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An inviscid fluid model of a self-gravitating infinite expanse of a uniformly
rotating adiabatic gas cloud consisting of the continuity, Euler’s, and Poisson’s
equations for that situation is considered. There exists a static homogeneous
density solution to this model relating that equilibrium density to the uniform
rotation. A systematic linear stability analysis of this exact solution then yields
a gravitational instability criterion equivalent to that developed by Sir James
Jeans in the absence of rotation instead of the slightly more complicated stability
behavior deduced by Subrahmanyan Chandrasekhar for this model with rota-
tion, both of which suffered from the same deficiency in that neither of them
actually examined whether their perturbation analysis was of an exact solution.
For the former case, it was not and, for the latter, the equilibrium density and
uniform rotation were erroneously assumed to be independent instead of related
to each other. Then this gravitational instability criterion is employed in the
form of Jeans’ length to show that there is very good agreement between this
theoretical prediction and the actual mean distance of separation of stars formed
in the outer arms of the spiral galaxy Andromeda M31. Further, the uniform
rotation determined from the exact solution relation to equilibrium density and
the corresponding rotational velocity for a reference radial distance are consistent
with the spectroscopic measurements of Andromeda and the observational data
of the spiral Milky Way galaxy.

1. Introduction and formulation of the problem

Consider the governing equations for a self-gravitational adiabatic inviscid fluid of
infinite extent undergoing uniform rotation [Chandrasekhar 1961]:

continuity equation: Dρ
Dt
+ρ∇·v = 0, (1-1a)
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Euler’s equation: Dv

Dt
+2�×v+�×(�×r)=− 1

ρ
P ′(ρ)∇ρ+g, (1-1b)

Poisson’s equation: ∇·g =−4πG0ρ. (1-1c)

Here t ≡ time, r = (x, y, z)≡ position vector, �= (0, 0, �0)≡ uniform rotation
vector, ρ ≡ density (mass/[unit volume]), v = (u, v, w) ≡ velocity vector with
respect to the rotating frame, ∇= (∂/∂x, ∂/∂y, ∂/∂z)≡ gradient operator, D/Dt =
∂/∂t+v·∇ ≡ material derivative, P(ρ) = p0(ρ/ρ0)

γ0 ≡ adiabatic pressure, g =
−∇ϕ ≡ gravitational acceleration vector with ϕ ≡ self-gravitating potential, and
G0 ≡ universal gravitational constant. The continuity and Euler’s equations follow
from the conservation of mass and momentum for an inviscid fluid [Lin and Segel
1974] with the addition of the extra second and third terms on the left-hand side of
(1-1b), which represent the Coriolis effect and centrifugal force, respectively, due
to the rotation [Greenspan 1968]. Poisson’s equation follows from the divergence
theorem and Newton’s law of universal gravitation [Binney and Tremaine 1987;
Lin and Segel 1974]. Since

�×(�×r)= (�·r)�−(�·�)r =−�2
0(x, y, 0),

�×v =�0(−v, u, 0), ∇·g =−∇2ϕ
(1-1d)

[Segel 1977], the Euler’s and Poisson’s equations become

Dv

Dt
+2�0(−v,u,0)−�2

0(x,y,0)=−
1
ρ

P ′(ρ)∇ρ−∇ϕ, (1-1e)

∇
2ϕ= 4πG0ρ, where ∇2

≡∇·∇. (1-1f)

Sir James Jeans [1902; 1928] proposed that a gravitational instability mechanism
occurring in the spiral arms of protogalactic nebulae could result in the formation
of chains of condensations, which eventually developed into those stars visible
in the outer regions of fully evolved galaxies. He suggested that a nonrotating
self-gravitating unbounded interstellar cloud of adiabatic gas, which is initially
uniform in density and quiescent, should undergo an instability mechanism of
this sort when acted on by random infinitesimal perturbations. Jeans [1902; 1928]
deduced a criterion for which such an interstellar cloud would exhibit a gravitational
instability by performing a linear stability analysis on what he assumed to be an
exact solution to his governing inviscid gas dynamical model system that was
equivalent to equations (1-1) in the absence of rotation, arriving at the following
secular equation satisfied by σ and λ, the growth rate and wavelength, respectively,
of his small density fluctuations:

σ 2
= 4π

(
G0ρ0−π

c2
0

λ2

)
, (1-2a)

where c0 is the speed of sound in an adiabatic medium of uniform density ρ0. This
relation differed from that for the propagation of sound in a homogeneous medium
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only due to the presence of the gravity term in (1-2a). Then, from (1-2a), Jeans
concluded that there would be instability corresponding to σ 2 > 0 provided

λ > λJ = c0

√
π

G0ρ0
≡ Jeans’ length, (1-2b)

which is known as Jeans’ criterion for gravitational instabilities.
The only problem with this derivation is that Jeans represented his exact static

solution to those governing equations symbolically as v ≡ 0 = (0, 0, 0), ρ = ρ0,
ϕ = ϕ0. Since this analysis was for a nonrotating system with �0 = 0, when he
assumed in addition that ρ0 was uniform to make his perturbation equations constant
coefficient this implicitly required ∇ϕ0 = 0, which implied ∇2ϕ0 = 0= 4πG0ρ0

or ρ0 = 0 and hence is termed Jeans’ swindle by Binney and Tremaine [1987].
Kiessling [2003] refutes their claim that Jeans’ derivation represents a swindle
because it can be justified by taking the proper limit of the appropriate cosmological
model.

Since spectroscopic evidence (reviewed by Rubin and Ford [1970]) ultimately
showed these nebulae to be rotating, Subrahmanyan Chandrasekhar [1961] con-
sidered the effect of adding rotation to Jeans’ governing system of perturbation
equations and repeated that analysis, demonstrating in the process that its stability
behavior was slightly more complicated in that it involved an extra instability
condition as well as Jeans’ criterion. Chandrasekhar’s perturbation analysis suffered
from the same deficiency as Jeans’ in that he did not develop a parameter relationship
for his implicit exact solution and thus treated ρ0 and �0 as independent. We shall
demonstrate that the proper relationship between these parameters eliminates this
extra condition and only yields Jeans’ instability criterion. Many subsequent linear
stability analyses of similar problems influenced by the methodology of these works
have treated their associated perturbation systems independently of the actual exact
solution of the governing equations and thus replicate this deficiency including
recent studies and reviews of gravitational instabilities [Stahler and Palla 2004].
Hence, we believe there is some merit in performing a systematic linear stability
analysis of the relevant exact solution for Chandrasekhar’s problem and toward that
end present an investigation of this sort in the next section.

2. The exact static homogeneous density solution and its linear stability

There exists an exact static homogeneous density solution of our basic equations of
the form

v ≡ 0= (0, 0, 0), ρ ≡ ρ0, ϕ = ϕ0, (2-1a)

where ϕ0 satisfies

∇ϕ0 =�
2
0(x, y, 0), ∇2ϕ0 = 4πG0ρ0 (2-1b)
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or
ϕ0(x, y)= 1

2�
2
0(x

2
+ y2), with �2

0 = 2πG0ρ0 > 0. (2-1c)

Now seeking a linear perturbation solution of these basic equations of the form

v = εv1+ O(ε2), where v1 = (u1, v1, w1),

ρ = ρ0[1+ εs+ O(ε2)], ϕ = ϕ0+ εϕ1+ O(ε2),
(2-2)

with |ε|� 1, substituting (2-2) into those equations, neglecting terms of O(ε2), and
canceling the resulting ε common factor; we deduce that the perturbation quantities
to this exact solution satisfy

∂s
∂t
+
∂u1

∂x
+
∂v1

∂y
+
∂w1

∂z
= 0, (2-3a)

∂u1

∂t
− 2�0v1+ c2

0
∂s
∂x
+
∂ϕ1

∂x
= 0, where c2

0 =P ′(ρ0)= γ0
p0

ρ0
> 0, (2-3b)

∂v1

∂t
+ 2�0u1+ c2

0
∂s
∂y
+
∂ϕ1

∂y
= 0, (2-3c)

∂w1

∂t
+ c2

0
∂s
∂z
+
∂ϕ1

∂z
= 0, (2-3d)

2�2
0s−∇2ϕ1 = 0. (2-3e)

Then assuming a normal mode solution for these perturbation quantities of the form

[u1, v1, w1, s, ϕ1](x, y, z, t)= [A, B,C, E, F]ei(k1x+k2 y+k3z)+σ t , (2-4)

where |A|2+ |B|2+ |C |2+ |E |2+ |F |2 6= 0, i =
√
−1, and k1,2,3 ∈ R satisfy the

implicit far-field boundedness property for those quantities, and substituting (2-4)
into (2-3), we obtain the following equations for [A, B,C, E, F] upon cancellation
of the exponential common factor:

ik1 A+ ik2 B+ ik3C + σ E = 0, (2-5a)

σ A− 2�0 B+ ic2
0k1 E + ik1 F = 0, (2-5b)

2�0 A+ σ B+ ic2
0k2 E + ik2 F = 0, (2-5c)

σC + ic2
0k3 E + ik3 F = 0, (2-5d)

2�2
0 E + k2 F = 0, where k2

= k2
1 + k2

2 + k2
3 . (2-5e)

Setting the determinant of the 5× 5 coefficient matrix for the linear homogeneous
system (2-5) of constants equal to zero to satisfy their nontriviality property, we
obtain

k2
[σ 4
+ (c2

0k2
+ 2�2

0)σ
2
] + 4�2

0(c
2
0k2
− 2�2

0)k
2
3 = 0. (2-6)
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Defining the wavenumber vector k = (k1, k2, k3), its dot product with � satisfies

k ·�= k3�0 = |k||�| cos(θ)= k�0 cos(θ), (2-7a)

θ being the azimuthal angle between k and �, which implies

k3 = k cos(θ). (2-7b)

Then, substitution of (2-7b) into (2-6) and cancellation of k2 yields the secular
equation

σ 4
+ (c2

0k2
+ 2�2

0)σ
2
+ 4�2

0(c
2
0k2
− 2�2

0) cos2(θ)= 0. (2-8)

Since this secular equation is a quadratic in σ 2, we first demonstrate that σ 2
∈R by

showing that its discriminant D satisfies

D = (c2
0k2
+ 2�2

0)
2
− 16�2

0(c
2
0k2
− 2�2

0) cos2(θ)≥ 0. (2-9a)

Consider the two cases of c2
0k2
− 2�2

0 ≤ 0 and c2
0k2
− 2�2

0 > 0 separately. For the
former case it is obvious, while for the latter one it can be deduced by noting that

D ≥ (c2
0k2
+ 2�2

0)
2
− 16�2

0(c
2
0k2
− 2�2

0)= (c
2
0k2
− 6�2

0)
2. (2-9b)

For θ = π
2 , we can conclude from (2-8) that

σ 2
= 0 or σ 2

=−(c2
0k2
+ 2�2

0) < 0, (2-10a)

while for θ 6= π
2 , the stability criteria governing such quadratics, namely,

given ω2
+ aω+ b = 0 with D = a2

− 4b ≥ 0, ω < 0 ⇐⇒ a, b > 0 (2-10b)

[Uspensky 1948], implies that

σ 2 < 0 ⇐⇒ c2
0k2
− 2�2

0 > 0. (2-10c)

Making an interpretation of these results, we can deduce from (2-10) and (2-1c)
that there will only be σ 2 > 0 and hence unstable behavior provided

c2
0k2
− 4πG0ρ0 < 0, (2-11a)

which is equivalent to Jeans’ gravitational instability criterion (1-2b)

λ > λJ = c0

√
π

G0ρ0
≡ Jeans’ length (2-11b)

since

λ=
2π
k
. (2-11c)
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Figure 1. A Galaxy Evolution Explorer image of the Andromeda
galaxy M31, courtesy NASA/JPL-Caltech.

3. Comparisons

Let us return to Jeans’ analysis. In writing (1-2), one must implicitly assume that
ρ0 > 0, which seems plausible in that ρ0 = 0 corresponds to a completely empty
space [Scheffler and Elsässer 1988]. When gravity is taken into account in the
absence of rotation, however, such an assumption is not strictly compatible with the
equations of hydrostatic equilibrium, as we have seen. Thus, Jeans’ uniform density
solution, as mentioned above, was not exact. The problem under examination
demonstrates that adding rotation to the system as Chandrasekhar did and again
performing a standard linear stability analysis of its exact static solution yields
Jeans’ instability criterion but in a systematic manner and such a model also has
the added advantage of being more astrophysically realistic. Jeans got the right
answer for the wrong reason, as was shown in [Kiessling 2003] by taking the proper
limit of the appropriate cosmological model to fix that analysis. In his review of
hydrodynamic stability theory, the renowned comprehensive applied mathematical
modeler Lee Segel [1966] stated that “Anyone can get the right answer for the right
reason. It takes a genius or a physicist to get the right answer for the wrong reason.”
In this context, Sir James Jeans was both.

The formula for λJ in (2-11b) is of fundamental importance in astrophysics
and cosmology where many significant deductions concerning the formation of
galaxies and stars have been based upon it. In particular, Jeans’ interpretation of the
criterion, now bearing his name, was that a gas cloud of characteristic dimension
much greater than λJ would tend to form condensations with mean distance of
separation comparable to λJ that then developed into those protostars observable in
the outer arms of spiral galaxies such as Andromeda M31 (see Figure 1). Sekimura
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σ

√
2�0

δ2

0

σ = σ(k; c0) σ = σ(k; c)
c < c0

kJ k

Figure 2. Schematic plots in the k-σ plane depicting the method-
ology employed by [Sekimura et al. 1999] applied to the Jeans’
secular equation σ =σ(k; c)=

√

2�2
0− c2k2. That curve is plotted

for both a general speed of sound c and our specific speed c0 > c in
this figure where kJ =2π/λJ is such that σ(kJ ; c0)=0. In a weakly
nonlinear stability analysis one takes the disturbance wavenumber
k ≡ kJ and its growth rate to be equal to σJ (c)= σ(kJ ; c)= δ2> 0
where c is close enough to c0 so that δ is a small parameter. Then
in the limc→c0 σJ (c)= 0 which is a requirement for the application
of weakly nonlinear stability theory and any re-equilibrated pattern
will exhibit a wavelength of λJ . Here c2

= γ (p0/ρ0) with γ < γ0

and hence the operation limc→c0 is equivalent to limγ→γ0 .

et al. [1999] have demonstrated that, for a secular equation similar in form to (1-2a),
λJ actually corresponds to the so-called critical wavelength λc of linear stability
theory associated with σ = 0 (see Figure 2), while nonlinear stability analyses
of physical phenomena involving related secular equations have shown that the
observed wavelengths are determined to a close approximation by that λc rather
than by the dominant wavelength λd at which σ achieves its maximum value from
linear theory (see, e.g., [Tian and Wollkind 2003]). Hence, Jeans’ interpretation,
although unusual for linear stability theory (where it is often presumed that such a
disturbance associated with the largest growth rate predominates), both anticipated
and is consistent with these nonlinear results, since, by the time perturbations
have grown enough for the effect of the maximum growth rate to be observed, the
neglected nonlinearities may have rendered that linear analysis inaccurate [Segel
and Stoeckly 1972]. In this context, note that for a typical value of θ 6= π

2 , namely
θ = 0, we can factor our secular equation (2-8) to obtain the roots σ 2

=−4�2
0 and



1106 KOHL GILL, DAVID J. WOLLKIND AND BONNI J. DICHONE

σ 2
= 2�2

0− c2
0k2. Observe that this last condition, which yields our instability, is

equivalent to the Jeans’ secular equation (1-2a).
Thus using the formula for Jeans’ length λJ with the parameters c0 and ρ0

assigned the values

c0 =
2
3 × 104 cm

sec
and ρ0 = 10−22 gm

cm3 (3-1a)

employed by [Jeans 1928] for this purpose but when the polytropic index γ0 is 4
3

[Bonnor 1957], while taking

G0 = 6.67× 10−8 cm3

gmsec2 (3-1b)

in cgs units yields
λJ = 4.58× 1018 cm= 1.48 pc, (3-1c)

where 1 pc ≡ 3.09 × 1018 cm, which compares quite favorably with the mean
distance between actual adjacent condensations originally formed in the outer arms
of Andromeda since, in those parts of M31, the averaged observed distance between
protostars in such chains is about 1.4 pc or somewhat more if allowances are made
for foreshortening [Jeans 1928].

Given the small size of ρ0 in (3-1a), Chandrasekhar [1961] was one of those
individuals who regarded Jeans’ analysis as a close approximation to reality [Schef-
fler and Elsässer 1988]. Although he oriented his axes so that �= (0, �y, �z) with
|�| =�0 and k = (0, 0, k), using our more general orientation Chandrasekhar, in
effect, considered uniform rotation�0 in his perturbation equations through the Cori-
olis force terms of (2-3b) and (2-3c) in order to make the model more realistic while
retaining the coefficient 4πρ0G0 for s in (2-3e). In so doing, he implicitly assumed
that �0 and ρ0 were independent rather than related parameters. Chandrasekhar
plotted σ 2 versus k for θ = 0, π4 ,

π
2 and 32

≡�2
0/(πG0ρ0)= 0.5, 1.0, 2.0. Besides

Jeans’ criterion for θ 6= π
2 , this yielded an extra extraneous instability criterion for

the case of θ = π
2 , namely,

c2
0k2 < 4(πG0ρ0−�

2
0) should �2

0 < πG0ρ0. (3-2)

In point of fact, 32
= 0.5 is a representative value of that quantity for this instability

condition of (3-2), while 32
= 2.0, his upper bound, actually corresponds to its

value as per our formula of (2-1c) relating these parameters, which implies

�0 =
√

2πρ0G0. (3-3a)

Let us examine the plausibility of (3-3a), which violates (3-2) identically. In
conjunction with the values for ρ0 and G0 of (3-1), (3-3a) yields the uniform
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rotation
�0 = 6.47× 10−15/sec (3-3b)

and the corresponding rotational velocity

V0 = r0�0 = 200
km
sec

(3-3c)

for the reference radial distance of

r0 = 1 kpc= 103 pc= 3.09× 1021 cm= 3.09× 1016 km, (3-3d)

both of which are consistent with the spectroscopic measurements of the Andromeda
nebula and the observational data of the spiral Milky Way galaxy [Rubin and Ford
1970].

In conclusion our development presents a systematic linear stability analysis of
Chandrasekhar’s [1961] gravitational instability model in the presence of uniform
rotation. We close by noting that Binney and Tremaine [1987] considered this
gravitational instability model in a cylindrical rotating system as a problem in
Chapter 5 of their book Galactic Dynamics. They observed that rotation allowed
the Jeans’ instability to be analyzed exactly. Since the first part of their problem
was to find the condition on �0 so that the homogeneous quiescent gas would
be in equilibrium, Binney and Tremaine did not examine the plausibility of this
condition. Further, the last part of their problem was to show, upon finding the
resulting secular equation from its linear stability analysis, that waves propagating
perpendicular to the rotation vector were always stable, while those propagating
parallel to it were unstable if and only if the usual Jeans’ criterion without rotation
was satisfied. Although the latter conclusion for θ = 0 agrees with our predictions,
the former does not since, when θ = π

2 , we predicted σ 2
= 0, as well as those

σ 2 < 0 which only implies a condition of neutral stability. Our results demonstrate
that the best way to test the validity of a model for a natural science phenomenon
is to compare its theoretical predictions with observable data of this phenomenon.
Sir Arthur Conan Doyle characterized that philosophy probably as well as anyone
by a Sherlock Holmes quote from “A scandal in Bohemia” in his 1891 collection
entitled The adventures of Sherlock Holmes:

It is a capital mistake to theorize before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.
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