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We calculate full asymptotic expansions of prime-independent multiplicative
functions on additive arithmetic semigroups that satisfy a strong form of
Knopfmacher’s axioms. When applied to the semigroup of unlabeled graphs,
our method yields detailed asymptotic information on how graphs decompose
into connected components. As a second class of examples, we discuss polyno-
mials in several variables over a finite field.

1. Introduction

Let Gn be the number of unlabeled graphs with n vertices and let G+n be the number
of connected unlabeled graphs with n vertices. Using the fact that the sequences
{Gn} and {G+n } are related by the identity

∞∑
n=0

Gnxn
=

∞∏
m=1

(1− xm)−G+m , (1)

Wright [1967] proved that Gn ∼ G+n ; i.e., almost all graphs are connected. As
observed in that paper and further clarified in [Warlimont 2001], this asymptotic
result is intimately related to the fact that the power series at the right-hand side
of (1) has trivial convergence radius. Armed with a full asymptotic expansion
for Gn [Wright 1969], Wright [1970] further improved this result by constructing
a sequence {ωs} of polynomials such that, for any fixed positive integer R, the
asymptotic relation

G+n = Gn +

R−1∑
s=1

ωs(n)Gn−s + O(nRGn−R) (2)

holds in the limit n→∞.
In the context of abstract analytic number theory [Knopfmacher 1975], Knopf-

macher [1976] (see also [Flajolet and Sedgewick 2009; Burris 2001] for the more
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general setting of weighted decomposable combinatorial structures) observed that
(1) is a particular case of an Euler product type of identity which holds for arbitrary
additive arithmetical semigroups and that the methods of [Wright 1967] can be used
to study the distribution of certain arithmetical functions on additive arithmetical
semigroups in which almost all elements are prime. For instance, if d2 is the divisor
function that to each unlabeled graph g assigns the number of ways to write g as a
disjoint union of an ordered pair of graphs then

lim
n→∞

1
Gn

∑
d2(g)= 2 and lim

n→∞

1
Gn

∑
(d2(g)− 2)2 = 0, (3)

where both sums are taken over all graphs g with n vertices.
The goal of the present paper is to investigate Knopfmacher’s suggestion [1976]

that restricting to arithmetical semigroups in which the total number of elements
is related to the number of prime elements by a formula analogous to (2) might
lead to a strengthening of (3). To illustrate our results with an example, consider
again the divisor function d2 on the semigroup of graphs. We prove that for every
positive integer M, there exists a sequence {τs(n)} of polynomials such that, for
any fixed positive integer R, the asymptotic relation

1
Gn

∑
(d2(g)− 2)M

= 2M
R−1∑
s=1

τs(n)2−sn
+ O(n2R−12−Rn) (4)

holds in the limit n→∞. Clearly, (3) can be recovered by setting M = 1 and
M = 2 in (4) and taking the limit as n→∞. More generally, we show that (4) is a
particular case of a formula that holds if d2 is replaced by an arbitrary Warlimont
function, i.e., a multiplicative prime-independent function whose restriction to
power of primes grows in a prescribed way. Even more generally, the semigroup of
graphs can be replaced by any Wright semigroup, which we define to be an additive
arithmetical semigroup subject to a growth condition introduced in [Wright 1970].
Examples of Wright semigroups include the semigroup of unlabeled graphs with an
even number of edges and the semigroup of polynomials in at least two variables
over a finite field.

The paper is organized as follows. Section 2 contains the main technical results
used in the rest of the paper. We work with triples of sequences related by a
generalization of (1) that were introduced in [Warlimont 1993]. The main result is
Theorem 5 which can be thought of as a generalization of [Wright 1970], modeled
after the way in which [Warlimont 1993] generalizes [Wright 1967]. In Section 3,
after introducing the key notions of Wright semigroup and of Warlimont function,
we provide asymptotic formulas for moments of Warlimont functions in terms
of the number of elements of given degree in the underlying (not necessarily
Wright) semigroup. In the special case of Wright semigroup, we construct full
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asymptotic expansions generalizing (4). We illustrate our results in Section 4 by
calculating asymptotic expansion of some of the arithmetical functions considered
in [Knopfmacher 1976] on three examples of Wright semigroups: the semigroup
of all unlabeled graphs, the semigroup of unlabeled graphs with an even number
of edges and the semigroup of nonzero polynomials (up to scaling) in at least two
variables over a finite field.

2. Warlimont triples

Definition 1. A Warlimont triple is a triple ({Tn}, {tn}, {an}) of sequences of non-
negative real numbers related by the identity

∞∑
n=0

Tnxn
=

∞∏
m=1

( ∞∑
k=0

ak xkm
)tm

(5)

of formal power series and such that

(i) T0 = a0 = 1,

(ii) a1 > 0,

(iii) tm ∈ Z for all m and tm > 0 for all but finitely many m.

In order for the three sequences to be all indexed by nonnegative integers, we set
t0 = 0.

Lemma 2. Let ({Tn}, {tn}, {an}) be a Warlimont triple and consider the sequences
{vn}, {βn} and {bn} defined the recursion formulas

vn = Tn −

n−1∑
s=1

s
n
vs Tn−s, (6)

βn =−

n−1∑
s=0

βs Tn−s, (7)

bn = nan −

n−1∑
s=1

bsan−s, (8)

with initial conditions v1 = T1, β0 = 1, b1 = a1. Then for all n:

(i) vn =
∑

d | n(d/n)td bn/d , where the sum is over all integers 1 < d ≤ n that
divide n.

(ii) βn =−
∑n

s=1(s/n)vsβn−s .

(iii) For every positive integer R
R−1∑
s=0

βs Tn−s = vn +
1
n

R−1∑
r=0

βr

n−R∑
s=R−r

svs Tn−r−s .
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Proof. Using formal term-by-term differentiation it is easy to show that (6) and (7)
are equivalent to the formal identities

log
( ∞∑

n=0

Tnxn
)
=

∞∑
m=1

vm xm, (9)

log
( ∞∑

n=0

anxn
)
=

∞∑
s=1

bs

s
x s, (10)

respectively. Taking the formal logarithm of (5) and substituting (9), (10), we obtain

∞∑
m=1

vm xm
=

∞∑
r,s=1

tr
bs

s
xrs

from which (i) easily follows. Since (7) is equivalent to the identity( ∞∑
s=0

βs x s
)( ∞∑

n=0

Tnxn
)
= 1

of formal power series, taking formal logarithms yields

log
( ∞∑

s=0

βs x s
)
=−

∞∑
m=1

vm xm .

Comparing with (6) and (9) proves (ii). It follows from (ii) that

R−1∑
u=0

u∑
r=0

βr ((n− u)vn−uTu−r + (u− r)vu−r Tn−u)= vn −

R−1∑
u=0

uβuTn−u

and thus
R−1∑
s=0

βs Tn−s − vn

=
1
n

R−1∑
u=0

u∑
r=0

βr

(
n− r
R− r

Tn−r − (n− u)vn−uTu−r − (u− r)vu−r Tn−u

)

=
1
n

R−1∑
r=0

βr

(
(n− r)Tn−r −

R−r−1∑
s=0

(n− r − s)Tsvn−r−s +

R−r−1∑
s=0

svs Tn−r−s

)

=
1
n

R−1∑
r=0

βr

n−R∑
s=R−r

svs Tn−r−s,

where the last line follows from applying (6) to Tn−r for each r∈{0,1, . . . , R−1}. �
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Lemma 3. Let ({Tn}, {tn}, {an}) be a Warlimont triple. Then

a1

bn/2c∑
s=0

Ts tn−s ≤ Tn

for all n.

Proof. Since
∞∏

m=N+1

( ∞∑
k=0

ak xkm
)tm
∈ 1+ x N+1R[[x]]

for every integer N ≥ 0, we have
N∑

n=0

Tnxn
∈

N∏
m=1

( ∞∑
k=0

ak xkm
)tm
+ x N+1R[[x]]

and thus
N∑

n=0

Tnxn
∈

(bN/2c∑
s=0

Ts x s
) N∏

m=bN/2c+1

( ∞∑
k=0

ak xkm
)tm
+ x N+1R[[x]]. (11)

On the other hand, by assumption tm is a nonnegative integer for all m and thus by
the binomial theorem( ∞∑

k=0

ak xkm
)tm
∈ 1+ a1tm xm

+ x2mR[[x]]. (12)

Since the sequences {ak}, {tm} and {Tn} are nonnegative, the lemma follows by
substituting (12) into (11) and comparing coefficients. �

Lemma 4. Let ({Tn}, {tn}, {an}) be a Warlimont triple such that log(an) = O(n).
Then for every nonnegative integer R

|vn − a1tn| =
{

O(Tn−R) if Tn−1 = o(Tn),

O(tn−R) if tn−1 = o(tn).

Proof. Assume Tn−1 = o(Tn). Since log(an)= O(n), there exists r > 1 such that
an ≤ rn for all n. By induction on the definition of {bn}, we obtain |bn| ≤ (3r)n

for all n. Moreover, since Tn−1 = o(Tn) and condition (iii) in the definition of
Warlimont triple implies Tn > 0 for all but finitely many n, there exists a positive
integer N such that 0< Tn ≤ (3r)−2Tn+1 for all n ≥ N. If

C =max
{

1,
(3r)2N T0

TN
,
(3r)2N T1

TN+1
, . . . ,

(3r)2N TN−1

T2N−1

}
then for any n > 0 and for any m ≥ N we obtain

Tn ≤ C(3r)−2N Tn+N ≤ C(3r)−2(N+1)Tn+N+1 ≤ · · · ≤ C(3r)−2m Tn+m .
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Therefore, using Lemmas 2 and 3

|vn−a1tn|≤
∑
d/n

d
n

td |bn/d |≤
∑
d/n

Td(3r)n/d≤CTn−R

∑
d/n

(3r)−n+2R+2d
=O(Tn−R).

The proof for the case tn−1 = o(tn) is similar and left to the reader. �

Theorem 5. Let ({Tn}, {tn}, {an}) be a Warlimont triple such that log(an)= O(n)
and let R be a fixed positive integer. Then the following are equivalent:

(i) Tn−1 = o(Tn) and
n−R∑
s=R

Ts Tn−s = O(Tn−R).

(ii) Tn−1 = o(Tn) and

a1tn =
R−1∑
s=0

βs Tn−s + O(Tn−R).

(iii) tn−1 = o(tn) and

Tn = a1

R−1∑
s=0

Ts tn−s + O(tn−R).

(iv) tn−1 = o(tn) and
n−R∑
s=R

ts tn−s = O(tn−R).

Proof. Assume (i) holds. Using Lemmas 3 and 4 and Tn−1 = o(Tn), we obtain

|vn| ≤ |vn − a1tn| + a1tn = O(Tn).

Therefore, there exist an integer N > R and a constant C > 0 such that |vn| ≤CTn ≤

CTn+r for all n ≥ N and for all r ∈ {0, . . . , R− 1}. Combining this observation
with Lemma 2 yields∣∣∣∣vn −

R−1∑
s=0

βs Tn−s

∣∣∣∣≤ R−1∑
r=0

βr

n−R∑
s=R−r

s
n
|vs |Tn−s

≤

R−1∑
r=0

βr

( N−1∑
s=R−r

|vs |Tn−r−s +C
n−R∑
s=N

Ts Tn−r−s

)

≤

R−1∑
r=0

βr

( N−1∑
s=R−r

|vs |Tn−r−s +C2
n−R∑
s=R

Ts Tn−s

)
= O(Tn−R),
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and thus∣∣∣∣a1tn −
R−1∑
s=0

βs Tn−s

∣∣∣∣≤ |a1tn − vn| +

∣∣∣∣vn −

R−1∑
s=0

βs Tn−s

∣∣∣∣= O(Tn−R).

Hence, (i) implies (ii). Assume (ii) holds. Then

a1

R−1∑
s=0

Ts tn−s =

R−1∑
s=0

Ts

R−1−s∑
r=0

βr Tn−s−r + O(Tn−R)

=

R−1∑
s=0

R−1∑
u=s

Tsβu−s Tn−u + O(Tn−R)

=

R−1∑
u=0

Tn−u

u∑
s=0

Tsβu−s + O(Tn−R)

= Tn + O(Tn−R),

where the last equality is obtained using the definition of the sequence {βn}. In
particular, setting R = 1 we obtain a1tn − Tn = O(Tn−1) = o(Tn), which implies
a1tn∼ Tn and hence o(tn−1)=O(Tn−1)=o(Tn)=o(tn). Therefore, (ii) implies (iii).
Assume (iii) holds. By Lemma 3

a2
1

bn/2c∑
s=R

ts tn−s ≤ a1

bn/2c∑
s=R

Ts tn−s ≤ Tn − a1

R−1∑
s=0

Ts tn−s = O(tn−R).

This proves (iv) since
n−R∑
s=R

ts tn−s = 2
bn/2c∑
s=R

ts tn−s + O(tn−R).

Finally, assume (iv) holds. Lemma 4 implies |vn−a1tn| = O(tn−R)= o(tn) and thus
vn ∼ a1tn . This implies that there exist an integer N ≥ R and constants c,C > 0
such that

0< ctn ≤ vn ≤ Ctn (13)

for all n ≥ N. As a consequence,

vn−1 = O(tn−1)= o(tn)= o(vn) (14)
and

n−N∑
j=N

vn− jv j ≤ C2
n−R∑
j=R

tn− j t j = O(tn−R)= O(vn−R). (15)

For each n ≥ N, let

Mn =max
{

T j

v j

∣∣∣∣ N ≤ j ≤ n
}
.
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By Lemma 2, we obtain

|Tn−vn| ≤

n−1∑
j=1

|vn− j |T j ≤

N−1∑
j=1

vn− j T j+Mn−1

( n−N∑
j=N

vn− jv j+

n−1∑
j=n−N+1

|vn− j |v j

)
= o(vn)(1+Mn−1),

where (14) and (15) were used to obtain the last equality. Hence there exists N1≥ N
such that for all n ≥ N1

Tn

vn
≤

3+Mn−1

2
and thus

Mn =max
{

Mn−1,
Tn

vn

}
≤max{Mn−1, 3}.

This shows that the sequence {Mn} is bounded; i.e., there exists a constant K > 0
such that Tn ≤ Kvn for all n ≥ N. Therefore, using (13) and Lemma 3, we obtain

Tn−1 = O(vn−1)= O(tn−1)= o(tn)= o(Tn).

Moreover (14) yields
n−R∑
s=R

Tn−s Ts ≤ 2
N∑

s=R

Ts Tn−s + K 2
n−N∑
s=N

vn−svs = O(Tn−R)+ O(vn−R)= O(Tn−R).

This concludes the proof that (iv) implies (i) and the theorem is proved. �

Remark 6. Let ({Tn}, {tn}, {an}) be a Warlimont triple that satisfies the equivalent
conditions of Theorem 5 for some R > 2. Then
n−R+1∑
s=R−1

Ts Tn−s=

n−R∑
s=R

Ts Tn−s+2TR−1Tn−R+1=O(Tn−R)+O(Tn−R+1)=O(Tn−R+1)

and thus ({Tn}, {tn}, {an}) satisfies the equivalent conditions of Theorem 5 for any
fixed positive integer less than or equal to R. In particular, tn−1=o(tn) and Tn∼a1tn .

3. Warlimont functions and Wright semigroups

Definition 7. An additive arithmetical semigroup is a pair (G,+, ∂) consisting
of an abelian semigroup (G,+) with identity and a semigroup homomorphism
∂ : (G,+)→ (Z≥0,+) such that

(i) the cardinality Gn of the preimage ∂−1(n) is finite for all n,

(ii) G is freely generated by G+ ⊆ G.

We denote by G+n the cardinality of the set ∂−1(n)∩G+.
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Remark 8. Let (G,+, ∂) be an additive arithmetical semigroup. As pointed out in
[Knopfmacher 1976; Warlimont 1993], ({Gn}, {G+n }, {1}) is a Warlimont triple.

Definition 9. A Wright semigroup is an additive arithmetical semigroup (G,+, ∂)
satisfying

log(Gn)= αna+1
+βn log(n)+ γ n+ O(nb) (16)

for some real numbers α, β, γ , a, b such that α > 0 and 0< b < a.

Definition 10. Let R be a positive integer. We say that an additive arithmetical
semigroup (G,+, ∂) satisfies axiom WR if Gn−1 = o(Gn) and

n−R∑
s=R

Gs Gn−s = O(Gn−R).

Remark 11. Let (G,+, ∂) be an additive arithmetical semigroup that satisfies
axiom WR for some positive integer R. Combining Remarks 6 and 8, we conclude
that (G,+, ∂) satisfies axiom WR′ for any positive integer R′ ≤ R. In particular,
Gn ∼ G+n and G+n−1 = o(G+n ); i.e., the additive arithmetical semigroup (G,+, ∂)
satisfies both axiom G1 and axiom G2 as defined in [Knopfmacher 1976]. Notice
that the combination of Axioms G1 and G2 is slightly weaker than axiom W1 since∑n−1

s=1 Gs Gn−s = o(Gn) does not necessarily imply
∑n−1

s=1 Gs Gn−s = O(Gn−1).

Proposition 12. Every Wright semigroup satisfies axiom WR for every positive
integer R.

Proof. This is a straightforward consequence of the definitions and Theorem 7 of
[Wright 1970]. �

Definition 13. Let (G,+, ∂) be an additive arithmetical semigroup. A function
F :G→R is multiplicative if F(g1+g2)= F(g1)F(g2) for all g1, g2 ∈G coprime.
We say that F is prime-independent if there exists a sequence {F+n } such that
F+n = F(np) for every p ∈ G+ and every positive integer n. For every function
F : G→ R, we denote by {Fn} the sequence defined by setting

Fn =
∑
∂(g)=n

F(g)

for each nonnegative integer n. A Warlimont function is a nonnegative multiplicative
prime-independent function such that log(F+n )= O(n) and F+1 > 0. The normal-
ization of a Warlimont function F is the (not necessarily multiplicative) function
F̃ : G→ R such that F̃(g)= F(g)/F+1 for all g ∈ G.

Example 14. Let (G,+, ∂) be an additive arithmetical semigroup and let F :G→R

be such that F(g) = 1 for all g ∈ G. Then F is a Warlimont function and Fn =

F̃n = Gn for all n.
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Example 15. Let (G,+, ∂) be an additive arithmetical semigroup and, for each
k ≥ 2, consider the generalized divisor function dk : G → R that to each g ∈ G
assigns the number dk(g) of k-tuples (g1, . . . , gk) ∈ Gk such that g = g1+· · ·+ gk .
Then dk is multiplicative, prime-independent and (dk)

+
n =

(n+k−1
k−1

)
for each integer

n ≥ 1. Therefore, dk is Warlimont.

Example 16. Let (G,+, ∂) be an additive arithmetical semigroup and consider the
unitary divisor function d∗ : G→ R that to each g ∈ G assigns the number d∗(g)
of coprime pairs (g1, g2) such that g = g1+ g2. Then d∗ is multiplicative, prime-
independent and (d∗)+n = 2 for each integer n ≥ 1. Therefore d∗ is Warlimont.

Example 17. Let (G,+, ∂) be an additive arithmetical semigroup and consider
the prime divisor function B : G → R such that B(k1 p1 + k2 p2 + · · · + kr pr ) =

k1k2 · · · kr for any p1, . . . , pr ∈ G primes and k1, . . . , kr positive integers. Then B
is multiplicative, prime-independent and B+n = n for each integer n ≥ 1. Therefore,
B is Warlimont.

Remark 18. Let F be a Warlimont function on an additive arithmetical semigroup
(G,+, ∂). Then the function Fm

:G→R such that Fm(g)= (F(g))m for all g ∈G
is again a Warlimont function for every integer m ≥ 1 since

log((Fm)+n )= m log(F+n )= O(n).

Moreover, F̃m = (F̃)m.

Remark 19. Let F be a Warlimont function on an additive arithmetical semi-
group (G,+, ∂). Then, as observed in [Warlimont 1993], ({Fn}, {G+n }, {F

+
n }) is a

Warlimont triple.

Theorem 20. Let (G,+, ∂) be an additive arithmetical semigroup that satisfies
axiom WR and let F be a Warlimont function on G. Then for every positive
integer M there exist constants ξ1, . . . , ξR−1 such that

∑
∂(g)=n

(F̃(g)− 1)M
=

R−1∑
s=1

ξs Gn−s + O(Gn−R). (17)

Proof. By Remark 19 and Example 14, ({Gn}, {G+n }, {1}) and ({Fn}, {G+n }, {F
+
n })

are both Warlimont triples. Since {Gn} satisfies axiom WR , it follows from
Theorem 5 applied to the Warlimont triple ({Gn}, {G+n }, {1}) that G+n−1 = o(G+n ),

n−R∑
s=R

G+s G+n−s = O(G+n−R). (18)
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Moreover, if {βn} is the sequence defined recursively by setting β0 = 1 and

βn =−

n−1∑
s=0

βs Gn−s (19)

for every positive integer n, then

G+n−s =

R−1∑
r=0

βr Gn−s−r + O(Gn−s−R) (20)

for all s ≥ 0. In particular, we can apply Theorem 5 to the Warlimont triple
({Fn}, {G+n }, {F

+
n }) and obtain

Fn = F+1

R−1∑
s=0

Fs G+n−s + O(G+n−R). (21)

Since by definition G+n ≤ Gn for all n and Gn−s−R = o(Gn−R) for all s > 0,
substituting (20) into (21) yields

F̃n =

R−1∑
s=0

( s∑
r=0

βr Fs−r

)
Gn−s + O(Gn−R). (22)

Using the binomial theorem and Remark 18 we obtain∑
∂(g)=n

(F̃(g)− 1)M
= (−1)M

∑
∂(g)=n

M∑
m=0

(−1)m
(M

m

)
F̃m(g)

= (−1)M
M∑

m=0

(−1)m
(M

m

)
(F̃m)n. (23)

Applying (22) to the Warlimont function Fm and substituting into the last line of
(23) (after an obvious rearrangement) yields∑

∂(g)=n

(F̃(g)− 1)M
=

R−1∑
s=0

ξs Gn−s + O(Gn−R), (24)

with

ξs = (−1)M
M∑

m=0

(−1)m
(M

m

) s∑
r=0

βr (Fm)s−r

= (−1)M
M∑

m=1

(−1)m
(M

m

) s∑
r=0

βr (Fm)s−r (25)

for all s ∈ {0, . . . , R − 1} where the second equality follows from (19) and
Example 14. This implies (17) since, combining Remarks 18 and 19, (Fm)0 = 1
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for all m and thus

ξ0 = (−1)M
M∑

m=0

(−1)m
(M

m

)
β0(Fm)0 = 0. �

Definition 21. Let F be a Warlimont function on an additive arithmetical semigroup
(G,+, ∂) and let M be a positive integer. We define the normalized M-th moments
of F to be the functions µF,M : Z≥0→ R defined by

µF,M(n)=
1

Gn

∑
∂(g)=n

(F̃(g)− 1)M (26)

for all n ≥ 0.

Remark 22. Let F be a Warlimont function on an additive arithmetical semigroup
(G,+, ∂). The average value of F on ∂−1(n) is given by

Fn

Gn
= F+1 (1+µF,1(n)).

The higher normalized moments can be thought of as capturing the deviation of F
from F+1 . For instance, if µF,1(n)= o(1), then

1
Gn

∑
∂(g)=n

(F(g)− F+1 )
2
= (F+1 )

2µF,2(n)

can be thought of as an asymptotic measure of the variance of F on ∂−1(n).

Corollary 23. Let F be a Warlimont function on an additive arithmetical semigroup
(G,+, ∂) that satisfies axiom W1. Then

lim
n→∞

Fn

Gn
= F+1 ,

lim
n→∞

1
Gn

∑
∂(g)=n

(F(g)− F+1 )
2
= 0.

Proof. Combining Remark 22 and Theorem 20 (with R = M = 1), we obtain

Fn

Gn
= F+1 (1+µF,1(n))= F+1 + o(1).

Similarly,

1
Gn

∑
∂(g)=n

(F(g)− F+1 )
2
= (F+1 )

2
(
ξ1

Gn−1

Gn
+ O

(
Gn−1

Gn

))
= o(1). �

Remark 24. A slightly stronger (see Remark 11) version of Corollary 23 is proved
in [Knopfmacher 1976] for particular choices of F. A sharper result is given in
[Warlimont 1993] where it is shown that the assumption Gn−1 = O(Gn) (which is
part of axiom W1) is unnecessary.
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Theorem 25. Let F be a Warlimont function on a Wright semigroup (G,+, ∂) with
α, a, b as in Definition 9 and let q = eα(a+1):

(i) For every positive integer M there exists a sequence {λs} of functions λs :Z≥0→R

such that log(λs(n)) = O(na−1
+ nb) and, for every fixed positive integer R, the

asymptotic relation

µF,M(n)=
R−1∑
s=1

λs(n)q−sna
+ O(λR(n)q−Rna

) (27)

holds in the limit n→∞.

(ii) Assume further that there exist constants 0 ≤ d2 ≤ d1 and a sequence {ψs} of
polynomials such that deg(ψs)≤ d1s−d2 for all s ≥ 1 and, for every fixed positive
integer R, the asymptotic relation

Gn−1

Gn
=

R−1∑
s=1

ψs(n)q−ns
+ O(nd1 R−d2q−Rn) (28)

holds in the limit n→∞. Then there exists a sequence {τs} of polynomials such
that deg(τs)≤ d1s− d2 and, for every positive integer R, the asymptotic relation

µF,M(n)=
R−1∑
s=1

τs(n)q−sn
+ O(nd1 R−d2q−Rn) (29)

holds in the limit n→∞.

Proof. Let ξs be defined by (25) for all s ≥ 1. By Proposition 12 and Theorem 20,
we obtain

µF,M(n)=
R−1∑
s=1

ξs
Gn−s

Gn
+ O

(
Gn−R

Gn

)
(30)

for every fixed integer R > 0. Since

log
(

Gn−s

Gn

)
= α((n− s)a+1

− na+1)+ O(nb)=−α(a+ 1)sna
+ O(na−1

+ nb),

in order to prove (i) it suffices to choose λs such that

λs(n)= ξsqsna Gn−s

Gn

for all n ≥ s ≥ 1. Using (28) repeatedly and induction on t , for every fixed positive
integer R, we obtain

Gn−t

Gn
=

Gn−1

Gn
· · ·

Gn−t

Gn−t+1
=

R−1∑
s=t

νs,t(n)q−sn
+ O(nDRq−Rn), (31)
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where

νs,t(n)=
∑

i1+···+it=s

ψi1(n)ψi2(n− 1) · · ·ψit (n− t + 1)q i2+2i3+···+(t−1)it (32)

is a polynomial in n of degree at most d1s− d2t for all 1≤ t ≤ s. Substituting (31)
into (30) yields, for every fixed positive integer R,

µF,M(n)=
R−1∑
t=1

ξt

R−1∑
s=t

νs,t(n)q−ns
+ O(nDRq−n R)

=

R−1∑
s=1

( s∑
t=1

ξtνs,t(n)
)

q−sn
+ O(nDRq−n R),

which proves (ii) upon setting

τs(n)=
s∑

t=1

ξtνs,t(n) (33)

for all s, n. �

Remark 26. Comparison of (28) and (16) shows that the assumptions of (ii) in
Theorem 25 require in particular that (16) holds with a = 1.

4. Examples

4.1. Graphs. Let (G,+) be the semigroup of (simple, unlabeled) graphs with
semigroup operation + given by disjoint union. If ∂ is the map that to each graph g
assigns the cardinality of its set of vertices, then (G,+, ∂) is an additive arithmetical
semigroup and g ∈G+ if and only if the graph g is connected. As proved in [Wright
1969], there exists a sequence {ϕs} of polynomials such that ϕs has degree 2s for
every s and, for every fixed positive integer R, the asymptotic relation

Gn =
2(

n
2)

n!

( R−1∑
s=0

ϕs(n)2−sn
+ O(n2R2−Rn)

)
(34)

holds in the limit n→∞. The polynomials ϕs can be calculated explicitly, the first
few being

ϕ0(n)= 1,

ϕ1(n)= 2n2
− 2n,

ϕ2(n)= 8n4
−

128
3 n3
+ 72n2

−
112

3 n,

ϕ3(n)= 256
3 n6
−

3712
3 n5
+

20672
3 n4

−
54272

3 n3
+ 21952n2

− 9600n.

In particular,

log(Gn)= log(
√

2)n2
− n log(n)+ (1− log(

√
2))n+ O(nb)
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for any b > 0 and thus (G,+, ∂) is a Wright semigroup. Moreover, using (34) and
expanding the denominator as a geometric series we obtain, for every fixed R > 0,

Gn−1

Gn
= 2n2−n

( R−1∑
s=0

2sϕs(n−1)2−sn
) R−1∑

r=0

(
−

R−1∑
s=1

ϕs(n)2−sn
)r

+O(n2R+12−(R+1)s)

=

R−1∑
s=1

ψs(n)2−sn
+O(n2R−12−Rn),

where the ψs are polynomials of degree deg(ψs)= 2s− 1 which can be explicitly
calculated in terms of the polynomials ϕs in (34). For instance

ψ1(n)=n,

ψ2(n)=4n3
−20n2

+16n,

ψ3(n)=40n5
−464n4

+1768n3
−2624n2

+1280n,

ψ4(n)= 3248
3 n7
−24176n6

+
630608

3 n5
−908496n4

+
6137792

3 n3
−2250240n2

+925696n.

Substitution into (32) yields νs,1(n)= ψs(n) for all s and

ν2,2(n)= 8n2
− 8n,

ν3,2(n)= 48n4
− 352n3

+ 688n2
− 384n,

ν3,3(n)= 64n3
− 192n2

+ 128n,

ν4,2(n)= 864n6
− 13472n5

+ 77216n4
− 203488n3

+ 245376n2
− 106496n,

ν4,3(n)= 896n5
− 9728n4

+ 35200n3
− 50944n2

+ 24576n,

ν4,4(n)= 1024n4
− 6144n3

+ 11264n2
− 6144n.

Inspection of graphs with up to four vertices shows that G1 = 1, G2 = 2, G3 = 4
and G4 = 11. Substitution into (19) yields β1 = β2 = β3 =−1 and β4 =−4.

Example 27. Consider the Warlimont function d2 from Example 15. When special-
ized to the semigroup of graphs, d2 counts the number of ways of writing a given
graph as the disjoint union of two graphs. The order is taken into account, so that if
g1 is not isomorphic to g2, then g = g1+ g2 and g = g2+ g1 count as two distinct
decompositions. Moreover, decompositions in which one of the components is the
empty graph are allowed. Combining Remark 22 and Theorem 25 we obtain (4).
In particular, setting M = 1 yields a full asymptotic expansion for the average of
d2 of the form

1
Gn

∑
∂(g)=n

d2(g)= 2+ 2
R−1∑
s=1

τs(n)2−sn
+ O(n2R−12−Rn),

valid for every fixed positive integer R, where the τs(n) are polynomials of degree
2s − 1. For instance, direct inspection of graphs with up to four vertices yields
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(d2)1 = 2, (d2)2 = 5, (d2)3 = 12 and (d2)4 = 34. Substituting into (25) and then
into (33) we obtain

τ1(n)= 2n,

τ2(n)= 4n3
−4n2,

τ3(n)= 40n5
−368n4

+1320n3
−2016n2

+1024n,

τ4(n)= 3248
3 n7
−22448n6

+
560528

3 n5
−781712n4

+
5136512

3 n3
−1839360n2

+743424n.

4.2. Graphs with an even number of edges. Let (G,+) be the semigroup of (sim-
ple, unlabeled) graphs with an even number of edges and semigroup operation +
given by disjoint union. If ∂ is the map that to each graph g assigns the cardinality
of its set of vertices, then (G,+, ∂) is an additive arithmetical semigroup. G+

consists of graphs g with an even number of edges that cannot be written as the
disjoint union of two nonempty graphs with an even number of edges. While G
is a subsemigroup of the semigroup of all unlabeled graphs, not all graphs in G+

are connected. For instance, while 2K1 is not connected, it is nevertheless prime in
the semigroup of graphs with even edges. As pointed out in [Aldi 2019], for every
fixed positive integer R, the asymptotic relation

Gn =
2(

n
2)

2n!

(R−1∑
s=0

ϕs(n)2−sn
+ O(n2R2−Rn)

)
holds in the n →∞ limit, where the polynomials ϕs(n) coincide with those of
Section 4.1. In particular, (G,+, ∂) is a Wright semigroup and, for every fixed
positive integer R,

Gn−1

Gn
=

R−1∑
s=1

ψs(n)2−sn
+ O(n2R−12−Rn),

where the polynomials ψs(n) coincide with those calculated in Section 4.1. Inspec-
tion of graphs with up to four vertices shows that G1=G2= 1, G3= 2 and G4= 6.
Substitution into (19) yields β1 =−1, β2 = 0, β3 =−1 and β4 =−3.

Example 28. Consider the Warlimont function d∗ from Example 16. Combining
Remark 22 and Theorem 25 we obtain a full asymptotic expansion for the second
moment of d∗ about 2:

1
Gn

∑
∂(g)=n

(d∗(g)− 2)2 = 4
R−1∑
s=1

τs(n)2−sn
+ O(n2R−12−Rn)

for every fixed positive integer R, where the τs(n) are polynomials of degree
2s− 1. To calculate these explicitly for small values of s, we first observe by direct
calculation that (d∗)1 = 2, (d∗)2 = 2, (d∗)3 = 4, (d∗)4 = 14 as well as (d2

∗
)1 = 4,

(d2
∗
)2 = 4, (d2

∗
)3 = 8, (d2

∗
)4 = 36. Substitution into (25) (upon setting M = 2) and
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then into (33) yields

τ1(n)= 2n,

τ2(n)= 4n3
−20n2

+16n,

τ3(n)= 40n5
−464n4

+1832n3
−2816n2

+1408n,

τ4(n)= 3248
3 n7
−24176n6

+
633296

3 n5
−906960n4

+
6040640

3 n3
−2177280n2

+882688n.

4.3. Polynomials over a finite field. Consider the field Fq with q elements and let
G be the set of nonzero polynomials in Fq [x1, . . . , xk] modulo the equivalence
relation such that f ∼ g if and only if f = λg for some λ ∈ Fq . G has a natural
structure of additive semigroup with semigroup operation + given by multiplication
of polynomials. If ∂ is the semigroup homomorphism that to each polynomial f ∈G
assigns its total degree, then (G,+, ∂) is an additive arithmetical semigroup and G+

is the set of equivalent classes of irreducible polynomials in Fq [x1, . . . , xk]. Since

Gn =
q(

n+k
k )− q(

n−1+k
k )

q − 1
(35)

for every n,

log(Gn)= log(q)
nk

k!
+ O(nk−1)

for every k ≥ 2. On the other hand if k = 1, then log(Gn) = log(q)n for every n.
Hence (G, · , ∂) is a Wright semigroup if and only if k ≥ 2. If k = 2 then for every
fixed positive integer R

Gn−1

Gn
= q−n−1 1− q−n

1− q−n−1 =

R−1∑
s=1

ψs(n)q−sn
+ O(q−Rn),

where ψ1(n) = q−1 and ψs(n) = q−s(1− q) for all s ≥ 2. By Theorem 25, each
µF,M admits an asymptotic expansion as a power series in q−n with constant
coefficients. For instance, substitution into (32) yields

ν2,1(n)= q−2
− q−1, ν2,2(n)= q−1,

ν3,1(n)= q−3
− q−2, ν3,2(n)= q−2

− 1, ν3,3(n)= 1.

Example 29. We further specialize to the case where G is the semigroup of nonzero
polynomials in two variables over the field with two elements. By Theorem 25,
there exist constants τs such that for every fixed positive integer R the average of
the Warlimont function B (as defined in Example 17) on polynomials of degree n is

Bn

Gn
= 1+

R−1∑
s=1

τs2−sn
+ O(2−Rn). (36)

Since B1 = 6, B2 = 62 and B3 = 1002, substituting (35) into (19) and then into
(25) shows that in particular τ1 = 0, τ2 = 3 and τ3 =

3
2 .
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Example 30. If k > 2, then by Remark 26 we are in the second part of Theorem 25.
Nevertheless, the asymptotic behavior of Warlimont functions can be described
using (27) as follows. Consider for instance the Warlimont function B of Example 17
on the semigroup of polynomials in three variables with coefficients in Fq . Since

G1 =−β1 = (Bm)1

for all m, substitution in (25) yields ξ1 = 0 and thus

1
Gn

∑
∂(g)=n

(B(g)− 1)M
= O

(
Gn−2

Gn

)
= O(q−n2

−2n)

for all M.
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