed walk of
length 2, beginning and ending at v,, that has not yet been counted. We conclude
that tr(A?) > nk +s; thus s <>, kl.z — nk.

For the lower bound, note that each singular vertex v; contributes A;; (A;; — 1)
extra (i.e., beyond the initial k length-2 paths) length-2 paths based at v;. Thus the
total number of extra paths contributed by vertex v; is ) Aji(A;j —1). We
bound this quantity in terms of k:

DA - Y k(A =D =k Y Aj— Y k<k’-

Vi~V Vi~V v ~; V; ~;

Vi~V

Hence each singular vertex contributes at most k> — k extra walks of length 2, so
s(k> —k) > Yo kl.z — nk. Isolating s in this inequality completes the proof. [J

Remark 31. The orbigraph with adjacency matrix k1, where I,, denotes the n X n
identity matrix, achieves the lower bound in Theorem 30 for all choices of £ and n.
Thus this lower bound is sharp in k and n.
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Corollary 32. Suppose 2 is a k-orbigraph with n vertices. Then Q2 is isomorphic
to a k-regular graph if and only if

Y af-nk=0 and H i =0.
i i

Proof. A simple k-regular graph 2 has no self loops; thus Lemma 29 implies
> i A = 0. Viewing each edge {v;, v;} in Q as two directed edges, (v;, v;) and
(vj, v;), we see each vertex in €2 has exactly k closed walks of length 2. Therefore
> i A} =nk.

Conversely, assume that Q is an orbigraph such that ) ; A? =nk and ) _; 1; = 0.
Then by Theorem 30, we have s < 0. As s > 0 we see s = 0. Thus the outgoing
edges of each vertex in €2 all have weight 1. The second condition implies €2 has
no loops. By combining pairs of directed edges (v;, v;) and (v;, v;) into a single
undirected edge {v;, v;}, we obtain a simple k-regular graph. U

In the smooth setting it is not known if a manifold can have the same Laplace
spectrum as a nonmanifold orbifold. We can resolve this question in the setting of
orbigraphs.

Corollary 33. A regular graph and an orbigraph with one or more singular points
cannot be cospectral.

Proof. Suppose regular graph I and orbigraph €2 are cospectral and that Q2 contains
s > 1 singular points. By Remark 25 the largest eigenvalue in the shared spectrum
of I' and Q2 is the degree of regularity of each graph. Denote this largest eigenvalue
by k. In addition the shared spectrum implies that each graph has the same number
of vertices n. By the forward direction of Corollary 32, the fact that I" is k-regular
implies >, A? —nk = 0 and )_; »; = 0. However the backwards direction of
Corollary 32 implies s = 0, a contradiction. U
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Sparse neural codes and convexity

R. Amzi Jeffs, Mohamed Omar, Natchanon Suaysom,
Aleina Wachtel and Nora Youngs

(Communicated by Ann N. Trenk)

Determining how the brain stores information is one of the most pressing prob-
lems in neuroscience. In many instances, the collection of stimuli for a given
neuron can be modeled by a convex set in RY. Combinatorial objects known as
neural codes can then be used to extract features of the space covered by these
convex regions. We apply results from convex geometry to determine which
neural codes can be realized by arrangements of open convex sets. We restrict our
attention primarily to sparse codes in low dimensions. We find that intersection-
completeness characterizes realizable 2-sparse codes, and show that any realizable
2-sparse code has embedding dimension at most 3. Furthermore, we prove that
in R? and R, realizations of 2-sparse codes using closed sets are equivalent to
those with open sets, and this allows us to provide some preliminary results on
distinguishing which 2-sparse codes have embedding dimension at most 2.

1. Introduction

One of the fundamental problems of convex geometry is understanding the inter-
section behavior of convex sets. Classical theorems in this area include Helly’s
theorem and its many variations, which show that the presence of lower-order
intersections of convex sets in R¢ can force intersections of higher order; see for
example [Amenta et al. 2017; Danzer et al. 1963; Eckhoff 1993; Matousek 2002].
Recent work [Tancer 2013] on the representability of simplicial complexes provides
a sharp bound on the dimension in which intersection patterns of convex sets can
be realized. We consider the problem of simultaneously realizing intersection
patterns along with other relationships between convex sets, such as containment.
This problem is motivated by one of the challenges of mathematical neuroscience:
determining how the structure of a stimulus space is represented in the brain.
Many types of neurons respond to stimuli in an environment; the set of all such
stimuli is called the stimulus space X. Usually, we consider X C R? If we are

MSC2010: 05C62, 52A10, 92B20.
Keywords: neural code, sparse, convexity.
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considering data from n neurons {1, ..., n} which respond to stimuli in X, the
receptive field for neuron i is the subset U; of the stimulus space X for which
neuron i is highly responsive. Throughout this article, we assume the sets U;
are convex. Indeed, experimental data on many types of neurons, such as place
cells [O’Keefe and Dostrovsky 1971] or orientation-tuned neurons [Hubel and
Wiesel 1959], make it evident that receptive fields are often well-approximated
by convex sets. Hence, for such neurons, the regions of stimulus space in which
multiple neurons fire can be modeled by intersections of convex sets, and thus the
mathematical theory developed by Helly, Tancer, and others can inform us about
the possible arrangements of receptive fields in a given dimension.

Helly’s theorem, however, cannot inform us about all types of receptive field
arrangements. For example, if U;, U; are receptive fields which intersect, the neural
data will differentiate between U; € U; and U; £ Uj;, but Helly’s theorem merely
notes that U; and U; intersect. We thus go beyond the usual scope of convex
geometry to consider the problem of finding arrangements of convex sets which
fully realize the information present in the neural data, including containments. This
problem was posed originally in [Curto et al. 2013b], and has been an active area
of exploration in recent years. Others such as [Chen et al. 2019; Curto et al. 2017;
Cruz et al. 2019; Amzi Jeffs 2018; Amzi Jeffs and Novik 2018] have approached
it using methods from algebra, combinatorics, and discrete geometry, but a full
solution remains out of reach. In order to address this issue, we first describe how
neural data is represented mathematically.

Definition. A neural code on n neurons is a set of binary firing patterns C C {0, 1},
representing neural activity. Elements of C are referred to as codewords.

The firing of a neuron is an all-or-nothing event, and so a codeword ¢ € C
represents a data point in which a specific set of neurons are simultaneously firing,
with neuron i active if ¢; = 1 and inactive if ¢; = 0. For example, the codeword
0011 represents a data point at which neurons 3 and 4 were active, while neurons 1
and 2 were not. In the receptive field context, the presence of this codeword in C
indicates that (Us N Uy)\ (U U Uy) # 2.

Definition. Let &/ = {Uy, ..., U,} be a collection of sets in RY. The associated
neural code C(U) C {0, 1}" is the set of firing patterns representing the regions in

the arrangement
() ()2}
ci=1

¢j=0

e {c c {0, 1)"

Any collection of sets / in RY gives rise to an associated neural code. However,
as we have mentioned, the receptive fields U; are generally presumed to be convex.
One of our main motivating examples is that of place cells, whose receptive fields
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Figure 1. An open convex realization of the code C =
{000, 100, 010, 110, 011} in R% with each region labeled with
its corresponding codeword. This shows that C is an open convex
realizable code with d(C) < 2. It can be shown that, in fact,
diC)=1.

are generally seen to be convex, as explained in [Curto et al. 2017]. We additionally
assume the receptive fields U; are open, since by restricting to open sets, we force
all sets in our realization to be full-dimensional; furthermore, their intersections, if
nonempty, must also be full-dimensional. This allows us to avoid degenerate cases
which would not be meaningful in a neural context. These assumptions are consistent
with the literature [Curto et al. 2013b; 2017; Lienkaemper et al. 2017]. However,
many of our proofs will require that we shift between closed and open convex sets
that are associated to the same code. We therefore make the following definition:

Definition. If /={Uy, ..., U,}is acollection of open (respectively, closed) convex
sets in R? for which C = C({), then we say that C is open (closed) convex realizable
in RY, and that I/ is an open (closed) convex realization of C.

Then, for any code C, we define d(C) to be the minimum dimension d such that
C has an open convex realization in R¢, if such a dimension d exists. Figure 1
shows an open convex realization in R? for a code C which has minimum dimension
d(C) = 1. If C is not realizable with open convex sets in any dimension, we say
d(C) = oo. Such codes do exist; see Figure 2.

Definition. The support of a vector ¢ € {0, 1}", denoted by supp(c), is the set of
indices of value 1, or the set of all firing neurons:

def .
supp(c) = {i | i = 1}.
The support of a code C {0, 1}" is the set of the supports of its codewords:

supp(C) £ {supp(c) | ¢ € C}.

We assume that there are instances when none of the neurons of interest are firing;
hence, we will always assume that the codeword 00 - - - 0 is present in any code.
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Figure 2. The code C = {000, 010, 001, 110, 101} is not open
convex realizable in R? for any d < oo. If it were, we could pick
points p € (U NU>)\Us and g € (U; NU3)\U,. The line segment
pq is contained in U; by convexity; to move from p to g along pq,
we must leave U, and enter Us. If we leave U, before entering Us
that would indicate the presence of codeword 100, which is not in
the code; if we enter Uj before leaving U, that would indicate the
codeword 111, which is not in the code. Since all sets are open,
these are the only possibilities.

Example. Let C = {000, 101, 110, 111}. Then supp(101) = {1, 3}, supp(111) =
{1,2,3}, and supp(C) = {&, {1, 3}, {1, 2}, {1, 2, 3}}.

Recent work, for example [Lin et al. 2014], shows the utility and importance of
sparsity in neural codes. For practical reasons, our definition of “sparse” differs
slightly from the usual low average weight definition often used in coding literature;
see for example [Curto et al. 2013a]. We use instead a low maximum weight
definition:

Definition. A code C is k-sparse if |supp(c)| < k for all c € C.

We begin the program of studying k-sparse codes by focusing on 2-sparse codes,
where there is already rich mathematics to be found. Our fundamental motivating
questions are the following:

Question 1.1. Which 2-sparse codes are open convex realizable?

Question 1.2. If C is an open convex realizable 2-sparse code, what is its minimum
embedding dimension d(C)?

Our main result is the following characterization of which 2-sparse codes have
open convex realizations, including a dimensional bound.

Theorem 1.3. A 2-sparse code C has an open convex realization if and only if
supp(C) is intersection-complete. Furthermore, if C is realizable then d(C) < 3.

This answers our first question in its entirety, and partially answers the second.
Note that in this result there is no room for generality in terms of sparsity; there are
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3-sparse codes that are realizable but not intersection-complete; see for example
the code C = {0, 1}°\{001} in [Curto et al. 2013b]. In Section 2, we will prove
Theorem 1.3 using several lemmas. In particular we show in Lemma 2.6 that
for such codes it is equivalent to find a closed convex realization, as it may be
transformed to an open convex realization in R? or R3. It immediately follows from
this and [Tancer 2013] that any 2-sparse code has a convex open realization in R>.
In Section 3, we consider the second question in more detail, and exhibit a class of
2-sparse codes with d <2, as well as a class with d = 3.

2. Realizability of 2-sparse codes

This section is dedicated to proving Theorem 1.3, which establishes that a 2-sparse
code is realizable precisely when its support is intersection-complete and, for such
codes C, d(C) < 3. In order to prove this theorem, we make use of the simplicial
complex of a code, which is introduced below.

Definition. A simplicial complex on a finite set S is a family A of subsets of §
such thatif X e Aand Y C X, then Y € A.

In this paper, the set S under consideration will most often be [n]={1, ..., n}. In
a situation where S = {vy, ..., v,}, we will typically refer to any set in a simplicial
complex on S by its set of indices.

Definition. The simplicial complex of a code C is the smallest simplicial com-
plex containing supp(C); this is denoted by A(C). The k-skeleton of a simplicial
complex A is the simplicial complex A given by the collection of sets in A of size
at most k + 1; see Figure 3.

If C is 2-sparse, then A(C) consists only of 0-, 1-, and 2-element sets. We can
therefore think of A(C) as a graph, with 1-element sets corresponding to vertices
and 2-element sets as edges between them. Note that since A(C) is a simplicial
complex, if {i, j} € A(C), then both {i} and {j} must be in A(C) as well; hence this
association is well-defined. The formal relationship between 2-sparse codes and
graphs is captured by the following definition.

(%) V4 1%) V4

V] U3 V1 U3

Figure 3. At left, a geometric representation of simplicial complex
on S ={vy, v, v3, v4} with A ={@, {1}, {2}, {3}, {4}, {1, 2}, {1, 3},
{2,3},{2,4}, {1, 2, 3}}. Atright, a geometric representation of the
1-skeleton of A.
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U2

V1 U3
Figure 4. The graph G for C = {000, 100, 010, 110, 011}; see
Figure 1 for a realization of C.

Definition. Let C C {0, 1}" be a neural code. The graph of C, denoted by G, is
the graph whose vertex set is [n], with i adjacent to j if {i, j} < supp(c) for some
c € C; see Figure 4.

Note that G is the 1-skeleton of A(C). In particular, for a 2-sparse code, A(C)
and G¢ contain exactly the same information because A(C) is equal to its 1-skeleton.
As we saw in Figure 2, there exist 2-sparse codes that are not convex in any
dimension. The following lemma generalizes the obstruction presented in that figure.

Lemma 2.1. Let C be a 2-sparse code. If C has a convex open realization in any
dimension, then supp(C) is intersection-complete.

Proof. Suppose C is a 2-sparse code with open convex realization & ={Uy, ..., U,}.
Since C is 2-sparse, |supp(c)| € {0, 1, 2} for every c € C. If |[supp(c)| is at most 1,
then supp(c) Nsupp(c’) € supp(C) for any ¢’ € C, because the intersection is either
@ or supp(c). It then remains to show that supp(c) Nsupp(c’) = {i} € supp(C) when
supp(c) = {i, j} and supp(c’) = {i, k} with j # k. In this case, U; NU; and U; N Uy
are nonempty so there exist points p € U; N U; and g € U; N Uy. Consider the line
segment pg connecting p and ¢. Since U; is convex, pq is contained in U;. For
each m € [n]\{i}, consider the set L,, = pg N U; N U,,; note that any two such sets
are disjoint, and that L; and L are nonempty. If the sets {L,,} partition the line pgq,
then this would disconnect pq in the subspace topology, but as pg is connected,
this is impossible. Thus, there must be some point on pg which is contained in U;
only. The existence of this point implies {i} € supp(C) as desired. U

The conclusion of the previous lemma is that it is necessary for open convex
realizable 2-sparse codes to be intersection complete. In fact, this property char-
acterizes 2-sparse codes with an open convex realization; this is the content of
Theorem 1.3. To prove Theorem 1.3, we will use a method of repeatedly making
geometric augmentations to existing realizations; in order to make such augmenta-
tions without changing the underlying code, we must ensure that subset containment
relations between sets are maintained. In the 2-sparse case, the following definition
encapsulates the key relationships that must be maintained:

Definition. Let &/ = {U}, ..., U,} be a collection of sets in R% For any ordered
pair (U;, U;) we distinguish three possible relations between U; and U;:
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Type A (disjointness): U; NU; = &; i.e., {i, j} € supp(c) for any c € C.

Type B (containment): U; C U;; i.e., there exists a codeword ¢ € C(Uf) so that
{i, j} € supp(c) and any codeword whose support contains j must also have i in
its support.

Type C (proper intersection): U; N U; is nonempty and U; \ U; is nonempty; i.e.,
there exist codewords cy, c; € C(UU) so that {i, j} € supp(c1), j € supp(cz2) and
i ¢ supp(ca).

The type-A, type-B and type-C set relationships effectively characterize the
structure of a 2-sparse code; indeed, 2-sparse codes are completely determined by
the pairwise relationships of the sets in any realization. We explicitly state this in
the following proposition.

Proposition 2.2. Let U and U’ be collections of sets in R? so that C(U) and C(U')
are both 2-sparse. Then C(U) = C(U') if and only if for every ordered pair (i, j) the
relation between U; and U; is the same as the relation between U i’ and Ujf.

We now introduce the geometric underpinnings of the augmentations we will
apply to realizations of codes. In these definitions, we make use of the idea of
an ¢-ball around a point p (B.(p) = {x € RY | |lx — p|l < €}), the interior of a
set A (int(A) = {x € A | Bs(x) C A for some ¢ > 0}), and the closure of a set
(A = {x € RY | x is a limit point of A}).

Definition. Given ¢ > 0 and A C R, the trim of A by ¢ is the set
trim(A, &) & int{p € R? | B.(p) C A}.
The inflation of A by ¢ is the set
inflate(A, £) & (a+x |a € A, x € R? with x| <)
IfA={A,,...,A,}1is acollection of sets, then
trim(A4, &) = {trim(Ay, €), ..., trim(A,, &)},
inflate(A, €) = {inflate(A, ¢), ..., inflate(A,, ¢)}.

Proposition 2.3. For any convex set A C R? and ¢ > 0, the following statements
hold:

(1) trim(A, &) is an open convex set.
(2) trim(A, ¢) is contained in the interior of A.
(3) inflate(A, €) is an open convex set.

Proof. For (1), we need only prove convexity, and we may assume trim(A, ¢) is
nonempty. Let p and g be points in trim(A, ¢€); then B.(p) and B.(gq) are contained
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in A, and hence so is the convex hull of their union. This convex hull contains the
line segment pq. For (2), note that trim(A, ¢) C trim(A, ¢/2) Cint(A). Finally, (3)
follows from the fact that A is convex and {x € R? | || x| < &} is open and convex. []

We now show that open convex realizations of 2-sparse codes can be trimmed
down to give another open convex realization.

Lemma 2.4. Given a 2-sparse code C with an open convex realization U =
{U1, ..., Uy}, there exists some ¢ > 0 so that trim(U, ¢) is also a realization of C.

Proof. Our method is as follows: For each set U;, we find an ¢; such that
trim(U;, &;) # <, and for each pair {i, j} we find an ¢;; such that trim({U;, U;}, &;;)
preserves their relationship type (type A, type B or type C). We then let ¢ be the
minimum of all ¢; and &;;, and show that trim(l/, ¢) is a realization of the original
code C.

To start, for each i with U; nonempty, there must be some point p and §; > 0
with Bs, (p) C U;. Let g; = §; /2. Let &1 = min, ¢y &;. Now, for each pair {i, j}, we
choose ¢;; depending on the relationship type between U; and U;:

Type A: If U; NU; = &, set ¢;; = min{g;, &;}.
Type B: If U; =Uj, set ¢;; =min{g;, ¢;}. If U; C Uj, note that U;\U; has nonempty

interior. Thus there exists some point p and some §;; > 0 with Bs,; (p) € Uj\Ui.
Let &ij = min{Bij/Z, &l
Type C: If U;NU; # @, but neither U; € U; nor U; C U; is true, note that U; NU; is
open and therefore there exist a point p and ¢’ > 0 with B./(p) CU;NU ;. There exist
also points p;, p; in U;\U;, U;\U; respectively, with corresponding & and & such
that B;(p;) C U,'\Uj and Bg(pj) - Uj\Ul'. Pick &ij = min{g;, &, £/2,8/2, 8//2}.
Let &, = min; ; &;;, and finally, let & = min{ey, &;}. Since trim(U, ¢) C U, and
originally there were no triple intersections, by construction it is impossible for
trim(U, €) to have triple intersections. Thus, C(trim(U, €)) is still 2-sparse. We now
show that C(trim(i/, ¢)) =C.
If the codeword with support {i, j} is in C(trim({4, ¢)), then

trim(U;, &) Ntrim(U}, &) # &.

As trim(U, ¢) C U, this implies U; N U; # <. Since C is 2-sparse, the codeword
with support {i, j} is in C. On the other hand, if the codeword with support {i, j} is
in C, then U; NU; # &, and so we are in a case of type A, B or C above. By our
choice of ¢, we ensure that in each case trim(U;, ¢) Ntrim(U;}, €) # &, and hence
(as the code is 2-sparse) the codeword with support {i, j} is in C(trim(l, €)).

If a codeword with support {i} is in C(trim(U, €)), then

wm(U;, o)\ ) wimU;, e) # 2.
J€lnl,j#i
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We then know that U;\ | jemml,j=i U # &. If it were not, then we would have
U< jel U; for some index set 1. However, this is impossible: If [/| = 1, then
U; C Uj, but then trim(U;, ¢) C trim(U;, €). If [I| > 1, then U; C Ujel U;. But
then the 2-sparsity of C means we would see the codewords {i, j} and {i, k} in C
for j, k € I but not their intersection {i}, contradicting Lemma 2.1. Hence, the
codeword with support {i} is in C.

Now, suppose a codeword with support {i} isin C, and let J = {j | U; NU; # &}.
If |J] < 1 then we are in a case of type A, B, or C above, and by our choice of
& we know there is a codeword with support {i} in C(trim(, ¢)). If |J| > 2, let
J, k € J. Then by our choice of ¢, we know trim(U;, ¢) N trim(U;, ¢) # & and
trim(U;, ¢) Ntrim(Uy, €) # &, and hence the codewords with supports {7, j} and
{i, k} are in trim(U/, ¢). By Lemma 2.1, we know the codeword with support {i} is
also in C(trim(4, €)). Ul

Next, we show that a closed convex realization of a 2-sparse codes can be inflated
to create an open convex realization.

Lemma 2.5. Let C be a 2-sparse code with a closed convex realization V =
{Vi, ..., Vi,} in which every set is bounded. Then there exists some € > 0 such that
inflate(V, €) is an open convex realization of C.

Proof. Consider the partial ordering on V given by set inclusion. We will use this
ordering to inflate the sets in V iteratively (possibly by different & factors) and then
argue that we can obtain a uniform ¢ for which inflate(V, ¢) is an open convex
realization of C. In this iterative process, if V; = V; for any i # j, we apply the
process simultaneously to V; and V;. As such, it is sufficient for our proof to assume
Vi #V, foranyi # j.

To start, begin with a fixed index i for which V; is maximal in V with respect to
inclusion. All sets in V are closed and bounded, so for any j with V;N\V; =@, V;
has positive distance d; ; to V;. Let §; = minvim/j:@ d; j. Now if there are j, k #1i
with V; NV # &, then V; has positive distance d; j  to V; N Vy; take 81{ to be the
minimum of all such d; ; ;. Furthermore, let 8/ " > 0 be such that for all j with
V; € V;, we have V; € inflate(V;, §7). Flnally, choose &; < min{18;, 15, 187}
These choices help guarantee that no new pairwise or triple intersections are created,
and no new containments are created.

If we replace V; by inflate(V;, ¢;), then the code is still 2-sparse, and the three
subset relationship types for the ordered pairs (V;, V;) where j # i are maintained:

Type A: Disjointness is preserved since ¢; is at most half the distance from V; to
any set disjoint from it.

Type B: Containment is preserved since we are only making V; bigger.

Type C: Proper intersection is preserved by our choice of ¢;.
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By a similar argument, the subset relationship of the ordered pair (V;, V;) for any
J # i is also preserved after replacing V; by inflate(V;, ¢;). Thus replacing V; by
inflate(V;, ¢;) yields a new realization of C.

For any subsequent step in our iterative process, choose a set V; € V for which
every member of the set {V; € V| V; D V;} has already been inflated. Choose ¢;
in the same way as previously described with the additional caveat that if V; C V;
then ¢; < ¢;. A similar argument shows that replacing V; by inflate(V;, ¢;) yields
a new realization of C. Once we have inflated every set in the realization we can let
& =min; ¢, & and observe that inflate (L{ , %8) is an open convex realization of C. [

This result allows us to prove the useful fact that for 2-sparse codes, open and
closed convex realizations exist interchangeably, and we can build either type of
realization from the other.

Lemma 2.6. Let C be a 2-sparse code. Then C has an open convex realization in
R? if and only if C has a closed convex realization in R.

Proof. First, let U be an open convex realization of C. Applying Lemma 2.4, there is
an ¢ > 0 such that &/’ = trim(l4, ¢) is an open realization of C. Since the closure of
each U/ is contained in U; (by Proposition 2.3), 2 is an open convex realization of
C in which two sets intersect if and only if their closures do. Let V = w,,....,.U .
No triple intersections exist in V since these would correspond to triple intersections
in Y. Thus by Proposition 2.2 it suffices to show that V preserves the relations
between sets in U{. Disjointness is preserved since sets in ¢/’ intersect if and only if
their closures do. Containment is preserved under taking closures. Lastly, proper
intersection is preserved, since if U; \ U; is nonempty then there are limit points of
U; that are not limit points of U;.

For the reverse direction, let V be a closed convex realization of C. For every
nonempty intersection V; N'V;, let p; ; be a point in this intersection. Furthermore,
if some set V; is not contained in any other V;, let p; € V; \ | i V;. Then set V
to be the convex hull of all these p}s and p;’ JoE Replacing each V; by V; NV yields
a realization of C in which every set is closed, convex, and bounded. Applying
Lemma 2.5, we obtain an open convex realization of C in R (]

Although it may not be immediately clear from the proof, the condition that C is
2-sparse is necessary for Lemma 2.6 to hold. The 2-sparse condition is in fact best
possible, since there exist 3-sparse codes which have closed convex realizations
in R?, but for which open convex realizations exist only in R* or higher. One such
example is the code

C = {0000, 1000, 0100, 0010, 0001, 1110, 1001, 0101, 0011}.

Figure 5 shows a closed realization of this code in R? but it has no open realization
in R2; see [Curto et al. 2017] for more details.
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1 2 43

Figure 5. A closed realization of a code in R? that has no open
realization in R2.

Even more strikingly, there exist codes with a closed convex realization in R?
that have no open convex realization in any dimension; see [Lienkaemper et al.
2017] for an example of such a code on five neurons. This emphasizes how special
realizations of 2-sparse codes are.

We can now use the previous lemmas to relate the convexity of a 2-sparse code C
to the convexity of its associated simplicial complex A(C). We first need a technical
lemma.

Lemma 2.7. Let U be an open convex realization of a 2-sparse code C. Then if
U; £ Uy for any k # j, there is a point p € 0U;\ Uk#j Uy.

Proof. Recall that for any set U C RY, U is the boundary of U. Consider the sets
{0U; N Ur}ksj. These sets are disjoint: if not, then there exists p € (0U; NUy) N
(OU;NUy). As p € U N Uy, there exists ¢ > 0 with B.(p) € U N U,. But then
B:(p)NU; # @, as p € dU;, so Uy N U NU, # & contradicting that C is 2-sparse.

Now, note that the disjoint sets {0U; N Uy }x; are open in the subspace topology
with respect to dU;, and hence they cannot partition dU; since dU; is connected.
Thus, there exists p € AU\ Uy, Uk O

Lemma 2.8. Let C be a 2-sparse code and let d > 2. Then C has an open convex
realization in R? if and only if supp(C) is intersection-complete and A(C) has an
open convex realization in R%

Proof. For the forward direction, we know from Lemma 2.1 that if C has a realization
then supp(C) is intersection-complete. We will show that given a realization ¢/ of C,
we can construct a realization of G¢. Since C is 2-sparse, we know C and A(C)
must already contain the same 2-element sets, so we will show that we can adjust
the realization of C to obtain any singletons {i} which appear in A(C) but not in C.

Let {i} € A(C)\ supp(C). If there exist j, k such that {i, j} and {i, k} are both in
supp(C), then as supp(C) is intersection-complete, we know {i} € supp(C). Thus,
there must be exactly one j such that {i, j} € supp(C). Note immediately that in
the realization I/ we have U; C U; since {i, j} is the only set in the support where i
appears. It suffices to transform I/ so that U; and U; intersect, but U; also contains
points not in any other set in the realization.

If we have U; C U;, then U; = U; so U; N Uy = & for any other k, and we can
replace U; with an open ball properly contained in U; to obtain the desired result.
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Otherwise, U; may intersect many other sets in the realization, but cannot be
contained in them, since this would imply a triple intersection between the containing
set Uy, Uj, and U;. Apply Lemma 2.4 to obtain & > 0 for which U/’ = trim(U, ¢) is
an open realization of C. Define the sets V; = dU J’ N U’ : note that each V} is closed.
Furthermore, these sets are disjoint, since if p € VyNVy, then p € U;NUNU; in the
original realization which is impossible for a 2-sparse code. Since U ]/ is connected
and the Vj are disjoint closed sets, [, ; Vi C 9UJ; let p € 90U\ Uy; Vi- Then
p has positive distance to all sets U, with k % j so there is some &' > 0 with
By (p) N U, = @ for all k # j. Replacing U/ with By/(p) will create a realization
of a code C" with supp(C’) = supp C U {i}. Repeating this step as many times as
necessary, we obtain a realization of A(C).

For the reverse, suppose U/ is an open convex realization of A(C). Note that
if {i, j} € supp(A(C)), it is also in supp(C) since C is 2-sparse. Now, suppose
{i} e supp(A(C))\ supp(C). Then there is at most one j #i such that {i, j} € supp(C)
as C is intersection-complete. If there is such a j, replace U; with U; N U; which
is an open convex set; if there is no such j, then remove U; entirely. This gives a
convex realization of A(C)\{i}, and we can repeat this operation as many times as
necessary to obtain a realization of C. ]

The above lemma can be summarized as follows: realizing a 2-sparse code and
realizing its simplicial complex are equivalent, as long as supp(C) is intersection-
complete. This equivalence is our main tool in proving Theorem 1.3 and obtaining
a complete classification of which 2-sparse codes are convex in R>.

Proof of Theorem 1.3. The fact that any open convex realizable 2-sparse code must
have supp(C) that is intersection-complete follows directly from Lemma 2.1. For the
reverse direction, since supp(C) is intersection-complete, we know by Lemma 2.8
that it is sufficient to find an open convex realization for A(C). As C is 2-sparse,
Lemma 2.6 tells us that it suffices to find a closed convex realization for A(C).
Since A(C) is a 1-dimensional simplicial complex, a construction of [Tancer 2013]
(see the proof of Theorem 3.1 therein) leads to a closed convex realization of a
1-dimensional simplicial complex in R3. This proves the desired result. U

Theorem 1.3 makes it very straightforward to check whether a 2-sparse code has
an open convex realization in R The challenge that lies ahead is determining the
minimal embedding dimension for a given 2-sparse code. We begin investigating
this problem in the next section.

3. Dimension of 2-sparse codes

We noted early on that for 2-sparse codes, the simplicial complex A(C) and the graph
G of the pairwise intersections of the code capture the same information. In this
section, we will make heavy use of this correspondence, and construct realizations
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of various 2-sparse codes using graph-theoretic methods. Hence, throughout this
discussion we will often refer to “realizations” of a graph G. It is important to note
that while a graph is the intersection graph of its realization, finding convex sets
whose intersection graph is the graph of concern is not sufficient here. In particular,
if a collection of convex sets has a triple with nonempty intersection then it is not,
for our purposes, a realization of any graph, since graphs only encode intersections
of order 2.

Our main result, Theorem 1.3, shows that any intersection-complete 2-sparse
code can be realized in dimension d < 3. In this section, we begin the program
of classifying 2-sparse codes based on minimal embedding dimension. We focus
on distinguishing codes of dimension d = 3 from codes of dimension d < 2; note
that the general problem of distinguishing 1-dimensional codes has been solved
[Rosen and Zhang 2017]. Recall from Lemma 2.8 that realizing a 2-sparse code
C is equivalent to realizing its simplicial complex A(C) (and therefore, its graph
G¢), so throughout this section we refer to realizing G rather than C itself. Our
main contribution is that while the dimension of certain graphs can be bounded, we
find that the traditional 2-dimensional graph-theoretic distinction (planarity) is not
necessary for G¢ to represent a 2-dimensional code. In particular, in Proposition 3.1,
we observe d(C) <2 if G¢ is planar, and in Proposition 3.2 if G is not planar, one
can construct a related graph whose code has minimal embedding dimension 3.
However, planarity does not strictly govern minimal embedding dimension, as any
complete or complete bipartite graphs are realizable in R

The following proposition describes some common graphs which do have 2-
dimensional convex realizations, including planar graphs.

Proposition 3.1. The following graphs have an open convex realization in R*:

(1) planar graphs,

(2) the complete k-partite graph K, ... n, With part sizes ny, na, ..., ng,
(3) any graph G with vertex set {vi, v, ..., Uy, U1, ..., Uu;} where the induced
subgraph on the vertices vy, v, ..., v, is complete and {vy, vz, ..., v,} 2

Ng(up) 2 Ng(ug—1) 2 --- 2 Ng(uy).

Proof. In all cases, we find a closed convex realization of the given graph G, which
by Lemma 2.6 implies the existence of an open convex realization. For (1), we
first recall the circle packing theorem, which says that for any planar graph G with
vertex set {vy, ..., v,}, there exist disjoint disks Cy, C3, ..., C, in R2 such that C;
is tangent to C; if and only if v; is adjacent to v;, and C; N C; = & otherwise. See
Figure 6 for an illustration of how these disks are constructed.

For (2), we first find a realization for the complete graph K,, = K 1,1 (n copies
of 1 here). Consider the line segments ¢1, £, ..., £,, where ¢; has endpoints (7, 0)
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Figure 6. A planar graph G and the corresponding closed realiza-
tion using the circle packing theorem.

and (0,n + 1 —1i), and observe that £; N {; # & for any i # j. Moreover, no three
of these lines are concurrent. This gives a closed convex realization of K,,. Now to
realize K, n,.....n,» start with a closed convex realization of K} as constructed in the
realization of (2). Replace each line segment ¢; with n; disjoint parallel translates of
¢; that are arbitrarily close in distance to ¢;, and call these segments s;1, s;2, . . ., Sin, -
Observe that by construction, s;; Ns;j» = & for any j # j'. Moreover, s;; Ns;/ j» # &
for i # i’ because /; N[y # & and s;; and s;j are arbitrarily close and parallel to ¢;
and ¢; respectively. Moreover, if any three line segments s;;, s;/ 7, s;» j» had a point
in common, then /;, /;/, [;» would, which they don’t. Hence the union of the sets
{si1, Si2, .+, Sin }f.‘zl gives a closed convex realization of K, ,.... n,. See Figure 7
for examples of the constructions in the proof of (2).

It remains to prove (3). Without loss of generality, we assume Ng(ug) =

{vi, v2, ..., v}, indexed in such a way that each set Ng(u;) is {vy, v, ..., vs}

£
S921
S99

E3 523
524

s

4, Uy S11 S12 531532833

Figure 7. A closed convex realization of K5 (left) and a closed
convex realization of K> 4 3 (right), as constructed in the proof of
Proposition 3.1.
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Figure 8. A closed convex realization of the graph G with vertices

vy, U2, U3, V4, Us, U1, Uy, U3, where the induced graphon vy, ..., vs
is complete, and N (u3) = {v, v2, v3}, N(uz) = {v;, v2} and
N (uy) = {v1}.

for some s. To realize G, first start with a realization of K, as in the proof of (2),
where v; is represented by ¢; for each j. Now, extend each line segment ¢; for
1 < j < r so that (0, j) remains as an endpoint, the slope remains the same,
but the lower endpoint has y-coordinate —k. Then, for each s with 1 < s <k,
introduce a line segment ¢ that lies on the line in the xy-plane given by y =, and
only intersects the line segments in the set {E} | j € Ng(us)}. The line segments
L1, ... Ly, E’l, R Z;{ give a closed realization of G. See Figure 8 for an example
of this construction. [l

Thus far, we have exhibited classes of graphs that can be realized in R, including
any planar and some nonplanar graphs G¢. We now show how to adjust any nonpla-
nar graph by edge subdivision to create a new graph that cannot be realized in R%

Proposition 3.2. Let G be a nonplanar graph. Let G’ be the graph obtained from
G by replacing each edge v;v; by a length-2 path v;, v;;, v; (we refer to this as
the edge subdivision of G throughout). Then G’ does not have an open convex
realization in R?, and hence its minimal embedding dimension is 3.

Proof. Suppose by contradiction that G’ has an open convex realization in R% Let the
graph G have vertex set {vy, v, ..., v,}, so G’ has as its vertices {v; |i =1, ..., n}
together with vertices {v;; | v;v; € E(G)}, where for any 7, j, the vertex v;; is adjacent
only to v; and v;. Suppose the open convex realization ¢/ of G’ consists of the sets
{Ui} and {U;;}, where for any i, U; is the open convex set corresponding to v;, and
for any i # j with v;v; € E(G), Uj; is the open convex set corresponding to v;;.
First, forall i =1, ..., n select a point p; in U; that does not lie in any other
sets in /. Then, for every pair i, j such that v; and v; are adjacent in G, note
that U; NU;; and U; NUj; are nonempty, so we can also select points x;; and xj;
in U; N U;; and U; N U;j, respectively. Let the line segment x;;x j; intersect 0U;



752 R. A. JEFFS, M. OMAR, N. SUAYSOM, A. WACHTEL AND N. YOUNGS

and 0U; at points p;; and pj;, respectively. Define the path P;; from p; to p; by
concatenating the line segments p; p;;, pijpji. and pj; p; in that order.

Now consider another pair of indices k, /. We claim that two different paths
P;j and Py can only intersect at the points p;,p;,px or py, if anywhere. To show
this, it is enough to show that among any pair of line segments, one chosen from
{pipij, pijpji, pjip;j} and one from {px pii, pxipik, pucpi}, their intersection (if it
exists), must be one of the points p;, p;, pr or p;. We split this into three cases:

First, consider the intersection of p; p;; and py pi;. If i =k then the two segments
can only intersect at p;, unless j =/, in which case the segments were the same
segments to begin with. If i # k, then observe that p; p;; € U;, prpu € Ur and
U; N Uy is empty because v; and vy are not adjacent in G”. A similar argument estab-
lishes our desired result when the pair of segments in question are {p; p;;, pu P},
{pijpi> pupi} and {p;; pi, pxpu}-

Second, consider the intersection of p;;p;; and py pi. Notice that p;;p;; € U;;
and py pix € Uy Since v;; and vy are not adjacent in G, U;; N Uy, is empty, so
the two paths in question cannot intersect.

Finally, consider the intersection of p; p;; and py; pix. Suppose that i = k. When
J =1, the segments in question are p; p;;, p;jpji but these are from the same path
P;j so we need not consider this situation. When j # [, p;p;; € U; UU;;, and
pirpii S U \U;. Since j #1, Uij NU;; = <, and hence (U; U Uij) NU;\U;) = 9,
so the two segments in question do not intersect. A similar argument establishes
the result when j = [. It remains to establish the desired result when i # [, k.
Suppose for a contradiction that p; p;; intersects py; py;. Since p; p;; € U; U0U;, and
Pripix < Upg, this implies (U; UdU;) N Uy is nonempty. However, this is impossible
because U; N Uy, = @ (because v; and vy are not adjacent in G') and 0U; NUy, = @.

The above argument establishes that two distinct paths P;;, Py; can only intersect
at their endpoints. Construct a graph G” on the same vertex set as G with two
vertices adjacent precisely when they are adjacent in G, but with each edge v;v;
drawn precisely along the path P;;. The graph G” is a planar embedding of G,
contradicting that G is not planar. U

4. Future directions

This paper initiated the program of studying k-sparse codes, with a full characteri-
zation of the structure of 2-sparse codes. Section 2 was dedicated to a topological
and analytic investigation of such codes in order to achieve a full characterization
of realizability through Theorem 1.3, which additionally told us that any realiz-
able 2-sparse code has minimal embedding dimension at most 3. Section 3 then
began the study of differentiating 2-sparse codes by embedding dimension through
Propositions 3.1 and 3.2. The most pressing questions are how these investigations,
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which relied heavily on the graph-like structure of these codes, could generalize
when k > 2.

Question 4.1. For a particular k, how can we characterize which k-sparse codes
are realizable? More specifically, given a positive integer £, for which k-sparse
codes is d(C) = £?

In investigating the minimum embedding dimension of a k-sparse code, certain
dimension bounds can be used. For example, suppose C is a k-sparse code with
A = A(C), and let f;(A) be the number of codewords in A with support size
d + 1. Then, by applying the fractional Helly theorem, we find k > f;(A)/ (";l);
this was noted in [Curto et al. 2017]. Similar to this, many known bounds rely
solely on the combinatorial information in the code and in particular the simplicial
complex A(C). While often dimension bounds are the best known results, a more
specific investigation in [Rosen and Zhang 2017] gives a full characterization of
1-dimensional codes. Our work thus focuses on distinctions between dimensions 2
and 3 for 2-sparse codes, as a beginning step towards a characterization of 2-
dimensional codes.

However, in addressing the question of whether a k-sparse code is realizable at all,
an investigation into the topology can provide insight beyond what is apparent from
the combinatorics. This is especially evident from the developments in Section 2.
The key idea there was shifting from one realization of a code to another by shrinking
or expanding sets. Indeed, this method has been applied with more generality and
great success in [Cruz et al. 2019]. The question then for k-sparse codes for k > 2 is
what analogous topological operations to realizations preserve the underlying code.

Question 4.2. Given a convex realizationUd ={U, ..., U,} of a code C in R4, what
topological maps can be applied to the sets U; so that the resulting sets still form a
convex realization of C?
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The number of rational points of
hyperelliptic curves over subsets of finite fields

Kristina Nelson, Jézsef Solymosi, Foster Tom and Ching Wong

(Communicated by Kenneth S. Berenhaut)

We prove two related concentration inequalities concerning the number of rational
points of hyperelliptic curves over subsets of a finite field. In particular, we
investigate the probability of a large discrepancy between the numbers of quadratic
residues and nonresidues in the image of such subsets over uniformly random
hyperelliptic curves of given degrees. We find a constant probability of such a high
difference and show the existence of sets with an exceptionally large discrepancy.

1. Introduction

Let g be a prime power and let [, be the finite field with g elements. A curve
E :y?> = f(x) (together with a point at infinity ©) is called an elliptic curve over F, if
f(x) € Fy[x] is a cubic polynomial having distinct roots in the algebraic closure Eq
of F,. The set of rational points of E in [ is

E(Fy) ={(x,y) € Fy xFy 1 y*=f(x)}U{O}.

Suppose that g is odd. Using the fact that there are (¢ — 1)/2 invertible quadratic
residues and (g — 1)/2 nonresidues in [F,, one can approximate the size of E(F,)
as follows. For each x € [, the probability of f(x) being a nonzero square in [,
and hence contributing two points to E([F,), is about % With probability about %
there is no point in E([F,) having the first coordinate x € [,. Therefore, #E(F,) is
expected to be close to g + 1. Indeed, Hasse [1936] proved that the error in this
estimate is at most 2,/q:

[#E(F,) — (@ + D] <2./q.

Knowledge of #E([F,) is crucial in elliptic curve cryptography (ECC), which is
considered to be more efficient than the classical cryptosystems, like RSA [Rivest
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et al. 1978]. The security of ECC depends on the difficulty of solving the elliptic
curve discrete logarithm problem (ECDLP). The best known algorithm to solve
ECDLP in finite fields is Pollard’s rho algorithm [1975], which requires O (,/p) time
complexity, where p is the prime factor of g. However, some well-studied classes
of elliptic curves are not good candidates for ECC. For instance, if the number
of rational points of an elliptic curve E in [, is exactly p, where p is a prime,
then the running time of solving the ECDLP is O(log p); see [Semaev 1998].
Using verifiably random elliptic curves in ECC improves security since randomly
generated curves are unlikely to be part of a weak class. Hyperelliptic curves can
also be used in cryptography; see [Cohen et al. 2006] for more details. However, the
verifiability of random hyperelliptic curves is much harder; see [Hess et al. 2001;
Satoh 2009].

In this paper, we investigate the behaviour of random hyperelliptic curves over
subsets S of [F,. We are interested in the hyperelliptic curves E : y%2 = f(x) where
f(x) is a polynomial in [, [x] of degree 4k — 1 (k > 1) having distinct roots in Fq.
Denote by E ([F,, S) the rational points of E in [, where the x-coordinate is in S; i.e.,

E(F,,S) ={(x,y) € SxF,:y*=f(x)}.

We remark that the point at infinity O is not included in E ([, ). The approximation
we have described for #E([F,) suggests that the expected value of #E(F,, S) is
about #S. For random hyperelliptic curves E over [, the probability that the error
[#E(F,, S) —#S| is small has been extensively studied; see [Pelekis and Ramon
2017; Schmidt et al. 1995] for example.

On the other hand, it is easy to see that there exist many hyperelliptic curves of
any (positive) even degree so that the error [#E([F,, §) —#S] is very large. Indeed,
the error is about #S when f(x) is the square of any nonconstant polynomial
in F,[x] for any S C F),.

However, an error bound is not obvious in the case of hyperelliptic curves of
odd degree, which we study in the probabilistic setting. Equivalently, we examine
the difference between the numbers of quadratic residues and nonresidues in the
image multiset f(S). Using 4k-wise independence, we show that all subsets S of
[, behave similarly, in the sense that the interested discrepancy is proportional to
V#S and has a positive probability which depends only on the degree of the curve.

Theorem 1. Given a positive integer k and ¢ > 0, there exist 5 > 0 and a threshold N
such that the following holds: for every odd prime power q > N, if a curve E : y> =
f (x) is chosen uniformly at random among all hyperelliptic curves of degree 4k — 1
over [y, then with a probability at least (4n3/2/e3)2_2k — &, we have

[#E(F,, S) — #S| > SV#S
for any set S C F, with #S > N.
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Theorem 2. Given a positive integer k, there exist a threshold N and ¢ > 0 such
that the following holds: for every odd prime power q > N, if a curve E : y> = f(x)
is chosen uniformly at random among all hyperelliptic curves of degree 4k — 1
over [y, then with a probability at least &, we have

[#E(F,, S) —#S| > 0.8577vVk#S
for any set S C F, with #S§ > N.

These two theorems imply that one can expect large deviation of magnitude +/#S.
In the last section, we show that for small sets S of prime fields [, the error is
often much larger.

2. Preliminaries

Throughout this section, let ¢ be an odd prime power and let n, k be positive integers
such that 4k <n < ¢q. Suppose S = {sy,...,s,} C [y, and

4k—1

f) =" ajx! eFylx]
j=0

is chosen uniformly at random.

We denote by #O R, #N R and #R the numbers of s; € S such that f(s;) is an
invertible quadratic residue, a quadratic nonresidue and zero in [, respectively.
Then, n =#Q R+#N R+#R. It follows that, provided the curve E : y? = f(x) forms
a hyperelliptic curve of degree 4k —1 over [, the discrepancy we are interested in is

HE(F,,S)—n|=[2#QR+#R —n| = [#QR —#NR)|. (1)

This suggests we look at the random variables

X, — <f(Si))’
q

where (3) is the Legendre symbol defined as

0 if a is the zero in [,
a e .
(—) = 1 if a is a nonzero square in [,

9 —1 otherwise.

We note that among all polynomials f(x) € [, [x] of degree at most 3, only a
small fraction fail to form elliptic curves. Indeed, the exceptions, where f(x) has
degree strictly less than 3 or has multiple roots, contribute ¢> 4+ ¢%(¢ — 1) of all the
g* polynomials considered. When ¢ is large, such exceptions are negligible. This
situation generalizes to hyperelliptic curves.
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Lemma 3. Let g be a prime power, k be a positive integer and F;[x]4x—1 be the set
of polynomials in [, [x] of degree at most 4k — 1. Then at most a 2/q fraction of the
polynomials in F;[x]4r—1 fail to define a hyperelliptic curve of degree 4k — 1.

Proof. A polynomial in F,[x] defines a hyperelliptic curve precisely when it is
separable, or equivalently when it is square-free because finite fields are perfect.
As shown in [Carlitz 1932], the number of monic square-free polynomials in
F,[x] of degree 4k — 1 is g*—1 — g*=2 Thus, accounting for scaling, there are
(g — D (g*~' — g*~?%) polynomials in [, [x] that define a hyperelliptic curve of
degree 4k — 1. Therefore, the fraction of those polynomials in [, [x] of degree at
most 4k — 1 that do not is
q4k _ (q _ 1)(q4k—1 _ q4k—2) 2q4k—l _ q4k—2 2
2k = % < .
q q q
Hence, the probability that, among all hyperelliptic curves of degree 4k — 1
over Fy, the discrepancy (1) is larger than some &./n is at least the probability that,
among all polynomials of degree at most 4k — 1 over [, the absolute value of the
sum of the random variables X; is larger than the same §+/n minus 2/q; i.e.,

> X >5ﬁ)—3. )

i=1 q

P(#E(F,. S) —n|>8/n) > IP(

In the next two subsections, we will first estimate the higher moments

1 & J
E; :=FE(| — X; , h 1 <j <4k,
p=E{( ) ) w1 2=

by finding their main order, and then give lower bounds on the interested probabilities
involving the random variables X;.

2.1. Estimating [E»i and Eq4x. Since f(x) € F,[x]is arandom polynomial of degree
at most 4k — 1, the random variables X; exhibit 4k-wise independence. Indeed, by
solving a system of linear equations, the number of polynomials f(x) in F,[x] of
degree at most 4k — 1 satisfying

fGi)=r1, fGy)=r, ..., f(si)=r
is exactly q‘”‘_i, given £ <4k, ry,...,r; € F, and distinct iy, ..., i € {1, ..., n}.
Thus,
i [ r i re he
ECX) X = Y P(fsi)=ri,..., f(si»:r@)(—) (—)
r F q q
Toeers ree q

. ﬂ(ﬂ)h’...(_@)h‘
. q* \q q
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[0 -2

r1€ly re€ly

h1 hl
[Z P(f(siy) —m( ) ] [Z P(f(s,z)—m( ) ]
riefy reely

=E(X]") - E(X!).

We also note that the random variables X; only take the values 0, 1, —1, and so
X! = X; and X?" = X? for all h > 1. Also, by convention, X? = 0. Therefore
we have

EX =EX;) = Z P(f(s;)=r) (:;) = Z l(i) =0,

rEU:q rE[Fq q q
2h 2 r\ 1/r\ 1
20.¢ ):E(Xi)zzp(f(si):r) - =Z— -] =1—-.
reky q refy, g\ q
To summarize the above two observations, we have the following lemma:

Lemma 4. Let £ < 4k, let hy, ..., hy be positive integers, and let i ...,i; be
distinct numbers from {1, ..., n}. Then,

[E(Xh‘ N hz) _ {(1 —1/q¢)t ifhy, ..., he are all even numbers,
i1

0 otherwzse

Before we estimate the general E;, let us compute Eg (when k£ > 2) as a toy
version:

Fo = [E(% gx,f

1 : 6 4v2 0! 2v2y2
— ﬁ(Z[E(X )+—4'2, §E(X XD+ 531 kE(x,. Xij))
i=l i#]j i<j<

= 5(n(1- 617) + 1501 — 1) (1 - cll>2+9o<r3‘)(1 _ 3?)3)
o=y R0 6 el o- T 3)

We derive in the lemma below how the number 15 in the leading term can be
expressed in terms of j = 6.

Il
—_

Lemma 5. For 1 < j <4k, we have
b

E = § 277%(j/2)!

0 otherwise.

+ Oj(%) asn — 0o, If jisan even number,
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Proof. If j is an odd number, then every term in the multinomial expansion has at
least one odd index, and hence vanishes by Lemma 4.

Suppose now that j is an even integer. Using the multinomial theorem and
Lemma 4, we have

“el(B)) el 2 el

hi4-Ah,=j
1 j! . z sl
T nil? Z Ryl hy! 1_[ !
hi4-4h,=j =1
1 ! 1 #{i:h; >0} 1 J/2 1\
- LY n h,<_5) . (——) H(j,m)
hi4-+h,=j
h; even
where

. _ J! _(n J!
H(j,m)= Z hll...hn!_<m) Z Ryl h!

ke ttn=y Wt by =
i even n
#{i:hl,->0}:m i>0even

is a polynomial (with integer coefficients) in n of degree m. Therefore, the leading
term of E; comes from the summand where m = j/2. In this case, ] = 2 for every
1 <i<j/2andso
(N !

HG. 3= ()55

has leading term
_ It n
(j/2)1212

It follows that

1 NI
e () A

=(-3) Gt o) = gm0 )

as n — oo. O

In particular, for each fixed &,
(2k)! 1
= g 0"(5)

is bounded uniformly in # > 1. As a consequence, one can have the following
estimates, which will be used later in our proof, using Stirling’s approximation. For
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all fixed k > 1, we have

Vo= [Era(l) 0

2 2(F) 2 o)

[E4k e

and

asn — oQ.

2.2. Lower bounds for the probabilities.

Proposition 6. Under the setting stated in the beginning of this section, we have

1 & (Exy — 8%k)?
P(‘% ;:X >3)

> (5)
or an 0<8<—1,and
S y 5

T Eap — 282K Eq; + 5%
1 n
p(‘_ X,
ﬁ,.; ’

> 2k/[E2k —81/2_0(1)> >e>0 (6)

as e — 0.

Proof. Let ¢ > 1 be a parameter to be determined. Using the second-moment

Markov inequality, one can show that for 0 < A < ¢,

(Sl 5 ) () )

—1- : )

To prove (5), we take A = (c* — 8%)2 where § > 0 is small. Maximizing the
right-hand side of (7) over c, we see that the maximum is
A =2 En +Ey  (Exy —8%)?
(Ck _ 52k)2 Eap — 282k[E2k + 54k’

1—

when
k Eax— 8%y

© Ex— 8%
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Now we prove (6). To make

we take

2k — 2By + Eax
1—¢ '

A=

Since we require c¢?* > 1, it follows that

2k _ 2K Eyy + Egge < 2 — e,

and therefore

E
ni= 8Ck < 2[E2k — # < 2[E2k.
c

To compute the leading terms of Vik =k as e — 0, we first use the binomial
series to expand the numerator of VA as

2F E 1 Fu—F2 1 1
k 2k 4\ ok 4k Sk
C\/l_(c_k_c?)_c(l_[Ech_k+Tc7+0<c7)) ®)

as ¢ — 0o. Indeed, the bracket inside the square root in (8) is small in view of
Lemma 5. To get VA, we multiply (8) by

1
1—

=141 56+ e 24 0(Y).

™

Substituting c* = n/e, we have

n 1 [EZ 83
ck—ﬁz—[1—<l+—s+ +0(e3))( 22"32+0<—3))]
& 2 2n n
F2, —Fy E ) &2
_[E2k_ln+(2kT4+ﬂn_§ 2) +0< )

2
We may now take 7 satisfying /¢ < n < 1 so that the terms in the last line are
indeed arranged in decreasing order of magnitude. Therefore,

2% ok g — el/2=0() = Wy — gl/2-0()

as ¢ — 0, establishing (6). O

2

3. Proofs of the theorems

Proof of Theorem 1. Write n = #S8, as in Section 2. Given ¢ > 0, we choose N large
enough so that 2/N < ¢/3, and the error appearing in (4) has an absolute value less
than /3.
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Since Eq; > Eop > %, there exists a small § > 0 such that

(1= 8% /Ex)? 1‘ _ e

1= 26% (Ex/Eq) + 6% (1/E) | 3B,
Together with (2), (5) and (4), we have
n
P(I#E(F,, S) —n|>8/n) > [D( in >3ﬁ) —%1
i=1

B (1—8%/Ex)?

e
T Eax 1 — 287 (Eox /Ear) + 8% (1/Eg) 3
/A3
>E_%k_§_£> V2N 1ok,
“Eyx 3 37 e ’
as desired. O

Proof of Theorem 2. Similarly we write n =#S5. Using the estimate (3), we choose N
so large and ¢ so small that the following lower bound implied by (6) is large:

My — /270 5 0.8577Vk.

Here 0.8577 is a number strictly smaller than /2/e. Now, increasing N if necessary,
we also have 2/N < ¢/2. Then, by (2) and (6), we have

n
>
i=1

o(§

n
2_X
i=1

P(H#E(F,, S) —n|>0.8577vk/n) > P(

>0.8577«/%ﬁ) - 631

> ( 2k/[E2k . 81/2_0(1))«/7_1) _

2
2

A%

S
O

4. Sets with exceptionally large discrepancy

So far we have considered sets of arbitrarily large size. We will show, as one
may expect, that if n is a constant, then for each prime p large enough, there is a
probability o > 0 that the error is much larger than /7 for 8 (5 ) of the subsets S C [,
of size n. In particular, for each 7, there is a probability 27"~! that a randomly
chosen subset § C [, of size n has the following property —a randomly chosen
monic separable cubic f over [, has a probability 271 50 that £(S) consists only
of nonzero quadratic residues or quadratic nonresidues.

Let F be the set of monic, separable cubics over [F,. Note that #7 = P —p>
Let m, n be constants independent of p such that n —2m > /n. We construct a
bipartite graph G with (Z ) “S-vertices” in one partition, each associated with a



764 KRISTINA NELSON, JOZSEF SOLYMOSI, FOSTER TOM AND CHING WONG

set S C [, of size n, and p? — p? “f-vertices” in the other, each associated with

an f € F. We draw an edge between the vertex corresponding to f and the vertex

corresponding to S when
Z (f (Si)>

Sl'ES p

>n—2m.

Fix f € F, and let Q C [, be the set of points mapped by f to a nonzero quadratic
residue, and V' C [, be those points mapped to a nonresidue. Let p/2+ A be the
size of the larger of these two sets. Then the degree of the vertex associated to f
in G is at least

(P/Z—Af'>(P/2+Af> ©)

m n—m
By Hasse’s theorem we have A < ,/p, and so (9) is bounded below by
("I = (LG o]

as p — oo. Thus the number of edges in our graph, E, is at least

(LG )2 +om]w = p.

Now if only S (5 ) of the S-vertices achieve degree at least o (p> — p?), then we have

E<p(P)w =+ (F)a-pai’ -,
and so

> L[(")Z_”—a—i—o(l)] >0

“l—al\m

as p — oo, provided that o > 0 is small enough.
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Space-efficient knot mosaics for
prime knots with mosaic number 6

Aaron Heap and Douglas Knowles

(Communicated by Kenneth S. Berenhaut)

In 2008, Kauffman and Lomonaco introduced the concepts of a knot mosaic and
the mosaic number of a knot or link K, the smallest integer n such that K can
be represented on an n-mosaic. In 2018, the authors of this paper introduced
and explored space-efficient knot mosaics and the tile number of K, the smallest
number of nonblank tiles necessary to depict K on a knot mosaic. They determine
bounds for the tile number in terms of the mosaic number. In this paper, we focus
specifically on prime knots with mosaic number 6. We determine a complete list
of these knots, provide a minimal, space-efficient knot mosaic for each of them,
and determine the tile number (or minimal mosaic tile number) of each of them.

1. Introduction

Mosaic knot theory was first introduced in [Lomonaco and Kauffman 2008] and
was later proven to be equivalent to tame knot theory in [Kuriya and Shehab 2014].
The idea of mosaic knot theory is to create a knot or link diagram on an n x n grid
using mosaic tiles selected from the collection of 11 tiles shown below. The knot
or link projection is represented by arcs, line segments, or crossings drawn on each
tile. These tiles are identified, respectively, as Ty, T, T3, . . ., T1p. Tile Ty is a blank
tile, and we refer to the rest collectively as nonblank tiles.

I
N\ | LA NP \\Jf ] 17

1y T 1 T3 T4 Ts Ts 17 13 Ty Tio

A connection point of a tile is a midpoint of a tile edge that is also the endpoint
of a curve drawn on the tile. A tile is suitably connected if each of its connection
points touches a connection point of an adjacent tile. An n x n knot mosaic, or
n-mosaic, is an n X n matrix whose entries are suitably connected mosaic tiles. As
is customary in the literature of knot mosaic theory, the term “knot mosaic” is used

MSC2010: primary 57M25; secondary S7TM27.
Keywords: knots, knot mosaic, mosaic number, tile number, crossing number, space-efficient.
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Figure 1. Examples of knot mosaics.

for the mosaic, even when the resulting diagram on the mosaic depicts a link. See
Figure 1 for some examples.

When listing prime knots with crossing number 10 or less, we will use the
Alexander—Briggs notation, matching the table of knots in [Rolfsen 1976]. This
notation names a knot according to its crossing number with a subscript to denote
its order amongst all knots with that crossing number. For example, the 74 knot
is the fourth knot with crossing number 7 in Rolfsen’s table of knots. For knots
with crossing number 11 or higher, we use the Dowker—Thistlethwaite name of the
knot. This also names a knot according to its crossing number, with an “a” or “n”
to distinguish the alternating and nonalternating knots and a subscript that denotes
the lexicographical ordering of the minimal Dowker—Thistlethwaite notation for the
knot. For example 11a7 is the seventh alternating knot with crossing number 11,
and 11nj3 is the third nonalternating knot with crossing number 11. For more details
on these and other relevant information on traditional knot theory, we refer the
reader to [Adams 1994].

The mosaic number of a knot or link K is the smallest integer n for which
K can be represented as an n-mosaic. The mosaic number has previously been
determined for every prime knot with crossing number 8 or less. For details, see
[Lee, Ludwig, Paat, and Peiffer 2018]. In particular, it is known that the unknot has
mosaic number 2, the trefoil knot has mosaic number 4, the 4;, 51, 52, 61, 62, and 74
knots have mosaic number 5, and all other prime knots with crossing number 8 or
less have mosaic number 6. In this paper, we determine the rest of the prime knots
that have mosaic number 6, which includes prime knots with crossing numbers
from 9 up to 13. This confirms, in the case where the mosaic number is m = 6,
a result of [Howards and Kobin 2018], where they find that the crossing number
is bounded above by (m —2)> — 2 if m is odd, and by (m —2)> — (m — 3) if m is
even. We also determine that not all knots with crossing number 9 (or higher) have
mosaic number 6.

Another number associated to a knot mosaic is the tile number of a mosaic,
which is the number of nonblank tiles used to create the mosaic. From this we
get an invariant called the tile number t (K') of a knot or link K, which is the least
number of nonblank tiles needed to construct K on a mosaic of any size. In [Heap
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and Knowles 2018], the authors explored the tile number of a knot or link and
determined strict bounds for the tile number of a prime knot K in terms of the
mosaic number /m > 4. Specifically, if m is even, then Sm —8 <t(K) < m2—4. If m
is odd, then 5m —8 < ¢(K) < m? —38. It follows immediately that the tile number of
the trefoil knot must be 12, and the tile number of the prime knots mentioned above
with mosaic number 5 must be 17. The authors also listed several prime knots with
mosaic number 6 that have the smallest possible tile number 7(K) = 22, which we
summarize in Theorem 1. In this paper, we confirm that this list is complete. Knot
mosaics in which the tile number is realized for each of these mosaics are given in
[Heap and Knowles 2018] and also in the table of mosaics in the online supplement
of this paper.

Theorem 1 [Heap and Knowles 2018]. The following knots have the given tile
numbers:

(a) Tile number 4: unknot.

(b) Tile number 12: trefoil knot.

(¢) Tile number 17: 44, 51, 57, 61, 62, 74.

(d) Tile number 22: 63,7, 72,73, 7s, 76, 77, 81, 82, 83, 84, 87, 83, 89, 813, 95, 92p.

Finally, in [Heap and Knowles 2018], the authors determine all of the possible
layouts for any prime knot on an n-mosaic for n < 6. In this paper, we complete
that work by determining which prime knots can be created from those layouts.

We also point out that throughout this paper we make significant use of the
software package Knotscape [Thistlethwaite and Hoste 1999] to verify that a given
knot mosaic represents a specific knot. Without this program, we would not have
been able to complete the work.

2. Space-efficient knot mosaics

Two knot mosaic diagrams are of the same knot type (or equivalent) if we can
change one to the other via a sequence of mosaic planar isotopy moves that are
analogous to the planar isotopy moves for standard knot diagrams. An example
of this is shown in Figure 2. A complete list of all of these moves is given and
discussed in [Lomonaco and Kauffman 2008; Kuriya and Shehab 2014]. We will
make significant use of these moves throughout this paper, as we attempt to reduce
the tile number of mosaics in order to construct knot mosaics that use the least
number of nonblank tiles.

A knot mosaic is called minimal if it is a realization of the mosaic number of
the knot depicted on it. That is, if a knot with mosaic number m is depicted on
an m-mosaic, then it is a minimal knot mosaic. A knot mosaic is called reduced
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Figure 2. Example of mosaic planar isotopy moves.

if there are no unnecessary, reducible crossings in the knot mosaic diagram. See
[Adams 1994] for more on reduced knot diagrams.

We have already defined the tile number of a mosaic and the tile number of a
knot or link. A third type of tile number is the minimal mosaic tile number tp;(K)
of a knot or link K, which is the smallest number of nonblank tiles needed to
construct K on a minimal mosaic. That is, it is the smallest possible tile number of
all possible minimal mosaic diagrams for K. Much like the crossing number of a
knot cannot always be realized on a minimal mosaic (such as the 6; knot), the tile
number of a knot cannot always be realized on a minimal mosaic. Note that the tile
number of a knot or link K is certainly less than or equal to the minimal mosaic
tile number of K; that is, 7(K) < t)(K). The fact that the tile number of a knot is
not necessarily equal to the minimal mosaic tile number of the knot is confirmed
later in Theorem 8. However, for prime knots, it is shown in [Heap and Knowles
2018] that 1) (K) = t(K) when ty(K) < 27.

A knot n-mosaic is space-efficient if it is reduced and the tile number is as small
as possible on an n-mosaic without changing the knot type of the depicted knot,
meaning that the tile number cannot be decreased through a sequence of mosaic
planar isotopy moves. A knot mosaic is minimally space-efficient if it is minimal
and space-efficient. The first four knot mosaics of the Borromean rings depicted in
Figure 2 are not space-efficient because we can decrease the tile number through the
depicted mosaic planar isotopy moves. In Figure 3, both mosaics are knot mosaic
diagrams of the 5; knot. The first knot mosaic is not space-efficient, but the second
knot mosaic is minimally space-efficient.

In addition to the original 11 tiles Ty—T19, we will also make use of nondeter-
ministic tiles, such as those in Figure 4, when there are multiple options for the
tiles that can be placed in specific tile locations of a mosaic. For example, if a tile
location must contain a crossing tile 7y or 779 but we have not yet chosen which,
we will use the nondeterministic crossing tile. Similarly, if we know that a tile



SPACE-EFFICIENT KNOT MOSAICS FOR PRIME KNOTS WITH MOSAIC NUMBER 6 771

If N If N
™ C ™
N ™ _ -\\— A
\_ \_|_/ U
] (]
" \/

Figure 3. Space-inefficient and minimally space-efficient knot

mosaics of 5;.

Figure 4. Nondeterministic crossing tile and a nondeterministic
tile with four connection points.

location must have four connection points but we do not know if the tile is a double
arc tile (77 or Tg) or a crossing tile (Ty or T}g), we will indicate this with a tile that
has four connection points.

In [Heap and Knowles 2018], the authors provide the possible tile numbers (and
the layouts that result in these tile numbers) for all prime knots on a space-efficient
6-mosaic.

Theorem 2 [Heap and Knowles 2018]. If we have a space-efficient 6-mosaic of
a prime knot K for which either every column or every row is occupied, then
the only possible values for the tile number of the mosaic are 22, 24, 27, and 32.
Furthermore, any such mosaic of K is equivalent (up to symmetry) to one of the
following mosaics:

Fan N N NN NN
rp' '4\ Va >\' 22N rvcvc-i-c\ f-‘-""\
\bc-c-\ N PN Pa P ' N \01‘1‘1 P4 N ?. 9. ¢ 1%y

\ 1'\ f' 'G'J \D'G :1: 'GJ \ L 1'1\ f‘i L '\

Ny VI[NtV \ 1% NI VI INs4 ¢
\J A4 U A4 U [\UJ

In order to determine all prime knots with mosaic number 6 and their minimal
mosaic tile numbers, we need to determine which prime knots can be depicted on a
knot mosaic with one of the layouts above. To help us with this, we make a few
simple observations. All of these are easy to verify, and any rotation or reflection
of these scenarios is also valid.

Consider the upper, right 3 x 3 corner of any space-efficient mosaic of a prime
knot with mosaic number 6 and tile number 22, 27, or 32. (That is, we are
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Figure 5. A partially filled block and a filled block, respectively.

considering every option except those with tile number 24.) It must be one of the
two options in Figure 5. All other 3 x 3 corners are a rotation of one of these. We
will refer to the first option as a partially filled block and the second option as a
filled block.

Observation 1. In any space-efficient 6-mosaic of a prime knot, the tile in position
C of a partially filled block is either a crossing tile or double arc 77.

This is easy to see, as it must be a tile with four connection points, and the only
space-efficient mosaics that results from using the double arc Tg are composite
knots or links with more than one component. In Figure 6, the first two examples
are valid possibilities, but the third one is not.

Observation 2. In any space-efficient 6-mosaic of a prime knot, there must be at
least two crossing tiles in a filled block.

If there are no crossing tiles in positions A, B, C, and D of the mosaic, then the
mosaic is not space-efficient or it is a link with more than one component. Each
one that is not a link reduces to one of the last two partially filled block options
in Figure 6. If there is only one crossing tile and it is in position A, B, or D,
then the mosaic is not space-efficient. For each option, if we fill the remaining
tile positions with double arc tiles so that the block is suitably connected and we
avoid the obvious inefficiencies we get the options shown in Figure 7. They are
equivalent to each other via a simple mosaic planar isotopy move that rolls the
crossing through each of these positions, and they all reduce to the first partially
filled block in Figure 6. If there is only one crossing tile and it is in position C, then
the mosaic is also not space-efficient and reduces to either of the first two options
in Figure 6.

Voo DD
A RYIAY /4R

Figure 6. The first two examples are the only valid possibilities
for a partially filled block.
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Figure 7. Suitably connected filled blocks with one crossing in
position A, B, or D. None are space-efficient.

Observation 3. In a filled block in any space-efficient 6-mosaic of a prime knot,
there are only two distinct possibilities for two crossing tiles, two distinct possibili-
ties for three crossing tiles, and one possibility for four crossing tiles and they are
shown below:
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We will refer to the five filled blocks in Observation 3 together with the first
two partially filled blocks in Figure 6 (and reflections and rotations of them) as
building blocks. The observations provide a way for us to easily build all of the
space-efficient 6-mosaics, as long as the tile number is 22, 27, or 32, but not 24.

Observation 4. In any space-efficient 6-mosaic of a prime knot, there is at most
one of the filled block with four crossing tiles or the filled block with two crossings
in positions A and C.

It is quite simple to verify that if there is more than one filled block with four
crossings or more than one filled block with two crossings in positions A and C,
the resulting mosaic must be a link with more than one component. If we use the
indicated filled building block with two crossing tiles together with a filled block
with four crossing tiles, the resulting mosaic will also be a link with more than one
component. Several examples of these are pictured in Figure 8 with the second link
component in each mosaic colored differently from the first link component.

an N an an ! T f\\ f\ T !
: H € D :
4.1 Va I e 4.1 |
) )
N1 /]
N

Figure 8. These layouts will always be multicomponent links.
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3. All prime knots with mosaic number 6

We are now ready to determine the tile number of every prime knot with mosaic
number 6. Theorem 2 says that the only possible tile numbers are 22, 24, 27, and 32.
In order to determine which knots have these tile numbers, we simply compile a
list of the prime knots that can fit within each of the layouts given in Theorem 2.
Because we already know the tile number of every prime knot with crossing number
7 or less, we can restrict our search to knots with crossing number 8 or more. The
process is simple, and the above observations help us tremendously. If the tile
number is 22, 27, or 32, we use the building blocks. In the case of the mosaics with
tile number 24, we look at all possible placements, up to symmetry, of eight or more
crossing tiles within the mosaics and fill the remaining tile positions with double arc
tiles so as to avoid composite knots and nonreduced knots. Once the mosaics are
completed, we then eliminate any links, any duplicate layouts that are equivalent to
others via obvious mosaic planar isotopy moves, and any mosaics for which the
tile number can easily be reduced by a simple mosaic planar isotopy move. Finally,
we use Knotscape to determine what knots are depicted in the mosaic by choosing
the crossings so that they are alternating, as well as all possible nonalternating
combinations. We provide minimally space-efficient knot mosaics for every prime
knot with mosaic number less than or equal to 6 in the table of knots in the online
supplement.

We have already listed several prime knots with tile number 22 in Theorem 1.
This next theorem asserts that the list is complete.

Theorem 3. The only prime knots K with tile number t (K) = 22 are

(a) 63,

(b) 71,772,773, 75, 76, 17,

(¢) 81, 82, 83, 84, 87, 83, 89, 813,
(d) 95, and 9.

In order to obtain the minimally space-efficient knot mosaic for 73, we had to
use eight crossings. None of the possible minimally space-efficient knot mosaics
with 22 nonblank tiles and exactly seven crossings produced 73. The fewest number
of nonblank tiles needed to represent 73 with only seven crossings is 24, and one
such mosaic is given in Figure 9, along with a minimally space-efficient mosaic of
73 with eight crossings. In summary, on a minimally space-efficient knot mosaic,
for the tile number (or minimal mosaic tile number) to be realized, it might not be
possible for the crossing number to be realized. This is also the case with 8, 83, 87,
8s, and 89, as nine crossing tiles are required to represent these knots on a mosaic
with tile number 22.
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Figure 9. The 73 knot as a minimally space-efficient knot mosaic
with eight crossing tiles and as a knot mosaic with seven crossing
tiles.

Proof. We simply build the first two tile configurations (both with 22 nonblank
tiles) in Theorem 2 using the 3 x 3 building blocks, eliminate any that do not satisfy
the observations, choose specific crossing types, and see what we get. Whatever
prime knots with eight or more crossings are missing are the ones we know cannot
have tile number 22.

We begin with the first mosaic layout given in Theorem 2. Up to symmetry, there
are only six possible configurations of this layout with eight crossings, and they
are given in Figure 10. Notice that some of these are links that can be eliminated,
including Figures 10(d) and (f). Furthermore, Figures 10(b) and (c) are equivalent
to each other via a mosaic planar isotopy move that shifts one of the crossing tiles to
a diagonally adjacent tile position. This leaves us with only three possible distinct
configurations of eight crossings from this first layout, Figures 10(a), (b), and (e).

Now we do the same thing with the second mosaic layout given in Theorem 2
with 22 nonblank tiles. Up to symmetry, there are six possible configurations of this
layout with eight crossings, and they are given in Figure 11. Again, Figures 11(d)
and (f) are links, and Figures 11(b) and (c) are equivalent to each other. This
leaves us again with only three possible configurations of eight crossings from
this second layout, and they are Figures 11(a), (b), and (e). Moreover, each one
of these is equivalent to the corresponding mosaics in Figure 10 via a few mosaic
planar isotopy moves that shift the crossings in the lower-left building block into
the lower-right building block of the mosaic.
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Figure 10. Possible placements of eight crossing tiles in the first
layout with tile number 22.
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Figure 11. Possible placements of eight crossing tiles in the second
layout with tile number 22.

This leaves us with only three distinct possible layouts for a minimally space-
efficient 6 x 6 mosaic with eight crossings and tile number 22. If we choose
crossings for the configuration in Figure 10(a) so that they are alternating, we get
the 83 knot. If we choose crossings for the configuration in Figure 10(b) so that
they are alternating, we get the 84 knot. Finally, if we choose crossings for the
configuration in Figure 10(e) so that they are alternating, we get the 8, knot. If we
examine all possible nonalternating choices for each one, all of the resulting knots
have crossing number 7 or less. (The minimally space-efficient knot mosaic for 73
must have eight crossing tiles and can be obtained by a choice of nonalternating
crossings within any of the three distinct possible layouts in Figure 10.)

Now we go through the same process using nine crossing tiles. Up to symmetry,
there are only four possible configurations of these layouts with nine crossings, and
they are given in Figure 12. The mosaic in Figure 12(c) is equivalent to the mosaic
in Figure 12(b) via a few mosaic planar isotopy moves that shift the crossings in
the lower-left building block into the lower-right building block of the mosaic. This
leaves us with only three possible configurations of nine crossing tiles.

If we choose crossings for the configuration in Figure 12(a) so that they are
alternating, we get the 9,0 knot. If we examine all possible nonalternating choices
for the crossings, most of the resulting knots have crossing number 7 or less, but we
do get some additions to our list of prime knots with tile number 22 and crossing
number 8. In particular, we get 87, 8g, and 89. (We also get 84, which was previously
obtained with only eight crossings.) If we choose crossings for the configuration in
Figure 12(b) so that they are alternating, we get the 95 knot. Again, if we examine
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Figure 12. Possible placements of nine crossings with tile number 22.
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the possible nonalternating choices for the crossings, we get two additional prime
knots with tile number 22 and crossing number 8, and they are 8; and 83. Finally,
if we choose crossings for the configuration in Figure 12(d), we get the exact same
knots as we did for Figure 12(a).

By Observation 4, we cannot place more than nine crossing tiles on any mosaic
with 22 nonblank tiles. We have now found every possible prime knot with tile
number 22 and eight or more crossings, and they are exactly those listed in the
theorem. All other prime knots with crossing number at least 8 must have tile
number larger than 22. (|

We now know precisely which prime knots have tile number 22 or less. Our next
goal is to determine which prime knots have tile number 24.

Theorem 4. The only prime knots K with tile number t (K) = 24 are
(a) 8s, 86, 810, 811, 812, 814, 816, 817, 818, 819, 820, 821,
(b) 93, 911, 912, 914, 917, 919, 921, 923, 926, 927, 931,

(c) 1041, 1044, 1085, 10100, 10116, 10124, 10125, 10126, 10127, 10141, 10143, 1014s,
10155 and 10450.

We will show that 8¢ must have nine crossing tiles to fit on a mosaic with tile
number 24. None of the possible minimally space-efficient knot mosaics with
exactly eight crossings produce these knots. Similarly, the minimally space-efficient
mosaics for 917, 919, 921, and 96 require 10 crossings.

Proof. We search for all of the prime knots that have tile number 24. In this particular
case, the observations at the beginning of this section do not apply, meaning we
cannot use the building blocks as we did in the proof of Theorem 3. We know from
Theorem 2 that any prime knot with tile number 24 has a space-efficient mosaic,
like the third layout there. We simply look at all possible placements of eight or
more crossings within that layout, choose the type of each crossing, and keep track
of the resulting prime knots.

First, we look at all possible placements, up to symmetry, of eight crossings
within the mosaic and, we fill the remaining tile positions with double arc tiles so
as to avoid composite knots and unnecessary loops. After eliminating any links and
any duplicate layouts that are equivalent to others via simple mosaic planar isotopy
moves, we get 17 possible layouts, which are shown in Figure 13. Not all of these
will result in distinct knots, and in most cases it is not difficult to see that they will
result in the same knot. However, we include all of them here because they differ
by more than just simple symmetries or simple mosaic planar isotopy moves.

Choosing specific crossings so that the knots are alternating, we obtain only 14
distinct knots as shown in the following table:
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Figure 13. Only possible layouts, after elimination, with eight
crossing tiles for a prime knot with tile number 24.

Figure 13 | knot | Figure 13 | knot
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(e) 8 | (m),(n) | 84
(), (&) 87 (0) 816
(h) 8s (p) 817
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Not all of these have tile number 24. We already know 8, 8,, 84, 87, 8g, and 83
have tile number 22. Each of the others have tile number 24. The nonalternating
knots 819, 829, and 8, are obtained by choosing nonalternating crossings in a few
of these. Those pictured in the table of knots come from the layout in Figure 13(p).
Mosaics for all of these are given in the table of knots in the online supplement. The
only knots with crossing number 8 that we have not yet found are 8¢ and 8,5, and now
we know that they cannot be represented with eight crossings and 24 nonblank tiles.

We now turn our attention to mosaics with nine crossings. Just as before, we
look at all possible placements, up to symmetry, of nine crossings, eliminate
any composite knots, unnecessary loops, links and any duplicate layouts that are
equivalent to others via simple mosaic planar isotopy moves. In the end, we get
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Figure 14. Only possible layouts, after elimination, with nine
crossing tiles for a prime knot with tile number 24.

seven possible layouts, which are shown in Figure 14. Choosing specific crossings
for each layout, in order, so that the knots are alternating, we obtain the seven knots
9s, 911, 914, 917, 923, 927, and 931, all of which have tile number 24. If we look at all
possible choices for nonalternating crossings, the only knot with tile number 24 that
arises but did not show up with only eight crossing tiles is the 8¢ knot, whose knot
mosaic in the table of knots comes from the layout in Figure 14(a). All other prime
knots that arise using nonalternating crossings have been exhibited as a minimally
space-efficient mosaic with fewer crossings or fewer nonblank tiles.

Now we do the same for 10 crossings. Again, we observe all possible placements
of 10 crossings on the third mosaic in Theorem 2, and after eliminating any links
and duplicate layouts up to reflection, rotation, or equivalencies via simple mosaic
planar isotopy moves, we end up with five possible layouts, shown in Figure 15.

We begin with Figure 15(a). Choosing specific crossings so that the knot is alter-
nating, we obtain the 10116 knot. If we look at all possible choices for nonalternating
crossings, the only prime knots that we get with tile number 24 are the nonalternating
knots 10124, 10125, 10141, 10143, 10155, and 10;59. We do the same with Figure 15(b)
and get the alternating knot 10;g9. For the nonalternating choices, we get almost
all of the same ones we just obtained, but we do not get any new additions to our
list of knots. For Figure 15(c), with alternating crossings we get 104;, and with
nonalternating crossings we get 919 and 91 as the only new additions to our list.
Neither of these came from considering only nine crossings. Now we observe
the mosaic in Figure 15(d). By alternating the crossings, we obtain 1044, and by
using nonalternating crossings, the only new additions to our list are 915 and 9.
Finally, we end with Figure 15(e). Assigning alternating crossings, we get 10gs,
and assigning nonalternating crossings, we get 10126, 10127, and 1014s.
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Figure 15. Only possible layouts, after elimination, with 10 cross-
ing tiles for a prime knot with tile number 24.

Finally, we can place 11 or 12 crossing tiles into the layout with 24 nonblank
tiles, but the space-efficient results will always be a link with more than one
component. Therefore, no minimally space-efficient prime knot mosaics arise from
this consideration. We have considered every possible placement of crossing tiles
on the third layout in Theorem 2 and have found every possible prime knot with
tile number 24 and eight or more crossings, and they are exactly those listed in
the theorem. Minimally space-efficient mosaics for all of these knots are given in
the table of knots in the online supplement. All other prime knots with crossing
number at least 8 must have tile number larger than 24. (]

We now know precisely which prime knots have tile number less than or equal
to 24, and we are ready to determine which prime knots with mosaic number 6
have tile number 27. We see our first occurrence of knots with crossing number
larger than 10, and we use the Dowker—Thistlethwaite name of the knot.

Theorem 5. The only prime knots K with mosaic number 6, tile number t (K) =27,
and minimal mosaic tile number ty (K) = 27 are

(a) 8is,
(b) 91,92, 93, 94, 97, 99, 913, 924, 928, 937, 946, 943,

(c) 101, 102, 103, 104, 1012, 1022, 1028, 1034, 1063, 1065, 1066, 1075, 1078, 10140,
10142, 10144,

(d) 11a107, 113140, and 11a343.

Notice that this theorem is only referring to prime knots with mosaic number 6.
There are certainly prime knots with tile number 27 and mosaic number 7 that are
not included in this theorem. Also, the requirement that the tile number equals the
minimal mosaic tile number is necessary here. As far as we know now (and will
verify below), there are knots with mosaic number 6 and tile number 27 which have
minimal mosaic number 32. Some of these are listed in the next theorem. Finally,
notice that up to this point we have determined the tile number for every prime knot
with crossing number 8§ or less.
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Figure 16. The seven building blocks resulting from the observa-
tions at the beginning of this section.

Again we claim that the minimally space-efficient mosaics for 93, 94, 913, 937,
946, and 943 must have 10 crossing tiles. The minimally space-efficient mosaics
for 97, 99, and 9,4 must have 11 crossing tiles. None of the possible minimally
space-efficient knot mosaics with exactly nine crossing tiles produce these knots.
Similarly, the minimally space-efficient mosaics for 101, 103, 1012, 1027, 1034, 1063,
1065, 1078, 10140, 10142, and 10744 require 11 crossing tiles.

Proof. Similar to what we did in the proof of Theorem 3, we search for all of
the prime knots that have mosaic number 6 and tile number 27, which have a
space-efficient mosaic as depicted in the fourth layout of Theorem 2. We simply
build this layout using the 3 x 3 building blocks that result from the observations at
the beginning of this section, shown again in Figure 16. We then choose specific
crossing types for each crossing tile and see what knots we get.

For bookkeeping purposes, we note that the knot 85 has tile number 27, and this
is the only knot with crossing number 8 for which we have not previously found
the tile number. A minimally space-efficient mosaic for it is included in the table of
knots in the online supplement. We now know the tile number for every prime knot
with crossing number 8 or less, and from here we restrict our search to mosaics
with nine or more crossing tiles.

Before we get started placing crossing tiles, we make a few more simple obser-
vations that apply to this particular case and help us reduce the number of possible
configurations. Observe that if we place a partially filled building block with no
crossing adjacent to the filled building block with two crossing tiles in Figure 16(c),
the resulting mosaic will always reduce to a mosaic with tile number 22. The same
result holds if the two blocks are not adjacent and one of the adjacent blocks is the
filled building block with three crossings depicted in Figure 16(e). The mosaics in
Figure 17 exhibit these scenarios. The same result also holds if the partially filled
building block with one crossing is combined with two of the filled building blocks
with two crossing tiles shown in Figure 16(c). Depending on the placement of these
two filled blocks, the result will be equivalent to either Figure 17(a) or Figure 17(b)
via a simple mosaic planar isotopy move that shifts the crossing in the partially
filled block to another block.

First, we consider nine crossing tiles with the above observations in mind, together
with the observations at the beginning of this section. Up to symmetry, there are
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Figure 17. These two mosaics are not minimally space-efficient.

only nine possible configurations of the building blocks after we eliminate the links,
duplicate layouts that are equivalent to others via simple mosaic planar isotopy
moves, and any mosaics for which the tile number can easily be reduced by a simple
mosaic planar isotopy move. They are shown in Figure 18. Not all of these will
result in distinct knots, and in several cases it is not difficult to see that they will
result in the same knot. However, we include all of them here because they differ
by more than just symmetries or a simple mosaic planar isotopy move.

Choosing specific crossings so that the knots are alternating, we obtain only
seven distinct knots. The only ones with tile number 27 are Figure 18(a), which
gives the 9; knot, Figure 18(b), which gives us 9,, and Figures 18(h) and (i),
which give us 9;,5. Each of the remaining layouts give knots with tile number less
than 27. In particular, Figures 18(c) and (d) are 9g, Figures 18(e) and (f) are 9,7,
and Figure 18(g) is 920. None of these configurations give nonalternating knots
with crossing number 9.

Second, we do the same for 10 crossings. Again, we use the building blocks to
build all possible configurations of the crossings, and up to symmetry, there are only
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Figure 18. Only possible layouts, after elimination, with nine
crossing tiles for a prime knot with tile number 27.
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Figure 19. Only possible layouts, after elimination, with 10 cross-
ing tiles for a prime knot with tile number 27.

six possibilities after eliminating any links and duplicate layouts that are equivalent
via simple mosaic planar isotopy moves. These are shown in Figure 19.

Choosing specific crossings so that the knots are alternating, we obtain only
five distinct knots, all of which have tile number 27. In particular, Figure 19(a)
becomes the 10, knot, Figure 19(b) becomes 104, Figures 19(c) and (d) become 10,s,
Figure 19(e) becomes 10g¢, and Figure 19(f) becomes 1075. Choosing nonalternating
crossings, we also get some knots with crossing number 9, but we do not obtain any
nonalternating knots with crossing number 10. We can get 93 from Figure 19(a), 94
from Figure 19(b), 93 from Figure 19(c), and 937, 946, and 945 from Figure 19(f).
All other knots that are obtained by considering nonalternating crossings can be
drawn with fewer crossings or a lower tile number.

Third, we consider the case where the mosaic has 11 crossing tiles. In this
instance, we end up with the five possible layouts shown in Figure 20, and again,
not all of these are distinct. Choosing alternating crossing in each layout results in
three distinct knots with crossing number 11. Figures 20(a) and (b) become 11a;¢7,
Figures 20(c) and (d) become 11a;49, and Figure 20(e) becomes 11az43. (Note
that, for knots with crossing number greater than 10, we are using the Dowker—
Thistlethwaite name of the knot.) Choosing nonalternating crossings in each of the
layouts results in several knots with crossing number 9 or 10. In particular, we can
obtain the knots 9,4, 1063, 1065, 1078, 10149, 10142, and 10144 from Figure 20(a).
We can obtain 97, 99, 1012, 10y, and 1034 from Figure 20(c). And we can obtain
10, and 103 from Figure 20(e). All of these are shown in the table of knots in the
online supplement. All other knots that are obtained by considering nonalternating
crossings can be drawn with fewer crossings or a lower tile number.

Finally, by Observation 4 we do not need to consider 12 or more crossing tiles
in this layout, as no minimally space-efficient prime knot mosaics arise from this
consideration. We have considered every possible placement of nine or more
crossing tiles on the fourth layout in Theorem 2 and have found every possible
prime knot with mosaic number 6 and tile number 27. They are exactly those listed
in the theorem. All other prime knots with crossing number at least 9 and mosaic
number 6 must have minimal mosaic tile number 32. (]
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Figure 20. Only possible layouts, after elimination, with 11 cross-
ing tiles for a prime knot with tile number 27.

Now we know the tile number for every prime knot with crossing number less
than or equal to 8. Theorems 3, 4, and 5 tell us the tile number of some of the prime
knots with crossing numbers 9, 10, and 11. Furthermore, we know that all other
prime knots with mosaic number 6 must have minimal mosaic tile number 32 but
not necessarily tile number 32. One problem that complicates the next step is that,
as of the writing of this paper, we do knot know the mosaic number of all prime
knots with crossing number 9 or more. That is, we do not know all prime knots
with mosaic number 6. For this reason, we need to go through the same process
as we did in the preceding proofs to determine which prime knots have mosaic
number 6 and minimal mosaic tile number 32. By doing this, we will also be able to
determine which prime knots have mosaic number greater than 6. The good news is
that this is the final step in determining which prime knots have mosaic number 6 or
less and determining the tile number or minimal mosaic tile numbers of all of these.

Theorem 6. The only prime knots K with mosaic number 6 and minimal mosaic
tile number ty (K) = 32 are

(@) 910, 916, 935,
(b) 1011, 1020, 1021, 1061, 1062, 1064, 1074, 1076, 1077, 10139,

(c) 1lays, 11ag4, 11age, 11a47, 11asg, 11aso, 11ajgs, 11ay39, 11ay6s, 11a166, 11179,
1Tayg1, 11angs, 11a247, 11a339, 11a340, 112341, 11a342, 11a364, 11a3¢7,

(d) 11n7y, 11n72, 11n73, 11n74, 11n7s, 11n76, 11n77, 11n7s,
(e) 12aj19,12a165, 12a169, 122373, 122376, 12a379, 12a380, 12a444,12a503, 12a722,
12ag03, 1221143, 1221149, 125166,
() 13a1230, 1321236, 1321461, 1324573,
(&) 13n2399, 1312400, 1302401, 1302402, and 13n2403.
Notice again our restriction to prime knots with mosaic number 6. Additionally,

notice that this theorem only refers to the minimal mosaic tile number of the knot,
not the tile number. Again, this is because we only know that these two numbers

are equal when they are less than or equal to 27. Some of these knots may have
(and actually do have) tile number less than 32.
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Figure 21. Only possible layout, after elimination, with nine cross-
ing tiles for a prime knot with minimal mosaic tile number 32.

We claim that the minimally space-efficient mosaics for 91¢, 916, 1029, 1021, and
1077 need 11 crossing tiles. The minimally space-efficient mosaics for 935, 10y,
10629 10(,4, 1074, 10139, 113106’ 113139, 113166’ 113181’ 113341, 113342, and 113364
need 12 crossing tiles. And the minimally space-efficient mosaics for 1047, 1076,
11a44, 11a47, 118.58, 111176, 11n77, 111178, 118165, 118.246, 113339, 113.34(), 1221119,
123165» 128169, 12a376, 123.379, 123.444, 128.3()3, 123.1143, and 123-1166 need 13 crossing
tiles.

Proof. We simply go through the same process that we did in the previous proof.
We search for all of the prime knots that have mosaic number 6 and minimal mosaic
tile number 32. Whatever prime knots that do not show up in this process and that
we have not previously determined the tile number for must have mosaic number
greater than 6. We know from Theorem 2 that any prime knot with mosaic number 6
and minimal mosaic tile number 32 has a space-efficient mosaic with the fifth and
final layout shown there.

As we have done several times previously, we use the building blocks to achieve
all possible configurations, up to symmetry, of nine or more crossings within this
mosaic. For this particular layout, we can only use the filled blocks, not the partially
filled blocks. We can eliminate any layouts that do not meet the requirements of the
observations, any multicomponent links, any duplicate layouts that are equivalent
to others via simple mosaic planar isotopy moves, and any mosaics for which the
tile number can easily be reduced by a simple mosaic planar isotopy move.

First, in the case of nine crossings, after we eliminate the unnecessary layouts we
end up with only one possibility, and it is shown in Figure 21. However, once we
choose specific crossings in an alternating fashion, it is the knot 9g, which has tile
number 24. Nothing new arises from considering nonalternating crossings either.

Second, we do the same for 10 crossings, and we end up with five possible
layouts, shown in Figure 22. Choosing alternating crossings in each one, we again
fail to get any prime knots with minimal mosaic tile number 32. Figure 22(a) is 101,
Figure 22(b) and (c) are 1034, and Figures 22(d) and (e) are 1075. Nothing new
arises from considering nonalternating crossings either.

Third, we consider the case where the mosaic has 11 crossing tiles. In this
instance, we end up with the 10 possible layouts shown in Figure 23. With alternating
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Figure 22. Only possible layouts, after elimination, with 10 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.

crossings, the first layout is 11a;49, which we already know has tile number 27. The
remaining layouts, given alternating crossings, lead to six distinct knots with minimal
mosaic tile number 32, and with nonalternating crossings we get 10 additional
knots that have minimal mosaic tile number 32. In particular, Figure 23(b) with
alternating crossings is 11a43 and with nonalternating crossings can be made into
11n7;, 11n7;, 11n73, 11n74, and 11n7s5. Figures 23(c) and (d) are 11a46 when using
alternating crossings and can be made into 916 or 1077 with nonalternating crossings.
Figures 23(e) and (f) are 11as9 when using alternating crossings and can be made
into 10,9 with nonalternating crossings. Figures 23(g) and (h) are 11a;79 when
using alternating crossings and can be made into 9;¢ or 10,; with nonalternating
crossings. Figure 23(i) with alternating crossings is 11ay47, and Figure 23(j) with
alternating crossings is 11az¢7. Neither of these last two provide new knots to our
list when considering nonalternating crossings.

Fourth, we consider the possibilities where the mosaic has 12 crossing tiles. In
this case, we end up with the seven possible layouts shown in Figure 24. With
alternating crossings, these layouts lead to five distinct knots with minimal mosaic

AR If\\ Jf f\\ f\l f\\ f\l f\\ f\l f\\
YD AR TR R [EEED
an m N T N
Pan nefa N N Vs AY Valfa N Palam mam ma )
\\H o NN\NHRY A NNHAVYY A N P N } J
VI W\ W\ VI VY
(a) (b) (c) (d) (e)

f\l f\\ f\l f\\ f\l f\\ f\l If\ f\l If\
CEURYD| (R | TR | RO (D
) T ) ) If" ") ("
O anh Qi ach anhd
TN\ /] ™ imfa ™NTT fa TN 71 imn nla
\J |\ W\ I\ \J [\ \J [ \J
(f) (8) (h) (i) ()

Figure 23. Only possible layouts, after elimination, with 11 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.
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Figure 24. Only possible layouts, after elimination, with 12 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.

tile number 32, and with nonalternating crossings we get 13 additional knots that
have minimal mosaic tile number 32. In particular, Figures 24(a) and (b) with
alternating crossings are 12a373 and with nonalternating crossings can be made into
1062, 1064, 10139, 11ay9g, or 11aj39. Figures 24(c) and (d) are 12a3gp when using
alternating crossings and can be made into 10;;, 11aje6, or 11a34; with nonalternat-
ing crossings. Figure 24(e) is 12a59p3 when using alternating crossings and can be
made into 935, 1074, or 11a;g; with nonalternating crossings. Figure 24(f) is 12a7,;
when using alternating crossings and can be made into 11a3¢4 With nonalternating
crossings. Figure 24(g) with alternating crossings is 12a;149 and with nonalternating
crossings can be 11az4;.

Fifth, we consider what happens when we place 13 crossing tiles on the mosaic.
In this instance, we end up with the six possible layouts shown in Figure 25. With
alternating crossings, the layouts lead to four distinct knots with minimal mosaic
tile number 32, and with nonalternating crossings we get 26 additional knots that
have minimal mosaic tile number 32. In particular, Figure 25(a) with alternating
crossings is 13a;339 and with nonalternating crossings can be made into 11a4,
11a47, 11n76, 11n77, 111178, 1221119, 13112399, l3n2400, 13n2401, 13112402, or 13n2403.

N N N N £ f
VN “h "N N 1 i

D 7D
r

= ingllppas AN | A i B SR SR iy
N | [\ N\NHH mu nef i mn nfad i
\J S \NVARN PARNV FARNP PARNV/ PARN
(a) (b) (c) (d) (e) 89)

Figure 25. Only possible layouts, after elimination, with 13 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.
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Figure 26. The 9;( knot represented as a minimally space-efficient
6-mosaic with minimal mosaic tile number 32 and as a space-
efficient 7-mosaic with tile number 27.

Figures 25(b) and (c) are 13a;73¢ when using alternating crossings and can be made
into 101, 1076, 11asg, 11a;65, 11a340, 12a;16s, 12a376, or 12a444 with nonalternating
crossings. Figures 25(d) and (e) are 13a;46; When using alternating crossings and
can be made into 11ay46, 11azzg, 12a169, 12a379, or 12a1148 with nonalternating
crossings. Figure 25(f) is 13a4573 when using alternating crossings and can be made
into 12agp3 or 12a;;66 With nonalternating crossings.

Finally, by Observation 4, we do not need to consider 14 or more crossing tiles in
this layout. We have considered every possible placement of nine or more crossing
tiles on the final layout of Theorem 2 and have found every possible prime knot
with mosaic number 6 and minimal mosaic tile number 32. ([

Because of the work we have completed, we now know every prime knot with
mosaic number 6 or less. We also know the tile number or minimal mosaic tile
number of each of these prime knots. In the table of knots in online supplement, we
provide minimally space-efficient knot mosaics for all of these. These preceding
theorems lead us to the following interesting consequences.

Corollary 7. The prime knots with crossing number at least 9 not listed in
Theorems 3,4, 5, or 6 have mosaic number 7 or higher.

Theorem 8. The tile number of a knot is not necessarily equal to the minimal
mosaic tile number of a knot.

Proof. According to Theorem 6, the minimal mosaic tile number for 9;¢ is 32.
However, on a 7-mosaic, this knot can be represented using only 27 nonblank
tiles, as depicted in Figure 26. Also note that, as a 7-mosaic, this knot could
be represented with only nine crossings, whereas 11 crossings were required to
represent it as a 6-mosaic. (]
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Shabat polynomials and monodromy groups of
trees uniquely determined by ramification type

Naiomi Cameron, Mary Kemp, Susan Maslak, Gabrielle Melamed,
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(Communicated by Vadim Ponomarenko)

A dessin d’enfant or dessin is a bicolored graph embedded into a Riemann surface.
Acyclic dessins can be described analytically by preimages of Shabat polynomials
and algebraically by their monodromy groups. We determine the Shabat polynomi-
als and monodromy groups of planar acyclic dessins that are uniquely determined
by their ramification types.

1. Introduction

Popularized by Grothendieck in his “Esquisse d’un programme”, the theory of
dessins reaches across and connects multiple disciplines, including graph theory,
topology, geometry, algebra and complex analysis. Our motivation for this paper is
rooted in one of the fundamental questions in the theory of dessins — that is, how to
distinguish classes of dessins by means of topological, algebraic or combinatorial
invariants. In this paper, we focus our attention on this question by studying dessins
which are also trees. Since such dessins by any measure might be considered among
the simplest, it is worthwhile to have a complete catalog of the Belyi maps and
monodromy groups to which they correspond.

Our main objective in this paper is to determine the Shabat polynomials (up
to isomorphism) and monodromy groups corresponding to every known planar
connected acyclic dessin uniquely determined by its ramification type, the complete
list of which was given in [Shabat and Zvonkin 1994]. We begin in Section 1 by
providing the main result of the paper, followed by definitions and notation needed
to describe the class of dessins with which we are concerned, as well as some
necessary background about Shabat polynomials and wreath products. Readers
already acquainted with these subjects may wish to read Section 1A and skip
Section 1B. In Section 2 we provide a unique (up to isomorphism) Shabat polynomial

MSC2010: primary 11G32, 14H57; secondary 20E22.
Keywords: dessins d’enfant, Shabat polynomials, monodromy groups, Belyi maps, trees, wreath
products.
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for each ramification type corresponding to exactly one (planar) bicolored tree; in
Section 3 we provide the monodromy groups for each such ramification type. In
Section 4, we suggest future directions that may be taken from the results presented
here.

1A. Main results. Here, we state the main result of the paper in the following
theorem. The remainder of this section provides the background and preliminaries
for the rest of the paper. Theorem 1.1 lists the ramification types which correspond to
exactly one dessin which is a tree, along with the associated monodromy groups and
Shabat polynomials. Theorem 1.1 contains every such ramification type, as asserted
in [Shabat and Zvonkin 1994]. In Sections 2 and 3, we argue that Theorem 1.1 lists
the correct Shabat polynomials and monodromy groups.

Theorem 1.1. The following list includes all seven ramification types (degrees of
black vertices followed by degrees of white vertices) that produce exactly one dessin
which is a tree (see [Shabat and Zvonkin 1994]). Each ramification type given on
the list is followed by (a) the Shabat polynomial (unique up to isomorphism) and
(b) the monodromy group for the dessin.

1) [r:17]
(a) z"
(b) G
@) 2, 1:27,1]
(a) %(1 + cos((2r + 1) arccos(z)))
(b) Dy(2y+1), where Dy, denotes the dihedral group of order m
3) [27:2771, 17
() 1(1+ cos(2r arccos(z)))
(®) Daar)
@) [s" 1, 107DE=DFED] for 5 1 150

@ (1-2) (252 (4, 37)°

G, Cy, s =1,
) Snja tCas s #Et, 1 even,
AnjalCq, s#t, rodd and% is odd,

(A,,/d)d XCyg, §F#t, 1 o0dd, % even,
wheren = s(r — 1) +1t, d = gecd(s, t).
5) [r, e, 1712001 >
—1 t—1+j\_j —1 —14j +r—1 P
(a) 4Zr(1 _Z)t(z;=0 (t t—lj)ZJ)(Zj':O (V r—lj)(rr-it-j )(_1)]2])
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Arp_1xCy, r=t, rodd,
Sr,_1xCy, 1r=t, 1even,
(b) § Ay4s—12C,, r F#t, bothodd,
R5, r #t, both even,
Sr4i—120Ca, 1 #t, else,

where Ry, denotes the index-2 subgroup of Syjm ¢ Cm such that, for all
(t1,...,Tm, &) € Ry, the permutation t11, - - - Ty, is even.

(6) [}"2, 14}’—3; 32)‘—1]

(@) —3v/3i Sy (2)(1— Sy (2))(Sr(2) — (1 —i/3))
) {;2r—1 0C3, rodd,
3, r even

(7 [3%.1%:27]
@) —s3937(2 — Dz3(222 + 32+ 9)3(8z* 4 2823 + 12622 + 189z + 378)
(b) A7:2C,

1B. Background and preliminaries. We begin by providing a terse exploration of
the object known as a dessin. For more detailed and comprehensive literature on
the subject, see [Shabat and Zvonkin 1994; Wood 2006]. For the purposes of this
paper, we begin with the observation that dessins may be realized by meromorphic
functions known as Belyi maps. The arithmetic dynamics of these Belyi maps have
been studied in some cases [Anderson et al. 2018].

Definition 1.2. Let X be a compact Riemann surface. A Belyi map is a meromor-
phic function F : X — P!(C) that is unramified outside of {0, 1, co}. That is, all
critical values of F are contained in {0, 1, co}. Here we may consider P!(C) as
just C U {o0}.

Grothendieck’s notion of a dessin d’enfant or dessin for short is a way to combi-
natorially characterize Belyi maps. If F is a Belyi map, then F~1([0, 1]), that is,
the preimage of the interval [0, 1], has the structure of a bicolored connected graph
embedded in X. The basic structure of the bicolored graph A g associated with a
Belyi map F is given when we identify F~1(0) as the set of black vertices, F~1(1)
as the set of white vertices, F~1((0, 1)) as the set of edges and F~1 (P! (C)—[0, 1])
as the set of faces. Note that the degrees of the black and white vertices of A r cor-
respond to the multiplicities of the roots of F' and F — 1, respectively. Furthermore,
the dessin A g recovered from a Belyi map F is planar if and only if F is defined
on P1(C), while AF is a tree if and only if F is a polynomial. Throughout this
paper, we assume X = P1(C).

These structure of A r can be captured by the notion of a dessin, the relatively
simple combinatorial characterization given by Grothendieck.
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Definition 1.3. A dessin d’enfant or dessin is a connected bicolored graph equipped
with a cyclic ordering of the edges (oriented counterclockwise) around each vertex.

Given a Belyi map F, it is not difficult to use the procedure described above
to visualize the dessin A g to which F corresponds. However, recovering a Belyi
map from a given dessin is a much more difficult proposition. Given a dessin A,
a corresponding Belyi map F can be determined (uniquely up to isomorphism
over C U {oo}) by considering the degrees of the vertices of A r and the resulting
system of polynomial equations involving roots and poles of F. Various methods
of calculating Belyi maps may be found in [Couveignes 1994; Matiyasevich 1996;
Schneps 1994; Sijsling and Voight 2014].

Definition 1.4. A Shabat polynomial is a polynomial F' : C — C whose critical
values are contained in {0, 1}.

That is, a Shabat polynomial is a Belyi map which has only one pole (which is at
infinity); hence, its corresponding dessin will be a tree. (Shabat polynomials can be
defined more broadly as in [Shabat and Zvonkin 1994] as generalized Chebyshev
polynomials which have at most two critical values. Without loss of generality, we
choose in this paper to identify the two critical values 0 and 1.)

Definition 1.5. We say that two Shabat polynomials F, G are isomorphic if there
exist « € C* and B € C such that F(z) = G(xz + ).

Assume we have a dessin which is a tree and we label the edges with the numbers
1,2,...,n. We can associate the dessin with a pair of permutations oy, 01 € Sy,
where n is number of edges, such that the cycles of gy correspond to the cyclic
ordering (read counterclockwise) of the edges around the black vertices and the
cycles of g7 correspond to the ordering (read counterclockwise) of the edges around
the white vertices. For example, see Figure 1, where we have a bicolored tree, whose
edges are labeled 1, 2, ..., 7 inducing a pair of permutations 0, 01 € Sy associated
with the black and white vertices, respectively. In general, by o (respectively, o),
we mean the product of the cycle permutations associated with the edges about all
of the black (respectively, white) vertices. The group that oy and o; generate is a
central focus of this paper.

Definition 1.6. The monodromy group of a dessin with n edges is (0g, 01, 00 ), the
group generated by 0, 01,00 € Sy, Where 0, 01 are as described in the preceding
paragraph and 0 is such that 0yg0j05 = 1.

We remark that since 0o = (007) !, we may remove it from the generating set
for the monodromy group, but we keep it in the definition to be consistent with the
wider literature on this subject, which goes well beyond the consideration of Shabat
polynomials. For the remainder of the paper, when we refer to the generators of the
monodromy group, we are talking about oy and 0. When a dessin is connected,
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Figure 1. A dessin determined by the pair of permutations oy =
(1,3,2)(4,7,5) and 07 = (3,4)(5,6) whose monodromy group
(09, 01) is isomorphic to GL3([F,), a transitive subgroup of S7.

its monodromy group will be a transitive subgroup of S,, where n is the number of
edges in the dessin.

To every dessin, we may associate an invariant known as its ramification type.
The ramification type of a dessin with n edges is given by the three partitions of n
corresponding to the degrees of the black vertices, the degrees of the white vertices
and the degrees of the faces. In the case of a dessin having one face, the latter
partition is simply n = n. Since we focus exclusively on dessins with one face in
this paper, we will omit from the notation for ramification type the last partition
corresponding to the degrees of the faces.

Definition 1.7. The ramification type of a dessin with n edges (and exactly one
face) consists of the two partitions of »n

[bllglbzﬂz . 'bfk; w(1¥1 w;lz .. w‘Zﬁ]

written in exponential notation, where b1, b, ..., by are the distinct degrees of the
black vertices, wy, wy, ..., wy are the distinct degrees of the white vertices, §;
is the number black vertices of degree b; and «¢; is the number white vertices of
degree w;.

Note that b‘l‘glbzﬂ2 -~-b£k and wi' w32 .- wy* are both partitions of n, where n
is the number of edges, and these two partitions correspond to the cycle type of aq
and o1, respectively.

While each dessin has a unique ramification type, one may ask how many distinct
dessins (or equivalently nonisomorphic Shabat polynomials) are associated with a
given ramification type. Our focus in this paper will be narrowed to ramification
types which admit unique dessins.

We sometimes use the concept of tree composition to decompose a dessin into
smaller dessins. Composition will also help us compute new Shabat polynomials
as it corresponds with the usual polynomial composition. It is an easy exercise in
calculus to show that the composition of two Shabat polynomials is again a Shabat

polynomial.
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Figure 2. Top, left: P, with two vertices marked square [ and trian-
gle A. Top, right: Q, with black vertices marked [J, white vertices
marked A. Bottom: The composition P o Q of two dessins P, Q.

Many of the dessins that we study can be constructed by a composition process
given by Adrianov and Zvonkin [1998]. Given two dessins, P and Q, we begin
the composition P o Q by first distinguishing two vertices of P — label them with
a square and a triangle. The vertices of Q will be preimages of the square and
triangle, so we mark every black vertex of Q with a square and similarly every
white vertex of Q with a triangle. The process of composition is as follows:

(1) Replace each edge of Q with the union of the path from the square to the
triangle in P along with every branch connected to that path.

(2) Adjoin to each square (resp., triangle) vertex of Q the union of every branch
connected to the square (triangle) in P except for the one in the path to the
triangle (square). Do this as many times as the degree of the vertex.

The resulting graph should resemble n copies of P arranged in the shape of Q,
where 7 is the number of edges of Q. We demonstrate this process in Figure 2.

Remark 1.8. Let Gp, G denote the respective monodromy groups of P and Q.
According to a theorem of Adrianov and Zvonkin [1998], the monodromy group of
P o Q is a subgroup of G ¢ G p, where ¢ denotes the wreath product.

This process also gives a way to compute Shabat polynomials. If p,qg are
the respective Shabat polynomials of P, Q such that p(0), p(1) € {0, 1} then the
Shabat polynomial of P o Q is poq (where o denotes the conventional composition
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of functions, i.e., (f o g)(x) = f(g(x))). Later on, when we compute Shabat
polynomials of more complicated dessins, we will make extensive use of this fact.

We will often call upon the idea of the wreath product of groups to describe our
monodromy groups. The composition process produces dessins whose monodromy
groups are subgroups of wreath products. While there are numerous examples for
which the containment is proper, often equality of the groups is achieved. As far as
the present authors can tell, the exact conditions that ensure equality are not known.

Definition 1.9. Let d be a positive integer. Let G < S; and H be groups. Let K
be the direct product of d copies of H. If h = (hy,...,hz) € K, then we define the
action of 0 € G on K by 0 -h = (hg(1), ..., hg(a)). The wreath product of H by
G is the semidirect product K x G with respect to the action above, and we denote
this group by H? G.

In this paper, G is typically C , the cyclic group of order d.

2. Shabat polynomials for trees uniquely determined by ramification type

In this section, we summarize the list of Shabat polynomials (up to isomorphism)
corresponding to dessins which are trees and are uniquely determined by ramification
type. The complete list of ramification types for such dessins was given in [Shabat
and Zvonkin 1994]. For the Shabat polynomials corresponding to these ramification
types, we adopt the convention described in Definition 1.7.

Proposition 2.1. The ramification types [r;17], [27,1;27,1], [2":2771,1?] have
respective Shabat polynomials

z", %(1 + cos((2r + 1) arccos(z))), %(1 + cos((2r) arccos(z))),
all unique up to isomorphism.

This result is already well known in the literature and can be found on pages 3—4
of [Shabat and Zvonkin 1994]. See Figure 3.

Proposition 2.2 [Adrianov 2007]. Up to isomorphism, the unique Shabat polyno-
mial for the ramification type [s" 1, t;r, 10~ DE=D+E=1)] ¢

Fz) = (1_2)’(ri1 (5) i)
k=0 N kk' ’
where

@r=al@a+1)a+2)---(a+k—1)
denotes the Pochhammer symbol.

The proof for this proposition can be found in [Adrianov 2007].
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Figure 3. The dessin with ramification type [8; 18].

Proposition 2.3. Let r > 1. Up to isomorphism, the Shabat polynomial for the tree

having ramification type
[r, t, 1r+t—2; 2r+t—1]

with a black vertex of degree v located at z = 0 and a black vertex of degree t
located at z = 1 is given by

r+t—1)

F(z)=4z’( S (=1, rir +1;2)

X (1—(1—Z)tzr(rj_lII>ZF1(1,V+l;V+1§Z)),

where 5 Fy is the hypergeometric function defined by

> n bn n
2Fi(a,bic;z) = Z %%

n=0

Im(z)

1ok

05+

T — % Re(2)

-5}

-1sb

Figure 4. The dessin obtained by the Shabat polynomial given in
Proposition 2.2 when s =6, r =5, t = 3.
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05+

L L L L o
02 04 0.6 08 1.0

Figure 5. The dessin (path graph) obtained by the Shabat polyno-
mial B(z) =4z(1 —z).

Im(z) z — z27(1522 =352 4+21)

02 7: ;: /
! : Re(2)

Figure 6. The tree obtained by the Shabat polynomial in
Proposition 2.2 where s = 1,r =3, = 5.

Proof. Let Sy ;(z) be the Shabat polynomial for the ramification type [¢, 17~ 1; 7, 1771],
By Proposition 2.2, with s = 1,

1
Sr(2) = (1 -2 Z( )

Consider the map B(z) = 4z (1 —z) with the dessin Ag (see Figure 5) and S, ;(z)
with the dessin Ag (see Figure 6). The composition §(z) o S, ;(z) is a Shabat
polynomial that produces the dessin obtained by coloring the vertices of Ag to
black and adding a white vertex of degree 2 inside every edge (in other words,
replacing every edge of Ag with Ag). Note the number of edges in S;,(z) is
r +t — 1. The composition produces the new dessin A g (see Figure 7) and Shabat
polynomial F(z) = B(z) oS, (z) with ramification type [r, ¢, 17 T/=2; 2" */=1] and
therefore F(z) equals

. g l+] S el r—] i
427 (1-2) (Z( ) )(Z( r—1 )( r+j )(_1)2)’

Jj=0 Jj=0
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041

021

—{
\

021

04}

Figure 7. The tree obtained by the Shabat polynomial in
Proposition 2.3 with r = 5,¢ = 3.

which can be rewritten in terms of hypergeometric functions, as in the statement of
the present proposition. O

Proposition 2.4. The Shabat polynomial for the unique tree having ramification
Iype

[7‘2 14r—3 . 321‘—1]
with two black vertices of degree r located at z = 0 and z = 1 is given by

F(z) = (T' o 8;)(2),

where
T(z) =-3iV3z(1-2)(z+p), p=L1(=1+iV3),
and
r—1 .
S =1-2Y" (r;:”)zf.
j=0

F(2) is unique up to isomorphism.

Proof. First we will show that T'(z) := —3i +/3z(1 — z)(z 4 p) corresponds to a
3-star with a white center and black leaves at z = 0 and z = 1. Considering 7'(z),
we see immediately three distinct roots of multiplicity 1 at z =0, 1, %(1 —i/3)
representing three black leaves in A g. Next we consider the derivative of T'(z),

T'(z) = =3i/3(p + 2(1 — p)z — 32%),

which has a single root of multiplicity 2 (note that the discriminant of 7”(z) is
zero). Since the multiplicity of the black vertices is 1, we may assume that the
multiple root in 7”/(s) must refer to a root of multiplicity 3 in F(z) — 1, repre-
senting the white vertex of degree 3. Therefore, 7'(z) must be a 3-star with black
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Figure 8. An illustration of the tree derived from the Shabat poly-
nomial in Proposition 2.4 where r = 4.

leaves at z = 1 and z = 0. We can now use the idea of composition to replace
every edge of the tree having Shabat polynomial S, (z) := S, ,(z), where S, ;(z)
is the polynomial as defined in the proof of Proposition 2.3, with the 3-star by
computing the composition (7" o S,)(z). This will add a white vertex of degree
3 and an additional black leaf for every edge. Note that S, (z) corresponds to a
tree with 2r — 1 edges and 4r — 2 vertices. Therefore A g will have 2r — 1 white
vertices of degree 3 and 4r — 3 black leaves, in addition to the two black vertices
of degree r.

Note: An anonymous referee pointed out that we may go one step further here
by letting z’ := i +/3z — p2. A quick computation shows that S, (z’) = S, (1 —2/).
One can also show that S,(z) = 1 — S, (1 — z) using the following argument.
Observe that 0 is a root of order r of S, (z) and 1 — S, (1 — z). Further observe
that 1 is a root of order r of S,(z) — 1 and 1 — S;(1 —z) — 1. Thus we deduce
that Sy (z) = 1 — S, (1 — z) using the uniqueness of the Shabat polynomial from
Proposition 2.2. Hence, S, (z’) = 1 — S,(z’). A few simple calculations yield the
equality 7' (S, (z)) = T(S,(z")), which implies T'(S,(z")) € Q[z]. O

Proposition 2.5. For the tree with ramification type [33,1°;27], a black vertex of
degree 3 at z = 0 and a black vertex of degree 1 at z = 1, the Shabat polynomial is

F(z) = —s51577(z = D2 (222 + 32 + 9)? (8z* 4 2827 + 12627 + 189z + 378).

Proof. We can write F(z) = (B o f)(z), where
,B(Z)=4Z(1—Z) and f(Z):—%(Z_l)(9+3Z+2ZZ)3’

which is the Shabat polynomial for ramification type [32, 1; 3, 14] obtained by letting
r =3, s =3, t =1 in Proposition 2.2. O
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Figure 9. An illustration of the tree described in Proposition 2.5.

3. Monodromy groups for trees uniquely determined by ramification type

In this section, we provide proofs for the monodromy groups associated with each
ramification type listed in Theorem 1.1. In all of our proofs, we proceed by choosing
a particular labeling of the edges of the dessin. Though the monodromy group does
not depend on the choice of labels, some choices better illustrate how oy and o
generate the monodromy group.

Proposition 3.1. The ramification types [r;17], [27,1;27,1], and [27;2"71,1?]
have respective monodromy groups Cy, D324 1), and Dy (3., where Dy, denotes
the dihedral group of order m.

Proof. The first ramification type gives the r-star dessin with monodromy group
generated by an r-cycle and the identity permutation. It follows that the monodromy
group is the cyclic group C,. The second and third ramification types yield the
path dessins with 2r 4 1 and 2r edges respectively. We handle these two cases
simultaneously, since the argument is essentially the same. The dessins in Figure 10
are examples of path dessins.

In both cases, the generators of the groups oo and o; have order 2, and the
respective 0o ’s have order 27 +1 and 2r. Since in this case 000 = (007 )y~ =000,
we may view the monodromy group as {(0¢, o). We let n denote the order of 0o
note that # is either 2r 4+ 1 or 2r depending on the ramification type. The relations
03 = 0/, = 1 and 0p000 = (0901)00 = (0100) 09 = (000) 10 hold. The
conclusion is that the monodromy groups of these dessins are isomorphic to the

dihedral groups of order 2n. O
1 2 3 2 3 4

Figure 10. The path dessins of 3 and 4 edges, respectively.
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Figure 11. An example of a dessin from Proposition 3.2, where
r=4, s=3,t=4.

Proposition 3.2. Assume r> 1. The ramification type [s"~1, t;r, 10~ DE=D+E=1)
has n = (r —1)s + t edges and a unique tree with monodromy group G, with

Cr 2 Cs, §s=1,
G~ SnjaCa. s#£t, reven,
| AnaCy. s F#t, risoddand 5 is odd,

(An/d)d X Caq, SF#Lt, rodd, 5 even,
where d = ged(s, t).

Proof. The ramification type [s" 1, ¢; r, 10~ DE=D+E=D] produces a tree of diam-
eter 4 with n = (r — 1)s 4+ ¢ edges in the nondegenerate cases. See Figure 11.

In general, oy is the product of one 7-cycle and (r—1)-many s-cycles and oy is
an r-cycle. We label our edges so that we compute the permutations 0g, 01, Oso @S

oo=(1,....00@+1,...,t+5)
s+t 428) -+ =2)s+1,...,t+(—1)s),
o=, t+1,t+s+1,t4+2s+1,...,6+(F—=2)s+1),
O'o_ol =o0901 = (1,2,...,n).
(Note that we go left to right when computing permutation products.)

Case 1: s =t = G = C, 2 Cs. Assume s = . Then our dessin is the composition
of an s-star with an r-star, which means G is a subgroup of C, ¢ C; by Remark 1.8.
Define 7; := oy i 010(’;. Referring to the above where we already computed o
and o, we see

=0 t+1,2t+1,...,r — Dt +1) =04,
=02, t4+2,2t4+2,...,(r—Dt+2),

T = (t,2t,3t,...,r1).
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Each t; is an r-cycle and generates C,. Since the 7;’s partition {1,2,...,rt},
they must commute with each other and we see that together they generate C/.
Also, 0y is a product of z-cycles satisfying o 17;00 = 141, where the subscripts
are reduced modulo 7. These relations are sufficient to recognize that G contains
(O'(), T1, T2y Tt—l) ~ C (.

Case2: s # ¢, ged(s,t) =1 = G = A, forr,t odd and G = S, otherwise.
Assume that gcd(s,7) = 1, with s or # > 1. It is known that a permutation group con-

taining (1,2, 3) and (1,2, ..., n) contains A,; see Lemma A.1. Our goal is to show
that 4, < G < S, and then use a parity argument to determine which containment
is improper. Given that g0 = (1,2,...,n) € G, we proceed to show (1,2,3) € G.

Assume ¢ = 1 and s > 1. We claim p := (00_101_100)(000010(;1) =(1,2,3).
Since t = 1, we know gy is a product of (r — 1) s-cycles, while o7y, o, ! remain
r-cycles. We see that

-1 __—1 —1
P = (00 01 ‘70)((70001000)

=(,r—2)s+3,...,25s+3,5s+3,3)(2,3, s+ 3,25 +3,....(r —2)s +3).

One may verify that p(1) =2, p(2) =3, p(3) =1 and, for k >3, p(k) =k. It
follows that A, < G.

If 1 =2, we have 0§ = (1,2) € G. Since G contains the transposition (1, 2) and
the cycle (1,2,...,n), we have S, < G.

Now suppose ¢ > 3, we first set k to be the smallest positive integer such
that k satisfies K = 0 (mod s) and £k = —1 (mod ¢). The existence of such
a number is guaranteed by the Chinese remainder theorem. We claim p :=

(01_10(’)‘01)0(’)‘(01_100_2]‘01) = (1,2, 3). Notice that

(01_10(1)‘01)0(])‘(01_100_2]‘01)=(t+1,t, L3 (L 3,2 (1,23, ..., 02,

One may verify that p(1) =2, p(2) =3, p(3) =1 and p(k) = k for k > 3. Thus
p=(1,2,3) € G and therefore 4, C G.

For every triple s, ¢ such that ged(s,?) = 1 and s or ¢ > 1, we have shown that
An € G. Since we also have G < S, by index considerations G 1is either the
symmetric or alternating group of appropriate order. Otherwise if r or ¢ is even, o0y,
being the product of a ¢-cycle and (r—1) s-cycles, is an odd permutation (note s must
be odd if ¢ is even), so G = Sj,. Since both 0 and o are even permutations when r
and ¢ are odd, we deduce that G < A, and thus the double inclusion gives us G = A4,,.

Case 3: In this final case, we assume gcd(s, #) = d > 1. This tree is the composition
P o Q, where P is the d-star and Q is the dessin corresponding to the passport

r—1 ¢
S L., 1e=DG/d=D)+@/d-1) |
d d
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Hence, the monodromy group G is a subgroup of the wreath product Gg ¢ Cy,
where G ¢ is the monodromy group for Q.
Consider the partition of {1, ..., n} into the d sets

(,d+1,....n—d+1}, {2.d+2,....n—d+2), ..., {d.2d, ... n,

each of size %, and denote them by P, ..., Py respectively. Recall that oy is the
disjoint product of a ¢-cycle and (r — 1) s-cycles, and moreover every element in
{1,2,...,n} is moved by exactly one of these cycles under the canonical group
action. Because d divides both s and ¢, we know t := cr(‘)" is the disjoint product
of d é-cycles and d(r — 1) 7-cycles. Moreover, each disjoint cycle of  permutes
elements in exactly one of the P; while fixing the rest. Similarly, because d
4 s the disjoint product of d —-cycles and each disjoint
cycle of Ud likewise permutes elements in exactly one of the P;. Note that o
permutes only the elements of P;.

Let k be the smallest positive integer such that k satisfies k =0 (mod ) and k =

-1 (mod ). One may verify that p: =0, Lk oy ‘L’k0’1 kg =(1,d+1,2d+1).
(Note that in the case where = d, we let p 1= (7! o, ') (00001 aood ) and proceed
with the same argument.)

We can conclude that the subgroup

divides n, we know 0%,

—d  _d 2d —(n—d) —d
N = (p, 08 pol, o 2 ,oaoo,...,aoo pos e, o1)
is isomorphic to S,/4 when r is even and isomorphic to A,/ when r is odd
(see Lemma A.4). Furthermore, we observe that NV, oo_ol Nooso, OO_OZN ago, R
oo_od“ N O'go_l are all isomorphic to Sy,/q or A, /4 (depending on whether 7 is even
or odd) and ao_o"HN olf ! permutes elements of P;. Hence

_ —1 —272 624+ Nod! (Snya)® if r even,

= (N, 05 NOxo, 055 NoZ,, ..., No ) = {(An/d)d 7 odd,
One can check that o, 'Hoy = H and o/ 'Hoy = H. Hence, H < G. Observe that
o1 € H. Therefore, Ho, generates the quotient group G\ H. When r is even, the
smallest power of 0 in H is d, when r is odd and % is odd, the smallest power
of 0 in H is d, and when r is odd and % is even, the smallest power of 0 in H
is actually 2d. (Note that when r is odd, the parities of 5 and % are the same.) In
order to show that G is isomorphic to a semidirect product, we will use the splitting
lemma. In our case, if we can find an element of Ho, of order d or 2d (depending
on the case), we have shown G is a semidirect product.

First we consider the case where r is even. In this case, observe that

(d,2d,3d,....n)"1(1,2,3,4,....n)
=(1,2,....d)d+1,d+2,....2d)---(n—d+1,n—d +2,....,n).
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Figure 12. P and Q on the left; P o Q on the right.

Hence, there is an element of order d in G\ H and G = (S,,/d)d x C; by the
splitting lemma for semidirect products, and in fact G = S, /42 Cy. This also shows
that Hoso contains an element of order d in the case where r and % are odd since
the cycle (d,2d,3d, ..., n) is an element of A4, in this case. Therefore, when %
and r are odd, G =~ (An/d)d X Cyq and in fact G = 4,42 Cy.

Now we consider the case where r is odd and % is even. Observe that

(d.3d,...,n)"'(1,2,3,....n)
=(1,2,3,....2d)2d +1,2d +2,...,3d)---(n—d + 1,n—d +2,....,n).

Hence, there is an element of order 2d in G\ H and thus G =~ (An/d)d xCyyq. O

Proposition 3.3. Let r,t > 1. The ramification type [r,t, 1" T*=2: 2" =1 produces
a unique tree with monodromy group G, where

Arp—_1 XCy, 1r=t,rodd,
Sr,_1xXCy, 1r=t,reven,
Api4-12Cy, 1 #t, both odd,
R, r # t, both even,
Sr4i—120Cy, 1 #£t, else,

Q
e

where R, denotes the index-2 subgroup of Sy1;—12Cy such that Tt is an even
permutation for all (11,13, g) € R;.

Proof. First, we note that this dessin is the composition P o O, where P is the
2-star and Q is the dessin of Proposition 3.2 with s = 1. See Figure 12.

LetGg =((1,2,...,r),(r,r+1,...,r +t—1)) be the monodromy group of Q.
By Proposition 3.2, we know that

G = Ay4¢—1, F,tbothodd,
Q= Sy4:—1, otherwise.

The dessin with ramification type [r, ¢, 17 t7=2;22"1] is the composition of P
and @, and so its monodromy group G satisfies G < G ¢ C; by Remark 1.8. We
consider G in two cases: r =¢ and r # ¢.
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Case 1: r #¢. In the first case, we have r # ¢. We label our edges in such a way that

oo=(1,2,....r)(F,r+1,....r+t—1),
o1 =(1,1)2,2)---(r+t—1,r+1—1).

Note that o is the disjoint product of an r-cycle with a ¢-cycle; call these cycles
1 and 7, respectively. Consider the embedding ¢ : G — S, 4,1 ¢ C, given by

oo > (1,72, 0),

o1+ (id,id, 1).

Note that 01_10001 is mapped to (73, 71, 0). Apply Lemma ASton=r+1—1
(assume n > 5 for now), w1, w3 € Sy 44—1. We have Gg = (1, m2) > Ay as noted
above. Lemma A.5 implies

Ar41-10C2 = 9(G) = Sp44-12Ca.

When r, ¢t are odd, both 7 and 7, are even permutations, and we see that ¢ (G) =
Ay4¢—12Cy. When r and ¢ have different parity, we know (7, 73) = Sy 4¢—1, SO
¢ (G) = Sy44-12C,. When r, ¢t are both even, for any (o1, p2,8) € ¢(G), p1 and
p2 will share the same parity. Since we can take p; = w1, an odd permutation, we
see that ¢ (G) is properly contained in between A, 4+;—12Cy and S, 4,1 2C;. Itis
in fact the group R, described earlier after Theorem 1.1. In the finite number of
cases where r +7 — 1 < 5, one can verify the result by hand.

Case 2: r = t. In the second case, we consider » = . We can label our dessin in
such a way that

oo=(1,2,....r)(1,2,...,7),
o= r+DQ,r+2)---(r=1,2r =D)(r,i)(r +1,1)---2r —1,r —1).

Observe that
Ogr—l) — (l,i) - (2r—1,2r—1),

T :010001_1 =rr+1,....2r=D)(F,r+1,...,2r—1),

Ty = oéﬁ"l)ol = (i, r+ D1, r+1)

2+ 2)2,r +2) (= 1,2r = 1) (r — 1,2r — 1) (r)(F),

and Gg = (aéi"”, 71, T2 ) is a subgroup of S,,_1 X Z,. Furthermore,

73 2120‘1000'1_11'2_1 = (1,2,...,}’)(1,2,...,7).

By Proposition 3.2, we see that {7y, t3) is Sp,— if ¥ even and A,,_; if » odd, and
thus we have our result. O
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Figure 13. Top, left: P, with vertices marked. Top, right: Q, with
vertices marked. Bottom: An example of the composition for r = 3.

Proposition 3.4. The ramification type [r?, 14773; 32"~ produces a unique tree
with monodromy group G, where

G~ {AZr—l 0C3, 1 odd,

Rs, r even,

where R3 denotes the index-2 subgroup of S»,—1 ¢ C3 such that 111,13 is an even
permutation for all (t1, 12,73, g) € Rj.

Proof. The procedure here is similar to the proof of the previous proposition. We
observe that this dessin is the composition P o O, where P is the 3-star with
ramification type [13;3] and Q is the dessin from Proposition 3.2 where s = 1,
r =t. See Figure 13.

We can label the dessin so that

oo=(L,2,....,r)(r,r+1,...,2r—1),
or=(1,1,1)2,2.2)---2r —1,2r = 1,2r — 1).

Note that o is the product of two r-cycles (call them m; and 7, respectively)
and that o is the product of (2r — 1) 3-cycles. Consider the embedding ¢ : G —
S27—1 20 C3 defined by

oo — (71’1,71’2,1(1, 0),

o1+ (id,id,id, 1).

Under this homomorphism, successive conjugations of oy by o are mapped to
(id, 1, 5, 0) and (75, 1d, 1, 0). Applying Lemma A.5 to 7y, ,, and ¢(G), we
have A,,_12C3 < ¢(G). When r is odd, both 7; and 7, are even permutations,
s0 Apy—12C3 > ¢(G), giving a double inclusion. When 7 is even, we consider the
quotient group

(S2,-120C3)/(A2,—12C3) = Cy x Cy x Cs.
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Observe that when r is even, ¢(G) < R3 and (7q, 73, 1d, 0) is equal to (1, 1, 0) in
the quotient group ¢(G)/Az,—1 ¢ C3. We similarly have (0,1, 1) and (1,0, 1) in
the quotient group. Hence, we see that ¢(G) is an index-2 subgroup of S,,_1 ¢ C3
and thus ¢(G) > Rj. O

Proposition 3.5. The ramification type [33,1°;27] produces a unique tree with
monodromy group G = A7 Cj.

Proof. This is a sporadic case that may be verified by hand. O

4. Future directions

The reader will notice that there are some obvious pathways left open by this paper.
In Theorem 1.1 each entry refers to a tree uniquely determined by ramification type.
For each entry there exists a Shabat polynomial with rational coefficients. However,
we were not able to find a closed form expression for the coefficients of the rational
Shabat polynomial given for the tree with ramification type [r2, 14773; 32" ~1],

As for another direction of further inquiry, we note that the present paper focuses
exclusively on (planar) trees uniquely determined by ramification type. However,
we know that there exists an exhaustive list of ramification types that produce
exactly two distinct trees, and perhaps there are other such lists for ramification
types that produce larger numbers of trees [Shabat and Zvonkin 1994]. At the very
least, it would be interesting to see the complete list of monodromy groups for
ramification types that produce two trees in comparison with the completion of
Theorem 1.1. Finally, it would also be of interest to see similar results for classes
of dessins having at least one cycle or for dessins with genus greater than 1.

Appendix

In this section we prove a few technical results used in the paper. We learned of the
following results (Lemmas A.1, A.2, A.3, A.4) and their proofs from Keith Conrad.
Recall that we multiply permutations left to right.

Lemma A.1. For n > 5, the subgroup generated by (1,2,3) and (1,2,...,n)
contains Ay.

We prove this lemma through a sequence of lemmas.
Lemma A.2. Forn > 5, every element of Ay is a product of 3-cycles.

Proof. The set of 3-cycles is a conjugacy class that is a subset of 4,. Therefore, the
subgroup generated by the set of 3-cycles is a normal subgroup of A4,. Since A,
is simple for n > 5, we conclude that the set of 3-cycles generates A, and every
element of A, is a product of 3-cycles. O

Lemma A.3. Forn > 5, the group A, is generated by elements of the form (1,2, k).
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Proof. First observe that A, is generated by 3-cycles of the form (1,7, j). This is
easily seen by observing that for any 3-cycle (a, b, ¢) not containing 1, we have
(a,b,c)=(1,b,c)(1,a,b). By Lemma A.2 we see that A, is generated by 3-cycles
of the form (1,1, j).

Now we consider the 3-cycles of the form (1,2, k). Since (1,2,k)~! =(1,k,2),
any 3-cycle with 1 and 2 is generated by 3-cycles of the form (1, 2, k). For a 3-cycle
(1,7, j) not containing 2, we have (1,7, j) = (1,2, j)(1,2,i)(1,2, j)(1,2, ).
Hence, every element of A, is generated by elements of the form (1, 2, k). O

Lemma A.4. Forn > 5, the consecutive 3-cycles (i,i +1,i +2) with1 <i <n—-2
generate Ay.

Proof. This can be shown to be true for 45 by computation. We proceed to prove
this for n > 5 by induction.

Assume this is true for A,. Consider A, ;. By induction, we know that cycles
of the form (i,7 4+ 1,i 4+ 2) generate the elements (1, 2, k) for 3 <k <n. Therefore,
by Lemma A.3, we need only show that we can generate (1,2,n 4 1) in order
to show that cycles of the form (i,i + 1,i + 2) generate A,41. Observe that
(L,2,n+ 1) =(,2,n)(1,2,n—1D(m—1,n,n+ 1)(1,2,n)(1,2,n — 1) and thus
we have proven our result. O

Now we proceed with the proof of Lemma A.1

Proof of Lemma A.1. Let 0 = (1,2,...,n). Observe that
o %(1,2,3)6% = (6% (1), 6% (2),6*3) = (k + 1.k + 2.k +3)

if 0 <k <n—3. Thusby Lemma A 4, (1,2, 3) and (1, 2, ..., n) generate a subgroup
that contains A4,,. O

Lemma A.5. Suppose that ntg, w1 € Sy with (mg, m1) = Ap withn > 5.
(1) If |mo| # |m1|, then T = ((7wg, 71), (71, 7)) must contain Ay X Ap.
2) T = {(mg, m1,1d), (id, g, 1), (71, 1d, 79)) must contain A, X Ay X Ap.

Proof. Suppose that id # p € A,. Observe that (t—!pr : T € 4,) is a normal
subgroup of A,. If n > 5, then A, is simple and therefore, A, = (" !pr: 7 € 4,).
First, we consider statement (1). Suppose that (p, id) € I. We want to show that
Apx(id) is a subgroup of I'. There is a homomorphism proj : S, xS, — Sy, which is
a projection from the first component. Since A, < (g, 1), we have proj(T") > A4,,.
Therefore, for all T € A, there exists T’ € S, such that (z,7’) € I. Conjugating
(p,id) by all (z, t") shows that 4, x (id) < I'. Note that the same argument can be
used to show (id) x A, < I via projection in the other component. Statement (1)
then follows as long as p # id exists. Furthermore, the argument to establish
statement (2) would proceed in an identical fashion, presuming p # id exists.
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To establish existence of p in the case of statement (1), we claim that there exists
an element of the form (p, id) € I, where p # id. Without loss of generality, assume
|7ro| > |71], and then consider (7, )™l (1, o)™, in which case we may let
p=T7 ()7rl

Now we prove such an element exists in the case of statement (2) for n > 2. If
|7to| # |71 ], then the proof is analogous to the argument for statement (1). Otherwise
|7to| = |1 | = r and we want to find some element & € A, such that || {r. One
can show that such a 7 exists by proving that, for n > 2, there must be some prime ¢

not dividing |mg| = r. One can show ¢ exists by using the fact that

n<2p for n > 2.

p=<n
p prime
Using all three generators of I', one can produce the element (ng Yo, nfz) € A,31,

where k1, k, € Z. By raising this element to the r-th power, we produce the element
(id,7",id) e I" and let p = ". O

Corollary A.6. Let H be a simple group. Suppose mqy, w1 € Sy with (g, w1) > H.
(1) If |mo| # |m1|, then T = ((7wg, 71), (71, 7)) must contain H x H.
) T = {(mg, m1,1d), (id, g, 1), (771, 1d, w9)) must contain H x H x H.

Remark A.7. In [Adrianov et al. 1997], Adrianov, Kochetkov, and Suvorov classify
all the possible primitive, and thus simple, monodromy groups of plane trees.
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On some edge Folkman numbers, small and large

Jenny M. Kaufmann, Henry J. Wickus and Stanistaw P. Radziszowski

(Communicated by Kenneth S. Berenhaut)

Edge Folkman numbers F,(G, G,; k) can be viewed as a generalization of more
commonly studied Ramsey numbers. F,(G, G»; k) is defined as the smallest order
of any K -free graph F such that any red-blue coloring of the edges of F' contains
either a red G or a blue G5. In this note, first we discuss edge Folkman numbers
involving graphs J; = K; — e, including the results F,(J3, K,;n+ 1) =2n — 1,
F.(J3,J,;n) =2n — 1, and F,(J3, J,; n + 1) = 2n — 3. Our modification of
computational methods used previously in the study of classical Folkman numbers
is applied to obtain upper bounds on F,(J4, Jy; k) for all k > 4.

1. Overview

For a graph F, we say that F — (G, G») if in any red-blue coloring of the edges
of F, there exists a red G| or a blue G,. The classical Ramsey numbers can be
defined using this arrowing notation as R(G, G,) = min{n | K, — (G, G)}.
If graph F is Ky-free and F — (G, Gy), then we write F — (G, G; k). If
graph G; is complete, we may write |V (G;)| in place of G;; for example, instead
of F — (K;, K;; k) we could write F — (s, t; k). Given graphs G, G, and an
integer k > 1, we define the set of edge Folkman graphs by

Fe(G1, Gos k) ={F | F = (G1, G2) and K £ F},

and we will denote by F.(G1, Go; k; m) the set of such Folkman graphs with
m vertices. The edge Folkman number F,(G1, Gy; k) is the smallest m such that
Fe(G1, Gy; k; m) is nonempty. A theorem by Folkman [1970] states that if k >
max({s, t}, then F,(s, t; k) = F.(K,, K;; k) exists. One may easily notice that for
graphs G| and G, if k > R(G, G7), then F.(G, G2; k) = R(G, G7). Henceforth,
in the sequel we will focus on the cases for k < R(G1, G»).

In general, the Ramsey numbers R(G, H) are difficult to compute, and F,(G,H; k)
for k < R(G,H) still more so. The graph J3 = Ps, however, leads to much
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easier cases. The arrowing F — (J3,H) is equivalent to the question, ‘“Does
the removal of every matching s K, from F leave a subgraph containing H?” In
Section 2, we present constructions which witness upper bounds on F, (J3; K,;; n+1),
F.(J3; Jy; n+1), and F,(J3; J,; n), and then we show that these bounds are tight.

In Section 3, we use computational methods modified from prior work on
F.(3, 3; 4) to determine values of Folkman numbers F,(Js4, J4; k) for k > 6, and
bounds on F,(J4, Js; k) for k =35, 6. These are obtained with the help of techniques
used in satisfiability (SAT) and MAX-CUT, both of which are well-studied problems
in computer science. The cases of F.(J4, J4; k) lie between the much-studied
F.(3,3; k) and little-studied F.(4,4; k). We also present up-to-date history of
bounds on the former, namely F, (3, 3; 4).

2. Arrowing (J3, K,) and (J3, J,,)

Let the graph K, denote the complete graph K, with removed perfect matching;
i.e., Kzn = Kzn — nKQ.

Proposition 1. Foralln e N, n > 2, we have K, + K1 — (J3, Kp).

Proof. We will first show that, for each n > 2, in any red-blue edge coloring of K>, ,
avoiding red J; = P3, every vertex v e V (K, ,) belongs to a blue K,,_;. We proceed
by induction. The claim is obvious for n = 2. Next, consider any red-blue coloring
of K5, avoiding red J3. Fix any v; € V(K3,), and let v, be the vertex not adjacent
to vy. If vy is redly adjacent to some vertex wy, then let {w, w,} be nonadjacent;
otherwise, choose an independent set {w, w»} arbitrarily, but v; &€ {wy, wy}. The
restriction of this coloring to K, — {v1, v2} = K>, , is a red-blue coloring avoiding
red J3, so by induction w is part of some blue K,,_; C K>, — {v1, v2}. Since v is
adjacent to all vertices in K, — {vy, v2} and is bluely adjacent to all its vertices,
possibly except wi, together with this blue K,,_ it forms a blue K,,. By induction,
the statement holds for all n.

Similarly, we prove the statement of the proposition by induction. Clearly, any
red-blue edge coloring of K, 4+ K has either a red J3 or a blue K,. For n > 3,
consider any red-blue coloring of the graph K, , + K without any red J3. Let
{x} = V(K). If any vertex v is redly adjacent to x, choose an independent set
{v1, v2} so that v, = v; otherwise, choose an independent set {vy, vy} arbitrarily.
We have shown that in the restriction of this coloring to K5, ,, v; is in a blue K,_;.
Vertex v, cannot be part of this K, ;. Since x is adjacent to all vertices in V (K3, ,),
and is bluely adjacent to all such vertices (except perhaps vy), it is in a blue K.
Thus, Kzn_l + K| — (J3, K,). O

Theorem 2. Forall k > n > 2 we have F,(J3, K,;; k) =2n — 1.

Proof. We notice that R(J3, K,;) =2n — 1, as listed in [Radziszowski 2017]. For
k =n+1, this gives the lower bound 2n —1 < F,(J3, K,,; n+1), while Proposition 1

n—1
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provides a witness for the upper bound. For larger & the claim follows directly from
definitions since F,(J3, K,;; k) is nonincreasing in k. U

Theorem 3. For all n > 3 we have

4 if k=n=3,
F(J3, Jysk)=492n—3 ifk>n>2,
2n—1 ifk=nandn > 3.

Proof. For the special case of k =n =3, it can be easily checked that K 3 — (J3, J3);
hence it gives the upper bound. Clearly, three vertices are not enough for a suitable
Folkman graph, so F,(J3, J3; 3) =4.

For the case k > n > 2, as in Theorem 3, the lower bound F,(J3, J,,;; n+1) >2n—3
for any k > n follows from R(J3, J,) = 2n — 3; see [Radziszowski 2017]. For the
upper bound, we will prove that K, , + K3 — (J3, J,). Consider any red-blue
coloring of the graph K, , 4+ K3 avoiding red J5. Let {x, y, z} = V(K3) and let e
be the edge {x, y}. By Proposition 1, the restriction of this coloring to the subgraph
K>, ,+Ki=Kj, ,+(K3—e) mustinclude a blue K,,_;. Since K,,_; & K», ,+Kj,
this blue K,_; must include exactly one of x or y; without loss of generality it
includes x and not y. But in the original coloring, y is bluely adjacent to all or
all but one of the vertices in the blue K,_;, so y is part of a blue J,. Hence
F.(J3, J,; k) =2n —3 for all k > n.

Finally we consider the case of k = n for n > 3. Consider any K, -free graph G
with |V (G)| =2n — 2. Color the edges of G as follows: take a maximum matching
R C E(G), color all of its edges in red, and color all edges in G — R blue. This
coloring contains no red J3. We will show that either it contains no blue J,, or that
G CK,—+nkK;.

Suppose that G contains a blue J,, and let S C V(G) be the vertices of the J,,.
Since G does not contain K,, there exist nonadjacent vertices x, y € S. Every edge
in R must be incident to a vertex in S = V(G) — S, implying that |R| < |S| =n—2.
Now consider any pair of adjacent vertices s, f € S (one of which may be x or y).
Since s and ¢ are adjacent, at least one must be incident to a red edge, since
otherwise we could add the edge {s, ¢} to R and obtain a matching larger than R.
Since |R| < |S| — 2, there exist two vertices in S neither of which is incident to
a red edge; then these vertices must be x and y. Furthermore, any other vertex
in S is adjacent to x and y, so it must be incident to some red edge. Therefore,
IR|=n—-2=1S|.

For any two vertices s', ¢’ € S, there exist vertices s, ¢ € S distinct from x and v,
such that {s, s’} and {¢, t'} are red edges. We must have that s’ and ¢’ are nonadjacent,
since otherwise we could obtain a matching larger than R by taking R, removing
edges {s, s’} and {z, t'}, and replacing them with edges {x, s}, {y, ¢}, and {s’, ¢'}.
Additionally, if (without loss of generality) x is adjacent to s’ € S, then we could
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obtain a matching larger than R by replacing edge {s, s’} with edges {x, s’} and
{y, s}. Thus, the vertex set S U {x, y} does not induce any edges, implying that
G CK,—>+nK;.

We can edge color K,,_» +nK; in a way that avoids red J3 and blue J,, simply
by coloring only one edge in the K,,_; red. Thus, K,,_» +nK; 4 (J3, J,,). Then
there is no graph G on 2n — 2 vertices such that G — (J3, J,; n), which gives
the lower bound F,(J3, J,; n) > 2n — 1. For the upper bound we consider the
graph K, , + K;. Let {x} = V(K1) and let vertices v, v, be nonadjacent. By
Proposition 1, any red-blue coloring of K», ,+ K1 with no red J3 contains a blue K.
This blue K,, can include at most one of vy, vy, and therefore at most one of {v, x}
and {v, x}. Hence, consider the subgraph K, , + KsC K>, , + K constructed
by removing the edges {v, x} and {v;, x}. Next, observe that any coloring of
K>, _, + K3 with no red J; therefore contains a blue J,,. So K, , + K3 — (J3, J,),
and thus, F,(J3, J,;n) =2n—1. O

3. Folkman numbers F,(J4, J4; k)

3.1. Cases for k = 6. In order to find upper bounds on F,(Jy4, Ju; k) for k > 6 we
reduced the corresponding arrowings to instances of the Boolean satisfiability (SAT)
problem, which has been extensively studied. In particular, this approach had been
previously used by Shetler, Wurtz, and the third author to test arrowing of (K3, Ja).
We applied it instead to the question of whether G 4 (J4, J1), as follows: We map
the edges E(G) to the variables of a Boolean formula ¢, so that the color of an
edge e is represented by the value of its corresponding Boolean variable. Then for
each J4 consisting of edges ey, e, e3, e4, es5, we add to ¢ two clauses,

(e1 +extez3+es+es)N(eg+er+e3+es+es).

Then G 4 (J4, Jy) if and only if ¢ is satisfiable. We solved many such instances
of satisfiability problem for formulas ¢ with the SAT-solver MiniSAT [Eén and
Sorensson 2004]. The results of these computations lead to the next theorem.

Theorem 4. It holds that

10 fork =S8,

Fo(s, Jas k) =
(Ja: Ja: ) {11 fork =1,

and 11 < F,(J4, J4; 6) < 14.

Proof. 1t is known that R(Jy, J4) = 10, see [Chvétal and Harary 1972], and hence
F.(Jy, Jg; k) > 10 for all k > 4, and F,(J4, J4; k) = 10 for k > 11. A computation
using MiniSAT determined that the graph G = K4 4 K> 27 satisfies G — (J4, Ja).
Since |V(G)| = 10 and G is Ks-free, using previous comments we obtain that
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F.(J4, Ja; 8) = 10. Because F,(Js, Js; k) is nonincreasing in k, we also obtain that
F,(Jy4, J4; k) =10 for k =9 and k = 10.

To find the lower bound for F,(J4, J4; 7), we tested all nonisomorphic graphs
on 10 vertices found with nauty [McKay and Piperno 2014]. We ignored graphs
containing K7 and those which are Ks-free (since it would contradict F, (3, 3; 5) =15
[Piwakowski et al. 1999]). Testing exhaustively all 1806547 such graphs via ¢
with MiniSAT revealed that F,(J4, J4; 7; 10) = &, and thus F,(J4, J4;7) > 11. A
computation using MiniSAT determined that the graph F = K, + K322 satisfies
F — (J4, Jg). Since |V(F)| = 11 and F is K7-free, much as before we obtain
F,(Ja, J4; 7) < 11. Lastly, we determined using MiniSAT that the graph H =
Cs + K333 satisfies H — (J4, J4). Since |V(H)| =14 and H is Ke-free, we have
F.(Jy, Jy; 6) < 14. U

The exact value of F,(Js4, J4; 6) possibly could be determined as above with a
larger effort using similar computational techniques.

3.2. F,(J4, Ja; 5) and MAX-CUT. Our attempts to use MiniSAT to find a graph G
witnessing an upper bound on F,(Jy4, J4; 5) were unsuccessful, as the SAT-solver
slowed down significantly when we tested larger graphs. However, we managed
to obtain the bound F,(J4, J4;5) < 1297 using a modification of an idea and
computational approach of Dudek and Rodl [2008] for studying F, (3, 3; 4), which
itself is based on an idea of Goodman [1959].

For a red-blue coloring of a graph G, we define Tyig(v) and Tgame (v), respectively,
to be the number of triangles containing v in which the edges incident to v are
different colors or the same color. Let ¢ be the number of triangles in G, and let m be
the number of monochromatic triangles in G. In each nonmonochromatic triangle,
there are two vertices v, vo for which the edges incident to it are different colors.
Then ), . Taitr(v) = 2(t —m) counts each nonmonochromatic triangle in G twice.
Furthermore, ), _; Tsame(v) =t + 2m gives the number of nonmonochromatic
triangles plus three times the number of monochromatic triangles. Therefore,

6m =2 " Tuame®) — ) _ Tuitr(v). (1)

veG veG

Observe that if 3m > | E(G)|, then the ratio of edges in monochromatic triangles
to edges is greater than 1, implying that there is some edge ¢ which is part of two
distinct monochromatic triangles. Therefore, if for every red-blue coloring of G we
have

20E(G)| <2 Tame®) — Y Tasr(v), )

veG veG
then G — (Jy, J4).
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We now recall a method for linking arrowing triangles to the MAX-CUT problem,
first proposed by Dudek and Rodl [2008]. Let Hg be the graph created as follows:
We map every edge e of G to vertex v, of H, so that V(Hg) = E(G). Then for
any two vertices v, vy in V(Hg), we add the edge {v., vy} if and only if their
corresponding edges e and f are a part of some triangle in G. Note that any
red-blue coloring of E(G) corresponds to a bipartition V (Hg) = B U R of vertices
of Hg, inducing an edge cut C, for which any nonmonochromatic triangle in G
has exactly two edges in C. For any graph F, let MC(F) = MAX-CUT(F') denote
the maximum number of edges in F between the partite sets of any bipartition of
V(F). Letting Mc(Hg) be the size of the cut C, we have

Mc(Hg) =Y Tuirr(v) < MC(H). 3)
veG

Clearly, any edge in Hg has both endpoints in the same partite set B or R if and
only if it is not in C. The above considerations lead to the following theorem.

Theorem 5. If MC(Hg) < 2t(G) — 2|E(G)|/3, then G — (Ja4, J1).

Proof. For any graph G whose edges are arbitrarily colored red and blue, consider
the cut C of Hg as described above. Using (1) and (3), one can easily show that

Y Tame(v) = | E(Hg)| — Mc(Hg) = 3t — Mc (Ho).

veG
Now from the assumption we have 2|E(G)| < 2(3t — Mc(Hg)) — (Mc(Hg)).
Finally, using (2) and its implication we conclude that G — (J4, J4). [l

For large graphs H, finding tight upper bounds for MC(H) is computationally
expensive. For this reason, we used the following weakening of Theorem 5 for
vertex-transitive graphs G. Its advantage is that it allows us to detect conditions for
which Theorem 5 can be applied much faster.

Theorem 6. Let G be a vertex-transitive d-regular graph, where G, denotes the
graph induced in G by the neighbors of vertex v. If we have

MC(G,) < 2|E(G,)| — 1d,
then G — (Jg, J4).

Proof. This is following the same argument as in an alternative approach to bounding
Folkman numbers used by Lu [2008] and Spencer [1988]. Here, however, with an
additional term d /3, we need to use the observation made above between equalities
(1) and (2). O

MAX-CUT is among Karp’s original 21 NP-hard problems [1972]. In order to
find good bounds on MC(Hg) and MC(G,) for graphs G of our interest, we used
the eigenvalue and semidefinite programming approximations of MAX-CUT. This
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approach was used by several authors, including Lu [2008], Dudek and Rodl [2008],
and Lange et al. [2014] to obtain upper bounds on F,(3, 3; 4) (see Section 3.3 for a
historical summary).

We applied Theorems 5 and 6 to many graphs of different types. We found an
interesting positive instance using the following construction described in [Lu 2008].
For positive integers n and s, s < n, define § = {s (modn)|i=0,1,...,n—1}.
Then, if n — 1 € S, let L(n,s) be the graph with vertex set Z, and edge set
{{x, y} | x —y € §}. Clearly, the graphs L(n, s) are vertex-transitive.

Theorem 7. F.(Jg, J4;5) < 1297.

Proof. For the graph L (1297, 8), which is 216-regular, we found that it satisfies the
assumptions of both Theorems 5 and 6, using two MAX-CUT bounding methods:
the eigenvalue method and the SDP approach. We used our Java library and
associated programs, including the eigs function in Matlab and the SDP solver
SDP-LR [Helmberg and Rendl 2000]. An easy (computer) test shows that the graph
L (1297, 8) is Ks-free, and hence it is a witness of the upper bound. U

We wish to note that recently (and after this work was completed) a much better
bound of 51 on F.(J4, J4; 5) was obtained in [Xu et al. 2018]. The latter bound
did not require any computations. We also would like to recall the bound on
F.(J4, J4; 4) obtained in [Lu 2008], as follows.

Proposition 8. F.(Jg, Jg; 4) <30193.

The bound in Proposition 8 is mentioned by Lu [2008] in his paper on F,(3, 3; 4)
as a side result, without any comments on the approach. However, we communicated
with the author who confirmed that the main idea of his approach was similar to
one in this work.

3.3. History of the Folkman number F,(3, 3; 4). Table 1 below summarizes the
history of bounds on the edge Folkman number F, (3, 3; 4) = F.(K3, K3; 4), which
is the smallest unknown classical Folkman number, sometimes also called the most
wanted. This table builds on an earlier Table 5 by Xu and the third author [Xu and
Radziszowski 2016], where further extensive comments about the progress related
to F,(3,3;4) can be found. The new entries in Table 1 here are lower bounds
13, 14 and 20. The bound F,(3, 3;4) > 14 can be obtained as follows: removal
of any independent set of three vertices from any graph in 7, (3, 3; 4) must yield
a 5-chromatic K4-free graph, but Nenov [1984] proved (without using computer
algorithms) that any such graph has at least 11 vertices. F,(3, 3; 4) > 13 is implied
in the same way by an earlier result of Nenov [1983]. In contrast, the currently
best-known lower bound of 20 was obtained by Bikov and Nenov [2017] using
CPU-intensive computations.
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year 10‘]2/3;/3556 who/what

1967 any? [Erd6s and Hajnal 1967]

1970 exist [Folkman 1970]

1972 | 11 - implicit in [Lin 1972], implied by F,(3, 3;5) > 10

1975 - 10109 Erdés [1975] offers $100 for proof

1983 | 13 - implied by a result of [Nenov 1983]

1984 | 14 — implied by a result of [Nenov 1984]

1986 —8-10!'"! | [Frankl and Rodl 1986]

1988 -3.10° [Spencer 1988]

1999 | 16 — Piwakowski, Radziszowski and Urbanski,
implicit in [Piwakowski et al. 1999]

2007 | 19 - [Radziszowski and Xu 2007]

2008 - 9697 [Lu 2008]

2008 - 941 [Dudek and Rodl 2008]

2012 —100? Graham offers $100 for proof

2014 — 786 Lange, Radziszowski and Xu [Lange et al. 2014]

2017 |20 - [Bikov and Nenov 2017]

Table 1. History of bounds on the Folkman number F,(3, 3; 4).

For any graph G with ¢ triangles and graph Hg as defined in Section 3.2, one can
easily observe that G — (K3, K3) if and only if MC(Hg) < 2¢; see also [Dudek and
R&dl 2008]. Thus, computational techniques to find upper bounds for MAX-CUT
may lead to good upper bounds on F,(3, 3; 4), including the first such result by
Dudek and V. Rodl [2008]. Lange, Xu, and the third author used the SDP MAX-
CUT approximation to obtain an upper bound on MC(H) for a particular K4-free
graph G on 786 vertices, and used it to show that G — (K3, K3).

We made numerous attempts to lower this bound by trying to find a smaller
K4-free graph G for we could obtain the bound MC(Hg) < 2¢. Among the graphs
tested were the graphs G(n, r) considered in [Dudek and Rddl 2008], the graphs
L(n, s) from [Lu 2008], and their variations. In particular, we tested a generalization
of L(n, s) to Galois fields GF( pk), in addition to graphs constructed by adjoining
various pairs of circulant graphs in a variety of ways. Our efforts have convinced
us that these methods are unlikely to yield any major improvement on this bound.

The well-known Ky4-free graph G 7 = L(127, 5) was studied by several authors;
see for example [Radziszowski and Xu 2007; Xu and Radziszowski 2016]. In
particular, it was conjectured by Exoo that G127 — (K3, K3). Needless to say, we
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were not successful in proving Exoo’s conjecture, because otherwise it would imply
that F,(3, 3; 4) < 127.

Computations. Some of the results in this paper were found through the use of
various computational methods. This involved a large library of functions, including
graph manipulation, construction of various types of graphs, and tests for graph
arrowing. Graphs were represented in a variety of ways, including two-dimensional
Boolean arrays, lists of edges for sparse graphs, and the g6-format of [McKay
and Piperno 2014]. Our code was written in Java and executed on Unix and
Windows systems. For our final results, Matlab and SDP-LR [Helmberg and Rendl
2000; Rendl et al. 2010] were used to calculate eigenvalue and SDP MAX-CUT
approximations, respectively. MiniSAT [Eén and Sorensson 2004] was used to
solve satisfiability problems. We also made use of lists of nonisomorphic graphs
with special properties found with nauty [McKay and Piperno 2014].
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