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A cover of a finite ring R is a collection of proper subrings {S1, . . . , Sm} of R
such that R =

⋃m
i=1 Si . If such a collection exists, then R is called coverable, and

the covering number of R is the cardinality of the smallest possible cover. We
investigate covering numbers for rings of upper triangular matrices with entries
from a finite field. Let Fq be the field with q elements and let Tn(Fq) be the ring
of n× n upper triangular matrices with entries from Fq . We prove that if q 6= 4,
then T2(Fq) has covering number q + 1, that T2(F4) has covering number 4, and
that when p is prime, Tn(Fp) has covering number p+ 1 for all n ≥ 2.

1. Introduction

It is well known that no group is equal to the union of two proper subgroups.
However, it is possible to achieve such a union if we allow the use of more than two
proper subgroups. For example, the Klein 4-group is equal to the union of its three
proper, nontrivial subgroups. More generally, any noncyclic group is equal to the
union of its proper cyclic subgroups. Given a finite group G, we say that a collection
of proper subgroups {H1, . . . ,Hm} forms a cover of G if G=

⋃m
i=1 Hi . If such a cover

exists, then the covering number of G is the cardinality of the smallest possible cover.
Natural problems to study regarding covers and covering numbers include finding

formulas for the covering number of groups or families of groups, and determining
which groups have a specified covering number (e.g., “Which groups have covering
number 3?”). Consideration of these types of questions dates back at least nine
decades [Scorza 1926; Haber and Rosenfeld 1959; Bruckheimer et al. 1970]. The
covering number problem for groups began to become more popular following pa-
pers by Cohn [1994] and Tomkinson [1997]. Over the past several years, researchers
have begun to study the covering numbers for other algebraic structures [Kappe
2014], including rings [Crestani 2012; Lucchini and Maróti 2012; Werner 2015].
All rings with covering number 3 were characterized in [Lucchini and Maróti 2012],

MSC2010: primary 16P10; secondary 05E15.
Keywords: covering number, upper triangular matrix ring, maximal subring.

1005

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-6
http://dx.doi.org/10.2140/involve.2019.12.1005


1006 MERRICK CAI AND NICHOLAS J. WERNER

and a formula for the covering number of a matrix ring over a finite field was given in
[Lucchini and Maróti 2010] (see also the related article [Crestani 2012]). Covering
numbers for some other families of finite rings, including direct products of finite
fields, were found in [Werner 2015]. The purpose of this paper is to examine the cov-
ering numbers for rings of upper triangular matrices with entries from a finite field.

In this paper, rings are assumed to be associative and have a unit element 1 6= 0.
Subrings, however, need not contain a unit element. Given a ring R, we say that
S ⊆ R is a subring of R if S is a subgroup of R under addition and is closed under
multiplication.

Definition 1.1. A cover of a ring R is a set S of proper subrings of R such that
R =

⋃
S∈S S. If a cover of R exists, then R is said to be coverable. In this case,

the covering number of R is the cardinality of the smallest possible cover. When R
is coverable, σ(R) denotes the covering number of R.

Not every ring, or even every finite ring, is coverable. For example, for any n≥ 2,
Z/nZ is not coverable because the unit element of Z/nZ cannot lie in any proper
subring. There is a similar obstruction with finite fields. For a prime power q, we
let Fq be the finite field with q elements. Then, Fq is never coverable, because the
generator of the unit group of Fq cannot lie in a proper subring.

By contrast, a noncommutative ring is always coverable (a short proof of this
is given in Lemma 2.2). Most of this paper will focus on a particular class of
noncommutative rings: those consisting of upper triangular matrices. For any
ring R and any integer n ≥ 2, we let Tn(R) be the ring of n× n upper triangular
matrices with entries from R. The main theorem of the paper is the calculation of
the covering number for T2(Fq).

Theorem 1.2. Let q be a prime power. Then σ(T2(Fq))= q + 1 when q 6= 4, and
σ(T2(F4))= 4.

When n ≥ 3 and q itself is not prime, we are not able to determine the exact
covering number for Tn(Fq). However, we are able to provide an upper bound for
σ(Tn(Fq)), and this bound equals the covering number when q is prime. In fact, we
obtain a more general result about finite rings having a residue field of prime order.

Corollary 1.3. (1) Let q be a prime power. If n ≥ 3, then σ(Tn(Fq))≤ q + 1.

(2) Let R be a finite ring and let p be the smallest prime dividing the order of R. If
R has Fp as a residue field, then σ(Tn(R))= p+1 for all n ≥ 2. In particular,
σ(Tn(Fp))= p+ 1 for all n ≥ 2.

We prove both Theorem 1.2 and Corollary 1.3 in Section 3 after stating some
basic facts about coverings and covering numbers of rings in Section 2. The paper
closes with some remarks on the difficulty of establishing equality in part (1) of
Corollary 1.3.
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2. Basic definitions and properties

For a group G, it is easy to see that G is coverable if and only if G is not cyclic.
This is because if G is cyclic with generator g, then g cannot lie in any proper
subgroup of G. On the other hand, if G is noncyclic, then a cover is formed by the
collection of all cyclic subgroups of G. Furthermore, if a ∈ G and 〈a〉 is a maximal
subgroup of G, then 〈a〉 must be part of any cover of G, since a must lie in some
subgroup in the cover, and by maximality that subgroup must equal 〈a〉. Similar
statements are true for rings if we use subrings comparable to cyclic subgroups.

Definition 2.1. Let R be a ring. For any r ∈ R, we let 〈〈r〉〉 be the subring of R
generated by r . The subring 〈〈r〉〉 is equal to the intersection of all subrings of R
containing r , and 〈〈r〉〉 consists of the elements of the form cnrn

+ · · ·+ c1r , where
n ≥ 1 and c1, . . . , cn ∈ Z.

The relationships between a ring R and a subring 〈〈r〉〉 are much the same as
those between a group G and a cyclic subgroup 〈a〉.

Lemma 2.2. Let R be a ring:

(1) R is coverable if and only if for all r ∈ R we have R 6= 〈〈r〉〉.

(2) For all r ∈ R, if 〈〈r〉〉 is a maximal subring of R, then 〈〈r〉〉 is part of any cover
of R.

(3) If R is noncommutative, then R is coverable.

(4) Let I be a two-sided ideal of R. If R/I is coverable, then so is R, and
σ(R)≤ σ(R/I ).

Proof. Items (1) and (2) are proved just as for groups. For (3), notice that 〈〈r〉〉 is a
commutative ring for all r ∈ R. So, in a noncommutative ring R, 〈〈r〉〉 must be a
proper subring for all r ∈ R. Finally, for (4), let φ : R→ R/I be the quotient map.
For any proper subring S of R/I , we have φ−1(S) is a proper subring of R. So,
any cover of R/I lifts to a cover of R. �

Part (4) of the lemma can be used to find upper bounds for σ(R). Finding lower
bounds is, in general, harder to do. However, a simple counting argument gives a
basic lower bound.

Lemma 2.3. Let R be a finite coverable ring of order m. Let p be the smallest
prime dividing m. Then, p+ 1≤ σ(R).

Proof. Every proper subring of R has order at most m/p. Let S1, . . . , Sp be proper
subrings of R. Since 0 ∈ Si for each i , the total number of elements in the union
of all p subrings is at most 1+ p(m/p− 1) < m. Thus, R cannot be covered by
fewer than p+ 1 proper subrings. �
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3. Main results

In this section, we prove Theorem 1.2 and Corollary 1.3. Our strategy is to show
that (when q 6= 2 or 4) we may form a cover of T2(Fq) by using q + 1 maximal
subrings, each of which is generated by a single matrix. By Lemma 2.2, each of
these subrings is part of any cover of T2(Fq), so we must have σ(T2(Fq))= q + 1.

Throughout this section, q is a power of the prime p, and g ∈ Fq denotes an
element of multiplicative order q−1 (so, in particular, Fq = Fp(g)). We let I denote
the 2×2 identity matrix, and let M be the matrix M =

( g
0

1
g

)
∈ T2(Fq). The matrix M

is useful because — as we will prove — it generates a maximal subring of T2(Fq).

Lemma 3.1. Let S be a subring of T2(Fq) that contains all of the scalar matrices.
Then, |S| is either q, q2, or q3. Consequently, if |S| = q2, then S is maximal.

Proof. Since S contains all of the scalar matrices, it is closed under Fq-scalar
multiplication, and hence is an Fq-vector space. This means that |S| = qd, where
d = dimFq (S). Since dimFq (T2(Fq)) = 3, we see that any subring of T2(Fq) of
order q2 that contains all of the scalar matrices must be maximal. �

Proposition 3.2. The subring 〈〈M〉〉 is maximal, and 〈〈M〉〉 =
{(a

0
b
a

) ∣∣ a, b ∈ Fq
}
.

Proof. Let S =
{(a

0
b
a

) ∣∣ a, b ∈ Fq
}
. Then, S is a subring of order q2 and contains all

of the scalar matrices, so S is maximal by Lemma 3.1. We will prove that S⊆ 〈〈M〉〉.
Note that Mq

=
( gq

0
0

gq

)
=
( g

0
0
g

)
. Since 〈〈g〉〉 = Fq , 〈〈M〉〉 contains all of the scalar

matrices as well as the matrix M −Mq
=
( 0

0
1
0

)
. This implies that S ⊆ 〈〈M〉〉, and

by maximality S = 〈〈M〉〉. �

By Lemma 2.2, 〈〈M〉〉 will be part of any cover of T2(Fq). When q is odd, we
can form other maximal subrings by using matrices of the form

( g
0

b
−g

)
, where

b ∈ Fq . This will not work if q is even, because
( g

0
b
−g

)
∈ 〈〈M〉〉 in this case. So, in

characteristic 2, we must use different matrices.

Lemma 3.3. Let q = 2k, where k ≥ 3. Let G = {a ∈ Fq | F2(a) = Fq} be the set
of elements of Fq that generate Fq over F2. Then, there exists α ∈ Fq such that
α2
+α ∈ G.

Proof. Let H = {b2
+ b | b ∈ Fq}. We show that |G|> q/2 and |H | = q/2, which

means that G ∩ H is nonempty.
For G, note that c ∈ Fq \G if and only if c lies in some maximal subfield of Fq .

For q = 2k, the proper subfields of Fq are precisely F2d for d | k and d < k. In
particular, |F2d | ≤ 2k/2. When k = 3, the only subfield of F8 is F2 so |G| = 6 and
the result holds. For k = 4, the only maximal subfield of F16 is F4, so |G| = 12
and the result holds again. Now assume k ≥ 5. Then consider ω(k), the number of
distinct prime factors of k. There are thus ω(k) maximal subfields. We easily find
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that ω(k) < k/2 for k ≥ 5. Letting d1, d2, . . . , dω(k) be the maximal divisors of k
(i.e., k/di is a prime), we get∣∣∣∣ω(k)⋃

i=1

F2di

∣∣∣∣< ω(k)∑
i=1

2di ≤
k
2
· 2k/2 < 2k−1

=
q
2
.

Thus, |G|> q/2.
Now, for H, observe that for all x, y ∈ Fq , we have x2

+ x = y2
+ y if and only

if x + y = x2
+ y2
= (x + y)2, which holds if and only if x + y = 0 or x + y = 1.

Hence, x2
+ x = y2

+ y if and only if x = y or x = y+ 1. As a result, we get q/2
distinct values of x2

+ x as x runs through Fq . So, |H | = q/2 and G ∩ H 6=∅. �

Remark 3.4. Lemma 3.3 fails when q = 4. In this case, F4={0, 1, a, a+1}, where
a2
+a+1= 0. So, α2

+α equals 0 or 1 for all α ∈ F4, and neither 0 nor 1 generates
F4 over F2.

Definition 3.5. When q is odd, for each b ∈ Fq let Xb =
( g

0
b
−g

)
. When q is even

and q ≥ 8, let α ∈ Fq be such that α2
+α generates Fq over F2, and for each b ∈ Fq

let Yb =
(
α
0

b
α+1

)
.

The subrings 〈〈Xb〉〉 and 〈〈Yb〉〉 are the subrings we require to complete the covers
of T2(Fq). Proving that this is the case involves several lemmas and propositions.

Lemma 3.6. When q is odd, g2 generates Fq over Fp.

Proof. Note that |〈g2
〉| = (q − 1)/2 as a multiplicative group. Combined with the

element 0, we have |Fp(g2)| ≥ (q+1)/2. Since Fp(g2) is a subfield of Fq , its order
divides q . Hence, Fp(g2) must be all of Fq . �

Lemma 3.7. When q is odd, Xb, Xc, and I are linearly independent over Fq for all
distinct b, c ∈ Fq . When q is even and q ≥ 8, Yb, Yc, and I are linearly independent
over Fq for all distinct b, c ∈ Fq .

Proof. Assume that q is odd. Let x1, x2, x3∈Fq be such that x1 ·Xb+x2 ·Xc+x3 · I =(0
0

0
0

)
. This corresponds to the matrix equation g g 1

b c 0
−g −g 1

x1

x2

x3

=
0

0
0

 .
The 3× 3 matrix for this system has determinant 2g(c − b), which is nonzero
because Fq has odd characteristic and b 6= c. Hence, x1 = x2 = x3 = 0 and Xb, Xc,
and I are linearly independent. The proof for characteristic 2 is the same, except
that the determinant of the relevant matrix is b + c, which is still nonzero. So,
Yb, Yc, and I are also linearly independent. �

Proposition 3.8. When q is odd, 〈〈Xb〉〉 is maximal for each b∈ Fq and has order q2.
When q is even and q ≥ 8, 〈〈Yb〉〉 is maximal for each b ∈ Fq and has order q2.
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Proof. Assume that q is odd. Observe that X2
b =

( g2

0
0
g2

)
. By Lemma 3.6, 〈〈Xb〉〉

contains all of the scalar matrices in T2(Fq). Since Xb itself is not scalar, Lemma 3.1
shows that |〈〈Xb〉〉| is either q2 or q3. But, 〈〈Xb〉〉 6= T2(Fq) because 〈〈Xb〉〉 is commu-
tative, so |〈〈Xb〉〉| = q2 and 〈〈Xb〉〉 is maximal by Lemma 3.1. The proof for 〈〈Yb〉〉 is
identical after noting that Y 2

b + Yb =
(
α2
+α
0

0
α2+α

)
. �

Proposition 3.9. Let F ={a · I | a ∈ Fq} be the subring of scalar matrices in T2(Fq):

(1) If q is odd, then 〈〈Xb〉〉 ∩ 〈〈M〉〉 = F for all b ∈ Fq , and 〈〈Xb〉〉 ∩ 〈〈Xc〉〉 = F for
all distinct b, c ∈ Fq .

(2) If q is even and q≥8, then 〈〈Yb〉〉∩〈〈M〉〉=F for all b∈Fq , and 〈〈Yb〉〉∩〈〈Yc〉〉=F
for all distinct b, c ∈ Fq .

Proof. We will prove part (1); the proof of part (2) is the same. Assume that q is odd.
Certainly, 〈〈Xb〉〉 ∩ 〈〈M〉〉 contains F. Suppose that there exists A ∈ 〈〈Xb〉〉 ∩ 〈〈M〉〉
that is not scalar. Now, {Xb, I } forms an Fq -basis for 〈〈Xb〉〉, so A= a1 · Xb+a2 · I
for some a1, a2 ∈ Fq with a1 6= 0. But then, Xb = a−1

1 (A−a2 · I ) ∈ 〈〈M〉〉, which is
impossible by Proposition 3.2. Hence, 〈〈Xb〉〉 ∩ 〈〈M〉〉 = F.

Similarly, we know that 〈〈Xb〉〉 ∩ 〈〈Xc〉〉 ⊇ F for distinct b, c ∈ Fq . As above,
if there exists a nonscalar matrix A ∈ 〈〈Xb〉〉 ∩ 〈〈Xc〉〉, then Xb ∈ 〈〈Xc〉〉. But then,
Xb, Xc, and I are all in 〈〈Xc〉〉. By Lemma 3.7, these three matrices are linearly
independent over Fq , so |〈〈Xc〉〉| = q3, which contradicts Proposition 3.8. Thus,
〈〈Xb〉〉 ∩ 〈〈Xc〉〉 = F. �

The results above are sufficient to compute σ(T2(Fq)) when q is odd, or q is
even and q ≥ 8. The cases q = 2 and q = 4 must be dealt with separately. When
q = 4, we must rule out the possibility that σ(T2(F4)) equals 3.

Lemma 3.10. σ(T2(F4)) 6= 3.

Proof. A classification of all rings (with or without unity) with covering number 3
is given in [Lucchini and Maróti 2012, Theorem 1.2]. When applied to a ring R
with unity, this classification says that σ(R)= 3 if and only if R has a residue ring
isomorphic to either F2× F2 or the ring

a 0 0
b a 0
c 0 a

 ∣∣∣∣∣∣ a, b, c ∈ F2

 , (3.11)

which has order 8. Now, T2(F4) has order 64, and any ideal of T2(F4) is an F4-vector
space, and hence has order equal to a power of 4. So, T2(F4) contains no ideal of
order 8, and hence has no residue ring isomorphic to the ring in (3.11). The only
ideals of T2(F4) of order 16 are the maximal ideals{(

a b
0 0

) ∣∣∣∣ a, b ∈ F4

}
and

{(
0 b
0 c

) ∣∣∣∣ b, c ∈ F4

}
.
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For each of these, the associated residue ring is isomorphic to F4. Hence, T2(F4)

does not satisfy the conditions of [Lucchini and Maróti 2012, Theorem 1.2], and so
σ(T2(F4)) 6= 3. �

We can now prove Theorem 1.2 and Corollary 1.3, which are restated for conve-
nience.

Theorem 1.2. Let q be a prime power. Then σ(T2(Fq))= q + 1 when q 6= 4, and
σ(T2(F4))= 4.

Proof. One may check that a cover of T2(F2) is formed by the three subrings{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
0 0

)
,

(
1 1
0 1

)}
,{(

0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
1 1
0 0

)}
,{(

0 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 1

)}
.

Since no ring can be covered by only two subrings, we get σ(T2(F2))= 3.
For q = 4, note that I =

{( 0
0

b
0

) ∣∣ b ∈ F4
}

is an ideal of T2(F4) and T2(F4)/I ∼=
F4×F4. By [Werner 2015, Theorem 5.3], F4×F4 is coverable and σ(F4×F4)= 4, so
σ(T2(F4))≤ 4 by Lemma 2.2. But, σ(T2(F4)) 6= 3 by Lemma 3.10, so we conclude
that σ(T2(F4))= 4.

Now, assume that either q is odd, or that q is even and q ≥ 8. By Propositions 3.2
and 3.8, T2(Fq) contains q+1 maximal subrings, each generated by a single matrix,
and each of order q2. These subrings are all distinct by Proposition 3.9, so each
one must be part of any cover of T2(Fq) by Lemma 2.2. Hence, σ(T2(Fq))≥ q+ 1.
On the other hand, by Proposition 3.9 any pairwise intersection of these subrings is
equal to the set of scalar matrices, so the union of all these subrings has cardinality

(q + 1)(q2
− q)+ q = q3

= |T2(Fq)|.

Thus, this collection of q+1 subrings forms a cover, and hence σ(T2(Fq))=q+1. �

Corollary 1.3. (1) Let q be a prime power. If n ≥ 3, then σ(Tn(Fq))≤ q + 1.

(2) Let R be a finite ring and let p be the smallest prime dividing the order of R. If
R has Fp as a residue field, then σ(Tn(R))= p+1 for all n ≥ 2. In particular,
σ(Tn(Fp))= p+ 1 for all n ≥ 2.

Proof. For (1), let I be the set of matrices in Tn(Fq) whose (1, 1), (1, 2), and (2, 2)
entries are all 0, and there are no restrictions on the other entries. Then, I is an
ideal of Tn(Fq) and Tn(Fq)/I ∼= T2(Fq). So, σ(Tn(Fq)) ≤ σ(T2(Fq)) ≤ q + 1 by
Lemma 2.2 and Theorem 1.2.
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For (2), note that when n ≥ 2, Tn(R) is coverable because it is noncommutative.
So, σ(Tn(R))≥ p+ 1 by Lemma 2.3. Let J be an ideal of R such that R/J ∼= Fp.
Let J be the set of matrices in Tn(R) whose (1, 1), (1, 2), and (2, 2) entries come
from J and there are no restriction on the other entries. Then, J is an ideal of
Tn(R) and Tn(R)/J ∼= T2(Fp). By Lemma 2.2, σ(Tn(R)) ≤ σ(T2(Fp)), and so
σ(Tn(R))= p+ 1 by Theorem 1.2. �

We suspect that equality holds in part (1) of Corollary 1.3 (except when q = 4),
and a few words are in order about our inability to prove this. The main obstruction
to generalizing Theorem 1.2 for n ≥ 3 is that the maximal subrings we desire to
use are not generated by a single matrix. For instance, in the 3× 3 case,

a b c
0 a d
0 0 e

 ∣∣∣∣∣∣ a, b, c, d, e ∈ Fq


(which generalizes 〈〈M〉〉) is a maximal subring of T3(Fq), but it is not commutative,
and hence is not generated by a single matrix. Consequently, we cannot conclude
that such a subring must be part of every cover of T3(Fq).

It should be possible to compute σ(Tn(Fq)) given the complete classification
of maximal subrings of Tn(Fq). Unfortunately, such a classification is not known.
Even in the case of 2× 2 matrices, identifying all maximal subrings appears to be
nontrivial. In this paper, we made use of the maximal subrings 〈〈M〉〉, 〈〈Xb〉〉, and
〈〈Yb〉〉, but other maximal subrings of T2(Fq) exist. For instance, let R be a maximal
subring of Fq . Then, the subrings{(

a b
0 c

) ∣∣∣∣ a ∈ R and b, c ∈ Fq

}
and

{(
a b
0 c

) ∣∣∣∣ a, b ∈ Fq and c ∈ R
}

are both maximal in T2(Fq). Similar examples exist in Tn(Fq) when n ≥ 3. Given
these considerations, we propose the classification of maximal subrings of Tn(Fq)

and the associated calculation of covering numbers as problems for further research.
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