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For n, k ∈ N, let KG(n, k) be the usual Kneser graph (whose vertices are k-sets
of {1, 2, . . . , n} with A ∼ B if and only if A∩ B = ∅). The Hadwiger number
of a graph G, denoted by h(G), is max{t : Kt 4 G}, where H 4 G if H is a
minor of G. Previously, lower bounds have been given on the Hadwiger number
of a graph in terms of its average degree. In this paper we give lower bounds
on h(KG(n, k)) and h(KG(n, k)p), where KG(n, k)p is the binomial random
subgraph of KG(n, k) with edge probability p. Each of these bounds is larger
than previous bounds under certain conditions on k and p.

1. Introduction

Over the past few decades graph parameters of Kneser graphs have been stud-
ied extensively. The Kneser graph with parameters n and k has the k-sets of
{1, 2, . . . , n} as its vertex set, with A ∼ B if and only if A∩ B =∅. In particular,
the independence number, chromatic number, diameter, and bandwidth parameters
have been examined for members of this family (see [Erdős et al. 1961; Lovász
1978; Valencia-Pabon and Vera 2005; Jiang et al. 2017], respectively). In the present
paper we continue the study of parameters of Kneser graphs by giving lower bounds
on the Hadwiger number of Kneser graphs and random subgraphs of Kneser graphs.
The Hadwiger number of a graph G, denoted by h(G), is max{t : Kt 4 G}, where
we say H 4 G if H is a minor of G and Kt is the complete graph, or clique, on
t vertices.

To introduce the Hadwiger number, it’s worth mentioning one of the most
important open problems in graph theory — Hadwiger’s conjecture. The conjecture
is that if a graph has chromatic number t , then it contains Kt as a minor. It has
been shown that this conjecture holds for t ≤ 6; see [Seymour 2016] for a survey
of the problem. A few decades ago, the following were proven which relate the
Hadwiger number of a graph to its average degree.
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Theorem 1.1 [Kostochka 1984]. There is a constant c> 0 such that if G is a graph
with average degree d ≥ 2, then

h(G)≥ c
d

√
ln(d)

. (1)

Theorem 1.2 [Kostochka 1982]. There is a constant C > 0 such that if G is the set
of graphs with average degree d for d sufficiently large, then

min
G∈G

h(G)≤ C
d

√
ln(d)

. (2)

Notice in particular that (1) gives a lower bound on h(G) for graphs with average
degree d and (2) implies that up to a constant factor (1) cannot be improved when
considering the collection of all graphs with average degree d as long as d is big
enough. In this paper we begin by focusing on Kneser graphs

(
for which d =

(n−k
k

))
and prove the following theorem in Section 2.

Theorem 1.3. Suppose n = t (k2
+ k)+ r for natural numbers t and r with 0≤ r ≤

k2
+ k− 1. Then

h(KG(n, k))≥ 1
k+1

(n−r
k

)
. (3)

In particular, when k is small compared to n (up to about ln(n)) the lower bound
in (3) exceeds that in (1). More precisely, suppose k � ln(n) (where we say
f (n)� g(n) or, equivalently, f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0). Then
for KG(n, k) the bounds in Theorems 1.1 and 1.3 are, up to a constant factor,(n

k

)
/
√

k ln(n) and
(n

k

)
/k, respectively. So in this case the coefficient of

(n
k

)
in

Theorem 1.3 is larger, which verifies the claim.
We next consider the Hadwiger number for binomial random subgraphs of

Kneser graphs. Since the introduction of the Erdős–Rényi random graph [1959],
there has been interest in finding parameters of binomial random graphs. For
context, the Erdős–Rényi random graph results from forming a binomial random
subgraph of the complete graph; over the past couple of decades binomial random
subgraphs underlying other graphs, specifically Kneser graphs, have been examined.
In particular, the independence number, see [Bollobás et al. 2016; Devlin and Kahn
2016], and the chromatic number, see [Kupavskii 2016], for this type of random
graph have been studied. We further this study by obtaining a lower bound on
h(KG(n, k)p) (where KG(n, k)p is the binomial random subgraph of KG(n, k)
with edge probability p) in the following theorem.

Theorem 1.4. Let k�
√

n and N =
(n

k

)
. If m and p satisfy

√
ln(N )� m� n/k,

2k ≤ m, and p�max{ln(m)/m, ln(N )/m2
}, then

h(KG(n, k)p)≥
1

2m

(n
k

)
w.h.p. (4)
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As is standard, for an event E depending on the (often hidden) parameter n, we
say E occurs with high probability (w.h.p.) if Pr(E)→ 1 as n→∞.

Additionally, we obtain the following corollary which relates the bound of
Theorem 1.4 to (1).

Corollary 1.5. For each k�
√

n, there are values of m and p (as in Theorem 1.4)
such that the lower bound on h(KG(n, k)p) in (4) exceeds that of (1).

We will prove Theorem 1.4 and Corollary 1.5 in Section 4 after giving some
preliminary notation and lemmas in Section 3. Finally, in Section 5 we state a
generalization of Theorem 1.4 and mention a couple of open problems.

2. Proof of Theorem 1.3

Before presenting the proof of Theorem 1.3, we need a couple of preliminaries.
First, as is standard, we will let [n] := {1, . . . , n}. We will also need the following
theorem, sometimes referred to as Baranyai’s theorem, which gives the existence
of a particular decomposition of the collection of k-sets of [n].

Theorem 2.1 [Baranyai 1975]. If k | n, there are perfect matchings Ai such that(
[n]
k

)
=

(n−1
k−1)⊔
i=1

Ai .

By its very statement, Baranyai’s theorem concerns set systems. In this context, a
perfect matching is a collection of k-sets of [n]which are pairwise disjoint and whose
union is [n]. The conclusion of Baranyai’s theorem, then, is that we may partition
the collection of all k-sets of [n] into perfect matchings. Of course, we can view the
collection of k-sets of [n] as vertices of the Kneser graph with parameters n and k.
With this perspective a perfect matching from Baranyai’s theorem is a clique on n/k
vertices in KG(n, k). As such, if we have that k | n, then we can use Theorem 2.1
to give a partition of V (KG(n, k)) into complete graphs each on n/k vertices.

Proof of Theorem 1.3. Let n, k, and r be natural numbers such that n= t (k2
+k)+r ,

where 0 ≤ r ≤ k2
+ k − 1, and take G ′ = KG(n − r, k). Notice that G ′ ≤ G and

so any minor of G ′ is a minor of G. Since k | n − r , Theorem 2.1 applies to G ′

yielding K1, K2, . . . , KT , where each Ki is a complete graph on (n−r)/k vertices
and T =

(n−r−1
k−1

)
. By the divisibility assumption, we can partition the vertices of

each Ki (arbitrarily) into sets of size k+1 which yields (n−r)/(k(k+1)) “clusters”
for each i (and thus (n− r)T/(k(k+ 1)) total clusters). Note that each cluster is
a clique of size k + 1 in G ′. This gives that every vertex within a cluster has at
least one edge to every other cluster. This is so because if v is a vertex of G ′ and
W is cluster not containing v, then v can have nonempty intersection with at most
k vertices of W (since the k+1 vertices in W are pairwise disjoint) and therefore v
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is disjoint from at least one of the vertices in W. So if we contract each cluster to a
vertex, the result is a complete graph on (n− r)T/(k(k+ 1))= (1/(k+ 1))

(n−r
k

)
vertices, which is the desired lower bound. �

3. Preliminaries for Theorem 1.4

In this section we gather a few preliminaries from the study of random graphs which
we will need to prove Theorem 1.4. The first gives the threshold value for p which
ensures that the random graph Gn,p is connected.

Theorem 3.1 [Erdős and Rényi 1959]. If p� log(n)/n, then Gn,p is connected
w.h.p.

We will also need a couple of basic probability inequalities. The first is standard
and the second is stated in the form of Theorem 2.1 in [Janson et al. 2000].

Theorem 3.2 (Markov’s inequality). If X is a nonnegative random variable and
a > 0, then

Pr(X≥a)≤
E[X]

a
.

Theorem 3.3 (Chernoff bound). If X is the sum of n independent indicator random
variables and 0< δ < 1, then

Pr(X≤(1− δ)E[X])≤ exp
[
−

1
2δ

2E[X]
]
.

Throughout the paper, we use big O notation in the standard way and make
repeated use of:

if k�
√

n, then
(n−k

k

)
∼

(n
k

)
as n→∞.

For disjoint vertex sets X and Y of a graph G, let ∇G(X, Y ) be the set of
edges of G with one vertex in X and the other in Y ; if the underlying graph G
is understood, we will neglect the subscript. In the context of taking a binomial
random subgraph of G, we will let ∇p(X, Y ) be the set of edges in Gp with one
vertex in X and the other in Y in order to avoid having a double subscript. For
the remainder of the paper, we will take G := KG(n, k). Before proceeding to the
proofs of Theorems 1.3 and 1.4, we will need the following lemma.

Lemma 3.4. If X and Y are disjoint cliques of size m in G, then |∇(X, Y )| ≥
m2
− km.

Proof. For each x ∈ X , x has nonempty intersection with at most k vertices in Y
(since the vertices of Y form a clique in G). So dY (x)≥ m− k and summing over
all vertices in X proves the claim. �
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4. Proofs for Theorem 1.4 and Corollary 1.5

Before proceeding, we recall the statement and discuss how the proof will unfold.

Theorem 1.4. Let k�
√

n and N =
(n

k

)
. If m and p satisfy

√
ln(N )� m� n/k,

2k ≤ m, and p�max{ln(m)/m, ln(N )/m2
}, then

h(KG(n, k)p)≥
1

2m

(n
k

)
w.h.p. (4)

Our strategy is to first use Baranyai’s theorem to give a clique decomposition of G
into somewhat “large” cliques as in the proof of Theorem 1.3. After randomizing
the edges of G, the size of these cliques along with the assumed lower bound on
p will ensure that most of them will be connected in Gp; each which remains
connected will be contracted to a vertex. Next we will use Lemma 3.4 and the size
of the cliques to say that if p is big enough, then every pair of cliques will have at
least one edge between them in Gp. These two observations combine to say that
h(Gp) is at least the number of cliques which remain connected after randomizing
edges. Then to prove Corollary 1.5, we simply must choose parameters so that the
lower bound in (4) is greater than the lower bound in (1).

We now turn to the proof.

Proof of Theorem 1.4. For ease of reading, recall that k�
√

n, N =
(n

k

)
, m satisfies

√
ln(N ) � m � n/k and k ≤ m/2, and p � max{ln(m)/m, ln(N )/m2

}. Fix
ε > 0. Since k �

√
n implies N ∼

(n−k
k

)
, we may assume that k | n, otherwise

our argument would, as in the proof of Theorem 1.3, pass to G ′ ≤ G so that
the divisibility assumption would be met. Now we may apply Theorem 2.1 to
obtain cliques W1, . . . , WT , where T =

(n−1
k−1

)
and |Wi | = n/k for each i . Each of

these cliques can be (arbitrarily) partitioned into cliques of size m yielding cliques
U1, . . . ,US , where S = N/m. We will now form Gp by sampling edges in two
rounds; first we will sample edges within each Ui and thereafter will sample the
remaining edges in G. By Theorem 3.1 (note that m = ωn(1)) and the first lower
bound on p, we have that Gp[Ui ] (which is the induced subgraph of Gp on Ui ) is
connected with probability at least 1− ε provided that n is large enough. Since S is
so large, it is unlikely that every Gp[Ui ] is connected; instead we will show that

at least half of the Gp[Ui ]’s are connected w.h.p. (5)

This gives away quite a bit, but the “loss” only affects our lower bound by a constant
factor.

To prove (5), let X =
∑

X i , where each X i is the indicator of the event
{Gp[Ui ] is connected}. Thus (5) is the same as

Pr
(

X< N
2m

)
→ 0. (6)
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Using linearity of expectation and the lower bound on Pr(X i = 1) mentioned
before (5), we have E[X ]> (1− ε)N/m. Note that these events are independent
since they depend on disjoint sets of edges. So, using Theorem 3.3, we obtain

Pr
(

X < N
2m

)
≤ Pr

(
X ≤

(
1− 1

3

)
E[X ]

)
≤ exp

[
−
(1

3

)2 1
2 E[X ]

]
.

So as long as m is chosen so that N/m→∞ as n→∞ (and hence E[X ]→∞ as
n→∞), the right-hand side will tend to zero as n→∞, which gives (6).

It remains to show,

for i 6= j, |∇p(Ui ,Uj )| 6= 0 w.h.p. (7)

To do so, we let Y =
∑

Yi, j , where each Yi, j is the indicator of the event
{∇p(Ui ,Uj )=∅} for i 6= j . Thus (7) is the same as Pr(Y > 0)→ 0. For this, we
have

Pr(Y >0)≤ E[Y ] ≤
(N/m

2

)
(1− p)(m

2
−km)
≤

1
2m2 N 2e−p(m2

−km),

where the first inequality comes from Theorem 3.2, the second inequality from
linearity of expectation and Lemma 3.4, and the third inequality from the fact that
1− p ≤ e−p. The right-hand side can be bounded by

N 2e−p(m2
−km)
= exp[2 ln(N )− p(m2

− km)].

The right-hand side tends to zero if and only if p� ln(N )/(m2
− km), which

we have by assumption so long as m�
√

ln(N ) and m ≥ 2k. Indeed for such m,
we can choose p appropriately so that the conditions of Theorem 1.4 are satisfied.

So to summarize, provided that p � ln(m)/m there are at least S pods that
remain connected after the first round of randomization, where

S ≥ 1
2m

(n
k

)
.

We will then contract all pods which are connected to a vertex and delete all vertices
in pods which are disconnected. Provided that p � ln(N )/m2, there is an edge
between every pair of remaining vertices and so h(Gp)≥ S as desired. �

We conclude this section by proving Corollary 1.5 after recalling its statement.

Corollary 1.5. For each k�
√

n, there are values of m and p (as in Theorem 1.4)
such that the lower bound on h(KG(n, k)p) in (4) exceeds that of (1).

Proof of Corollary 1.5. In order to give parameter values so that the lower bound of
(4) is greater than that of (1), we will first need that the average degree in Gp is
(1+o(1))

(n−k
k

)
p (which follows from a straightforward application of Theorem 3.3



ON THE HADWIGER NUMBER OF KNESER GRAPHS 1159

on the number of edges in Gp). So for Gp, (1) is

c
(n−k

k

)
p√

ln
((n−k

k

)
p
) , (8)

where c is some positive constant.
Notice that the bound of (4) is largest when m is as small as possible and the

bound of (1) shrinks with p. Since k�
√

n, we have
(n−k

k

)
∼ N. Before defining p,

we now must consider two cases which depend on k. If there is some 0< α < 1
2 so

that k = (1+o(1))nα, then we will take m = nβ , where β satisfies 1
2α < β < 1−α;

this is a nonempty interval since 0 < α < 1
2 and a straightforward calculation

shows that such an m satisfies the assumptions of Theorem 1.4. In this case, the
larger bound on p in the conditions of Theorem 1.4 is ln(m)/m. It is routine to
check that for p� ln(m)/m, ln

((n−k
k

)
p
)

is at most a constant multiple of ln(N )
and so (8) is on the order of N p/

√
ln(N ). This means the bound of (4) exceeds

the bound of (1) for Gp provided that p�
√

ln(N )/m. It remains to verify that
ln(m)/m �

√
ln(N )/m (i.e., a suitable p-value may be designated). For this

observe that k = (1+ o(1))nα and so ln(N )∼ k ln(n/k), which means
√

ln(N )/m
is a constant multiple of ln(n)/nβ−(α/2). On the other hand, by the choice of m,
ln(m)/m = O(ln(n)/nβ), which gives the desired relation.

If k=o(nα) for every 0<α< 1
2 , then in order to define p, let f (n) be some slowly

growing function which tends to infinity with n and take m = f (n)
√

ln(N ). For
such m, we have ln(m)/m ≤ ln(N )/m2 and so the restriction on p in Theorem 1.4
is p� ln(N )/m2. Similar to the previous case, we have that for p� ln(N )/m2,
ln
((n−k

k

)
p
)

is at most a constant multiple of ln(N ). So (4) exceeds the bound of (1)
for Gp provided that p�

√
ln(N )/m = 1/( f (n)). Finally notice that for m-values

like this, 1/( f (n)) < 1, which means that ln(N )/m2
= 1/( f (n))2 � 1/( f (n))

since f (n)→∞ as n→∞, and so such p-values may be chosen. �

5. Concluding remarks

We should note that the proof of Theorem 1.4 presented above gives rise to a slightly
more general statement which is:

Theorem 5.1. Suppose {Gn} is an infinite family of graphs such that Gn has g(n)
vertices, where g(n) → ∞ with n. Suppose there is an m(n) such that m :=
m(n)→∞ with n so that

(1) the vertex set of Gn can be partitioned into {Vi }
t
i=1 (where t = n/m),

(2) Gn[Vi ] ∼= Km for each i = 1, . . . , t ,

(3) t→∞ with n, and

(4) |∇(Vi , Vj )| ≥ cm2 for i 6= j and c > 0 a constant independent of n.
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Then if ε > 0 and p�max{ln(m)/m, ln(n)/m2
} as n→∞, then w.h.p. KS 4 Gp,

where S = (1− ε)t .

Because the proof of Theorem 5.1 follows the proof of Theorem 1.4 with only
the obvious modifications necessary, we will omit it. We remark that the statement
applies naturally to the family of complete balanced m-partite graphs (where the
size of each part is parametrized to tend to infinity) and to graph products which
are fairly dense and admit a clique decomposition (e.g., (Kn � Kn)

C ).
We conclude by mentioning a couple of open questions. First, we will return

to the Hadwiger number of Kneser graphs. As remarked above, the conclusion of
Theorem 1.3 only exceeds the bound in Theorem 1.1 if k� ln(n). It may, therefore,
be worthwhile to examine the other end of the spectrum, namely the case n= 2k+1.
In this case, (1) gives that h(KG(2k+ 1, k)) is bounded below by roughly k/ ln(k).
This is not, in general, best possible; if

(2k+1
k

)
is even (e.g., if k is a power of two),

then KG(2k+ 1, k) has a 1-factor. A straightforward calculation shows that if we
contract each edge of any 1-factor, then the resulting graph is 2k-regular, which
shows that the lower bound in (1) can be effectively doubled. This naturally gives
rise to the following question.

Question 5.2. What is the order of magnitude for h(KG(2k+ 1, k))?

Second, it is worth pointing out that the proof of Theorem 1.4 requires that
k�
√

n. This is because if k�
√

n, then the cliques given from Baranyai’s theorem
are of size n/k, which is much smaller than k. For these cliques of size n/k, the
conclusion of Lemma 3.4 becomes trivial, meaning that in this case we cannot
exploit the property that every pair of cliques has many edges between them. It
seems plausible that either choosing the clique decomposition carefully or using
another decomposition of KG(n, k) (e.g., into complete bipartite graphs) may yield a
suitable edge count between pieces of the decomposition like the bound Lemma 3.4,
but we have not pursued this. We, therefore, put forth the following question.

Question 5.3. Can (1) be improved for (KG(n, k))p if k�
√

n?
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SIAM J. Discrete Math. 30:2 (2016), 1283–1289. MR Zbl
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