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Let n be a positive integer and S2(n) be the sum of the squares of its decimal digits.
When there exists a positive integer k such that the k-th iterate of S2 on n is 1, i.e.,
Sk

2 (n) = 1, then n is called a happy number. The notion of happy numbers has
been generalized to different bases, different powers and even negative bases. In
this article we consider generalizations to fractional number bases. Let Se,p/q(n)
be the sum of the e-th powers of the digits of n base p

q . Let k be the smallest
nonnegative integer for which there exists a positive integer m > k satisfying
Sk

e,p/q(n)= Sm
e,p/q(n). We prove that such a k, called the height of n, exists for

all n, and that, if q = 2 or e = 1, then k can be arbitrarily large.

1. Introduction

Let n be a positive integer and S2(n) be the sum of the squares of its decimal digits.
It is well known (for a complete proof look at [Honsberger 1970]) that if you apply
a sufficiently high iterate of S2 to n, the result is either 1 or is in the cycle

4→ 16→ 37→ 58→ 89→ 145→ 42→ 20→ 4.

If the iteration reaches 1, we say n is happy. A natural generalization is to allow
for any base-b representation of the digits, where b ≥ 2, and to replace the sum
of squares of digits with the sum of e-th powers of the digits for some integer
e ≥ 1. Let Se,b(n) be the sum of e-th powers of the digits of n when n is written in
base b. If there exists an integer k such that Sk

e,b(n) = 1, we say n is an e-power
b-happy number (when e= 2, we call n a b-happy number). Suppose that there exist
integers k and m with 0≤ k < m such that Sk

e,b(n)= Sm
e,b(n); then the iterates of n

under Se,b will cycle through the sequence {Sk
e,b(n), Sk+1

e,b (n), . . . , Sm−1
e,b (n)}. If m−k

is minimal, then we say that n reaches the cycle (Sk
e,b(n), Sk+1

e,b (n), . . . , Sm−1
e,b (n)).

If k is the smallest nonnegative integer for which this is true, we say k is the
height of n.
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The study of which cycles can be reached for e ∈ {2, 3} and 2≤ b≤ 10 was done
in [Grundman and Teeple 2001]. The techniques in that paper can easily be used
to find the cycles for other choices of e and b. Another generalization is to allow
the base b to be a negative number. It turns out that for a positive integer n, there
is a unique set of digits 0≤ ai ≤ |b| − 1 such that n =

∑r
i=0 ai bi. Grundman and

Harris [2018] found the cycles reached for −2≥ b ≥−10 and e = 2. The authors
also study in what cases there exist consecutive b-happy numbers in an arithmetic
progression, generalizing [El-Sedy and Siksek 2000; Grundman and Teeple 2007].

Bland et al. [2017] addressed a series of questions regarding a generalization
of happy numbers to fractional bases. For integers p > q > 0 with gcd(p, q)= 1,
each positive integer n has a unique representation in base p

q . Namely, there exists
an integer r ≥ 0 such that for every integer i ∈ {0, 1, . . . , r} there exists an integer
ai ∈ {0, 1, . . . , p− 1} with ar 6= 0 and

n =
r∑

i=0

ai

(
p
q

)i

.

For our notation, we will say n = ar ar−1 · · · a1a0 p/q . Let Se,p/q(n) be the sum of
the e-th powers of the digits of n when written in fractional base p

q ; i.e.,

Se,p/q(n)=
r∑

i=0

ae
i .

In [Bland et al. 2017], the authors studied the case when e = 2 and proved that
there are no happy numbers greater than 1 for any fractional base. They mainly
study the fractional base 3

2 , finding the possible cycles that S2,3/2 can reach. They
end the paper with several questions. The three we will focus on in this paper are
the following:

(1) Can we find the cycles reached by Se,b for different e-th powers when p
q =

3
2 ?

(2) Can we find the cycles reached by Se,b for different p
q when we restrict to e=2?

(3) Are there positive integers n of arbitrarily large height?

In the case of positive integer bases, that there are numbers with arbitrary height is
relatively simple to prove because you can find an n such that Se,b(n)= k for any
positive integer k by having n be a number with k 1’s in its base-b expansion. For
example, let a1 = 10; then a1 has height 1 since S2(10)= 1. Let

a2 = 11 . . . 1︸ ︷︷ ︸
10

.

Since S2(a2)= 10, a2 has height 2. Let

an = 11 . . . 1︸ ︷︷ ︸
an−1

.
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Then an has height n. This simple process creates a sequence of numbers with
larger and larger heights by attaching the appropriate number of 1’s to a number.
The problem with fractional bases is that not every choice of digits leads to an
integer. For example 113/2 is not an integer, since 1+ 3

2 6∈ Z.
We answer the three questions with two theorems. The first theorem answers

two of the questions.

Theorem 1. Let p > q be positive integers with gcd(p, q) = 1, and let e be a
positive integer. Then, for every positive integer n, the repeated iterations of the
function Se,p/q on n will eventually reach a cycle. In particular, the possible cycles
reached for 1≤ e≤ 12, p

q =
3
2 can be found in Table 2, answering the first question.

Also, the possible cycles reached for e∈{2, 3, 4} and p
q ∈

{ 5
2 ,

5
3 ,

5
4 ,

7
2

}
are in Table 3,

answering the second question.

The second theorem answers the third question for a special class of fractional
bases that includes 3

2 , and for all fractional bases when e = 1.

Theorem 2. Let p > q be positive integers with gcd(p, q) = 1, and let e and H
be positive integers. If q = 2 or e = 1, then there exists an integer n such that the
height of n is H.

In Section 2, we will present useful background on fractional-base number
systems. In Section 3, we prove Theorem 1. Finally, in Section 4, we prove
Theorem 2.

2. Fractional-base number systems

As mentioned in the Introduction, for any p
q with gcd(p, q)= 1 and p> q , for every

positive integer n, there exist fractional digits a0, a1, . . . , ar satisfying 0≤ ai < p
for i ∈ {0, 1, . . . , r − 1} and 0< ar < p such that

n =
r∑

i=0

ai

(
p
q

)i

.

We will use the following notation to denote that ai are the fractional digits of n
base p

q :
n = ar ar−1ar−2 . . . a2a1a0 p/q .

For example base 3
2 uses numbers 0, 1, 2 as digits. Table 1 gives the base- 3

2
representations of some decimal numbers.

It is easy to find n given its expansion in base p
q , but going the other way around

is a little harder. Suppose we have the number n and we want to find its fractional
digits base p

q . Let n = ar ar−1 . . . a1a0 p/q . Then

n− a0 =

(
p
q

)
ar ar−1 . . . a1 p/q .
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n n in base 3
2 n n in base 3

2

0 03/2 6 2103/2

1 13/2 7 2113/2

2 23/2 8 2123/2

3 203/2 9 21003/2

4 213/2 10 21013/2

5 223/2 11 21023/2

Table 1. The first 12 nonnegative integers in the 3
2 -base number system.

The left side is an integer, so the right side is also an integer. Since gcd(p, q)= 1,
q | ar ar−1 . . . a1 p/q , and so p | (n−a0). Therefore n≡ a0 mod p. There is a unique
a0 in {0, 1, 2, . . . , p− 1} that is congruent to n modulo p. But we also have

ar ar−1 . . . a1 p/q =

(
q
p

)
(n− a0).

We repeat the process and we can say that

n ≡
(

q
p

)
(n− a0)− a1 mod p.

Therefore, we can find a1. We can repeat this process until we reach 0 and find all
of the digits of n.

We can summarize the algorithm to translate numbers into the fractional base p
q

as follows:

(1) Compute n0 = n (mod p).

(2) Compute n = (n− n0)
( q

p

)
.

(3) Repeat steps 1 and 2, until n is zero.

As an example, suppose we want to find the digits of 12 in base 3
2 . First we have

12≡ 0 mod 3, so a0 = 0. Then we calculate (12− 0) 2
3 = 8. We find 8≡ 2 mod 3,

so a1 = 2. Then we find (8− 2)2
3 = 4 and 4≡ 1 mod 3, so a2 = 1. Then we find

(4− 1)
( 2

3

)
= 2 and 2 ≡ 2 mod 3, so a3 = 2. Since the next step yields 0, we’ve

found that 12= 21203/2.

3. The cycles formed when iterating Se,3/2

An integer n > 1 cannot be happy in a fractional-base number system. Indeed
suppose that n is e-power p

q -happy; then Sm
e,p/q(n)= 1 for some minimal positive

integer m. But then k = Sm−1
e,p/q(n) must satisfy that the sum of the e-th powers of its

digits is 1. Therefore the fractional-base expansion of k is 100 . . . 0p/q . But that
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e cycles n∗

1 (1), (2) 2
2 (1), (5, 8, 9) 8
3 (1), (9), (10), (17, 18) 32
4 (1), (51), (52) 77
5 (1), (131), (98, 99) 185
6 (1), (197, 260, 387, 323, 263, 450), (324, 131, 259) 419
7 (1), (771, 516, 643, 518) 1211
8 (1), (1539, 775, 1284), (1287, 1794, 1796, 2052), (1032), (1033) 2723
9 (1), (2566), (2565) 6557

10 (1), (10247) 13118
11 (1), (14342, 16388, 14344), (14341), (14340) 27968
12 (1), (28678), (28677) 62933

Table 2. Cycles reached when iterating Se,3/2, and the value of n∗

for different values of e.

means k =
( p

q

)r for some integer r . This number is not an integer unless r = 0,
which would imply k = 1, but we assumed k > 1. While happiness is impossible,
we can still search which cycles can be reached. For us to be able to prove that the
determination of cycles is complete, we need to first prove the following lemma.

Lemma 1. Let p
q satisfy p > q and gcd(p, q) = 1, and let e be a positive integer.

Then, there exists an n∗ such that Se,p/q(n∗)≥ n∗, and Se,p/q(n) < n for all n > n∗.
The values of n∗ for different values of e and p

q =
3
2 can be found in the last

column of Table 2. The values of n∗ for e ∈ {2, 3, 4} and p
q ∈

{5
2 ,

5
3 ,

5
4 ,

7
2

}
are in

Table 3.

Proof. Let n be a positive integer. Then

n = ar ar−1 . . . a1a0 p/q =

r∑
i=0

ai

(
p
q

)i

≥ ar

(
p
q

)r

≥

(
p
q

)r

,

so r ≤ logp/q(n). But then

Se,p/q(n)=
r∑

i=0

ae
i <

r∑
i=0

pe
= (r + 1)pe

≤ (logp/q(n)+ 1)pe.

Since pe is a constant, for a large enough n

n > (logp/q(n)+ 1)pe > Se,p/q(n). (1)

Indeed, one can confirm with L’Hôpital’s rule that n/(C log(n))→∞ as n→∞
for any constant C > 0.
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p
q

e = 2 e = 3 e = 4

5
2

(16, 6, 5, 4),
(32, 24, 29)

n∗ = 39

(65),
(163, 190, 73, 118, 64),

(81), (80), (66), (17)

n∗ = 239

(371, 276, 275, 274),
(355, 130, 113),

(195, 353)

n∗ = 1039

5
3

(34, 50), (25),
(26), (59), (23),

(11), (10)

n∗ = 59

(100, 38, 64, 102, 46),
(101, 39),

(127, 107, 73, 135),
(162), (193),

(190, 166, 218),
(199, 237)

n∗ = 284

(772, 804, 454, 788, 950,
658, 934, 1126, 1028,

1202, 868, 936, 390),
(1027, 1137, 1125),
(1122, 994), (1299),

(101), (100)

n∗ = 1324

5
4

(66, 55), (50),
(58, 75, 49, 56, 67),

(74, 83), (51)

n∗ = 74

(311, 251, 247, 231, 371),
(361), (417),

( 374), (360), (314),
(424, 418, 436, 272, 328, 364)

n∗ = 464

(1786, 1880, 1403, 1594,
1659, 2011, 2075, 1579,
2057, 1947, 1688, 1229,
1641, 1676, 1946, 1673,
1851, 1592, 1419, 1974,

2058, 2012, 2090)

n∗ = 2639

7
2

(25, 52), (97)

n∗ = 97

(341, 591, 376, 143, 187, 216,
352, 25, 280, 244, 469, 63,
128, 44, 141, 161, 197, 73,
307, 467, 377, 234, 182, 91),
(35), (288, 343, 9, 16, 72),
(36), (189), (190), (468)

n∗ = 615

(914, 2065, 1953, 1538,
2819, 2690, 2210,

1507, 1491, 2610, 1856,
1348, 1666, 259, 1808,

2659, 3136, 1824),
(1634, 1731, 994),

(371, 34, 1313),
(130, 354, 289, 1938,
3265, 2930, 1474, 1570),
(451, 195, 2177, 1554,
179, 513, 2034, 2530)

n∗ = 5417

Table 3. Cycles reached when iterating Se,p/q , and the value of n∗

for different values of e and p
q .

Therefore, there is a maximum n∗ such that n∗ < Se,p/q(n∗).
To calculate the precise value of n∗, we use a computer to find an N for which

(1) is satisfied. Then we evaluate Se,p/q(n) for all n ≤ N and record which one is
the largest satisfying n ≤ Se,p/q(n). �
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Proof of Theorem 1. To simplify notation, let S(n) = Se,p/q(n) for all posi-
tive integers n. Let n∗ be as in Lemma 1. Now, for each m ≤ n∗, compute
m, S(m), S(S(m)), . . . until it cycles. The process terminates because S(n) < n for
all n>n∗. Therefore, for n>n∗, there exists a positive integer k such that Sk(n)≤n∗.
This implies that the cycle n reaches is one that was already computed. Therefore,
we need only find the cycles reached for m ≤ n∗. The outcome of performing
these calculations for different values of e and p

q =
3
2 is recorded in Table 2. The

outcome of performing these calculations on e ∈ {2, 3, 4} with p
q ∈

{5
2 ,

5
3 ,

5
4 ,

7
2

}
is

recorded in Table 3. �

4. Arbitrary heights in fractional-base number systems

The key to our proof of Theorem 2 is showing that for each sufficiently large k,
there exists a positive integer n such that Se,p/q(n) = k. The following lemma
handles the case when q = 2.

Lemma 2. Let e≥ 1 and p > 2 be an odd positive integer. For every integer k ≥ 2e,
there exists an even integer n such that Se,p/2(n)= k.

Proof. We will prove the lemma by induction on k. To show that it is true for k = 2e,
consider the number 2. Since 2 is 2p/2, we have Se,p/2(2)= 2e. Now let k ≥ 2e and
assume that there exists an even m such that Se,p/2(m) = k. Let m = 2bc, where
b ≥ 1 and c is odd. Write m in base p

2 as

m = ar ar−1 . . . a1a0.

Then (
p
2

)b

m+ 1= ar ar−1 . . . a1a0 0 . . . 0︸ ︷︷ ︸
b−1

1,

where there are b− 1 zero digits. Since m = 2bc, we know
( p

2

)bm+ 1 is even.
Furthermore, since it has the same digits as before with b− 1 zeroes added and
one 1 added, the sum of the e-th powers of the digits is k+ 1. �

The following lemma handles the e = 1 case.

Lemma 3. Let p
q > 1 be written in lowest terms. For every integer k ≥ q, there

exists n such that S1,p/q(n)= k.

Proof. We prove by induction on t that for each k ∈ {q, q + 1, . . . , qt}, there exists
an mk such that S1,p/q(mk) = k. The fact that S1,p/q(q) = q proves the case of
t = 1. Now, fix t ≥ 1 and assume that for each k ∈ {q, q + 1, . . . , qt}, there exists
an mk such that S1,p/q(mk) = k. Write mqt as mqt = qαb for some α ≥ 1 and b
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relatively prime to q. Suppose mqt = ar ar−1 . . . a0 p/q . Then

`=

(
p
q

)α
mqt = ar . . . a0 0 . . . 0︸ ︷︷ ︸

α

.

We know ` 6≡ 0 mod q. Let w be the smallest positive integer such that `+w ≡
0 mod q . Then 1≤ w ≤ q − 1< p− 1. But then

`+w = ar . . . a0 0 . . . 0︸ ︷︷ ︸
α−1

w,

because w < p − 1. This implies that the digital sums base p
q of the numbers

`+1, `+2, . . . , `+w are qt+1, qt+2, . . . , qt+w, respectively. Now `+w is a
multiple of q with S1,p/q(`+ w) = qt + w ≥ qt + 1, and we have that for all
q ≤ k ≤ qt +w there exists mk such that S1,p/q(mk) = k. Since q | (`+w) and
`+w ≥ qt + 1, we have `+w ≥ q(t + 1). Therefore, we’ve proved that for every
q ≤ k ≤ q(t + 1), there is an mk such that S1,p/q(mk)= k. �

Using these two lemmas, we can now present the proof of Theorem 2.

Proof of Theorem 2. We will prove it by induction. Let n∗ be as defined in Lemma 1.
Since the cycles that are reached by iterations of Se,p/q are finite and there are
finitely many of them, there is a largest integer K with height 0. Let n be an
integer greater than M = max{n∗, 2e, q, K }. Since n > K , we know n has some
height h > 0. Then, Se,p/q(n) has height h−1, S2

e,p/q(n) has height h−2, . . . , and
Sh−1

e,p/q(n) has height 1. Therefore, for every positive integer i ≤ h, there exists an
integer n of height i .

Let H ≥ h. Suppose that there is an integer n > K with height H. Since n > 2e,
by Lemma 2, if q = 2, then there exists t such that Se,p/2(t)= n. Since n > q, by
Lemma 3, if e = 1, then there exists t such that S1,p/q(t)= n. Therefore, in either
case (q = 2 or e = 1), there exists an integer t such that Se,p/q(t)= n. But t > n∗,
which implies that n= Se,p/q(t)< t . Therefore t >n> K and t has height H+1. �
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