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AND-OR networks are Boolean networks where each coordinate function is
either the AND or OR logical operator. We study the number of fixed points of
these Boolean networks in the case that they have a wiring diagram with chain
topology. We find closed formulas for subclasses of these networks and recursive
formulas in the general case. Our results allow for an effective computation of
the number of fixed points in the case that the topology of the Boolean network is
an open chain (finite or infinite) or a closed chain. We further explore how our
approach could be used in “fractal” chains.

1. Introduction

Boolean networks, f : {0, 1}n→ {0, 1}n, have been used to study problems arising
from areas such as mathematics, computer science, and biology [Akutsu et al. 1998;
Albert and Othmer 2003; Mendoza and Xenarios 2006; Jarrah et al. 2010; Wang
et al. 2017]. A particular problem of interest is counting the number of fixed points
(x such that f (x) = x). To simplify this problem one can restrict the class of
Boolean functions or the topology of the network [Agur et al. 1988; Aracena et al.
2004; Jarrah et al. 2007; 2010; Aracena 2008; Murrugarra and Laubenbacher 2011;
Bollman et al. 2010; Veliz-Cuba et al. 2014a; 2014b; Dimitrova et al. 2015; Weiss
and Margaliot 2017], which in some cases allows one to find effective algorithms
or formulas in closed form.

In this manuscript we focus on the number of fixed points of AND-OR networks
(each Boolean function is either the AND or the OR operator) that have open or
closed chain topology. The networks we study in this manuscript also arise by
restricting min-max networks to a Boolean set of values {0, 1} [Goles et al. 2000].
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x1 x2 x3 xnxn-1xn-2...

Figure 1. Wiring diagram with open chain topology.

Although one typically specifies the update order to analyze the dynamics, this is
not necessary here as the fixed points would not change [Hansson et al. 2005]. We
first consider the case of finite open chain topology and find a recursive formula
(Theorem 2.4) and sharp lower and upper bounds. We then consider the case of
infinite and closed chain topology and show how they can be reduced to the case of
finite open chain topology (Theorems 3.1 and 3.2).

2. Open chain

Let f = ( f1, . . . , fn) : {0, 1}n→ {0, 1}n with n ≥ 2 be an AND-OR network such
that its wiring diagram is a chain; see Figure 1. That is, we consider Boolean
networks of the form

f1=x2, f2=x1♦2 x3, f3=x2♦3 x4, . . . , fn−1=xn−2♦n−1 xn, fn=xn−1,

where ♦i is the AND (∧) or the OR (∨) operator.
Because this family of Boolean networks is completely determined by the se-

quence of logical operators♦2,♦3, . . . ,♦n−1, we can use this sequence to represent
the network. Furthermore, consecutive occurrences of the same logical operator
can be denoted as ∧k or ∨k.

We are interested in the number of fixed points of such Boolean networks. For
simplicity we denote the elements of {0, 1}n as binary strings (omitting parentheses).
Also, we will use the notation 0 = 00 · · · 0 and 1 = 11 · · · 1, where the length of
the strings will be clear from the context. Note that 0 and 1 are fixed points of all
AND-OR networks with chain topology.

Example 2.1. Our running example will be the AND-OR network

f1 = x2, f4 = x3 ∨ x5, f7 = x6 ∨ x8, f10 = x9 ∧ x11,

f2 = x1 ∧ x3, f5 = x4 ∧ x6, f8 = x7 ∨ x9, f11 = x10 ∨ x12,

f3 = x2 ∧ x4, f6 = x5 ∨ x7, f9 = x8 ∧ x10, f12 = x11.

This network can be represented by the sequence of operators ∧∧∨∧∨∨∨∧∧∨.
We can further simplify this representation to ∧2

∨∧∨
3
∧

2
∨. This AND-OR network

has 13 fixed points listed in Table 1 (first column).

The next lemma states that the number of fixed points depends only on the
powers of the operators. Since we do not know which operator is last (∧ or ∨), we
will simply use ellipses without explicitly writing the last operator.
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Lemma 2.2. The AND-OR networks f = ∧k1∨
k2∧

k3 · · · and g = ∨k1∧
k2∨

k3 · · ·

have the same number of fixed points.

Proof. Consider φ : {0, 1}n → {0, 1}n given by φ(x1, . . . , xn) = (¬x1, . . . ,¬xn),
where ¬ is the logical operator NOT. Using the fact that ¬(p∧ q)=¬p∨¬q and
¬(p∨ q)=¬p∧¬q, it follows that f (φ(x))= φ(g(x)). Then, x will be a fixed
point of g if and only if φ(x) is a fixed point of f . So, φ is a bijection between the
fixed points of g and f . �

Because we are interested in the number of fixed points, we will simply use
(k1, k2, . . . , km) to refer to a network. For instance, the AND-OR network seen in
Example 2.1 can be represented simply by (2, 1, 1, 3, 2, 1). We denote the number
of fixed points by F(k1, k2, . . . , km). A similar approach was used by [Alcolei et al.
2016] to study nonmonotonic Boolean networks.

The following lemma states that consecutive variables that have the same logical
operator must be equal.

Lemma 2.3. Consider an AND-OR network f represented by (k1, k2, . . . , km). De-
note an element of the domain of f by x = (x1, x2, . . . , xm), where x1

∈ {0, 1}k1+1,
xm
∈ {0, 1}km+1, and xi

∈ {0, 1}ki for i = 2, . . . ,m − 1. If x is a fixed point of f ,
then xi

= 0 or xi
= 1 for i = 1, . . . ,m.

Proof. Let x be a fixed point of f . We use (xi )j to denote the j -th coordinate of xi.
Note that (x1)1 = (x1)2 and (xm)km = (xm)km+1 by the definition of f (the first
and last coordinate functions of f depend on single variables).

Now, the rest of the proof follows from the fact that if q = p∧ r and r = q ∧ s
or if q = p∨ r and r = q ∨ s, then q = r . This implies that consecutive variables,
(xi )j and (xi )j+1, that have the same logical operators must be the same. �

The next proposition states that the numbers ki in F(k1, . . . , km) can be assumed
to be at most 2 for 2≤ i≤m−1, and 1 for k1 and km . For example, this will imply that
F(2, 1, 1, 3, 2, 1)= F(1, 1, 1, 2, 2, 1) and F(2, 5, 3, 1, 4, 3)= F(1, 2, 2, 1, 2, 1).

Example 2.1 (continued). The second column of Table 1 highlights the structure
of the fixed points of ∧2

∨∧∨
3
∧

2
∨.

Proposition 2.3.1. We have

F(k1, k2, . . . , km−1, km)= F(1,min{k2, 2}, . . . ,min{km−1, 2}, 1)

for all positive integers ki .

Proof. We will use the notation of Lemma 2.3.
We first show that f =∧k1 ∨

k2 ∧
k3 · · · and g =∧∨k2 ∧

k3 · · · have the same
number of fixed points. Let x = (x1, . . . , xm) be a fixed point of f . Then, by
Lemma 2.3 we have x1

= 0 or x1
= 1. Consider y = (z, x2, . . . , xm), where
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fixed points structure from “reduced” system
Lemma 2.3 (Proposition 2.3.1)

000000000000 000 0 0 000 00 00 00 0 0 00 00 00
000000000011 000 0 0 000 00 11 00 0 0 00 00 11
000001110000 000 0 0 111 00 00 00 0 0 11 00 00
000001111111 000 0 0 111 11 11 00 0 0 11 11 11
000001110011 000 0 0 111 00 11 00 0 0 11 00 11
000111110000 000 1 1 111 00 00 00 1 1 11 00 00
000111110011 000 1 1 111 00 11 00 1 1 11 00 11
000111111111 000 1 1 111 11 11 00 1 1 11 11 11
111100000000 111 1 0 000 00 00 11 1 0 00 00 00
111100000011 111 1 0 000 00 11 11 1 0 00 00 11
111111110000 111 1 1 111 00 00 11 1 1 11 00 00
111111110011 111 1 1 111 00 11 11 1 1 11 00 11
111111111111 111 1 1 111 11 11 11 1 1 11 11 11

Table 1. Fixed points of the AND-OR network ∧2
∨∧∨

3
∧

2
∨.

First column: fixed points. Second column: fixed points with
the structure given by Lemma 2.3 highlighted. Third column:
fixed points of reduced network, ∧2

∨∧∨
2
∧

2
∨, with the structure

given by Lemma 2.3 highlighted. For this example, the fixed
points can be found using software [Elmeligy Abdelhamid et al.
2015]. We performed computations using resources from the Ohio
Supercomputer Center [OSCC 1987].

z = ((x1)1, (x1)2). It can be checked that y is a fixed point of g. Now, if y =
(z, x2, . . . , xm) is a fixed point of g, Lemma 2.3 implies that z = 0 or z = 1. We
define x = (x1, . . . , xm) in the domain of f , where x1

= 0 if z = 0 and x1
= 1

if z = 1. Then, it can be checked that x is a fixed point of f . This shows that
F(k1, k2, . . . , km−1, km)= F(1, k2, . . . , km−1, km), and similarly it can be shown
that F(1, k2, . . . , km−1, km)= F(1, k2, . . . , km−1, 1).

We now show that for k2 ≥ 2, f = ∧k1 ∨
k2 ∧

k3 · · · and g = ∧k1 ∨
2
∧

k3 · · ·

have the same number of fixed points. The general case is analogous. Let
x = (x1, x2, . . . , xm) be a fixed point of f . Then, by Lemma 2.3 we have x2

= 0
or x2

= 1. Consider y = (x1, z, x3, . . . , xm), where z = ((x2)1, (x2)2). It can be
checked that y is a fixed point of g. Now, if y= (x1, z, x3, . . . , xm) is a fixed point
of g, Lemma 2.3 implies that z = 0 or z = 1. We define x = (x1, x2, . . . , xm) in
the domain of f , where x1

= 0 if z= 0 and x1
= 1 if z= 1. Then, it can be checked

that x is a fixed point of f . This shows that

F(k1, k2, . . . , km−1, km)= F(k1, 2, k3, . . . , km−1, km) for k2 ≥ 2. �
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x1 x2 x3 xnxn-1...x4 x5

x3 xnxn-1...x4 x5 xnxn-1...x4 x5

x1=0 x1=1

Figure 2. Idea behind the proof of Proposition 2.3.2 (logical op-
erators are included for clarity). Considering the cases x1 = 0
and x1 = 1 yields systems of equations that correspond to smaller
AND-OR networks.

Example 2.1 (continued). Proposition 2.3.1 guarantees that ∧2
∨∧∨

3
∧

2
∨ and

∧∨∧∨
2
∧

2
∨ have the same number of fixed points. We can consider the second

AND-OR network as a “reduced” version of the original AND-OR network [Veliz-
Cuba 2011; Matache and Matache 2016]. This is illustrated in Table 1 (third
column).

Proposition 2.3.2. Let r1, . . . , rm ∈ {1, 2}, and m ≥ 2. Then, we have

F(1, r1, . . . , rm, 1)

=


F(1, r3, . . . , rm, 1)+F(r3, . . . , rm, 1) for r1 = 1, r2 = 1,
F(2, r3, . . . , rm, 1)+F(1, r3, . . . , rm, 1) for r1 = 1, r2 = 2,
F(1, 1, r3, . . . , rm, 1)+F(r3, . . . , rm, 1) for r1 = 2, r2 = 1,
F(1, 2, r3, . . . , rm, 1)+F(1, r3, . . . , rm, 1) for r1 = 2, r2 = 2.

(1)

Proof. We will use the notation of Lemma 2.3.
If r1 = 1, r2 = 1, then we claim that any fixed point of f = ∧∨∧∨r3∧

r4 · · ·

is of the form x = (x0, x1, x2, . . . , xm, xm+1), where either x0
= 0 and z =

(x1, x2, . . . , xm, xm+1) is a fixed point of g = ∧∨r3∧
r4 · · · or x0

= x1
= 1 and

z = (x2, . . . , xm, xm+1) is a fixed point of h = ∨r3∧
r4 · · · . Indeed, the system of

Boolean equations for fixed points is

x1=x2, x2=x1∧x3, x3=x2∨x4, x4=x3∧x5, x5=x4∨x6, . . . , xn=xn−1.

We divide this system of equations into the cases x1 = 0 and x1 = 1. Then, using
the fact that 1=m∧n implies m = n = 1 and that 0=m∨n implies m = n = 0, it
follows that we obtain the two systems

x3 = x4, x4 = x3 ∧ x5, x5 = x4 ∨ x6, . . . , xn = xn−1

and

x4 = x5, x5 = x4 ∨ x6, . . . , xn = xn−1,
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corresponding to the cases x1 = 0 and x1 = 1, respectively (see Figure 2). This
means that the number of fixed points of f is equal to the number of solutions
of these two systems. Since the solutions of the first system are the fixed points
of g =∧∨r3∧

r4 · · · and the solutions of the second system are the fixed points of
h =∨r3∧

r4 · · · , we obtain

F(1, 1, 1, r3, . . . , rm, 1)= F(1, r3, . . . , rm, 1)+F(r3, . . . , rm, 1).

The proof for the other three cases is similar. �

We use the convention

F(0, k1, . . . , km, 0)= F(k1, . . . , km, 0)= F(0, k1, . . . , km)= F(k1, . . . , km),

which will simplify the formulation of upcoming results.

Theorem 2.4. With the convention above, we have that for m ≥ 3 and ki ≥ 1

F(k1, . . . , km)= F(k2− 1, k3, . . . , km)+F(k3− 1, k4, . . . , km)

and

F(k1, . . . , km)= F(k1, . . . , km−2, km−1− 1)+F(k1, . . . , km−3, km−2− 1).

Also,
F(k1, k2)= 3, F(k)= 2 for k ≥ 0.

Proof. For m ≥ 4 the result follows directly from Propositions 2.3.1 and 2.3.2. For
m = 3 the result follows from

F(1, 2, 1)= 5, F(1, 1, 1)= 4, F(1, 1)= 3, F(1)= 2, and F(0)= 2,

which can be easily checked by complete enumeration. �

Example 2.1 (continued). We now use Theorem 2.4 to find the number of fixed
points of ∧2

∨∧∨
3
∧

2
∨:

F(2, 1, 1, 3, 2, 1)= F(1, 1, 1, 2, 2, 1)

= F(1− 1, 1, 2, 2, 1)+F(1− 1, 2, 2, 1)

= F(1, 2, 2, 1)+F(2, 2, 1)

= F(2− 1, 2, 1)+F(2− 1, 1)+F(2− 1, 1)+F(1− 1)

= F(1, 2, 1)+F(1, 1)+F(1, 1)+F(0)

= F(2− 1, 1)+F(1− 1)+F(1, 1)+F(1, 1)+F(0)

= F(1, 1)+F(0)+F(1, 1)+F(1, 1)+F(0)

= 3+ 2+ 3+ 3+ 2

= 13
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or

F(2, 1, 1, 3, 2, 1)= F(1, 1, 1, 2, 2, 1)

= F(1, 1, 1, 2, 2−1)+F(1, 1, 1, 2−1)

= F(1, 1, 1, 2, 1)+F(1, 1, 1, 1)

= F(1, 1, 1, 2−1)+F(1, 1, 1−1)+F(1, 1, 1−1)+F(1, 1−1)

= F(1, 1, 1, 1)+F(1, 1)+F(1, 1)+F(1)

= F(1, 1, 1−1)+F(1, 1−1)+F(1, 1)+F(1, 1)+F(1)

= F(1, 1)+F(1)+F(1, 1)+F(1, 1)+F(1)

= 3+2+3+3+2

= 13.

In this way, Theorem 2.4 provides a recursive formula to compute the number
of fixed points of AND-OR networks with chain topology without the need of
exhaustive enumeration. We now study the two special cases of F(1, 1, . . . , 1, 1)
and F(2, 2, . . . , 2, 2).

Define

An = (1, 1, 1, . . . , 1, 1︸ ︷︷ ︸
n times

, 1) and Bn = (2, 2, 2, . . . , 2, 2︸ ︷︷ ︸
n times

, 2).

Also define the sequences a0 = 1, a1 = 1, a2 = 1, and an = an−2+ an−3 for n ≥ 3
and b0 = 1, b1 = 1, and bn = bn−1+ bn−2 for n ≥ 2. Note that (an) is the Padovan
sequence and (bn) is the Fibonacci sequence.

Corollary 2.4.1. With the definitions above we have F(An)= an+5 and F(Bn)=

bn+3 for n ≥ 0, and the sharp bounds F(An)≤F(1, r1, r2, . . . , rn, 1)≤F(Bn) for
all ri ≥ 1.

Proof. It follows from Theorem 2.4 or Proposition 2.3.2 using induction. �

3. Infinite and closed chain

In this section we study the cases of AND-OR networks with infinitely many
variables and when the topology is a closed chain.

When the AND-OR network has infinitely many variables we have a infinite
collection of Boolean functions f = (. . . , f−2, f−1, f0, f1, f2, . . . ) such that fi =

xi−1 ∧ xi+1 or fi = xi−1 ∨ xi+1. We can use the notation of Section 2 and denote
consecutive logical operators as ∧k or ∨k, where k could also be ∞. Also, we
can simply use the exponents to represent the AND-OR network. For example,
(∞, 1, 2,∞) and ∧∞∨∧2

∨
∞ represent the AND-OR network · · ·∧∧∧∨∧∧∨∨∨· · · .
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Similarly, (. . . , 1, 1, 2, 1, 1, 2, 1, 1, 2, . . . ) and · · · ∧∨∧2
∨∧∨

2
∧∨∧

2
· · · represent

the AND-OR network · · · ∧∨∧∧∨∧∨∨∧∨∧∧ · · · .
The following theorem allows us to use the results from Section 2 to study

AND-OR networks with infinitely many variables.

Theorem 3.1. With the notation above and ki ≥ 1 we have

F(∞)= 2,

F(∞, k1, k2, . . . , km−1, km,∞)= F(1, k1, k2, . . . , km−1, km, 1),

F(∞, k1, k2, k3, . . .)=∞,

F(. . . , k−3, k−2, k−1,∞)=∞,

F(. . . , k−3, k−2, k−1, k0, k1, k2, k3, . . .)=∞.

Proof. To prove the first equality we consider the AND-OR network where all
logical operators are ∧. If one of the variables is 0, it follows that all the other
variables are also 0. Similarly, if one of the variables is 1, all the other variables are
also 1. Thus, the only fixed points of this AND-OR network are 0 and 1.

The second equality follows the same approach seen in Proposition 2.3.1.
To prove the third equality we first observe that F(∞, k1, k2, k3, . . . ) =

F(1, k1, k2, k3, . . . ). Now, we will show that any fixed point of the AND-
OR network F(1, k1, k2, k3, . . . , kr ) defines a fixed point of F(1, k1, k2, k3, . . . ).
Indeed, using the notation of Lemma 2.3, a fixed point of the AND-OR network
F(1, k1, . . . , kr ) has the form x = (x0, x1, . . . , xr ). Then, denoting z = (1, 1, . . . )
if xr
= 1 and z = (0, 0, . . . ) if xr

= 0, it follows that (x0, x1, . . . , xr , z) is a fixed
point of F(1, k1, k2, k3, . . . ). Since r is arbitrary, F(1, k1, . . . , kr ) is not bounded
(see Corollary 2.4.1) and the number of fixed points of F(1, k1, . . . ) is∞. The last
two equalities are similar. �

When the topology of the network is a closed chain, we have the network

f1 = xn ♦1 x2, fn−2 = xn−3♦n−2 xn−1,

f2 = x1♦2 x3, fn−1 = xn−2♦n−1 xn,
... fn = xn−1♦n x1.

We denote this network as [k1, k2, . . . , kr ] or any cyclic permutation that groups
consecutive logical operators. Thus, the AND-OR network

f1 = xn ∧ x2, f3 = x2 ∧ x4, f5 = x4 ∨ x6,

f2 = x1 ∨ x3, f4 = x3 ∨ x5, f6 = x5 ∧ x1,

will not be denoted by [1, 1, 1, 2, 1] (“splitting” the first and last ∧’s), but by
[1, 1, 2, 2], [1, 2, 2, 1], [2, 2, 1, 1], or [2, 1, 1, 2] (combining the first and last ∧’s).
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This means that r in [k1, k2, . . . , kr ] will always be an even number or equal to 1.
The number of fixed points will be denoted by F [k1, k2, . . . , kr ]. The following
propositions and theorem allow us to use the results from Section 2 to study AND-
OR networks with closed chain topology.

Proposition 3.1.1. With the notation above, we have that for ki ≥ 1

F [k1, k2, . . . , kr ] = F [min{2, k1},min{2, k2}, . . . ,min{2, kr }].

Proof. It is analogous to the proof of Proposition 2.3.1. �

Proposition 3.1.2. Consider ki ≥ 1, m ≥ 6, and l ≥ 8. Then,

F [2,k2, . . . ,km] =F(k2−1,k3, . . . ,km−1,km−1)+F(k3−1,k4, . . . ,km−2,km−1−1),

F [1,k2, . . . ,kl] =F(k3−1,k4, . . . ,kl−1−1)+F(k4−1,k5, . . . ,kl−1,kl−1)

+F(k2−1,k3, . . . ,kl−3,kl−2−1)−F(k4−1,k5, . . . ,kl−3,kl−2−1).

Proof. The first equality is analogous to Proposition 2.3.2. To prove the second
equality we use the notation of Lemma 2.3.

We have several cases to consider for kl−2, kl−1, kl , k2, k3, and k4. We focus on
the case kl−2 = kl−1 = kl = k2 = k3 = k4 = 1 since the other cases are analogous.
Note that we want to prove

F [1, 1, 1, 1, k5, . . . , kl−3, 1, 1, 1] = F(1, k5, . . . , kl−3, 1)+F(k5, . . . , kl−3, 1, 1)

+F(1, 1, k5, . . . , kl−3)−F(k5, . . . , kl−3).

The fixed points of the AND-OR network are the solutions of

x1 = xn ∧ x2, xn−3 = xn−4 ∧ xn−2,

x2 = x1 ∨ x3, xn−2 = xn−3 ∨ xn−1,

x3 = x2 ∧ x4, xn−1 = xn−2 ∧ xn,
... xn = xn−1 ∨ x1.

We now consider the cases x1 = 1 and x1 = 0 (see Figure 3). The case x1 = 1
yields the system of equations

x3 = x4,

x4 = x3 ∨ x5,

x5 = x4 ∧ x6,
...

xn−4 = xn−5 ∨ xn−3,

xn−3 = xn−4 ∧ xn−2,

xn−2 = xn−3 ∨ xn−1,

xn−1 = xn−2,

which has F(1, k5, . . . , kl−3, 1) solutions. On the other hand, when we consider
x1 = 0 the first equation becomes xn ∧ x2 = 0. We now have two subcases: xn = 0
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x1=1

x1=0

x1 x2

x3

...

x4

x5

x6

xn

xn-1

xn-2

xn-3

xn-4

x2

x3

...

x4

x5

x6

xn

xn-1

xn-2

xn-3

xn-4

x3

...

x4

x5

x6

xn-1

xn-2

xn-3

xn-4

x2=0

xn=0xnꓥx2=0

x2

x3

...

x4

x5

x6

xn-2

xn-3

xn-4

...

x4

x5

x6

xn

xn-1

xn-2

xn-3

xn-4

...

x4

x5

x6

xn-2

xn-3

xn-4

xn=x2=0

Figure 3. Idea behind the proof of Proposition 3.1.2 (logical op-
erators are included for clarity). Considering the case x1 = 1
yields a system of equations that corresponds to a smaller AND-
OR network. Considering the case x1 = 0 yields a system of
equations that does not correspond to an AND-OR network (due to
the equation xn∧x2= 0). However, the subcases xn = 0 and x2= 0
yield systems of equations that do correspond to smaller AND-OR
networks. These two systems have overlapping solutions, so we
must also take into consideration the common case xn = x2 = 0
when counting the number of fixed points.

and x2 = 0. The subcase xn = 0 yields

x2 = x3,

x3 = x2 ∧ x4,
...

xn−4 = xn−5 ∨ xn−3,

xn−3 = xn−4 ∧ xn−2,

xn−2 = xn−3,

which has F(1, 1, k5, . . . , kl−3) solutions. The subcase x2 = 0 yields

x4 = x5,

x5 = x4 ∧ x6,
...

xn−2 = xn−3 ∨ xn−1,

xn−1 = xn−2 ∧ xn,

xn = xn−1,

which has F(k5, . . . , kl−3, 1, 1) solutions. Thus, adding up these three numbers we
obtain F(1, k5, . . . , kl−3, 1)+F(k5, . . . , kl−3, 1, 1)+F(1, 1, k5, . . . , kl−3). How-
ever, this is not F [1, 1, 1, 1, k5, . . . , kl−3, 1, 1, 1], since the subcases xn = 0 and
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x2 = 0 overlap. We need to subtract the number of solutions of the system

x4 = x5,

x5 = x4 ∧ x6,
...

xn−4 = xn−5 ∨ xn−3,

xn−3 = xn−4 ∧ xn−2,

xn−2 = xn−3,

which has F(k5, . . . , kl−3) solutions. Then, the result follows. �

We now declare some conventions to write Proposition 3.1.2 more compactly. We
define F(−1)= 1, (ks−1, . . . , ks−1)= (ks−2), and (ks−1, . . . , kt −1)= (−1)
for s > t .

Theorem 3.2. With the conventions above, we have that for m ≥ 4 and ki ≥ 1

F [2,k2, . . . ,kr] =F(k2−1,k3, . . . ,kr−1,kr−1)+F(k3−1,k4, . . . ,kr−2,kr−1−1),

F [1,k2, . . . ,kr] =F(k3−1,k4, . . . ,kr−1−1)+F(k4−1,k5, . . . ,kr−1,kr−1)

+F(k2−1,k3, . . . ,kr−3,kr−2−1)−F(k4−1,k5, . . . ,kr−3,kr−2−1).

Also,
F [k] = 2 for k ≥ 3,

F [k, 1] = 2 for k ≥ 2,

F [k1, k2] = 3 for k1, k2 ≥ 2,

Proof. The first two equalities follow directly from Propositions 3.1.1 and 3.1.2 using
the convention declared above. The last three equalities follow from Proposition 3.1.1
and F [3] = F [2, 1] = 2 and F [2, 2] = 3, which can be verified by complete
enumeration. �

As in Section 2, we now consider the cases

An = (1, 1, 1, . . . , 1, 1︸ ︷︷ ︸
n times

, 1) and Bn = (2, 2, 2, . . . , 2, 2︸ ︷︷ ︸
n times

, 2).

We denote the number of fixed points of the corresponding AND-OR networks with
closed chain topology by F [An] and F [Bn], respectively.

Corollary 3.2.1. With the notation above we have F [An] = 3an − an−2 and
F [Bn] = bn+2+ bn for n ≥ 2, and the sharp bounds

F [An] ≤ F [k0, k1, . . . , kn, kn+1] ≤ F [Bn]

for all ri ≥ 1

Proof. The proof follows from first using Theorem 3.2 and then Corollary 2.4.1. �
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Example 3.3. We consider

f1 = x12 ∧ x2, f4 = x3 ∨ x5, f7 = x6 ∨ x8, f10 = x9 ∧ x11,

f2 = x1 ∧ x3, f5 = x4 ∧ x6, f8 = x7 ∨ x9, f11 = x10 ∨ x12,

f3 = x2 ∧ x4, f6 = x5 ∨ x7, f9 = x8 ∧ x10, f12 = x11 ∨ x1.

We will use Theorems 2.4 and 3.2 for the representations [3, 1, 1, 3, 2, 2] and
[1, 3, 2, 2, 3, 1] of f .

F [3,1,1,3,2,2] =F [2,1,1,2,2,2]

=F(1−1,1,2,2,2−1)+F(1−1,2,2−1)

=F(1,2,2,1)+F(2,1)

=F(2−1,2,1)+F(2−1,1)+F(2,1)

=F(1,2,1)+F(1,1)+F(2,1)

=F(2−1,1)+F(1−1)+F(1,1)+F(2,1)

=F(1,1)+F(0)+F(1,1)+F(2,1)

= 3+2+3+3= 11,

F [1,3,2,2,3,1] =F [1,2,2,2,2,1]

=F(2−1,2,2−1)+F(2−1,2,1−1)+F(2−1,2,2−1)−F(2−2)

=F(1,2,1)+F(1,2)+F(1,2,1)−F(0)

=F(1,1)+F(0)+F(1,2)+F(1,1)+F(0)−F(0)

= 3+2+3+3+2−2= 11.

4. Final remarks: coupled chains

Although the results in this manuscript are for chain topology, we now show how
our techniques could also be used for coupled chains. These couplings could be
considered as “fractal” versions of the 1-dimensional chains that we covered in
previous sections. However, due to the complex couplings that could be attained and
the different cases that appear (e.g., the proof of Proposition 3.1.1 has 26 subcases
per case), a single proposition that covers all cases would be unfeasible. Thus, we
will consider two examples featuring different couplings of chains: a coupling of
three open chains, and a coupling of an open and a closed chain.

First, we will prove two lemmas that will allow us to handle intersections of
chains. To make the notation simpler, a pair of edges between two vertices will be
simply denoted by a single undirected edge (Figure 4). When it is not required to
label vertices, we will use an even simpler representation of the wiring diagram (top



THE NUMBER OF FIXED POINTS OF AND-OR NETWORKS 1063

x2

x1

x3

x4

x5

x6

x7

x8

x9
x10

x11
x12

x13
x14

x15
x16

x17
x18

x19

x21

x20

x22

a b

x2

x1

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17
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unlabeled unlabeled 

Figure 4. Coupling chains. (a) Wiring diagram of an AND-OR
network consisting of the coupling of three open chains. Each
undirected edge represents two edges as shown in Figure 1. For
example, f1 = x2, f2 = x1 ∧ x3, and f8 = x7 ∧ x9 ∧ x10. Vertex x1

could also be assigned the AND or OR operator. (b) Wiring diagram
of an AND-OR network consisting of the coupling of a closed
and open chain. In both panels, the insets show the simplified
representation of the wiring diagram where the labels of variables
are omitted. Open circles indicate the AND operator, whereas
filled circles indicate the OR operator. The vertex corresponding
to x1 is left blank, but could also be assigned a filled or open circle.
The insets also show an undirected graph highlighting the coupling
motif of the AND-OR network. In previous sections the coupling
motif would simply be a (finite or infinite) line or a circle.

insets in Figure 4). Also, we will use F [ f ] to denote the number of fixed points of
an AND-OR network f .

Consider an AND-OR network, f : {0, 1}n → {0, 1}n , and S ⊆ {1, 2, . . . , n}.
We define a new network g : {0, 1}n−|S|→ {0, 1}n−|S| in the variables {xi : i /∈ S},
denoted by g = f \S, as follows:

(1) Remove the vertices in {xi : i ∈ S} from the wiring diagram of f . Note that
this also means that we remove the edges of the forms xi → x j and xk→ xi ,
where i ∈ S.

(2) For each variable xk in the new wiring diagram, gk will be the same logical
operator as in the wiring diagram of f , but may possibly depend on less
variables. Note that the operators ∨ and ∧ on a single variable are simply the
identity function.
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a b
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x19
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c

Figure 5. Example of f \S. (a) Wiring diagram of the AND-OR
network f \S, where f is given in Figure 4(a) and S = {7, 8}.
(b) Simplified representation of the wiring diagram with labels
omitted. (c) Undirected graph highlighting the coupling motif of
f \S. Note that this graph now has three connected components,
all of them being open chains.

Example 4.1. Consider the AND-OR network with wiring diagram given by
Figure 4(a) and let S = {7, 8}. The new network g = f \S has wiring diagram
shown in Figure 5(a). Note that g depends on 20 variables and variables x6, x9, and
x10 each depend on a single variable only (e.g., the Boolean function corresponding
to x6 is g6 = x5).

We now state and prove the lemmas.

Lemma 4.2. Consider an AND-OR network f consisting of coupled chains such
that xn depends on two or more variables as shown in Figure 6(a). Denote with
R = {1, 2, . . . , r}. Then, the number of steady states of f is equal to

F [ f ] = F [ f \({n} ∪ {is : s ∈ R})]

+

∑
∅6=S⊆R

(−1)|S|+1F [ f \({n} ∪ {is : s ∈ S} ∪ { js : s ∈ S})].

Proof. We proceed by cases as in the proof of Proposition 3.1.2.
If xn=1, then any fixed point of f will satisfy xis = x js∨1=1 and x js = xks∧xis =

xks ∧ 1= xks . Thus, x is a fixed point of f if and only if y = (xs)s∈{1,...,n}\{n,i1,...,ir }

is a fixed point of the AND-OR network with wiring diagram given in Figure 6(b).
This smaller network is precisely f \({n} ∪ {is : s ∈ R}).

If xn = 0, then any fixed point of f will satisfy xi1 ∧ · · · ∧ xir = 0 (Figure 6(c)).
This does not correspond to a system of equations of an AND-OR network, so we
consider the subcases xis = 0 for each s ∈ R = {1, 2, . . . , r}.
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0

x
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Figure 6. Idea of the proof in Lemma 4.2. (a) Wiring diagram of
AND-OR network f that has a vertex that depends on two or more
variables. The three dots represent other variables in the r chains
that could potentially intersect as in Figure 4(b). We consider two
cases, xn = 1 and xn = 0 in the system of equations f (x) = x .
(b) In the case xn = 1, we obtain a smaller system of equations that
corresponds to a smaller wiring diagram of an AND-OR network. (c)
In the case xn = 0, the system of equations does not correspond to an
AND-OR network due to the condition

∧r
s=1 xis = 0. (d) To obtain

AND-OR networks we consider the subcases xi1 = 0, xi2 = 0, . . . ,
and xir = 0. However, there is overlap of fixed points between the
different subcases, so we use the inclusion-exclusion principle.

If xis = 0, then xi1 ∧· · ·∧ xir = 0 is satisfied. Also, x js = xks ∧0= 0 and then xks

will depend on a single variable only (see Figure 6(d) for the cases s = 1 and s = r ).
The resulting AND-OR network is f \({n, is, js}). Note that these subcases overlap,
so we use the inclusion-exclusion principle to properly account for this. For the case
xn = 0, the inclusion exclusion principle implies that the number of fixed points is

|{fixed points of the form xn= 0}|

=

∑
∅6=S⊆R

(−1)|S|+1
|{fixed points of the form xis= 0 for s∈S}|.

We now claim that

|{fixed points of the form xis= 0 for s∈S}| =F [ f \({n}∪{is : s∈S}∪{ js : s∈S})].

Indeed, if xis = 0 for s ∈ S, it follows that x js = 0 and that xks depends on a single
variable only for s ∈ S. The AND-OR network corresponding to this is precisely
f \({n} ∪ {is : s ∈ S} ∪ { js : s ∈ S}).
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F [   ]=F [   ] F [   ]+ F [   ] F [   ]++

F [   ] F [   ] F [   ] F [   ]+- - -

F [   ]=F [ ] F [ ] F [ ]x x =(   [ ])
3F

F [   ]= (   [ ])
2FF [ ]x

F [   ]= (   [ ])
2FF [ ]x

F [   ]=(   [ ])
3F

Figure 7. Using our results to find the number of fixed points of a
coupling of three open chains.

The proof then follows by adding the total number of fixed points from the cases
xn = 1 and xn = 0. �

Lemma 4.3. Suppose a Boolean network f is the Cartesian product of h and g;
that is, up to a relabeling of variables, f (x, y) = (g(x), h(y)) (also denoted by
f = g× h). Then,

F [ f ] = F [g]F [h].

Proof. This follows from the fact that (x, y) is a steady state of f if and only if x
is a steady state of g and y is a steady state of h. �

With these lemmas we can now find the number of fixed points of the AND-OR
networks given in Figure 4. For notational purposes, we apply the lemmas using
the unlabeled representation of the wiring diagrams.

Example 4.4. Consider the AND-OR network with wiring diagram given by
Figure 4(a). We use Lemma 4.2 to split the wiring diagram at x8. The process is
shown in Figure 7. Using this lemma, we find that the number of fixed points can be
written as a sum/difference of the number of fixed points of disjoint chains. Then,
we use Lemma 4.3 to express the number of fixed points as an algebraic combination
of the number of fixed points of single chains. Once we have single chains, we can
use the results from previous sections. Thus, the number of fixed points is

F [ f ] = (F(1, 1, 1, 1))3+ 3F(1, 1, 1)(F(1, 1, 1, 1, 1))2

− 3F(1, 1, 1, 1, 1)(F(1, 1, 1))2+ (F(1, 1, 1))3

= (5)3+ 3(4)(7)2− 3(7)(4)2+ (4)3 = 441.
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F [   ]=F [   ] F [   ]+ F [   ] F [   ]++

F [   ] F [   ] F [   ] F [   ]+- - -

Figure 8. Using our results to find the number of fixed points of a
coupling of an open chain and a closed chain.

Example 4.5. Consider the AND-OR network with wiring diagram given by
Figure 4(b). We use Lemma 4.2 to split the wiring diagram at x8 and then we use
Lemma 4.3. The process is shown in Figure 8. Analogous to the previous example,
we obtain

F [ f ] = F(1, 1, 1, 1)F(1, 1, 1, 1, 1)+F(1, 1, 1)F(1, 1, 1, 1, 1, 1, 1)

+ 2(F(1, 1, 1, 1, 1))2− 3F(1, 1, 1)F(1, 1, 1, 1, 1)+ (F(1, 1, 1))2

= (5)(7)+ (4)(12)+ 2(7)2− 3(4)(7)+ (4)2 = 113.

5. Conclusion

Our results provide recursive formulas and sharp bounds for the number of fixed
points of AND-OR networks with chain topology. Other work regarding the number
of fixed points has focused on bounds with respect to the number of nodes [Aracena
et al. 2004]. Our results, on the other hand, focus on formulas and bounds with
respect to the pattern of logical operators. Thus, our findings complement previous
results. Our approach can potentially be extended to cases where an AND-OR
network has a topology that can be seen as the “combination” of open chains. Then,
the number of fixed points of the original AND-OR network will be given by the
inclusion-exclusion principle in terms of the number of fixed points of the AND-OR
networks with open chain topology. Indeed, Section 4 shows how our approach
can be used in such cases.
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