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We show that nonisomorphic effective linear circle actions yield nondiffeomorphic
differential structures on the corresponding orbit spaces.

1. Introduction

Recall that an orbifold is a topological space equipped with an atlas of linear
representations of finite groups; in the case that all of these representations are
effective, we say that the orbifold is effective (see, for instance, one of [Haefliger
1984; Moerdijk and Pronk 1997] for the precise definition). One can equip an
effective orbifold with a “smooth structure” in many different ways [Moerdijk and
Pronk 1997; Lerman 2010; Iglesias et al. 2010; Watts 2017]. No matter which
notion of smoothness is taken, in [Watts 2017] it is shown that the underlying
local semialgebraic set of a smooth (effective) orbifold, equipped with its natural
differential structure, holds a complete set of orbifold invariants in its differential
structure; that is, an atlas for the orbifold can be recovered from the smooth functions
on the orbifold alone. It is natural to ask what happens in the case of a quotient by
a smooth circle action on a manifold. The purpose of this paper is to take the first
step toward solving this problem by considering the case of linear circle actions:
can one recover a linear circle action (up to diffeomorphism) by examining the
differential structure of the orbit space alone?

The question and result above can be seen from a broader perspective: there
is a functor from Lie groupoids to differential spaces, sending a groupoid to its
orbit space [Watts 2013]. Studying this functor, especially when restricted to
proper Lie groupoids, leads to a modern connection between two classical subjects:
Lie group actions of compact groups, and singular spaces (namely, semialgebraic
varieties). The result on orbifolds in [Watts 2017] is that this functor when restricted
to proper effective étale Lie groupoids is essentially injective (i.e., injective up to
isomorphism). This paper deals with the restriction to linear S1-actions.
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The generalization of smooth structures from manifolds to arbitrary subspaces
and quotient spaces has a long history, though the perspective we take was first
formally defined by Sikorski [1967; 1971] and is presented in brief here (see
[Śniatycki 2013] for more details on these spaces).

Definition 1.1 (differential space). Let X be a nonempty set. A differential structure
on X is a nonempty family F of real-valued functions satisfying:

(1) (smooth compatibility) For any positive integer k, functions f1, . . . , fk ∈ F,
and g ∈ C∞(Rk), the composition g( f1, . . . , fk) is contained in F.

(2) (locality) Equip X with the initial topology induced by F, that is, the weakest
topology such that each function in F is continuous. Let f : X → R be a
function such that for any x ∈ X there exist an open neighborhood U of x and
a function h ∈ F satisfying f |U = h|U . Then f ∈ F.

A set X equipped with a differential structure F is called a differential space and
is denoted by (X,F). We will drop the notation F when it is superfluous. In the
literature (for example, [Schwarz 1975]), authors use differential structures without
naming them, possibly unaware that the structures had been formally named.

Definition 1.2 (smooth maps between differential spaces). Let (X,FX ) and (Y,FY )

be two differential spaces. A map F : X→ Y is smooth if F∗FY ⊆FX . F is called
a diffeomorphism if it is smooth and has a smooth inverse. Denote the set of smooth
maps between X and Y by F(X, Y ).

Differential spaces with smooth maps between them form a category closed
under taking subsets and quotients.

Definition 1.3 (subspace differential structure). Let (X,F) be a differential space,
and let Y ⊆ X be a subset. Then Y acquires a differential structure FY as follows:
f ∈ FY if for every y ∈ Y there exist an open neighborhood U ⊆ X of y and a
function g ∈F such that f |U∩Y = g|U∩Y . We call (Y,FY ) a differential subspace of
(X,FX ). Note that the subspace topology on Y equals the initial topology induced
by FY ; see [Watts 2012, Lemma 2.28].

Definition 1.4 (quotient differential structure). Let (X,F) be a differential space, let
∼ be an equivalence relation on X , and let π : X→ X/∼ be the quotient map. Then
X/∼ obtains a differential structure F∼, called the quotient differential structure,
consisting of those functions f : X/∼→ R whose pullback π∗ f : X→ R is in F.

It follows from a famous result of Schwarz [1975] that if G is a compact Lie group
acting effectively and orthogonally on Rm, then the orbit space Rm/G embeds into
a Euclidean space Rn so that the quotient differential structure on Rm/G equals the
subspace differential structure induced by the embedding. Denote this differential
structure by C∞(Rm/G). In the case of finite groups, the diffeomorphism class
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of (Rm/G,C∞(Rm/G)) as a differential space determines the group G up to
isomorphism and the G-representation up to isomorphism (see the proof of the
Main Theorem of [Watts 2017]). The invariants obtained from C∞(Rm/G) can be
interpreted through two different perspectives: either quotient (linear representation)
invariants on Rm

→Rm/G, or as subset invariants of (Rm/G,C∞(Rm/G)), arising
by examining the underlying semialgebraic set of the orbit space (see Section 2A
for a definition of semialgebraic set).

Moreover, this recovery of linear actions of finite groups allows one to form
an orbifold atlas of a general effective orbifold from the differential structure of
its orbit space. Consequently, the diffeomorphism class of the orbit space of a
proper, effective, and locally free Lie group action on a manifold determines the
corresponding Lie groupoid up to Morita equivalence. What is interesting about
this result is that it does not hold for all proper and effective Lie group actions
on manifolds, not even in the linear case. Indeed, consider O(m) acting on Rm

by rotations and reflections. The orbit space is diffeomorphic to the closed ray
[0,∞), which is independent of m, and so the subset invariants do not form a
complete set of invariants for the group actions. And so, the original action cannot
be recovered. The question remains, however: what information is missing from the
subset invariants that would lead to a complete set of invariants so that the action
can be recovered from the orbit space?

In this paper, we examine the case of a linear circle action and obtain the following
theorem.

Theorem 1.5. Let S1 act linearly and effectively on Rm. The diffeomorphism class
of the quotient differential space (Rm/S1,C∞(Rm/S1)) determines the S1-action
up to equivariant linear isomorphism.

Since linear isomorphisms are examples of diffeomorphisms, this theorem an-
swers the question in the first paragraph above affirmatively. Note that one needs to
know that the differential space came from a linear S1-action in the theorem above.
Even knowing that the space is an orbit space of a smooth effective S1-action on
a manifold is not sufficient to recover the action: consider S1 acting (effectively)
on S2 by rotation about a fixed axis. The orbit space is diffeomorphic to the
manifold-with-boundary [−1, 1]. But this action descends through the antipodal
action to RP2, whose orbit space [0, 1] is diffeomorphic to [−1, 1]. The missing
information that would distinguish between these two orbit spaces is knowledge
about the isotropy groups: at the preimage of−1∈S2/S1, this isotropy group is S1;
whereas at the preimage of 0∈RP2/S1, it is Z/2Z. Characterizing this information
is the subject of future work.

This paper is organized as follows. In Section 2, we review compact group
actions, orbit-type stratifications, the result on orbifolds mentioned above, and



944 S. CRAIG, N. DOWNEY, L. GOAD, M. J. MAHONEY AND J. WATTS

linear circle actions. In Section 3, we give a description of S1-invariant polynomials
for a linear circle action, culminating in Corollary 3.2. In Section 4, we take the
opportunity to study the structure of the orbit space of a linear S1-action. While
this is not needed in the proof of the main result, this structure is interesting in its
own right and important for understanding the singularities that arise. Section 5
contains the proof of Theorem 1.5, and Section 6 contains several examples.

2. Preliminaries

2A. Linear compact group actions. Let us begin by reviewing the result of Schwarz
and related background material. Fix a compact Lie group G, and assume G
is acting linearly and effectively on Rm. Without loss of generality, since G is
compact, we can assume that G ⊆ O(m). Denote by P(Rm) the ring of real-valued
polynomials on Rm and by P(Rm)G the subring of polynomials invariant under
the G-action, that is, polynomials p satisfying p(g · x)= p(x) for all x ∈ Rm and
g ∈ G. By Hilbert’s basis theorem, P(Rm)G is finitely generated. That is, there
exist σ1, . . . , σn ∈ P(Rm)G such that for any p ∈ P(Rm)G, there exists a polynomial
q ∈ P(Rn) such that p = q(σ1, . . . , σn). Moreover, we can choose σ1, . . . , σn all
to be homogeneous; that is, for each σi , its terms are all of the same degree.

Geometrically, what this means is that we can form the Hilbert map σ :Rm
→Rn

defined to be the n-tuple (σ1, . . . , σn), and for every p ∈ P(Rm)G there exists
q ∈ P(Rn) such that p = q ◦ σ . That is, P(Rm)G is the image of the pullback map
σ ∗ : P(Rn)→ P(Rm) sending q to σ ∗q := q ◦ σ .

Schwarz [1975] extends this result from polynomials to smooth functions: the
image of σ ∗ : C∞(Rn) → C∞(Rm) is exactly the invariant smooth functions
C∞(Rm)G, the set of all smooth functions f ∈ C∞(Rm) such that f (g · x)= f (x)
for all x ∈ Rm and g ∈ G.

Let π : Rm
→ Rm/G be the quotient map. Schwarz further shows that σ

descends to a topological embedding i : Rm/G→ Rn; hence we can view Rm/G
as a subset of Rn, and it obtains a subspace differential structure in this way. Since
π∗ is an isomorphism from C∞(Rm/G) to C∞(Rm)G, which in turn is isomorphic
to σ ∗C∞(Rn), we conclude that i∗C∞(Rn) = C∞(Rm/G); that is, the subspace
differential structure equals the quotient differential structure.

We have the following lemma, which we use in the sequel.

Lemma 2.1. Let G be a compact group acting on a smooth manifold M. The initial
topology induced by C∞(M/G) equals the quotient topology on the orbit space.

Proof. Let U be an open set in the initial topology on M/G, and fix x ∈U. There
is a function f ∈ C∞(M/G) such that

x ∈ f −1((0, 1))⊆U.
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Let π : M→ M/G be the quotient map and f̃ ∈ C∞(M) be such that π∗ f = f̃ .
Then π−1( f −1((0, 1)))= f̃ −1((0, 1)) and so is open in M. So, f −1((0, 1)) is open
in the quotient topology. It follows that U is in the quotient topology.

In the other direction, let U be an open set in the quotient topology. Fix x ∈U.
Then the orbit π−1(x) is closed and contained in the G-invariant open set π−1(U ).
Let b̃ : M→ [0, 1] be a smooth bump function equal to 1 on the orbit π−1(x) with
support in π−1(U ). After averaging over G, we may assume b̃ is G-invariant. Thus
it descends to a smooth function b on M/G such that

x ∈ b−1((0,∞))⊆U.

That is, U is in the initial topology. �

In particular, there is no ambiguity in the topology on Rm/G that we use. We
can describe how Rm/G sits in Rn as a subset. A semialgebraic set S =

⋃m
i=1 Si is

a subset of Rn, where the subsets Si are of the form

Si = {x ∈ Rn
| ri,1(x), . . . , ri,ki (x) > 0 and si,1(x)= · · · = si,`i (x)= 0},

where ri,1, . . . , ri,ki , si,1, . . . , si,`i ∈ P(Rn). For our purposes, we will assume
S is equipped with the subspace differential structure induced by Rn. (We call
a differential space that is locally diffeomorphic to semialgebraic sets a local
semialgebraic set.) The Tarski–Seidenberg theorem [Seidenberg 1954; Tarski 1948;
1998] states that the image of a semialgebraic set under a polynomial map (such as
the Hilbert map above) is again a semialgebraic set. It follows that since Rm/G
sits inside Rn as the image of σ , it is a semialgebraic set.

2B. Compact group actions on manifolds. We now want to extend these ideas to
group actions on manifolds. Again, let G be a compact Lie group acting smoothly
on a manifold M with quotient map π : M→ M/G. Let x ∈ M, and let H be the
stabilizer of the action at x . Note that H is compact. Define the isotropy action
of H on Tx M by h · v = h∗v for any v ∈ Tx M. Here we view elements of G as
diffeomorphisms of M, and since elements of H fix x , this action is well-defined.
It is also linear, which in the effective case puts us back into the situation described
above. Note that for any v ∈ Tx(G · x), any smooth curve c : R→ G · x such that
c(0)= x and ċ(0)= v and any h ∈ H,

h · v = h∗v =
d
dt

∣∣∣
t=0

h · c(t),

where d
dt

∣∣
t=0h · c(t) is in Tx(G · x) since it is the derivative of a new smooth curve

contained in G · x . Thus, Tx(G · x) is an H -invariant linear subspace of Tx M, and
so the isotropy action descends to a linear H -action (also called the isotropy action)
on the normal space V := Tx M/Tx(G · x) to the G-orbit at x .
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Since H is a subgroup of G, it acts on G by h · g = gh−1, and so we have the
H -action on the product G× V defined by

h · (g, v) := (gh−1, h · v).

Denote the orbit space of this action by G×H V. Note that G acts on G×H V by
g′ · [g, v] = [g′g, v]. We have the following theorem of Koszul [1953]; see also
[Duistermaat and Kolk 2000, Section 2.3].

Theorem 2.2 (slice theorem). Let G be a compact Lie group acting on a manifold M.
For any x ∈ M there exists an open G-invariant neighborhood U of x and a G-
equivariant diffeomorphism F :U → G×H V, where H is the stabilizer of x and
V is the normal space to G · x in M at x equipped with the isotropy action of H.

Remark 2.3. The slice theorem holds more generally for proper actions [Palais
1961], but we only need the compact case.

It follows from the slice theorem that for any point π(x)∈ M/G there is an open
neighborhood of π(x) of the form V/H ∼= (G ×H V )/G, where V is the normal
space to G ·x at x as above. By Lemma 2.1, the quotient topology on M/G is equal
to the initial topology induced by the quotient differential structure C∞(M/G).
Since V/H is semialgebraic, it follows that M/G is a local semialgebraic set.

2C. Orbit-type stratification. Given a compact Lie group action of G on M, for
any closed subgroup H ≤ G we define the subset M(H) as

M(H) := {x ∈ M | there exists g ∈ G such that Stab(x)= gHg−1
}.

The connected components of these subsets partition M into embedded submanifolds
which together form a stratification; in particular, the partition is locally finite and if
C1 and C2 are two such submanifolds such that C1∩C2 6=∅, then either C1=C2 or
C1 is contained in the boundary of C2. We refer to this stratification as the orbit-type
stratification. (We do not intend to give the full definition of a stratification. This is
in fact very involved and will take us away from the point of the paper. The reader
who is interested should consult, for example, [Pflaum 2001]. For details on the
orbit-type stratification, see [Duistermaat and Kolk 2000, Section 2.7].)

The sets M(H) are G-invariant and so descend to a partition of M/G into subsets
M(H)/G. The connected components of these again form a stratification, which
again we will call the orbit-type stratification of M/G (see [Duistermaat and Kolk
2000, Sections 2.7, 2.8]). We are interested in the local form of these stratifications.
Fix x ∈ M. By the slice theorem, there is a G-invariant open neighborhood U of x
and a G-equivariant diffeomorphism U → G ×H V, where H is the stabilizer of
x and V is the normal space to G · x at x , equipped with the isotropy action. As
noted above, (G ×H V )/G is diffeomorphic to V/H. Since H is compact, there
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exists an H -invariant inner product on V, and with respect to this inner product
we can write V ∼= E ⊕ F, where E is the linear subspace of H -fixed points (that
is, the maximal subspace on which H acts trivially), and F is an H -invariant
complement. It follows that V/H ∼= E × (F/H). Denote by k the dimension of F,
by Sk−1

⊆ F the unit sphere with respect to an H -invariant norm and by L the
quotient Sk−1/H. The continuous map Sk−1

× [0,∞)→ F sending (x, t) 7→ xt
is H -invariant and descends to a homeomorphism between the cone of L , given
by (L × [0,∞))/(L × {0}), and the quotient F/H. The cone itself is a stratified
space, with a stratum S× (0,∞) for each orbit-type stratum S of L , along with
the apex of the cone which we denote by z. The stratification of V/H contains
a stratum E × S′ for each stratum S′ of F/H. We refer to L as the link of this
stratification, and the apex of the cone z the distinguished stratum of F/H. As a
differential space, F/H r {z} is diffeomorphic to L × (0,∞); however, be aware
that the differential structure of F/H in any neighborhood of z does not necessarily
equal the quotient differential structure near the apex of (L × [0,∞))/(L × {0}).
We explore the differential structure near z via an example at the end of Section 4.

As a last word on orbit-type stratifications, we have the following theorem
[Śniatycki 2013, Theorem 4.3.10]. (While Śniatycki’s proof is only for compact
connected groups, the proof goes through for any proper action.)

Theorem 2.4 (orbit-type stratification is an invariant). Let G be a compact Lie
group acting smoothly on a manifold M. Then the orbit-type stratification of M/G
is an invariant of C∞(M/G).

The proof of the theorem above comes from the fact that the connected compo-
nents of orbit-type strata are exactly the accessible sets (also called orbits in the
literature) of the family of all vector fields on M/G induced by C∞(M/G). The
details of this would take us too far afield, and so we merely emphasize the fact
that the stratification is an invariant of the differential structure.

2D. Recovering the action: the finite group case. The purpose of this paper is
to address the following question. Given an effective linear S1-action on Rm,
can we recover the action from the differential space (Rm/S1,C∞(Rm/S1))? As
mentioned in the Introduction, in the case of a finite group 0 acting effectively
and linearly on Rm, the answer is affirmative: one can obtain invariants of the
semialgebraic set (Rm/0,C∞(Rm/0)) from which the action of 0 on Rm can be
recovered up to isomorphism. Recall that a compact Lie group action of G on an
m-dimensional manifold M is locally free if the stabilizer of every point is finite.
In this case, the slice theorem implies that for every point x of M/G, there is a
finite subgroup 0, the isotropy group of x , a linear 0-action on Rm, and an open
neighborhood of x diffeomorphic to Rm/0. The orbit space M/G equipped with
an open cover by these neighborhoods, and for each of these neighborhoods the
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corresponding linear representation, is an (effective) orbifold. (Again, we do not
propose to give a rigorous definition of an orbifold; see the literature cited in the
Introduction for details.) As mentioned above, locally, the differential structure
encodes the linear representations of these finite groups; piecing together these local
pictures into a global one, the following theorem due to one of us [Watts 2017] is
obtained.

Theorem 2.5 (orbifold differential structure). Let G be a compact Lie group acting
smoothly, effectively, and locally freely on a connected manifold M. The diffeomor-
phism class of the quotient differential space (M/G,C∞(M/G)) determines the
group action of G on M, up to Morita equivalence.

Remark 2.6. (1) We will not define Morita equivalence in this paper, as this
requires the introduction of the language of Lie groupoids. We simply note that
the Morita equivalence class of a Lie groupoid representing the orbifold can be
recovered from the differential structure.

(2) The “definition” of an effective orbifold we use above is not the typical definition
used. In the literature, one usually uses an atlas definition or Lie groupoids. However,
it is a theorem that any effective orbifold is the quotient of a manifold by a compact,
effective, and locally free Lie group action. See [Satake 1956; 1957, Section 1.5;
Haefliger 1984; Moerdijk 2002; Moerdijk and Pronk 1997, Theorem 4.1].

Corollary 2.7. Let X be an effective orbifold, and fix x ∈ X. Then the isotropy
group at x is determined up to isomorphism by the differential structure of X.

While Corollary 2.7 is stated here as a consequence of Theorem 2.5, this fact is
actually used in part of the proof of Theorem 2.5; see [Watts 2017, Theorem 5.10].
To prove it, locally about x , one uses an algorithm of [Haefliger and Ngoc Du 1984]
that reproduces the orbifold fundamental group (and thus the isotropy group at x)
from knowledge of the codimension-0, codimension-1, and codimension-2 strata,
and the orders of isotropy groups at these codimension-2 strata. In turn, these orders
of isotropy groups at codimension-2 strata can be obtained via the Milnor numbers
of the corresponding singularities forming the codimension-2 strata. For details,
consult [Watts 2017].

2E. Linear circle actions. Let S1 act linearly on Rn. There is an S1-equivariant
linear change of coordinates Rn ∼= Rn−2m

×Cm, where S1 acts trivially on Rn−2m,
and on Cm we have for all eiθ

∈ S1 and (z1, . . . , zm) ∈ Cm

eiθ
· (z1, . . . , zm) := (eiθα1 z1, . . . , eiθαm zm); (1)

the numbers αj are integers called the weights of the action. Since complex conju-
gation is a diffeomorphism, we may assume the weights are nonnegative; in fact,
we may assume further that any weight-0 factor is included in the Rn−2m factor,
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set order of stabilizer codimension number

S1···m 1= gcd(α1, . . . , αm) 0 1=
(m

0

)
Sj1··· ĵ`··· jm

gcd(αj1, . . . , α̂j`, . . . , αjm ) 2
(m

1

)
...

...
...

...

Sj αj 2m− 2
( m

m−1

)
{0} ∞ 2m 1=

(m
m

)
Table 1. Data for linear circle action.

and so each αj is positive. Finally, if we also impose the condition that the action
be effective, then gcd(α1, . . . , αm)= 1 and all isotropy actions are effective.

Assume S1 acts on Cm effectively with positive weights. Denote by Sj1··· jk the
subset

{(0, . . . , 0, z j1, 0, . . . , 0, z jk , 0, . . . , 0) | z j` 6= 0, `= 1, . . . , k}.

The open dense subset S1···m has trivial stabilizer at all points since

gcd(α1, . . . , αm)= 1.

It is a submanifold of dimension 2m, and there exists exactly one such submanifold.
The set S1··· ĵ ···m is a submanifold of dimension 2m− 2, and there exist exactly

(m
1

)
such submanifolds; the hat symbol means that we remove the corresponding index.
And so on. If eiθ fixes a point in Sj1··· jk , then eiθαj` = 1 for ` = 1, . . . , k. That is,
eiθ
∈ Zαj`

for `= 1, . . . , k, which is equivalent to eiθ
∈ Zgcd(αj1 ,...,αjk )

. We tabulate
this data in Table 1.

One can also organize this table as integer labels on an (m−1)-simplex. Noticing
that the m weights appear as the stabilizers of the sets Sj , we place each of these
weights at the vertices of the simplex. If an edge connects two vertices labeled αj

and αk , then we attach the integer label gcd(αj , αk) to the edge. More generally,
attach the integer label gcd(αi1, . . . , αi`+1) to an `-face whose vertices have associ-
ated weights αi1, . . . , αi`+1 . The interior of the simplex obtains a label of 1 since
gcd(α1, . . . , αm)= 1.

The collection of sets in Table 1 partitions Cm into invariant submanifolds, and
an orbit-type stratum is exactly the union of sets above whose points share the same
stabilizer.

3. Description of the invariant polynomials

Our first order of business is to obtain a description of the invariant polynomials
for an effective linear action of S1 on Cm as in (1). A fully satisfactory description
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of the algebra of invariant polynomials for a general linear circle action (such as
a generating set of invariant polynomials with minimal cardinality along with the
relations between these polynomials) remains elusive; at least the authors are not
aware of such a description in the literature. Often a minimal generating set can
be obtained for specific cases, and on a case-by-case basis the relations can be
derived from the invariant polynomials using a Gröbner basis [Sturmfels 1993,
Chapter 1] and the techniques of [Procesi and Schwarz 1985]. Also, work has
been done on determining the dimension of the subspace of invariant polynomials
of a fixed degree; see [Herbig and Seaton 2014]. We take a different approach
below, in which we give a simple condition that any invariant polynomial must
satisfy. Fix an effective linear action of S1 on Cm. Considering Cm as the real
vector space R2m, it will be convenient to use coordinates (z1, z̄1, . . . , zm, z̄m). Let
p be a homogeneous C-valued polynomial on Cm of degree d . Let K be the set of
all 2n-tuples K = (k1, k̄1, . . . , kn, k̄n) such that k1+ k̄1+ · · ·+ kn + k̄n = d . Then,
p takes the form

p(z1, z̄1, . . . , zn, z̄n)=
∑
K∈K

PK zk1
1 z̄k̄1

1 · · · z
kn
n z̄k̄n

n (2)

for some complex numbers PK .

Proposition 3.1. Let S1 act on Cm linearly and effectively with positive weights
α1, . . . , αm . Then a homogeneous C-valued polynomial p as in (2) is invariant if
and only if it satisfies the equation

α1(k1− k̄1)+ · · ·+αm(km − k̄m)= 0 (3)

for each K ∈ K such that PK 6= 0.

Proof. Fix a homogeneous polynomial as in (2). Then p takes the form

p(z1, z̄1, . . . , zm, z̄m)=
∑
K∈K

PK |z1|
k1+k̄1 · · · |zm |

km+k̄m ei(ψ1(k1−k̄1)+···+ψm(km−k̄m)),

where z j = |z j |eiψj for each j . Applying eiθ to p for an arbitrary eiθ
∈S1, consider

the difference p− (eiθ )∗ p:

p(z1, . . . , z̄m)− p(eiθ
· (z1, . . . , z̄m))

=

∑
K∈K

PK |z1|
k1+k̄1 · · · |zm |

km+k̄m ei(ψ1(k1−k̄1)+···+ψm(km−k̄m))

× (1− eiθ(α1(k1−k̄1)+···+αm(km−k̄m))). (4)

If p satisfies (3) for each K such that PK 6= 0, then the right-hand side of (4) is 0,
from which it follows that p is invariant.

Conversely, assume p is invariant. Then for any eiθ
∈ S1 the two polynomials

p and (eiθ )∗ p are equal; in particular, their polynomial coefficients are equal. In
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terms of (4), this means that for each K ∈ K

PK (1− eiθ(α1(k1−k̄1)+···+αm(km−k̄m)))= 0.

Since eiθ is arbitrary, it follows that for each K ∈K, either PK = 0 or (3) holds. �

Corollary 3.2. Let S1 act on Cm linearly and effectively with positive weights
α1, . . . , αm . Then there exists a generating set of the invariant polynomials consist-
ing solely of real and imaginary parts of monomials zk1

1 z̄k̄1
1 · · · z

kn
n z̄k̄n

n satisfying (3).

4. Description of the orbit space

Let S1 act on Cm linearly and effectively with positive weights α1, . . . , αm . The
purpose of this section is to study two main features of the differential structure of
the orbit space Cm/S1: the link and the distinguished stratum.

Since the stabilizers of the action away from the origin are proper subgroups
of S1, we immediately have the following fact.

Proposition 4.1. Let S1 act on Cm linearly and effectively. Then (Cm r {0})/S1 is
an orbifold diffeomorphic to (S2m−1/S1)× (0,∞).

Remark 4.2. If the action is not effective, one no longer has an effective orbifold.
However, there remains a diffeomorphism between the two differential spaces.

In the case of all positive weights, the link S2m−1/S1 is a well-known orbifold
called a weighted projective space CP(α1, . . . , αm). Although typically a weighted
projective space is considered with its complex structure, we discard that here and
consider the corresponding differential subspace structure induced by Cm/S1. As dis-
cussed in Section 2E, for fixed j , the stabilizer at each point (0, . . . , 0, z j , 0, . . . , 0),
where z j 6= 0, is Zαj . Any 1-dimensional orbit-type stratum in S2m−1 is equal to
one of these sets intersected with S2m−1. Hence any 0-dimensional stratum of the
corresponding weighted projective space has isotropy group Zαj . Similar statements
can be obtained for each higher-dimensional stratum using Section 2E; this will be
crucial in the proof of Theorem 1.5.

The distinguished stratum is the image of the origin, the unique fixed point of
the action, via the quotient map (again, assuming all weights are positive). For
general compact linear actions, the differential structure near such distinguished
strata is interesting and important. It detects invariants there that are not topological.
For example, consider Zn acting on C by rotations. For each n, the orbit space is
homeomorphic to the plane; however, the differential structure detects the so-called
Milnor number (also known as a germ codimension) at the distinguished stratum
from which the number n can be recovered; see [Watts 2017, Section 5] for more
details. The Milnor number makes rigorous what can be interpreted in loose terms
as “how fast” the “cone” converges to its apex, without the use of any type of
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Riemannian metric. For instance, if we intersect C/Zn as a differential subspace of
R3 with a plane through the distinguished stratum containing the axis of symmetry,
we obtain a curve with a singularity diffeomorphic to the graph of y2

= xn in R2

(x > 0). Going back to the S1-action, we check for similar behavior.
Recall our notation

Sj := {(0, . . . , 0, z j , 0, . . . , 0) | z j 6= 0}.

Proposition 4.3. Let S1 act on Cm linearly and effectively with positive weights
α1, . . . , αm . There exists a choice of Hilbert map σ = (σ1, . . . , σn), where the
polynomials σj are of the form in Corollary 3.2, such that the image of

⋃
j Sj

under σ is closed under scalar multiplication by positive real numbers, forming
the nonnegative parts of m coordinate axes of Rn with the 0-dimensional stratum
at the origin. Moreover, the 0- and 1-dimensional orbit-type strata of Cm/S1 are
contained in these axes.

Proof. Choose the generating set {σ1, . . . , σn} to contain the polynomials |zi |
2 for

i = 1, . . . ,m, but no powers of these polynomials greater than 1. Then for each
k ∈ {1, . . . , n}, each polynomial σk when restricted to Sj is identically 0 unless it is
equal to |z j |

2. The result follows. �

As an example, consider the case m = 2, α1 = 1, and α2 = 2. The orbit space is
diffeomorphic to the semialgebraic set in R4 given by

y1 ≥ 0, y2 ≥ 0, y2
3 + y2

4 = y2
1 y2.

(See Example 6.2 for details.) Intersecting this differential subspace with the plane
y3 = y4 = 0, we obtain the nonnegative y1- and y2-axes, which together form a
curve with differential structure diffeomorphic to the graph of the absolute value
function. The intersection with other planes yields different singularities, however.
For example, intersecting with y3 = y1− y2 = 0 yields the curve y2

4 = y3
1 , which

has a more severe cusp.

5. Linear S1-actions

A more sophisticated version of Theorem 1.5 is below, along with its proof. We
develop an algorithm in the proof for finding the weights of an effective linear circle
action. Examples 6.3 and 6.4 illustrate this algorithm.

Let S1 act linearly on Rk and R`, and let ψ :Rk
→R` be a smooth S1-equivariant

map. Then ψ descends to a map ψ̂ :Rk/S1
→R`/S1 making the following diagram

commute:

Rk ψ //

πk ��

R`

π`��
Rk/S1 ψ̂ // R`/S1.
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Note that ψ̂ is smooth. Indeed, let f ∈ C∞(R`/S1). It is sufficient to show that
(ψ̂ ◦πk)

∗ f ∈ C∞(Rk). But (ψ̂ ◦πk)
∗ f = (π` ◦ψ)∗ f . Since π` and ψ are smooth,

we conclude that (ψ̂ ◦πk)
∗ f ∈ C∞(Rk). This shows that smooth equivariant maps

between S1-representations are sent to smooth maps between orbit spaces. In
fact, this is a functor to differential spaces. Theorem 5.1 states that this functor
is essentially injective. We say that a functor F is essentially injective if given
objects c1 and c2 in its domain category, F(c1)∼= F(c2) implies c1 ∼= c2; that is, it
is injective on objects up to isomorphism.

Theorem 5.1 (linear circle actions). Let C be the category of all effective linear
actions of S1 on finite-dimensional real vector spaces with smooth S1-equivariant
maps between them. Then the functor from C to differential spaces sending such
an S1-action on a vector space V to the differential space (V/S1,C∞(V/S1)),
and sending smooth S1-equivariant maps to smooth maps between orbit spaces, is
essentially injective on objects.

Remark 5.2. To obtain Theorem 1.5 from Theorem 5.1, we need to show that if
there is an S1-equivariant diffeomorphism ϕ between two S1-representations in C,
then there is also an S1-equivariant linear isomorphism between them. This follows
from the fact that the actions of S1 are linear, and so we may identify any such
representation with its tangent space at a fixed point with the induced action. Since
ϕ maps the origin to another fixed point, the differential at the origin dϕ|0 satisfies
what is required.

Proof. Let V be an S1-representation. Let dim V = n, and identify V with Rn. As
mentioned previously, the action of S1 on Rn will always be isomorphic to an S1-
action on the product Rn−2m

×Cm, where S1 acts on Rn−2m trivially, and on Cm by
(1) such that the weights αj are positive and gcd(α1, . . . , αm)= 1. To complete the
proof, we need to obtain the integers α1, . . . , αm , as well as the dimension n− 2m
of the trivial representation, from C∞((Rn−2m

×Cm)/S1).
The quotient topology on (Rn−2m

× Cm)/S1 is equal to the initial topology
induced by C∞((Rn−2m

×Cm)/S1) by Lemma 2.1. The dimension of the space
(Rn−2m

×Cm)/S1, which is n− 1, is a topological invariant: it is the topological
dimension at generic points of the space. So, the differential structure identifies
that the dimension of the S1-representation is n.

Since S1 acts trivially on Rn−2m, the coordinate functions on this factor can be
chosen as generators in a generating set of invariant polynomials on Rn−2m

×Cm.
It follows that (Rn−2m

×Cm)/S1 is diffeomorphic to Rn−2m
× (Cm/S1), and we

shall identify the two spaces.
By Theorem 2.4, the orbit-type stratification on Rn−2m

×Cm/S1 can be obtained
from C∞(Rn−2m

× Cm/S1). In particular, since Cm contains a unique S1-fixed
point, the orbit space Rn−2m

×Cm/S1 has a unique stratum A of minimal dimension
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n−2m. It follows that the differential structure identifies the dimension of the trivial
representation of S1 on Rn−2m. We now only need to find the weights α1, . . . , αm to
complete the proof. Note that we know ahead of time that there are m such weights,
as we know the orbit space came from a linear circle action on Rn with a trivial factor
Rn−2m of maximal dimension: we can derive m from the two numbers n and n−2m.

Removing A from Rn−2m
×Cm/S1, we are left with an orbit space of a locally

free S1-action, i.e., an orbifold, by Proposition 4.1. By Corollary 2.7, the orders
of the isotropy groups at each stratum of this orbit space can be obtained from
its differential structure, and hence from C∞(Rn−2m

×Cm/S1). Since these finite
orders will correspond to subgroups of S1, we conclude that those isotropy groups
are cyclic groups of the obtained orders.

We claim that there is a natural way to pick out the weights from the orders of
these isotropy groups. That the weights appear at all among these orders is clear:
the weight αj is the order of the stabilizer of all points in

Sj = {(0, . . . , 0, z j , 0, . . . , 0) | z j 6= 0} ⊆ Cm .

The weights α j completely determine the orbit-type stratification of Cm (see
Section 2E), and hence of Rn−2m

×Cm, and its orbit space. In fact, the orbit-type
strata on the orbit space will be unions of images of the sets in Table 1 via the
quotient map, and so we can also use the simplex to organize the strata of the
orbit space. Since we know ahead of time that the orbit space is the result of
an effective linear circle action, we take advantage of this knowledge and now
produce an algorithm on the orbit space starting with the differential structure
C∞(Rn−2m

×Cm/S1) which obtains the weights.
Remove A from Rn−2m

×Cm/S1, and denote the collection of the remaining
strata by S. Equip S with a partial ordering �, defined by S � T if T ∩ S 6=∅, in
which case S ⊆ T. Note that S is finite, with open and dense stratum O as the top
stratum, meaning it is maximal with respect to �. Also, if S � T, then either S = T
or dim(S) < dim(T ). The depth of a stratum S is the number of distinct strata in
a maximal chain with S as its minimal element:

depth(S) := sup{ν | S = S0 ≺ S1 ≺ · · · ≺ Sν =O}.

Start with an element R of (S,�) of maximum depth, and denote its codimension
by 2r ; this will be a union of images of sets from Table 1 via the quotient map. R
is represented by an (m−1−r)-face in the simplex mentioned above; equivalently,
it is the union of the image via the quotient map of a codimension-2r set in Table 1
along with some lower-dimensional such images in its boundary. In particular, we
know m − r vertices are contained in this face; as R is minimal with respect to
� we know that the m− r corresponding images of sets Sj via the quotient map
are contained in R. Since the isotropy groups at all points of R share the same
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order, and as mentioned above we know what this order is, we conclude that we
know what the order is at the m− r vertices. So we have obtained m− r weights.
Repeat this step for all strata with the same depth as R, keeping in mind that while
a vertex may appear more than once when applying this step to different strata, its
associated weight should only be recorded once.

We continue recursively. Fix a depth D. Suppose for each stratum Q of depth
greater than D and for each vertex contained in the face associated to Q, the
associated weight is known. Let P be a stratum of depth D and codimension 2p,
which is represented by an (m−1−p)-face in the simplex. Consequently, this face
contains m− p vertices. Each stratum in P rP has depth greater than D, and by
assumption, we know the weights associated to the vertices in their corresponding
faces. If the total number of these vertices is not m − p, then the remaining
vertices must be associated to the stratum P itself, and we obtain the order of the
corresponding isotropy groups, which is constant at all points of P. Repeat this for
all strata of depth D. The result is that for each stratum of depth at least D, and
for each vertex contained in the associated faces, the associated weights are known.

Applying this procedure to all strata of incrementally decreasing depth, we even-
tually reach the top stratum O. If we have not obtained m weights at this point, we ap-
ply the argument above one more time to obtain the remaining weights, all equal to 1.

Since the algorithm above considers every possible vertex in the simplex (equiv-
alently every set Sj in Table 1), it is guaranteed to produce m weights. We now
have enough information to reconstruct the S1-action on Rn. �

6. Examples

Example 6.1 (S1 � C). Consider the action of S1 on C given by eiθ
· z = eiθ z. It

follows from Proposition 3.1 that |z|2 generates all invariant polynomials. Thus, the
orbit space is identified with the closed interval [0,∞)⊂ R. The orbit-type strata
in C are the origin {0} and its complement Cr {0}.

Example 6.2 (S1 � C2). We compute a generating set of invariant polynomials
with their relations, as well as the stabilizer groups, of S1 � C2 with weights α1

and α2. We will assume that the action is effective, and so gcd(α1, α2) = 1. The
invariant polynomials can be obtained using Corollary 3.2:

p1(z1, z2)= |z1|
2, p3(z1, z2)=Re(zα2

1 z̄α1
2 ),

p2(z1, z2)= |z2|
2, p4(z1, z2)= Im(zα2

1 z̄α1
2 ).

The relations can be verified using a Gröbner basis [Sturmfels 1993, Chapter 1;
Procesi and Schwarz 1985]:

p1 ≥ 0, p2 ≥ 0, p2
3 + p2

4 = pα2
1 pα1

2 .
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set order of stabilizer codimension

S123 1 0
S12 1 2
S13 1 2
S23 1 2
S1 1 4
S2 2 4
S3 3 4

Table 2. Data for Example 6.3.

The stabilizer groups can be computed directly:

Stab(0, 0)= S1,

Stab(z1, 0)= Zα1, z1 6= 0,

Stab(0, z2)= Zα2, z2 6= 0,

Stab(z1, z2)= {1} elsewhere.

Here, in the case that α1 or α2 is 1, we define Z1 to be the trivial group.

Example 6.3 (S1�C3). We illustrate the algorithm used in the proof of Theorem 5.1
for a simple example. Consider S1 acting on C3 linearly and effectively with weights
1, 2, and 3.

We find the orbit-type strata of the orbit space by constructing a table similar to
Table 1; we do so in Table 2. The orbit-type strata are the distinguished stratum,
the open dense stratum

O = π(S123 ∪ S12 ∪ S13 ∪ S23 ∪ S1)

and two 1-dimensional strata P1 = π(S2) and P2 = π(S3), with associated orders
of isotropy groups 2 and 3, respectively.

The Hasse diagram for the partial order � introduced in the proof of Theorem 5.1
is as follows:

O

P1 P2

Stratum P1 has codimension 4, and so corresponds to a vertex of the simplex
described in Section 2E (or equivalently a set Sj in Table 2); it has associated
order 2, which is one of the weights. Similarly P2 has associated order 3, another
weight. We are expecting three weights in total, and so the remaining weight must
be the order associated to O, which is 1.
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Example 6.4 (S1�C5). We illustrate the algorithm used in the proof of Theorem 5.1
for a more complicated action. Let S1 act linearly and effectively on C5 with weights
2, 2, 3, 4, and 6.

To find the orbit-type strata of the orbit space, we could construct a table similar to
Table 1; we do not to save space. The resulting strata are, besides the distinguished
stratum:

O = π(S12345∪S1234∪S1235∪S1345∪S2345∪S123∪S134

∪S135∪S234∪S235∪S345∪S13∪S23∪S34),

P = π(S1245∪S124∪S125∪S145∪S245∪S12∪S14∪S15∪S24∪S25∪S45∪S1∪S2),

Q= π(S35∪S3),

R1 = π(S4),

R2 = π(S5).

The associated orders of isotropy groups are

O: 1, P : 2, Q: 3, R1 : 4, R2 : 6.

The Hasse diagram for the partial order � used in the proof of Theorem 5.1 is

O

P Q

R1 R2

Stratum R1 has codimension 8, and so corresponds to a vertex of the simplex
described in Section 2E (or equivalently a set Sj in Table 1); it has associated order 4,
which is one of the weights. Similarly, stratum R2 also yields a weight, namely, 6.
P has codimension 2, and therefore it corresponds to a 3-face in the simplex
(equivalently, a set Sj1 j2 j3 j4 in Table 1), and so its closure contains four vertices.
Two of the weights have been found, and so the other two must be associated to P
itself, which has order 2. We now have weights 2, 2, 4, and 6. Q has codimension 6,
and so corresponds to an edge in the simplex (equivalently, a set Sj1 j2). There are two
vertices in its closure, one of which corresponds to R2. So the other weight must be
the order associated to Q, which is 3. Since we now have five weights, we are done.
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