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A dominating set in a graph G is a set S of vertices such that every vertex of
G is either in S or is adjacent to a vertex in S. Nordhaus–Gaddum inequalities
relate a graph G to its complement G. In this spirit Wagner proved that any
graph G on n vertices satisfies ∂(G)+ ∂(G) ≥ 2n, where ∂(G) is the number
of dominating sets in a graph G. In the same paper he commented that proving
an upper bound for ∂(G)+ ∂(G) among all graphs on n vertices seems to be
much more difficult. Here we prove an upper bound on ∂(G)+ ∂(G) and prove
that any graph maximizing this sum has minimum degree at least bn/2c− 2 and
maximum degree at most dn/2e+ 1. We conjecture that the complete balanced
bipartite graph maximizes ∂(G)+ ∂(G) and have verified this computationally
for all graphs on at most 10 vertices.

1. Introduction

A dominating set in a graph G is a set of vertices S such that every vertex of
G is either in S or adjacent to a vertex in S. Dominating sets, and their many
variations, have long been studied [Haynes et al. 1998]. Also long-studied are
Nordhaus–Gaddum inequalities, which describe the relationship between a graph
parameter on G and the same graph parameter on G, the complement of G, in terms
of the order of the graph. The original Nordhaus–Gaddum inequalities concern the
chromatic number of a graph G, denoted by χ(G). Nordhaus and Gaddum [1956]
proved that if G has n vertices then

2
√

n ≤ χ(G)+χ(G)≤ n+ 1
and

n ≤ χ(G) ·χ(G)≤
(n+1

2

)2
.

Since then there have been several hundred papers proving similar relations for
many different graph parameters [Aouchiche and Hansen 2013]. In particular, there
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are such inequalities for the domination number (the size of a smallest dominating
set) [Jaeger and Payan 1972; Borowiecki 1976]. See [Aouchiche and Hansen 2013]
and [Harary and Haynes 1996] for surveys of results concerning Nordhaus–Gaddum
inequalities for at least 30 types of domination numbers.

Separately, there has been interest in results concerning maximizing or minimiz-
ing the number of a given graph substructure, rather than its size, subject to certain
conditions. For a survey on these types of problems for regular graphs see [Zhao
2017]. Recently, there have been several papers that maximize or minimize the
total number of dominating sets or total dominating sets for connected graphs of a
given order [Bród and Skupień 2006; Wagner 2013; Skupień 2014; Krzywkowski
and Wagner 2018].

Let ∂(G) be the number of dominating sets in a graph G. Uniting the ideas of
Nordhaus–Gaddum inequalities and counting the number of graph substructures,
Wagner [2013] proved that

∂(G)+ ∂(G)≥ 2n.

In the same paper, he proposed that determining the maximum of ∂(G)+ ∂(G) as
G ranges over all possible graphs on n vertices seems to be much more difficult.
We are able to prove the following theorem.

Theorem 1.1. If G is a graph on n vertices, then

∂(G)+ ∂(G)≤ 2n+1
− 2bn/2c− 2dn/2e−1.

However, this is not the least upper bound. The authors and Wagner conjecture
that the extremal graph is the complete balanced bipartite graph, leading to the
following conjecture.

Conjecture 1.2. For a graph G on n vertices,

∂(G)+ ∂(G)≤ 2(2bn/2c− 1)(2dn/2e− 1)+ 2

= ∂(Kbn/2c,dn/2e)+ ∂(K bn/2c,dn/2e).

This conjecture has been verified up to n = 10 vertices. Wagner pointed out that
this conjecture makes heuristic sense as both the complete balanced bipartite graph
and its complement can be dominated by only two vertices (personal communication,
October 3, 2017).

Throughout the paper we use NG(v) to mean the open neighborhood of the
vertex v in the graph G and NG[v] for the closed neighborhood of v in G. If S
is a set of vertices we define NG(S) and NG[S] similarly. In Section 2 we prove
Theorem 1.1. In Section 3 we provide a maximum and minimum degree condition
for the extremal graph. Finally, in Section 4 we provide some asymptotics and
describe some of the difficulties in finding the least upper bound for ∂(G)+ ∂(G).
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2. An upper bound for ∂(G) + ∂(G)

To prove that ∂(G)+ ∂(G)≥ 2n, Wagner [2013] used the fact that if a set S does
not dominate G, then S dominates G. We use this same fact to express the sum of
the number of dominating sets in G and G as

∂(G)+ ∂(G)= 2n
+ϒ(G,G),

where

ϒ(G,G)= |{A ⊆ V (G) : A dominates G and A dominates G}|.

We make use of ϒ(G,G) to establish the following upper bound.

Lemma 2.1. If G is a graph on n vertices and a vertex v ∈ V (G) has degG(v)= k,
then

∂(G)+ ∂(G)≤ 2n+1
− 2k
− 2n−k−1.

Proof. We bound ϒ(G,G) in terms of n and k and thus bound ∂(G)+ ∂(G) in
terms of n and k. It will be helpful to visualize G and G as shown in Figure 1. Note
that the graphs in Figure 1 do not include any edges that are not incident with v,
but every edge is in either G or G.

Let’s consider a set S ⊆ V (G) with the following properties:

• v ∈ S.

• NG(v)= NG[v] ⊆ S.

We claim that S is not a dominating set of G. Since S ∩ NG(v) = ∅ and v /∈ S,
we have that v /∈ NG[S]. Thus, S is not a dominating set of G. Therefore all sets
satisfying the construction of S are not counted in ϒ(G,G). Since each element
of NG(v) may or may not be included in S and |NG(v)| = degG(v)= k, we have
identified 2k sets that are not in ϒ(G,G).

Let’s now consider a set T ⊆ V (G) with the following properties:

• v /∈ T.

• T ∩ NG(v)=∅.

v

NG(v) NG[v]

v

NG[v] NG(v)

G G

Figure 1. A drawing of G and G to aid in the proof of Lemma 2.1.
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Since v /∈ NG[T ], we know T is not a dominating set of G and all sets satisfying
the construction of T are not counted in ϒ(G,G). Since each element of NG(v)

may or may not be included in T and |NG(v)| = n − k − 1, we have identified
2n−k−1 sets that are not in ϒ(G,G).

No sets satisfy the construction of both S and T since v ∈ S and v /∈ T and
so we have 2k

+ 2n−k−1 sets that are not counted in ϒ(G,G). We conclude
ϒ(G,G)≤ 2n

− (2k
+ 2n−k−1) and thus

∂(G)+ ∂(G)= 2n
+ϒ(G,G)≤ 2n+1

− 2k
− 2n−k−1. �

To prove Theorem 1.1 we apply Lemma 2.1 for a vertex of degree at least bn/2c,
which must exist in either G or G. This eliminates the need for the knowledge of
the degree of a specific vertex in G.

Proof of Theorem 1.1. Let G be a graph on n vertices. Since max{1(G),1(G)} ≥
bn/2c, there exists some vertex v ∈ V (G) such that degG(v) = bn/2c + d or
degG(v)= bn/2c+ d , where d ≥ 0. Without loss of generality suppose degG(v)=

bn/2c+ d , where d ≥ 0. From Lemma 2.1 we have

∂(G)+ ∂(G)≤ 2n+1
− 2bn/2c+d

− 2n−(bn/2c+d)−1
= 2n+1

− 2d
· 2bn/2c−

2dn/2e−1

2d .

Considering the cases d = 0 and d > 0 separately we have

∂(G)+ ∂(G)≤ 2n+1
− 2d
· 2bn/2c−

2dn/2e−1

2d ≤ 2n+1
− 2bn/2c− 2dn/2e−1. �

3. Degree condition

We now use Lemma 2.1 and our conjectured extremal graph to get a degree condition
on all possible extremal graphs.

Theorem 3.1. If G is a graph on n vertices that maximizes ∂(G)+ ∂(G), then
min{δ(G), δ(G)} ≥ bn/2c− 2 and max{1(G),1(G)} ≤ dn/2e+ 1.

Proof. Let G be a graph on n vertices such that G maximizes ∂(G)+ ∂(G). First
suppose n is even. Suppose that for some v ∈ V (G), we have degG(v)≥ n/2+ d
for some integer d ≥ 2. By Lemma 2.1,

∂(G)+ ∂(G)≤ 2n+1
− 2n/2+d

− 2n−(n/2+d)−1

= 2n+1
− 2d−1

· 2n/2+1
−

2n/2+1

2d+2

< 2n+1
− 2 · 2n/2+1

< 2n+1
− 2n/2+2

+ 4

= ∂(Kn/2,n/2)+ ∂(K n/2,n/2).
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This contradicts that G is extremal. Therefore, degG(v) ≤ n/2+ 1. The same
argument applies for G, so degG(v) ≤ n/2 + 1. For any vertex v, we have
degG(v)+ degG(v)= n− 1 so these upper bounds imply

degG(v)≥ n−
(n

2
+ 1

)
− 1= n

2
− 2,

degG(v)≥ n−
(n

2
+ 1

)
− 1= n

2
− 2.

These four inequalities imply the result when n is even.
Now suppose n is odd and that for some v ∈ V (G), degG(v) ≥ (n+ 1)/2+ d,

where d ≥ 2. By Lemma 2.1,

∂(G)+ ∂(G)≤ 2n+1
− 2(n+1)/2+d

− 2n−((n+1)/2+d)−1

= 2n+1
− 2d−1

· 2(n+3)/2
−

2(n+1)/2

2d+2

< 2n+1
− 2 · 2(n+3)/2

< 2n+1
− 2(n+3)/2

− 2(n+1)/2
+ 4

= ∂(K(n+1)/2,(n−1)/2)+ ∂(K (n+1)/2,(n−1)/2).

Again, this contradicts that G is extremal. Therefore, degG(v)≤ (n+ 1)/2+ 1. As
before this implies

degG(v)≤
n+1

2
+ 1,

degG(v)≥ n−
(n+1

2
+ 1

)
− 1= n−1

2
− 2,

degG(v)≥ n−
(n+1

2
+ 1

)
− 1= n−1

2
− 2,

which imply the result when n is odd. �

This theorem could be used in a future proof of Conjecture 1.2, as it eliminates
numerous graphs from consideration for each n.

4. Conclusion

There are several obstacles to proving Conjecture 1.2 using some traditional tech-
niques. One strategy would be to start with a graph and move edges between the
graph and the complement in a way that increases ∂(G)+ ∂(G) at each edge move.
However there are several examples that show this isn’t possible. For example,
∂(C5)+∂(C5)= 42, but moving any edge results in only 40 dominating sets. Using
a counting argument one can prove the following.

Proposition 4.1. For any complete multipartite graph G on n vertices that is not
the complete balanced bipartite graph or its complement

∂(G)+ ∂(G) < ∂(Kbn/2c,dn/2e)+ ∂(K bn/2c,dn/2e).
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If one could show that any extremal graph should be a complete multipartite
graph then Proposition 4.1 would complete a proof of Conjecture 1.2.

A proof of Conjecture 1.2 also doesn’t work out nicely by induction on the
number of vertices. Let Hn be the complete balanced bipartite graph on n vertices,
G denote any graph on n vertices and G + v mean the addition of one vertex, v,
and any edges we want. We might try to prove that

(∂(Hn+1)+∂(Hn+1))−(∂(Hn)+∂(H n))>(∂(G+v)+∂(G+ v))−(∂(G)+∂(G)).

That is, the step from a maximal graph to the maximal graph on one more ver-
tex increases the Nordhaus–Gaddum sum by more than adding a vertex to any
other graph would. However, as one example, G = K1,3 does not have this
property.

Theorem 1.1 does give us a good result asymptotically. To see this, consider how
close ∂(G)+ ∂(G) can be to 2n+1 (a trivial upper bound). The complete balanced
bipartite graph shows that

max{∂(G)+ ∂(G)} ≥ 2n+1
− 2bn/2c+1

− 2dn/2e+1
+ 4,

where the maximum is taken over all graphs G on n vertices. This shows that the
gap between max{∂(G)+ ∂(G)} and 2n+1 is at most

(4− o(1)) 2n/2 if n is even,

(3
√

2− o(1)) 2n/2 if n is odd,

and we conjecture this gap is the smallest possible. From Theorem 1.1 we know

max(∂(G)+ ∂(G))≤ 2n+1
− 2bn/2c− 2dn/2e−1,

which means that the gap is always at least( 3
2

)
2n/2 if n is even,

(
√

2) 2n/2 if n is odd.

Therefore, 2n/2 is the right order of magnitude for the gap between 2n+1 and
max{∂(G)+ ∂(G)}.
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[Bród and Skupień 2006] D. Bród and Z. Skupień, “Trees with extremal numbers of dominating sets”,
Australas. J. Combin. 35 (2006), 273–290. MR Zbl

[Harary and Haynes 1996] F. Harary and T. W. Haynes, “Nordhaus–Gaddum inequalities for domina-
tion in graphs”, Discrete Math. 155:1-3 (1996), 99–105. MR Zbl

[Haynes et al. 1998] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in
graphs, Monographs and Textbooks in Pure and Appl. Math. 208, Dekker, New York, 1998. MR
Zbl

[Jaeger and Payan 1972] F. Jaeger and C. Payan, “Relations du type Nordhaus–Gaddum pour le
nombre d’absorption d’un graphe simple”, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), 728–730. MR
Zbl

[Krzywkowski and Wagner 2018] M. Krzywkowski and S. Wagner, “Graphs with few total dominating
sets”, Discrete Math. 341:4 (2018), 997–1009. MR Zbl

[Nordhaus and Gaddum 1956] E. A. Nordhaus and J. W. Gaddum, “On complementary graphs”,
Amer. Math. Monthly 63 (1956), 175–177. MR Zbl
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