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We define the occurrence graph Gp(π) of a pattern p in a permutation π as
the graph whose vertices are the occurrences of p in π , with edges between the
vertices if the occurrences differ by exactly one element. We then study properties
of these graphs. The main theorem in this paper is that every hereditary property
of graphs gives rise to a permutation class.

1. Introduction

The research area of permutation patterns can be traced back to [MacMahon 1915,
Section III, Chapter V] where it is shown that permutations without an increasing
subsequence of length 3 (avoiding 123 in the language introduced below) are counted
by the Catalan numbers. Another famous result is the Erdős–Szekeres theorem
[1935] which says that a permutation of length (n−1)(m−1)+1 has an increasing
subsequence of length n (the pattern 12 · · · n) or a decreasing subsequence of
length m (the pattern m · · · 21). The field came into its own when Knuth [1968]
showed that “stack-sortable” permutations are the 231-avoiding permutations and
are enumerated by the Catalan numbers. Since then dozens of papers have been
written about enumerations of permutations avoiding patterns, their structure, and
connections to other objects in mathematics. See [Kitaev 2011] for an overview.
The goal of this paper is to connect the study of permutation patterns with properties
of graphs.

We define the occurrence graph Gp(π ) of a pattern p in a permutation π as the
graph where each vertex represents an occurrence of p in π . Vertices share an edge
if the occurrences they represent differ by exactly one element. We study properties
of these graphs and show that every hereditary property of graphs gives rise to a
permutation class, which we define below.

The motivation for defining these graphs comes from the algorithm discussed in
the proof of the simultaneous shading lemma by Claesson, Tenner and Ulfarsson
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[Claesson et al. 2015, Lemma 7.6]. The steps in that algorithm can be thought of
as constructing a path in an occurrence graph, terminating at a desirable occurrence
of a pattern.

2. Basic definitions

We begin by reviewing some standard definitions.

Definition 2.1. A graph is an ordered pair G = (V, E), where V is a set of vertices
and E is a set of two-element subsets of V. The elements {u, v} ∈ E are called
edges and connect the vertices. Two vertices u and v are neighbors if {u, v} ∈ E .
The degree of a vertex v is the number of neighbors it has. A graph G ′ = (V ′, E ′)
is a subgraph of G if V ′ ⊆ V and E ′ ⊆ {{u, v} ∈ E : u, v ∈ V ′}.

The reader might have noticed that our definition of a graph excludes those with
loops and multiple edges between vertices. We often write uv as shorthand for
{u, v} and in case of ambiguity we use V (G) and E(G) instead of V and E .

Definition 2.2. Two graphs G and H are isomorphic if there exists a bijection
from V (G) to V (H) such that two vertices in G are neighbors if and only if the
corresponding vertices (according to the bijection) in H are neighbors. We denote
this by G ∼= H.

We let [[1, n]] denote the integer interval {1, . . . , n}.

Definition 2.3. A permutation of length n is a bijective function σ : [[1, n]] →
[[1, n]]. We denote the permutation by σ = σ(1)σ (2) · · · σ(n). The permutation
idn = 12 · · · n is the identity permutation of length n.

The set of permutations of length n is denoted by Sn . The set of all permutations
is S =

⋃
+∞

n=0 Sn . Note that S0 = {E }, where E is the empty permutation, and
S1 = {1}. There are n! permutations of length n.

Definition 2.4. A grid plot or grid representation of a permutation π ∈ Sn is
the subset Grid(π) = {(i, π(i)) : i ∈ [[1, n]]} of the Cartesian product [[1, n]]2 =
[[1, n]]× [[1, n]].

Example 2.5. Let π = 42135. The grid representation of π is

Grid(42135) = .

The central definition in the theory of permutation patterns is how permutations
lie inside other (larger) permutations. Before we define that precisely we need a
preliminary definition:
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Definition 2.6. Let a1, . . . , ak be distinct integers. The standardization of the
string a1 · · · ak is the permutation σ ∈Sk such that a1 · · · ak is order isomorphic
to σ(1) · · · σ(k). In other words, for every i 6= j we have ai < aj if and only if
σ(i) < σ( j). We denote this by st(a1 · · · ak)= σ .

For example st(253)= 132 and st(132)= 132.

Definition 2.7. Let p be a permutation of length k. We say that the permuta-
tion π ∈ Sn contains p if there exist indices 1 ≤ i1 < · · · < ik ≤ n such that
st(π(i1) · · ·π(ik))= p. The subsequence π(i1) · · ·π(ik) is an occurrence of p in π
with the index set {i1, . . . , ik}. The increasing sequence i1 · · · ik will be used to
denote the order-preserving injection i : [[1, k]] → [[1, n]], j 7→ i j , which we call
the index injection of p into π for this particular occurrence.

The set of all index sets of p in π is the occurrence set of p in π , denoted by
Vp(π). If π does not contain p, then π avoids p. In this context the permutation p
is called a (classical permutation) pattern.

Unless otherwise stated, we write the index set {i1, . . . , in} in ordered form,
i.e., such that i1 < · · ·< in , in accordance with how we write the index injection.

The set of all permutations that avoid p is Av(p). More generally for a set of
patterns M we define

Av(M)=
⋂
p∈M

Av(p).

Example 2.8. The permutation 42135 contains five occurrences of the pattern 213,
namely 425, 415, 435, 213 and 215. The occurrence set is

V213(42135)= {{1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}}.

The permutation 42135 avoids the pattern 132.

Sets of permutations that can be defined by the avoidance of patterns are given a
special name:

Definition 2.9. A set of permutations C that is closed downwards, i.e., if π ∈ C

then p ∈ C for every pattern p in π , is called a permutation class. A permutation
class can be written as Av(M), where M is a set of classical permutation patterns.
If M is minimal, then it is called the basis of the class.

3. Occurrence graphs

We now formally define occurrence graphs.

Definition 3.1. For a pattern p of length k and a permutation π we define the
occurrence graph Gp(π) of p in π as follows:

• The set of vertices is Vp(π), the occurrence set of p in π .
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{1,2,5}

{1,3,5}

{1,4,5}

{2,3,4}

{2,3,5}

Figure 1. The occurrence graph G213(42135).

• uv is an edge in Gp(π) if the vertices u = {u1, . . . , uk} and v = {v1, . . . , vk}

in Vp(π) differ by exactly one element, i.e., if

|u \ v| = 1= |v \ u|.

Example 3.2. In Example 2.8 we derived the occurrence set V213(42135). We
compute the edges of G213(42135) by comparing the vertices two at a time to see
if the sets differ by exactly one element. The graph is shown in Figure 1.

Remark 3.3. For a permutation π of length n the graph GE (π) is a graph with
one vertex and no edges and G1(π) is a clique on n vertices.

Following the definition of these graphs there are several natural questions that
arise. For example, for a fixed pattern p, which occurrence graphs Gp(π) satisfy a
given graph property, such as being connected or being a tree? Before we answer
questions of this sort we consider a simpler question: what can be said about the
graph G12(idn)?

4. The pattern p = 12 and the identity permutation

In this section we only consider the pattern p= 12 and let n≥ 2. For this choice of p
and a fixed n the identity permutation π =1 · · · n contains the most occurrences of p.
Indeed, every set {i, j}with i 6= j is an index set of p in π . We can choose this pair in(n

2

)
=

n(n− 1)
2

different ways. Therefore, this is the size of the vertex set of G = Gp(π).
Every vertex u={i, j} in G is connected to n−2 vertices v={i, j ′}, j ′ 6= j , and

n−2 verticesw={i ′, j}, i ′ 6= i . Thus, the degree of every vertex in G is 2(n−2). By



OCCURRENCE GRAPHS OF PATTERNS IN PERMUTATIONS 905

{1,2}

{1,3} {1,4}

{1,5}

{2,3}

{2,4}

{2,5}{3,4}

{3,5}

{4,5}

Figure 2. The graph G12(12345).

summing over the set of vertices and dividing by 2 we get the number of edges in G:

|E(G)| =
n(n− 1)(n− 2)

2
= 3

(n
3

)
.

A triangle in G consists of three vertices u, v, w with edges uv, vw,wu. If
u = {i, j} (not necessarily in ordered form) then we can assume v is { j, k}. For this
triplet to be a trianglew must connect to both u and v, and thereforew must either be
the index set {i, k} or { j, j ′}, where j ′ 6= i, k. In the first case, we just need to choose
three indices i, j, k. In the second case we start by choosing the common index k
and then we choose the remaining indices. Thus the number of triangles in G is(n

3

)
+ n

(n−1
3

)
= (n− 2)

(n
3

)
.

Example 4.1. The graph G12(12345) is pictured in Figure 2. It has 10 vertices,
30 edges, and 30 triangles. It also has 5 subgraphs isomorphic to K4, one of them
highlighted with thicker gray edges and gray vertices.

The following proposition generalizes the observations above to larger cliques.

Proposition 4.2. For n > 0, the number of cliques of size k > 3 in G12(idn) is

(k+ 1)
( n

k+1

)
= n

(n−1
k

)
.

Proof. The vertices {a1, b1}, {a2, b2}, . . . , {ak, bk} in a clique of size k > 3 must
have a common index, say `= a1 = a2 = · · · = ak , without loss of generality. The
remaining indices b1, b2, . . . , bk can be chosen as any subset of the other n − 1
indices. This explains the right-hand side of the equation in the proposition. �
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5. Hereditary properties of graphs

Intuitively one might think that if a pattern p is contained inside a larger pattern q ,
then one of the occurrence graphs Gp(π) and Gq(π) (for any permutation π ) would
be contained inside the other. But this is not the case as the following examples
demonstrate.

Example 5.1. (1) Let p = 12, q = 231 and π = 3421. The occurrence sets are
Vp(π)={{1, 2}} and Vq(π)={{1, 2, 3}, {1, 2, 4}}. The cardinality of the set Vp(π)

is smaller than the cardinality of Vq(π).

(2) If on the other hand p = 12, q = 123 and π = 123 then the occurrence sets
are Vp(π)= {{1, 2}, {1, 3}, {2, 3}} and Vq(π)= {{1, 2, 3}}. Thus, in this case, the
cardinality of Vp(π) is larger than the cardinality of Vq(π).

However, for a fixed pattern p, we obtain an inclusion of one occurrence graph
in another, in Proposition 5.4. First we need a lemma.

Lemma 5.2. Let p be a pattern and π , σ be two permutations. For an occurrence
of π in σ the index injection induces an injection 8p : Vp(π)→ Vp(σ ).

Proof. Let p, π , σ be permutations of lengths l, m, n respectively. Every v =
{i1, . . . , il} ∈ Vp(π) is an index set of p in π with index injection i . Let j be
an index injection for an index set { j1, . . . , jm} of π in σ . It is easy to see that
u = { ji1, . . . , jil } is an index set of p in σ because j ◦ i is an index injection of p
into σ . Define 8p(v)= u. �

Example 5.3. Let p = 12, π = 132 and σ = 24153. There are three occurrences
of π in σ : 243, 253 and 153 with respective index injections 125, 145 and 345.

For a given index injection, say i = 345, we obtain the injection 8p by mapping
every {v1, v2} ∈ Vp(π) to {iv1, iv2} ∈ Vp(σ ). We calculate that 8p maps {1, 2} to
{i1, i2} = {3, 4} and {1, 3} to {i1, i3} = {3, 5}; see Figure 3.

Figure 3. The occurrence of π in σ that is defined by the index
injection i = 345 is highlighted with gray circles. The occurrence
set {1, 3} of p in π is mapped with the injection 8p, induced by i ,
to the index set {3, 5} of p in σ , highlighted with black diamonds.
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{1,2}

{1,4}{1,5}

{2,4}

{3,4} {3,5}

Figure 4. The graph G12(24153) with a highlighted subgraph
isomorphic to G12(132).

Proposition 5.4. Let p be a pattern and π , σ be two permutations. For an occur-
rence of π in σ the index injection induces an isomorphism of the occurrence graph
Gp(π) with a subgraph of Gp(σ ).

Proof. From Lemma 5.2 we have the injection 8p : Vp(π)→ Vp(σ ). We need
to show for every uv ∈ E(Gp(π)) that 8p(u)8p(v) ∈ E(Gp(σ )). Let uv be an
edge in Gp(π), where u = {u1, . . . , ul} and v = {v1, . . . , vl}. For every index
injection j of π into σ , the vertices u, v map to 8p(u) = { j (u1), . . . , j (ul)},
8p(v) = { j (v1), . . . , j (vl)} respectively. Since j is an injection, there exists an
edge between these two vertices in Gp(σ ). �

Example 5.5. We will continue with Example 5.3 and show how the index injection
i = 345 defines a subgraph of Gp(σ ) which is isomorphic to Gp(π). The occurrence
graph of p in π is a graph on two vertices {1, 2} and {1, 3} with an edge between
them. The occurrence graph Gp(σ ) with the highlighted subgraph induced by i is
shown in Figure 4.

The next example shows that different occurrences of π in σ do not necessarily
lead to different subgraphs of Gp(σ ).

Example 5.6. If p = 12, π = 312 and σ = 3412 there are two occurrences of π
in σ . The index injections are i = 134 and i ′ = 234. However, as (i2, i3)= (i ′2, i ′3)
and {2, 3} is the only index set of p in π , we obtain the same injection 8p and
therefore the same subgraph of Gp(σ ) for both index injections.

We call a property of a graph G hereditary if it is invariant under isomorphisms
and for every subgraph of G the property also holds. For example the properties
of being a forest, bipartite, planar or k-colorable are hereditary properties, while
being a tree is not hereditary. A set of graphs defined by a hereditary property is a
hereditary class.
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p basis numerical sequence OEIS

12 123, 1432, 3214 1, 2, 5, 12, 26, 58, 131, 295 A116716

123 1234, 12543, 14325, 1, 2, 6, 23, 100, 462, 2207, 10758
32145

1432, 12354, 13254,
132 13452, 15234, 21354, 1, 2, 6, 23, 95, 394, 1679, 7358

23154, 31254, 32154

Table 1. Experimental results for bipartite occurrence graphs,
computed with permutations up to length 8.

Given c, a property of graphs, we define a set of permutations:

G p,c = {π ∈S : Gp(π) has property c}.

We can now state the main theorem of the paper.

Theorem 5.7. Let c be a hereditary property of graphs. For any pattern p the set
G p,c is a permutation class; i.e., there exists a set of classical patterns M such that

G p,c = Av(M).

Proof. Let σ be a permutation such that Gp(σ ) satisfies the hereditary property c
and let π be a pattern in σ . By Proposition 5.4 the graph Gp(π) is isomorphic to a
subgraph of Gp(σ ) and thus inherits the property c. �

In the remainder of this section we consider two hereditary classes of graphs:
bipartite graphs and forests. Recall that a nonempty simple graph on n vertices
(n > 0) is a tree if and only if it is connected and has n− 1 edges. An equivalent
condition is that the graph has at least one vertex and no simple cycles (a sequence
of unique vertices v1, . . . , vk with edges v1v2, . . . , vk−1vk, vkv1). A forest is a
disjoint union of trees. The empty graph is a forest but not a tree. Bipartite graphs
are graphs that can be colored with two colors in such a way that no edge joins two
vertices with the same color. We note that every forest is a bipartite graph.

Table 1 shows experimental results, obtained using software developed by
Magnusson and the second author [Magnusson and Ulfarsson 2012], on which
occurrence graphs with respect to the patterns p = 12, p = 123, p = 132 are
bipartite. Permutations and patterns have the eight symmetries of the square, as can
be seen from their grid representation. We only consider one representative from
each symmetry class.

In the following theorem we verify the statements in line 1 of Table 1. We leave
the remainder of the table as conjectures.
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v1

v2

· · · i1 · · · j1 · · · j2 · · ·

...
π( j1)
...

π( j2)
...

π(i1)...

Figure 5. The vertices v1 and v2 (shown as line segments inside
the permutation π ) share the index i1.

Theorem 5.8. Let c be the property of being bipartite. Then

G12,c = Av(123, 1432, 3214).

The OEIS sequence A116716 enumerates a symmetry of this permutation class.

The proof of this theorem relies on a proposition characterizing the cycles in the
graphs under consideration.

Proposition 5.9. If the graph G12(π) has a cycle of length k > 4 then it also has a
cycle of length 3.

Proof. Let π be a permutation such that G12(π) contains a cycle of length k > 4.
Label the vertices in the cycle v1, . . . , vk with vl = {il, jl}, il < jl , for l = 1, . . . , k.

The vertices v1 and v2 in the cycle have exactly one index in common. If i2 = j1
then the vertices v1, v2, {i1, j2} form a triangle. So we can assume i1= i2. If j1< j2
and π( j1)<π( j2) (or j1> j2 and π( j1)>π( j2)) then u={ j1, j2} is an occurrence
of 12 in π , forming a triangle v1, v2, u. So either j1 > j2 and π( j1) < π( j2) holds,
or, without loss of generality (see Figure 5), j1 < j2 and π( j1) > π( j2).

Next we look at the edge v2v3 in the cycle. If the vertices have the index i1 in
common then v1, v2, v3 form a triangle in G12(π). So assume that v2 and v3 have
the index j2 in common with the conditions i3 > i1 and π(i3) < π(i1) (because
else there are more vertices and edges forming a cycle of length 3 in G12(π)).
Continuing down this road we know that v3v4 is an edge with shared index i3 and
conditions j3 > i3 and π( j3) < π( j1); see Figure 6, where we consider the case
i3 > j1, and π( j3) < π(i1).

Graphically, it is quite obvious that we cannot extend the path in Figure 6 with
more southwest-northeast line segments (a sequence of vertices v5, . . . , vk) such
that the extension closes the path into a cycle without adding more edges (line
segments) between vertices that are not adjacent in the cycle and thus forming a
cycle of length 3 in the occurrence graph. More precisely, for an edge between vk

and v1 to exist we must have vk = {ik, jk} with a nonempty intersection with v1.
Analyzing each of these cases completes the proof. �
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v1

v2

v3

v4

· · · i1 · · · j1 · · · i3 · · · j2 · · · j3 · · ·

...
π( j1)
...
π( j2)
...
π(i1)
...
π( j3)
...
π(i3)...

Figure 6. The vertices v1, v2, v3, v4.

Proof of Theorem 5.8. If π contains any of the patterns 123, 1432, 3214 then Gp(π)

contains a subgraph that is isomorphic to a triangle. So if π /∈Av(123, 1432, 3214)
then G12(π) contains an odd cycle and is therefore not bipartite.

On the other hand, let π be a permutation such that G12(π) is not bipartite. Then
the occurrence graph contains an odd cycle which by Proposition 5.9 implies the
graph has a cycle of length 3. The indices corresponding to this cycle form a pattern
of length 3 or 4 in π with occurrence graph that is a cycle of length 3. It is easy
to see that the only permutations of this length with occurrence graph a cycle of
length 3 are 123, 1432 and 3214. Therefore π must contain at least one of the
patterns. �

Table 2 considers occurrence graphs that are forests.

p basis numerical sequence OEIS

12 123, 1432, 2143, 3214 1, 2, 5, 11, 24, 53, 117, 258 A052980

1234, 12543, 13254,
123 14325, 21354, 21435 1, 2, 6, 23, 97, 429, 1947, 8959

32145

1432, 12354, 12453,
12534, 13254, 13452,

132 14523, 15234, 21354, 1, 2, 6, 23, 90, 359, 1481, 6260
21453, 21534, 23154,

31254, 32154

Table 2. Experimental results for occurrence graphs that are
forests, computed with permutations up to length 8.
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In the following theorem we verify the statements in line 1 of Table 2. We leave
the remainder of the table as conjectures.

Theorem 5.10. Let c be the property of being a forest. Then

G12,c = Av(123, 1432, 2143, 3214).

Proof. If π contains the pattern 2143 then G12(π) contains a subgraph that is
isomorphic to a cycle of length 4, according to Proposition 5.4, because G12(2143)
is a cycle of length 4. If π contains any of the patterns 123, 1432, 3214 then its
occurrence graph is not bipartite by Theorem 5.8, and in particular is not a forest.

On the other hand, let π be a permutation such that G12(π) is not a forest.
Then the occurrence graph contains a cycle. Proposition 5.9 implies that the cycle
must have length either 3 or 4. But it is easy to see that the only permutations
with occurrence graphs that are cycles of length 3 or 4 are 123, 1432, 2143, 3214.
Therefore π must contain at least one of the patterns. �

6. Nonhereditary properties of graphs

This section is devoted to graph properties that are not hereditary. Thus Theorem 5.7
does not guarantee the permutations whose occurrence graphs satisfy the property
form a pattern class. Experimental results in Table 3 seem to suggest that some
properties still give rise to permutation classes.

To describe permutations π such that G12(π) is connected, we need the language
of mesh patterns, which we briefly review here. A mesh pattern is a pair (p, s)
where p is a classical pattern and the mesh s is a subset of [[0, |p|]]× [[0, |p|]]. The

property basis numerical sequence OEIS

connected see Figure 7 1, 2, 6, 23, 111, 660, 4656, 37745

chordal 1234, 1243, 1324, 1, 2, 6, 19, 61, 196, 630, 2025
2134, 2143

clique

1234, 1243, 1324,

1, 2, 6, 12, 20, 30, 42, 56
1342, 1423, 2134, A002378
2143, 2314, 2413, from n=2
3124, 3142, 3412

tree very large 0, 1, 4, 9, 16, 25, 36, 49 A000290
nonclassical basis

Table 3. Experimental results for the pattern p = 12, computed
with permutations up to length 8.
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Figure 7. The mesh pattern m = (p, s), where p = 3412 and
s consists of the boxes (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1),
(3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4).

Figure 8. Two occurrences of 3412 in 86741235. Only the left
one is an occurrence of the mesh pattern in Figure 7.

elements of s are often called (shaded) boxes, and informally they denote areas
which permutation points are not allowed to occupy in a valid occurrence of (p, s).

For the formal definition of these generalized patterns see [Brändén and Claesson
2011]. We give an example here to illustrate the role the mesh plays.

Example 6.1. There are seven occurrences of the classical pattern p = 3412 in
the permutation π = 86741235. In Figure 8 we have highlighted two of them:
the subsequences 6745 and 6715. Only the first one is an occurrence of the mesh
pattern m = (p, s) in Figure 7, since the mesh can be “stretched” over the grid of
the permutation without containing any points. In the second occurrence the point 4
in the permutation occupies a “forbidden” region defined by the mesh.

Theorem 6.2. Let c be the property of being connected. Then

G12,c = Av(m),

where m is the mesh pattern in Figure 7. The generating function for the enumeration
of these permutations is

F(x)− x
(1− x)2

+
1

1− x
,

where F(x)=1−1/
∑

k! xk is the generating function for the skew-indecomposable
permutations (see, e.g., [Comtet 1974, p. 261]).
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Before we prove the theorem we recall that the skew-sum of two permutations π
and σ is the permutation π 	 σ obtained by adding the length of σ to every letter
of π and then appending σ to it. For example 132	 2413 = 5762413. We say
that a permutation is skew-decomposable if it can be written as a skew-sum of two
nonempty permutations. Otherwise it is skew-indecomposable. Every permutation
can be written as a skew-sum of skew-indecomposable permutations, and we call
that the skew-decomposition of the permutation.

Proof. If the graph G12(π) is disconnected then π has two occurrences of 12 in
distinct skew-components, A and B, which we can take to be consecutive in the
skew-decomposition of π = · · · 	 A	 B 	 · · · . Let ab be any occurrence of 12
in A. Let u be the highest point in B and v be the leftmost point in B. Then abuv
is an occurrence of the mesh pattern. It is clear that an occurrence abuv of the
mesh pattern will correspond to two vertices ab, uv in the occurrence graph, and
the shadings ensure that there is no path between them.

The enumeration follows from the fact that these permutations must have no, or
exactly one, skew-component of size greater than 1. The first case is counted by
1/(1− x), while the second case is counted by (F(x)− x)/(1− x)2. �

Note that our software suggests a very large nonclassical basis for the permu-
tations with a tree as an occurrence graph. We omit displaying this basis here.
However, since a graph is a tree if and only if it is a nonempty connected forest we
obtain:

Corollary 6.3. Let c be the property of being a tree. Then

G12,c = Av(123, 1432, 2143, 3214,m) \Av(12),

where m is the mesh pattern in Figure 7.

Proof. This follows from Theorems 5.10 and 6.2. We must remove the decreasing
permutations since they have empty occurrence graphs. �

We end with proving the enumeration for the permutations in the corollary above.
The proof is a rather tedious, but simple, induction proof.

Theorem 6.4. The number of permutations of length n in G12,tree is (n− 1)2.

7. Future work

We expect the conjectures in lines 2 and 3 in Tables 1 and 2 to follow from an
analysis of the cycle structure of occurrence graphs with respect to the patterns 123
and 132, similar to what we did in Proposition 5.9 for the pattern 12.

Other natural hereditary graph properties to consider would be k-colorable graphs,
for k > 2, as these are supersets of bipartite graphs. Also planar graphs, which lie
between forests and 4-colorable graphs.
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It might also be interesting to consider the intersection
⋂

p∈M G p,c where M is
some set of patterns, perhaps all.

We would like to note that Smith (personal communication, 2016) independently
defined occurrence graphs and used them to prove a result on the shellability of a
large class of intervals of permutations.

Appendix: Proof of Theorem 6.4

We start by introducing a new notation.

Definition A.1. Let π ∈ Sn and k be an integer such that 1 ≤ k ≤ n + 1. The
k-prefix of π is the permutation π ′ ∈Sn+1 defined by π ′(1)= k and

π ′(i + 1)=
{
π(i) if π(i) < k,
π(i)+ 1 if π(i)≥ k

for i = 1, . . . , n. We denote π ′ by k � π . In a similar way we define the k-postfix
of π as the permutation π ≺ k in Sn+1.

Example A.2. Let π=42135 and k=2. Visually, if we draw the grid representation
of π , we put the new number k to the left on the x-axis and raise all the numbers≥ k
on the y-axis by 1. Thus, 2� 42135= 253146, as in Figure 9.

We note that for every permutation π ′ ∈ Sn+1 there is one and only one pair
(k, π) such that π ′ = k � π . We let k = π ′(1) and π = st(π ′(2) · · ·π ′(n+ 1)).

Proof of Theorem 6.4. We start by considering three base cases.
For n = 1 the occurrence graph is the empty graph. For n = 2 we get two

occurrence graphs: G12(12) is a graph with a single vertex and G12(21) is the
empty graph. For n = 3 we have 3! = 6 different permutations π . Of those we
calculate that 132, 213, 231 and 312 result in connected occurrence graphs on one
or two vertices but G12(123) is a triangle and G12(321) is the empty graph.

We have thus shown that the claimed enumeration is true for n = 1, 2, 3.
For the inductive step we assume n ≥ 4 and let π be a permutation of length n.

We look at four different cases of k to construct π ′ = k � π . We let x , y and z be
the indices of n− 1, n and n+ 1 in π ′ respectively.

7−→

Figure 9. The 2-prefix of 42135 is 253146.
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1 · · · y · · · z · · ·

n+1
n
n−1
...

Figure 10. k = n− 1 and y < z.

(I) k ≤ n− 2: The index sets {1, x}, {1, y} and {1, z} of 12 in π ′ all share exactly
one common element and thus form a triangle in G12(π

′). Therefore there are no
permutations π such that the occurrence graph G12(π

′) is a tree.

(II) k = n− 1: Let T (n+ 1) denote the number of permutations π ′ of length n+ 1
with π ′(1)= n−1 such that G12(π

′) is a tree. Note that T (1)= T (2)= 0, T (3)= 1
and T (4)= 2. In order to obtain a formula for T we need to look at a few subcases:

(i) If y < z then {1, y}, {1, z} and {y, z} form a triangle in G12(π
′); see Figure 10.

Independent of the permutation π , the graph G12(π
′) is not a tree.

(ii) Assume y> z and z 6= 2, as in Figure 11. Then π ′(2) < n−1 and {1, z}, {2, z},
{2, y} and {1, y} form a cycle of length 4 in G12(π

′), resulting in it not being
a tree.

(iii) Assume y> z and z= 2, as in Figure 12. If y≥ 5 then the vertices {1, y}, {3, y}
and {4, y} form a cycle in G12(π

′). If y = 3 then {1, 2} and {1, 3} will be an
isolated path component in G12(π

′), making π ′ = (n−1)(n+1)n(n−2) · · · 1
the only permutation such that the occurrence graph G12(π

′) is a tree. If y= 4,
we need to consider further subcases for the value of π ′(3).

(a) If π ′(3)≤n−4 then π ′(3)n, π ′(3)(n−2) and π ′(3)(n−3) are all occurrences
of 12 in π ′, with the respective index sets forming a triangle in G12(π

′).
(b) If π ′(3)= n− 2 then π ′ = (n− 1)(n+ 1)(n− 2)n(n− 3) · · · 1 is the only

permutation resulting in G12(π
′) being a tree.

1 2 · · · z · · · y · · ·

n+1
n
n−1
...

π ′(2)
...

Figure 11. k = n− 1, y > z and z 6= 2.
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1 2 3 · · · y · · ·

n+1
n
n−1
...

π ′(3)
...

Figure 12. k = n− 1, y > z and z = 2.

(c) If π ′(3)=n−3 then we look at Figure 13. The permutation σ = st(π ′(3) · · ·
π ′(n+1)) is just like π ′ in the case k = n−1 and z = 2, only the length of
σ is n− 1. Because {1, 2} is a vertex in G12(σ ), the occurrence graph of
12 in σ is not the empty graph. Thus it is easy to see that G12(π

′) is a tree
if and only if G12(σ ) is a tree, and according to the aforementioned case
there are T (n− 1) such permutations σ .

Summing up these possibilities we get a total of 1+1+T (n−1) permutations
π ′ making the occurrence graph a tree, i.e., T (n+1)= 2+T (n−1). Because
T (4)= 2 and T (3)= 1, we deduce that T (n+ 1)= n− 1.

The whole case k = n− 1 gives us that there are n− 1 permutations π ′ such that
G12(π

′) is a tree.

(III) k = n: We need to examine three subcases:

(i) If z≥ 4 then {1, z}, {2, z}, {3, z} are all index sets of 12 in π ′, forming a triangle
in G12(π

′).

(ii) If z = 3, then {1, 3} is an index set of 12 in π making the occurrence graph
G12(π) nonempty; see Figure 14.

If π ′(2) ≤ n− 2 then π ′(2)(n+ 1), π ′(2)(n− 1) and π ′(2)(n− 2) are all
occurrences of 12 in π ′, resulting in G12(π

′) having a triangle. If π ′(2)= n−1
then {1, 3} and {2, 3} is an isolated path component in G12(π

′) and π ′ =

1 2 3 4 · · ·

n+1
n
n−1
n−2
n−3
...

Figure 13. k = n− 1, y = 4 and z = 2.
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1 2 3 · · ·

n+1
n
...

π ′(2)
...

Figure 14. k = n and z = 3.

n(n− 1)(n+ 1)(n− 2) · · · 1 is the only permutation such that the occurrence
graph is a tree. We therefore assume π ′(2)= n− 2; see Figure 15.

Let σ = st(π ′(2) · · ·π ′(n+ 1)). Note that the occurrence graphs G12(π
′)

and G12(σ ) are the same except the former has the extra vertex {1, 2} and an
edge connecting it to a graph corresponding to G12(σ ). Therefore, G12(π

′) is
a tree if and only if G12(σ ) is a tree.

Note that σ(1)= n− 2 and σ(2)= n and therefore σ is like π ′ in the case
k = n− 1 and z = 2 as in Figure 12, only of length n instead of n+ 1. By the
same reasoning as in that case, the number of permutations σ (and therefore π ′)
such that G12(π

′) is a tree is T (n)= n− 2.

(iii) If z = 2, then {1, 2} is an isolated vertex in G12(π
′); see Figure 16. The

occurrence graph of 12 in π ′ is a tree if and only if G12(π) is the empty graph,
which is true if and only if π is the decreasing permutation. Therefore there is
only one permutation π ′ = n(n+ 1)(n− 1) · · · 1 such that G12(π

′) is a tree.

To sum up the case k = n there are 1+ (n− 2)+ 1= n permutations π ′ such that
G12(π

′) is a tree.

(IV) k = n+ 1: Every occurrence π(i)π( j) of 12 in π is also an occurrence of 12
in π ′, but with index set {i+1, j+1} instead of {i, j}. There are no more occurrences
of 12 in π ′ because π ′(1)= n+ 1> π ′( j ′) for every j ′ > 1 so π ′(1)π ′( j ′) is not
an occurrence of 12 for any j ′ > 1.

1 2 3 · · · x · · ·

n+1
n
n−1
n−2
...

Figure 15. k = n, z = 3 and π ′(2)= n− 2.
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1 2 3 · · · n+1

. . .

n+1
n
n−1
...

1

Figure 16. k = n and z = 2.

This means that G12(π
′) ∼= G12(π), so by the induction hypothesis we obtain

that there are (n− 1)2 permutations π ′ such that the occurrence graph is a tree for
this value of k.

To sum up the four instances there is a total of 0+ (n− 1)+ n+ (n− 1)2 = n2

permutations π ′ such that G12(π
′) is a tree. �
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