a journal of mathematics

Improving multilabel classification via heterogeneous
ensemble methods

Yujue Wu and Qing Wang

:-msp

2019 vol. 12, no. 6






INVOLVE 12:6 (2019)
dx.doi.org/10.2140/involve.2019.12.1035

Improving multilabel classification via
heterogeneous ensemble methods

Yujue Wu and Qing Wang
(Communicated by Sat N. Gupta)

We consider the task of multilabel classification, where each instance may belong
to multiple labels simultaneously. We propose a new method, called multilabel
super learner (MLSL), that is built upon the problem transformation approach
using the one-vs-all binary relevance method. MLSL is an ensemble model
that predicts multilabel responses by integrating the strength of multiple base
classifiers, and therefore it is likely to outperform each base learner. The weights
in the ensemble classifier are determined by optimization of a loss function via
V-fold cross-validation. Several loss functions are considered and evaluated
numerically. The performance of various realizations of MLSL is compared to
existing problem transformation algorithms using three real data sets, spanning
applications in biology, music, and image labeling. The numerical results suggest
that MLSL outperforms existing methods most of the time evaluated by the
commonly used performance metrics in multilabel classification.

1. Introduction

Classification is a task of predicting labels of future instances by learning from
the patterns of observed instances with known labels [Herrera et al. 2016]. The
traditional classification problem, known as single-label classification, considers
data sets with only one output attribute. When the single output attribute has two
categories, it is referred to as binary classification; when the output attribute has
more than two categories, it is called multiclass classification. In this paper we focus
on the problem of multilabel classification, where each instance may be associated
with more than one label.

The first literature on multilabel classification dates back to [McCallum 1999]; it
focuses on the task of text categorization. In recent decades, multilabel classification
has become an emerging research area and has been applied to many different
disciplines, including image labeling [Duygulu et al. 2002; Boutell et al. 2004],
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sentiment analysis [Turnbull et al. 2008; Sobol-Shikler and Robinson 2010] and
bioinformatics [Elisseeff and Weston 2001; Diplaris et al. 2005]. More recent work
on multilabel text categorization can also be found in [Klimt and Yang 2004; Lewis
et al. 2004; Crammer et al. 2007; Katakis et al. 2008; Sriram et al. 2010; Charte et al.
2015]. A good overview of multilabel classification and its methods is provided in
[Tsoumakas and Katakis 2007; Zhang and Zhou 2014; Gibaja and Ventura 2015;
Herrera et al. 2016].

We can formally formulate the problem of multilabel classification as follows
[Herrera et al. 2016]: Consider a dataset D with f input attributes Vi, ..., Vr. Let
VY ={Vi,..., Vr} be the set of all input attributes in the dataset and [V| = f > 1.
Let X = Vi x V x V3 x--- x V. That is, A is the input space of the dataset,
and D C X. Let £L = {y1,..., vk} be a set of distinct labels for D, where each y;
represents a label. Here |£]| = k > 2. In single-label classification, including both
binary and multiclass classification, each instance x € X is associated with one and
only one label y; € £. However, in multilabel classification, each instance x € &’ is
associated with a subset of labels L C £, where 1 < |L| < k. The output space in
multilabel classification, denoted by Vnurtitabel, 1S defined as the Cartesian product
of k sets of binary values 0 and 1; i.e.,

Vmutiilabel = 10, 111 x {0, 1} x---x {0, 1}%.

A multilabel classifier, denoted by C : X — Ynuitilabel, learns from the input space
X and predicts outcomes in the output space Vmuitilabel-

Generally speaking, there are two fundamental approaches to realize multilabel
classification: problem transformation and algorithm adaption [Herrera et al. 2016].
The problem transformation methodology, at its core, converts a multilabel data set
into several single-label data sets, thereby allowing the transformed data sets to be
modeled using existing binary or multiclass classification methods. For example,
one of the ways to realize problem transformation is through the one-vs-all binary
relevance method, where a multilabel data set with k labels is converted into
k binary data sets, one for each label. On the other hand, the algorithm adaption
methodology transforms a single-label classification algorithm so that it can be
applied to the original multilabel data set.

In this paper we propose a new method, called multilabel super learner (MLSL),
which is an improved multilabel classification algorithm following the problem
transformation approach, and is built upon the one-vs-all binary relevance method.
MLSL is an ensemble model that makes predictions based on an integration of
multiple base classifiers. The weights in the ensemble classifier are determined by
optimizing a loss function. Several widely used loss functions are considered and
evaluated numerically in this paper. The performance of the proposal is compared
to existing problem transformation algorithms using real data sets in Section 4.
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The numerical results suggest that MLSL outperforms existing binary relevance
algorithms evaluated by almost all of the commonly used performance metrics in
multilabel classification. To the best of our knowledge, none of the previous research
considers implementing ensemble methods of this kind in multilabel classification.

The rest of the paper is structured as follows. In Section 2 we introduce the
two general approaches to realize multilabel classification, and focus on the binary
relevance method that the proposed MLSL is built upon. In Section 3 we detail the
proposed MLSL algorithm, followed by numerical studies in Section 4. Finally, we
conclude the paper with discussions of some future work in Section 5.

2. Existing methods for multilabel classification

We now introduce commonly used methods in multilabel classification. The two
main approaches for multilabel classification are problem transformation and algo-
rithm adaption. Problem transformation can be realized in two possible ways: (1)
by converting the multilabel dataset into multiple binary data sets, (2) by converting
the multilabel data set into one multiclass data set. These two approaches are often
referred to as binary relevance and label powerset respectively. After the conversion,
the altered data sets are suitable for single-label classification. Individually predicted
labels are obtained from each of these single-label data sets, and then combined to
produce the desired multilabeled outputs as the final predictions.

In algorithm adaption, existing single-label classification methods are altered
so that they can be applied to multilabel data sets. Common methods under this
framework include instance-based and logistic regression (IBLR-ML) [Cheng and
Hiillermeier 2009], which is adapted from k-nearest neighbor (kNN) [Cover and
Hart 1967] and logistic regression [Cox 1958], MODEL-x [Boutell et al. 2004],
which is derived from support vector machines (SVM) [Cortes and Vapnik 1995],
and the multilabel k-nearest neighbor lazy learning algorithm (ML-ANN) [Zhang
and Zhou 2007]. Figure 1 displays an overview of the methods mentioned above. A
detailed introduction of multilabel classification methods, including problem trans-
formation and algorithm adaption, can be found in [Herrera et al. 2016; Tsoumakas
and Katakis 2007].

Since our proposal is built upon the binary relevance method, we provide more
details of this method in the following subsections. In binary relevance, a multilabel
data set is converted into multiple single-label data sets. Such a data conversion
process can be realized in two different ways: one-vs-all or one-vs-one.

2.1. One-vs-all binary relevance. The one-vs-all binary relevance approach [Her-
rera et al. 2016], showcased in Figure 2, transforms a multilabel data set D, as-
sociated with k labels, into k& unique binary-response data sets— one for each
label. One then applies k single-label classifiers to the k binary data sets. The
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Figure 1. Illustration of some multilabel classification methods
and their relationships with single-label classification methods.

k single-label classifiers are often set to be the same classification method, such as
support vector machines, although this is not a strict requirement. In the prediction
process, each test sample with unknown labels is considered as input for each of
the binary classifiers, and based on the inputs, the i-th (1 <i < k) binary classifier
produces a binary output, 0 or 1, indicating whether the test sample is associated
with label y; € £. All outputs generated by the trained binary classifiers will then
be combined to form a final multilabel prediction.

The one-vs-all binary relevance approach is easy to implement. In addition, it
offers a flexible family of methods in the sense that any binary classifier can be
considered and used in the process. However, it suffers from two main disadvantages
[Herrera et al. 2016]: First, since the single-label classifiers are independently
trained, any potential correlations between labels are not taken into account in
producing multilabel predictions. Intuitively, label correlations are valuable infor-
mation that could help improve the accuracy of multilabel prediction. Second, it is
possible that the transformed binary training data sets are more imbalanced than the
original multilabel data set. As a result, some challenges may arise in the training
stage due to the data conversion.

2.2. One-vs-one binary relevance. In the one-vs-one approach [Herrera et al. 2016],
a multilabel data set is transformed to binary data sets, each of which is associated
with a pair of labels in the label space £. That is, given a data set with k unique
labels, one considers (lzc) binary data sets where each data set is associated with
labels y; and y; (y;,y; € £ and i # j). Additionally, any instance that is not
categorized by either of the two labels under consideration, or is categorized by
both labels, is discarded from the corresponding binary data set.
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Figure 2. Illustration of one-vs-all binary relevance transforma-
tion, assuming five input variables and three possible labels.

In the prediction process, as illustrated in Figure 3, the test sample is considered as
input. The output of each binary classifier is then used as “votes”, and subsequently
a ranking of labels produced by the votes will be generated to decide which labels
are to be included in the final multilabel prediction. Examples of ranking algorithms
include ranking by pairwise comparison [Hiillermeier et al. 2008] and calibrated
label ranking [Fiirnkranz et al. 2008].

The one-vs-one binary relevance has the same drawbacks as the one-vs-all binary
relevance approach: lack of considerations of label correlations and imbalance in
training datasets. In addition, the one-vs-one binary relevance method is likely to
be less efficient than the one-vs-all binary relevance method due to the following
two reasons: First, any given multilabel dataset with k labels, k > 2 and (];) > k.
Thus, the one-vs-one method fits a larger number of binary classifiers than the
one-vs-all method. Second, in the prediction process, since the one-vs-one approach
incorporates ranking algorithms, it requires additional computation and is therefore
likely to introduce errors to the final predictions. As a result, when considering the
binary relevance approach, one often prefers the one-vs-all method.

3. Our proposal: multilabel super learner

We propose a stacking-based heterogeneous ensemble method, multilabel super
learner (MLSL). MLSL is a multilabel classification algorithm that combines the
prediction power of several one-vs-all binary relevance multilabel classification
algorithms through an ensemble algorithm, super learner [van der Laan et al. 2007].
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Figure 3. Illustration of one-vs-one binary relevance transforma-
tion, assuming five input variables and three possible labels.

In the following we first provide some background for the development of MLSL,
followed by a step-by-step description of the MLSL algorithm. In the end we discuss
its properties based on the theorems of super learner [van der Laan et al. 2007].

3.1. Background. MLSL is rooted in stacking, which dates back to the discussion
of stacked generalization in [Wolpert 1992]. Stacked generalization combines
information from multiple generalizers and minimizes the generalization error rate
or biases of the generalizers. This model was later studied by Breiman [1996] in
the context of regression and is referred to as stacked regression. Later, Freund et al.
[1997] and Hansen [1998] adopted the same idea and proposed combining base
learners from different methods to form a single learner. Following in the footsteps
of previous work, van der Laan and Dudoit [2003] provided a unified framework to
select the optimal combination of the set of base learners through cross-validation;
they refer to the optimal solution as a “super learner”. More recently, van der Laan
et al. [2007] improved the previously proposed super learner by (1) extending it
to include more flexible base learning algorithms, and (2) controlling over-fitting
of the algorithm using cross-validation. Both [van der Laan and Dudoit 2003] and
[van der Laan et al. 2006] show that under some regularity conditions the super
learner in regression and single-label classification perform asymptotically as well
as or even better than any of the base learning algorithms.

However, none of the previous literature considers applying ensemble methods of
this kind to multilabel classification problems. Hence, the main contribution of our
paper is to propose a multilabel super learner that integrates the strength and power
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of several base multilabel classifiers through an optimal linear combination of them
that minimizes some cross-validated risk. More specifically, we adapt the one-vs-
all binary relevance method following the problem transformation approach, and
implement super learner to realize binary classification based on each transformed
binary data set. The weights in the linear combination of the binary base learners
are optimized by cross-validated risk, which guards against over-fitting. In the
end, predictions from binary super learners are combined to form multilabel output.
The detailed algorithm of our proposed MLSL method is presented in the next
subsection.

3.2. Methodology. Suppose we have an input space X and its associated label
space L. In multilabel prediction, one takes any instance x € X’ as an input and
predicts an array of outputs

=Y Y -+ Yl
where

(1<j<k).

v, — 1 if x is labeled by y; € L,
7710 otherwise

Under this setting, the MLSL algorithm can be realized by the following five steps:

Step 1: selecting base learners. Define a library of m (m > 2) base learners
{¢1, ..., dm}. Candidates for the base learners include any binary classifier, ranging
from simple models, such as support vector machine (SVM) and k-nearest neighbors
(kKNN), to multistep algorithms that may involve covariate screening, parameter
optimization, or model selection.

Step 2: transforming multilabel dataset. Given a training dataset D € X, we
transform the multilabel datasets into |£| = k binary datasets, following the one-
vs-all binary relevance method. Denote these k transformed binary datasets by
Di,...,Dg.

Step 3: training single-label super learners. For each binary data set D; (1 < j <k),
we realize the single-label super learner as follows:

(1) We first randomly split the j-th binary dataset D; into V' equally sized subsets,
denoted by D} , D}, cee, D]V. Without loss of generality, assume |D;| is divisible
by V. Denote the number of observations in each data subset D]‘.’ by i =|Dj|/ V.
Forve{l,...,V}, let DJ'.’ be the validation sample and the remaining data be the
training sample. Denote the v-th training set by Dj_” so that Dj_” =7D; \D]'.’.

(2) For each v (1 = v = V), we fit base learners ¢, € {b1,...,.0m} on D_”
Denote the fitted classifiers, trained on D , as q)h DY for I < h < m. Write the

prediction for label j based on the s-th 1nstance X5 € D“ as (1) A (x s) = ¢h D (x5)
(1 <h<m).
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(3) Create a |Dj| x m prediction matrix by combining the predictions from the
m base learners ¢1, ..., ¢, over the V validation sets. Denote the prediction matrix
for label j by Z; (1 < j <k):

$l(x))  $(x1) o Plx1)
Z; = P{(x2)  @3(x2) - Pim(x2)
&7 (x1p,) &3 (X)) Pim(xpp,))
Note that each prediction qgli (xs) in Z; is obtained by training on a data subset

Dj_” forve{l,..., V}, where x5 € Dj‘.’.

(4) For each label j, let {1, ..., ajm} be a set of weights (aj, € R, 1 <h <m).
Additional constraints on the weights, such as nonnegativity, may be applied but are
not required. For any instance x; € Dj, define the predicted single-label output as

m
Yis(xs):= Y ajp by (xs). (3-1)
h=1
or 17] s for short. The coefficients, i, ..., Qjn, are obtained under some optimiza-

tion criterion via cross-validation, such as V -fold cross-validation. For instance, if
we denote by L (Y, Yjs) aloss function that evaluates the closeness between Y,
and Yj, then

1%
(@1, Qjm) = argallj}.igt’n Z Z L(Yjs, Yjs(x5)). (3-2)

v=1 xseD]'.’

(5) The predicted probability of label j for instance x is thus given by

m
YP(x) =) @ gy (xs).
h=1
Given a discriminating threshold ¢ (0 < ¢ < 1), such as 0.5, one determines
the classification output. Instances with predicted probabilities greater than the
threshold would be classified as 1 (i.e., associated with label ;) and as O (i.e., not
associated with label j) otherwise. Denote the final predicted outcome of label j
for instance x by C;up, given by

1A Y (x5) > c,
0 otherwise.

st'up(xs) = {

Step 4: predicting future instances. In the prediction process, given an unknown
instance x;, the multilabel output is given by combining all k& binary outputs



IMPROVING MULTILABEL CLASSIFICATION 1043

predicted by the k binary super learners:
[Ciup(xt) C;up(xt) C/s;up(xt)]-

3.3. Properties. As noted in [van der Laan and Dudoit 2003; van der Laan et al.
2006], the binary super learner is shown to perform asymptotically at least as
well as any of the base binary classifiers. As a result, the binary super learner,
ie., C;uP (1 < j < k) in Step 4, is asymptotically at least as good as any of the
base binary classifiers in {¢q, ..., ¢, }. Therefore, the multilabel prediction, i.e.,
[Cillp (x¢) -~ C,iuP (x;)], should perform at least as well as, or even better than, the
one-vs-all binary relevance multilabel classifier based on ¢y, for all £ € {1, ..., m}.

4. Numerical comparison

We now empirically examine the performance of the MLSL algorithm introduced
in Section 3. We consider four different criteria in determining the optimal weights
in (3-2). In the context of V -fold cross-validation, the optimal weights under each
criterion are selected as follows:

(1) Nonnegative least squares criterion (MLSL-NNLS): For 1 < j <k,

Vv
(ajl,..,,ajm)zargminz Z (Yjs_Yjs(~"7s))2

v=1x,eD}

subject to ajy > 0 (1 < £ < m) and Z? 1@j¢ = 1. Here I’;js(xs) represents the
predicted response for label j given an instance xg € D” where the base learners
used to define YJ s (3-1) are trained on data D v,
(2) Nonnegative binomial likelihood maximization (MLSL-NNIloglik): For 1 <
J =k,

V A~ ~
(¢tj1,...,0jm,) = arg max Z Z [Yjslog Yjs(xs)+ (1—Yjs) log(1 —Yjs(x5))].

v=1 xseD]’.’

subject to ajg > 0 (1 <€ <h).

(3) Negative binomial log-likelihood minimization on the logistic scale using convex
combination of weights (MLSL-CC_nloglik): For 1 < j <k,

4
(ctj1,...,0jpy)=argmin Z Z [—Yjslog Yjs(xs)+(Yjs—1)log(1—Yjs(xs))],

v=1xseD]’-’

subject to ajy > 0 (1 < £ < h) and 22’21 ajg = 1.

(4) Area under the ROC (receiver operating characteristic) curve maximization
(MLSL-AUC): For 1 < j <k,
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(@j1,...,0jy,) =arg max
Qj1seees o

AUC (cj.“"),

where AUC stands for the area under the ROC curve computed based on predictions
Cj.up = {Cjup(xs) : x5 € Dj}. For more on ROC and AUC, see [Metz 1978; Swets
1973; Fawcett 2006].

In [van der Laan et al. 2007] it is shown, both theoretically and numerically, that
the super learner [van der Laan et al. 2007] for single-label classification yields a
result that is at least as good as that obtained from any of the base learners. As a
result, the ensemble binary classifier C;.UP (1 < j < k) should produce predictions
that are at least as good as the binary predictions from the one-vs-all binary relevance
method. Thus, following the proposed MLSL algorithm and combining the ensemble
binary outputs to form multilabel predictions, we expect to see an improvement in
the performance of the proposed MLSL method.

We assess the performances of the proposed MLSL method and the benchmarks
based on the following commonly used multilabel performance metrics: Hamming
loss, accuracy, precision, recall, F-measure, and subset accuracy. Definitions and
more details of these performance measures can be found in [Herrera et al. 2016].
Ten 10-fold cross-validation was used when computing the performance metrics, in
addition to the 10-fold cross-validation algorithm applied to choosing the optimal
weights in (3-2).

4.1. Data. We selected three open-source data sets for our real data analysis,
namely emotions [Trohidis et al. 2011], birds [Briggs et al. 2013], and scene [Boutell
et al. 2004]. Our choice of these data sets is a result of three considerations. First,
we focused our attention on data sets that are accessible online and well-known to
the field of multilabel classification, so that researchers and practitioners in this area
can easily reference our results in comparison to existing literature as well as future
research. Second, we chose data sets from diverse real-world applications, with
each data set initially collected to answer a different research question. Third, to the
best of our efforts, we included data sets that have distinct multilabel characteristics.

Some details of the three data sets are as follows: the emotions data set models
the relationship between 593 song clips and six kinds of emotions each song clip
may evoke; the birds data set focuses on identifying which bird species (out of 19)
are present in each of the 645 audio clips recorded in forests; the scene data set
associates each of the 2407 photographs by one or more of the six scenery labels
that the photo may capture.

We present some characteristic metrics of the three data sets in Table 1. Among
these statistics, cardinality, density, and highest label frequency represent label
distribution; diversity, maximum imbalance ratio (MaxIR), mean imbalance ra-
tio (MeanlIR), and score of concurrence among imbalanced labels (SCUMBLE)
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emotions birds scene

#instances 593 645 2407
#labels 6 19 6

#attributes 78 279 300

cardinality 1.87 1.01  1.07

density 0.31 0.05 0.18

highest label frequency 81 194 405
diversity 4 73 3

MaxIR 1.78 1717 146

MeanIR 1.58 541 1.25

SCUMBLE 0.01 0.03  0.00

Table 1. Characteristic metrics for datasets emotions, birds and scene.

reveal the degree of imbalance in the data, and a larger value in these measures
indicates a more imbalanced label structure and higher difficulty level for the task
of classification.

From Table 1 we can see that scene is the largest data set with 2407 instances
and 300 attributes, but it is the least imbalanced data set. In contrast, birds, a
smaller data set than scene, is much more imbalanced than either scene or emotions.
Compared to scene and birds, the emotions data set is the smallest data set and is
partially balanced, with all of its imbalance measures, including MaxIR, MeanIR
and SCUMBLE, falling between those of scene and birds.

4.2. Results. In multilabel classification, one often considers performance metrics
such as Hamming loss, accuracy, precision, F-measure, recall, and subset accuracy
[Herrera et al. 2016]. In particular, F-measure is a trade-off between precision and
recall. In Tables 2-7 we summarize the results of these measures after fitting our
proposed MLSL model and the benchmark models based on each of the three
real data sets. We considered two ways of selecting the base learners in the
proposed algorithm. In the first case, we only chose simple binary classifiers
for the binary relevance (BR) method. There are four such benchmark models under
consideration, i.e., logistic regression (BR-GLM), linear discriminant analysis (BR-
LDA), k-nearest neighbor (BR-ANN), and support vector machines (BR-SVM). In
the second scenario, in addition to the previously listed simple base learners we also
included two machine learning binary classifiers when fitting the binary relevance
model, i.e., random forest (BR-RF) and gradient decent (BR-GD). These more
powerful benchmark methods are anticipated to yield more accurate multilabel
classification results at the expense of higher computational cost. We are interested in
investigating how our proposed MLSL method works with or without more complex
base learners from different aspects. The R package “SuperLearner” [Polley et al.
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binary relevance (BR) MLSL
GLM LDA kNN SVM | NNLS NN CC AUC

Hamming loss | 0.215 0.208 0.273 0.181 | 0.180 0.179 0.178 0.181
accuracy | 0.785 0.792 0.727 0.819 | 0.820 0.821 0.822 0.819
F-measure | 0.674 0.686 0.546 0.725 | 0.725 0.726 0.727 0.722
precision | 0.678 0.699 0.573 0.763 | 0.766 0.766 0.767 0.761

recall | 0.673 0.675 0.523 0.691 | 0.690 0.691 0.692 0.689

subset accuracy | 0.236 0.259 0.183 0.323 | 0.315 0.317 0.320 0.310
computation (min) | 0.002 0.001 0.000 0.012 | 0.158 0.158 0.158 0.421

Table 2. Results for the emotions data set using four base learners.
Here and in the following tables the column headers “NN” and
“CC” stand for “NNlogik” and “CC_nloglik”.

binary relevance (BR) MLSL
GLM LDA kNN SVM RF GD NNLS NN CC AUC

Hamming loss | 0.215 0.208 0.273 0.181 0.178 0200 | 0.178 0.176 0.177 0.178
accuracy | 0.785 0.792 0.727 0.819 0.822 0.800 | 0.822 0.824 0.823 0.822
F-measure | 0.674 0.686 0.546 0.725 0.731 0.688 | 0.732 0.738 0.734 0.729
precision | 0.678 0.699 0.573 0.763 0.761 0.704 | 0.769 0.774 0.772 0.769

recall | 0.673 0.675 0.523 0.691 0.704 0.674 | 0.699 0.706 0.701 0.694

subset accuracy | 0.236 0.259 0.183 0.323 0.331 0.280 | 0317 0.321 0.317 0.315
computation (min) | 0.002 0.001 0.001 0.013 0.165 0.191 | 3.666 3.667 3.667 4.145

Table 3. Results for the emotions data set using six base learners.

binary relevance (BR) MLSL
GLM LDA kNN SVM | NNLS NN CC AUC
Hamming loss | 0.128 0.082 0.057 0.043 | 0.042 0.042 0.041 0.056
accuracy | 0.872 0918 0.943 0.957 | 0.958 0.958 0.959 0.944
F-measure | 0.327 0.463 0.259 0.698 | 0.682 0.691 0.701 0.516
precision | 0.234 0.386 0.354 0.747 | 0.736 0.752 0.763 0.505
recall | 0.552 0.588 0.206 0.659 | 0.639 0.643 0.652 0.534
subset accuracy | 0.319 0.427 0468 0.523 | 0.532 0.536 0.538 0.485
computation (min) | 0.127 0.030 0.006 0.107 | 2.765 2.768 2.767 3.139

Table 4. Results for the birds data set using four base learners.

2018] was used in the implementation process of MLSL to realize Step 4 of the
proposed algorithm. In Tables 2—7 we highlighted the value of performance metric,
up to three decimal places, corresponding to the best performance given each
criterion. In addition, we also reported the computation time in minutes for fitting
each model. Recall that 10-fold cross-validation (CV) was used when determining
the coefficients of MLSL in (3-2). So, MLSL essentially fit each base learner ten
times, which is reflected in the total running time of MLSL.

The numerical results suggest that the proposed MLSL algorithm is quite com-
petitive compared to the benchmarks based on almost all performance metrics.
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binary relevance (BR) MLSL
GLM LDA kNN SVM RF GD NNLS NN CC AUC

Hamming loss | 0.128 0.082 0.057 0.043 0.040 0.042 | 0.039 0.038 0.038 0.039
accuracy | 0.872 0918 0.943 0.957 0.960 0.958 | 0.961 0.962 0.962 0.961
F-measure | 0.327 0.463 0259 0.698 0.711 0.627 | 0.713 0.718 0.718 0.715
precision | 0.234 0.386 0.354 0.747 0.893 0.763 | 0.864 0.854 0.853 0.851

recall | 0.552 0.588 0.206 0.659 0.594 0.535 | 0.609 0.622 0.622 0.620

subset accuracy | 0.319 0.427 0.468 0.523 0.530 0.525 | 0.547 0.554 0.555 0.548
computation (min) | 0.118 0.027 0.005 0.097 1.138 1.256 | 26.03 26.04 26.03 26.94

Table 5. Results for the birds data set using six base learners.

binary relevance (BR) MLSL
GLM LDA kNN SVM | NNLS NN CC AUC

Hamming loss | 0.135 0.112 0.093 0.074 | 0.073 0.073 0.073 0.074
accuracy | 0.865 0.888 0.907 0.926 | 0.927 0.927 0.927 0.926
F-measure | 0.720 0.780 0.773 0.862 | 0.865 0.862 0.862 0.861
precision | 0.677 0.760 0.778 0.861 | 0.868 0.864 0.864 0.865

recall | 0.769 0.802 0.769 0.864 | 0.862 0.860 0.860 0.857

subset accuracy | 0.443 0.507 0.645 0.664 | 0.671 0.672 0.672 0.668
computation (min) | 0.104 0.029 0.028 0225 | 3.751 3.754 3.753 4.130

Table 6. Results for the scene data set using four base learners.

binary relevance (BR) MLSL
GLM LDA kNN SVM RF GD NNLS NN CC AUC

Hamming loss | 0.135 0.112 0.093 0.074 0.083 0.074 | 0.069 0.069 0.069 0.070
accuracy | 0.865 0.888 0.907 0.926 0.917 0.926 | 0931 0931 0.931 0.930
F-measure | 0.720 0.780 0.773 0.862 0.903 0.874 | 0.885 0.884 0.884 0.889
precision | 0.677 0.760 0.778 0.861 0914 0.871 | 0.890 0.890 0.890 0.897

recall | 0.769 0.802 0.769 0.864 0.892 0.877 | 0.880 0.879 0.879 0.882

subset accuracy | 0.443 0.507 0.645 0.664 0.578 0.656 | 0.676 0.678 0.677 0.670
computation (min) | 0.098 0.027 0.025 0.198 2.843 2490 | 5535 5535 5535 55.95

Table 7. Results for the scene data set using six base learners.

Through the binary relevance approach, a given multilabel data set is converted
to multiple binary data sets, revealing differences among labels. As a result, each
individual classification method, regardless of its complexity, is unlikely to perform
well on all of the transformed single-label data sets. By introducing an ensemble
classifier that incorporates a diverse group of base learners, the MLSL method
increases the chance for each instance to be predicted correctly via the ensemble
of different base learners [van der Laan et al. 2007]. When including two more
complex base learners, i.e., BR-RF and BR-GD, the performance of MLSL (see
Tables 3, 5, and 7) showed further improvement compared to the results based on
four simple learners. In theory, one would always expect better performance of
MLSL if a larger number of base learners are considered.
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Our numerical investigations also revealed that the computation time for finding
the optimal weights in (3-2) is negligible compared to the cost of fitting each base
learner. As a result, the running time of MLSL is driven by the complexity of
each base learner, the total number of base learners, and the number of folds in
the cross-validation algorithm. Since 10-fold CV was used in finding the optimal
coefficients in (3-2), the computation time of MLSL is approximately equal to ten
times the total time for fitting all base learners. (The running time of MLSL would
be roughly cut by half, if one uses 5-fold CV, instead of 10-fold CV.) As shown
in the tables, the total running time increased significantly when we introduced
complex base learners (BR-RF and BR-GD) to the algorithm. In practice, there is a
trade-off between performance and computational cost. It is common to consider a
few to a dozen base learners for real data implementation.

5. Future work

As noted in Section 2, one of the drawbacks of the binary-relevance multilabel
classification method is its lack of consideration of label correlations. Since our
proposed multilabel super learner is built upon the one-vs-all binary relevance
algorithm, it suffers from the same shortcoming. In practice, there are a few existing
methods to account for label correlations in multilabel classification. For our future
work, we are interested in exploring the possibility of implementing classifier chain
[Read et al. 2011], an algorithm that takes into consideration label correlations, to
MLSL. We anticipate that combining classifier chain with MLSL would further
improve the performance of multilabel classification.
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