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Benford’s law describes a common phenomenon among many naturally occurring
data sets and distributions in which the leading digits of the data are distributed
with the probability of a first digit of d base B being logB((d + 1)/d). As it
often successfully detects fraud in medical trials, voting, science and finance,
significant effort has been made to understand when and how distributions exhibit
Benford behavior. Most of the previous work has been restricted to cases of
independent variables, and little is known about situations involving dependence.
We use copulas to investigate the Benford behavior of the product of n dependent
random variables. We develop a method for approximating the Benford behavior
of a product of n dependent random variables modeled by a copula distribution C
and quantify and bound a copula distribution’s distance from Benford behavior.
We then investigate the Benford behavior of various copulas under varying de-
pendence parameters and number of marginals. Our investigations show that the
convergence to Benford behavior seen with independent random variables as the
number of variables in the product increases is not necessarily preserved when the
variables are dependent and modeled by a copula. Furthermore, there is strong
indication that the preservation of Benford behavior of the product of dependent
random variables may be linked more to the structure of the copula than to the
Benford behavior of the marginal distributions.

1. Introduction

Benford’s law of digit bias applies to many commonly encountered data sets and
distributions. A set of data {xi }i∈I is said to be Benford base B if the probability of
observing a value xi in the set with the first digit d (where d is any integer from 1
to B− 1) is given by the equation

Prob(first digit of {xi }i∈I is d) base B = logB

(d+1
d

)
. (1-1)
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These probabilities monotonically decrease; e.g., in base 10 there is a leading digit
of 1 about 30.103% of the time and a leading digit of 9 about 4.576% of the time.

Benford’s law was discovered in 1881 by the astronomer-mathematician Simon
Newcomb who, looking at his logarithm table, observed earlier pages were more
heavily worn than later pages. As logarithm tables are organized by leading digit,
this led him to conclude that values with leading digit 1 occurred more commonly
than values with higher leading digits. These observations were mostly forgotten
for fifty years, when Benford [1938] published his work detailing similar biases in a
variety of settings. Since then, the number of fields where Benford behavior is seen
has rapidly grown, including accounting, biology, computer science, economics,
mathematics, physics and psychology to name a few; see [Benford 2009; Berger and
Hill 2015; Miller 2015; Nigrini 1999; Raimi 1976] for a development of the general
theory and many applications. This prevalence of Benford’s law, particularly in
naturally occurring data sets and common distributions, has allowed it to become a
useful tool in detecting fraud. One notable example of this was its use in 2009 to
find evidence suggesting the presence of fraud in the Iranian elections [Battersby
2009]. While Benford’s law cannot prove that fraud happened, it is a useful tool for
determining which sets of data are suspicious enough to merit further investigation
(which is of great importance given finite resources); see for example [Nigrini and
Mittermaier 1997; Singleton 2011].

To date, most of the work on the subject has involved independent random
variables or deterministic processes (see though [Becker et al. 2018; Iafrate et al.
2015] for work on dependencies in partition problems). Our goal below is to explore
dependent random variables through copulas, quantifying the connections between
various relations and Benford behavior.

Copulas are multivariate probability distributions restricted to the unit hypercube
by transforming the marginals into uniform random variables via the probability
integral transform (see Section 2 for precise statements). The term copulas was
first defined by Abe Sklar in 1959, when he published what is now known as
Sklar’s theorem (see Theorem 2.7), though similar objects were present in the work
of Wassily Hoeffding as early as 1940. Sklar described their purpose as linking
n-dimensional distributions with their one-dimensional margins. See [Nelsen 2006]
for a detailed account of the presence and evolution of copulas.

Fisher [1997] writes, “Copulas [are] of interest to statisticians for two main
reasons: Firstly, as a way of studying scale-free measures of dependence; and
secondly, as a starting point for constructing families of bivariate distributions,
sometimes with a view to simulation.” More specifically, copulas are widely used in
application in fields such as economics and actuarial studies; for example, [Kpanzou
2007] describes applications in survival analysis and extreme value theory, and
[Wu et al. 2007] details the use of Archimedean copulas in economic modeling
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and risk management. Thus, as copulas are a convenient and useful way to model
dependent random variables, they are often employed in fields relating to finance
and economics. Since many of these areas are also highly susceptible to fraud, it is
worth exploring connections between copulas and Benford’s law, with the goal to
develop data integrity tests.

Essentially, since so many dependencies may be modeled through copulas, it is
natural to ask when and how often these structures will display Benford behavior.
In this paper, we investigate when data modeled by a copula is close to Benford’s
law by developing a method for approximating Benford behavior. In Section 3, we
develop this method for the product of n random variables whose joint distribution
is modeled by the copula C . We then apply this method in Section 4 to directly
investigate Benford behavior for various copulas and dependence parameters. We
conclude that Benford behavior depends heavily on the structure of the copula.
We use goodness of fit measures to show both numerically and graphically that
the product of many random variables with dependence modeled by a copula will
not necessarily level-off like products of independent random variables, the log
of which we may expect to become more uniform as the number of variables
increases. The results of this paper extend current techniques for testing Benford’s
law to situations where independence is not guaranteed, allowing analyses like
that carried out in [Cuff et al. 2015] on the Weibull distribution and in [Durst
et al. 2016] on the inverse gamma distribution to be conducted in the case of
n dependent random variables. In Section 5, we restrict ourselves to n-tuples
of random variables in which at least one is a Benford distribution and develop
a concept of distance between our joint distribution and a Benford distribution,
thus developing a concept of distance from a Benford distribution in order to
understand how much deviation from Benford one might expect of a particular
distribution. We then provide an upper bound for this distance using the L1 norm
of the function

N (u1, u2, . . . , un)= 1−
∂nC(u1, u2, . . . , un)

∂u1∂u2 . . . ∂un
.

In doing so, we draw an interesting connection between the distance from a Ben-
ford distribution and a copula’s distance from the space of copulas for which
Cuv(u, v)= 1 for all u, v in [0, 1].

2. Terms and definitions

We abbreviate probability density function by PDF and cumulative distribution
function by CDF, and assume all CDFs are uniformly or absolutely continuous. All
results below are standard; see the references for proofs.
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General mathematics and Benford’s law.

Lemma 2.1 (Barbalat’s lemma [Fontes and Magni 2004, Lemma 2.1]). Let t 7→
F(t) be a differentiable function with a finite limit as t →∞. If F ′ is uniformly
continuous, then F ′(t)→ 0 as t→∞.

Definition 2.2 (scientific notation). Any real number, x , can be written in the form

x = SB(x) · Bn, (2-1)

where n is an integer and SB(x) < 10. We call B the base and SB(x) the significand.

We define strong Benford’s law base B; see, for example, [Berger and Hill 2015;
Miller 2015]. This is the definition we primarily use in Section 3; strong indicates
that we are studying the entire significand of the number and not just its first digit.
In Section 5, we will provide insight into how one may define a weaker version of
Benford’s law that permits the probabilities to be within ε of the theoretical Benford
probabilities.

Definition 2.3 (strong Benford’s law [Miller 2015, Definition 1.6.1]). A data set
satisfies the strong Benford’s law base B if the probability of observing a leading
digit of at most s in base B is logB s.

Theorem 2.4 (absorptive property of Benford’s law [Tao 2010, page 56]). Let X
and Y be independent random variables. If X obeys Benford’s law, then the product
W = XY obeys Benford’s law regardless of whether or not Y obeys Benford’s law.

Copulas. All theorems and definitions in this section are from [Nelsen 2006] unless
otherwise stated.

Remark 2.5. In [Nelsen 2006], functions are defined on the extended real line,
[−∞,∞]; thus f (t) is defined when t = ±∞. We use this notation in order to
maintain consistency with that work, as it is one of the central texts in copula theory.

Definition 2.6 (n-dimensional copula). An n-dimensional copula, C , is a function
satisfying the following properties:

(1) The domain of C is [0, 1]n .

(2) (n-increasing) The n-th order difference of C is greater than or equal to zero.

(3) (grounded) C(u1, u2, . . . , un)= 0 if uk = 0 for at least one k in {1, 2, . . . , n}.

(4) C(1, 1, . . . , 1, uk, 1, , . . . , 1)= uk for some k in {1, 2, . . . , n}.

Theorem 2.7 (Sklar’s theorem [Nelsen 2006, Theorem 2.10.9]). Let H be an
n-dimensional distribution function with marginal CDFs F1, F2, . . . , Fn . Then
there exists an n-copula C such that for all (x1, x2, . . . , xn) in [−∞,∞]n ,

H(x1, x2, . . . , xn)= C(F1(x1), F2(x2), . . . , Fn(xn)). (2-2)



BENFORD’S LAW BEYOND INDEPENDENCE 1197

If all Fi are continuous, then C is unique; otherwise, C is uniquely determined
on Range(F1)×Range(F2)× · · · ×Range(Fn). Conversely, if C is a copula and
F1, F2, . . . , Fn are cumulative distribution functions, then the function H defined
by (2-2) is a distribution function with marginal cumulative distribution functions
F1, F2, . . . , Fn .

Theorem 2.8 (extension of [Nelsen 2006, Theorem 2.4.2]). Let X1, X2, . . . , Xn

be continuous random variables. Then they are independent if and only if their
copula, CX1,X2,...,Xn , is given by CX1,X2,...,Xn (x1, x2, . . . , xn)=5(x1, x2, . . . , xn)=

x1x2 · · · xn , where 5 is called the product copula.

Theorem 2.9 (extension of [Nelsen 2006, Theorem 2.4.3]). Let X1, X2, . . . , Xn

be continuous random variables with copula CX1,X2,...,Xn . If a1, a2, . . . , an are
strictly increasing on Range(X1), Range(X2), . . . , Range(Xn), respectively, then
Ca1(X1),a2(X2),...,an(Xn) = CX1,X2,...,Xn . Thus CX1,X2,...,Xn is invariant under strictly
increasing transformations of X1, X2, . . . , Xn .

Remark 2.10. For the following three definitions, see page 116 of [Nelsen 2006]
for the 2-copula formulas and page 151 for the n-copula extension.

Definition 2.11 (Clayton family of copulas). An (n-dimensional) copula in the
Clayton family is given by the equation

C(u1, u2, . . . , un)=max {(u−α1 + u−α2 + · · ·+ u−αn + n− 1)−1/α, 0}, (2-3)

where α ∈ [−1,∞) \ {0} is a parameter related to dependence, with α = 0 as the
independence case.

Definition 2.12 (Ali–Mikhail–Haq family of copulas). An (n-dimensional) copula
in the Ali–Mikhail–Haq family is given by the equation

C(u1, u2, . . . , un)=
(1−α)(∏n

i=1(1−α(1− ui ))/ui
)
−α

, (2-4)

where α ∈ [−1, 1) is a parameter related to dependence, with α = 0 as the indepen-
dence case.

Definition 2.13 (Gumbel–Barnett family of copulas). An (n-dimensional) copula
in the Gumbel–Barnett family is given by the equation

C(u1,u2, . . . ,un)= exp
1−(1−α logu1)(1−α logu2) · · ·(1−α logun)

α
, (2-5)

where α∈ (0, 1] is a parameter related to dependence, with α=0 as the independence
case.
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3. Testing for Benford behavior of a product

We state the results below in arbitrary dimensions but for notational convenience
give the proofs for just two dimensions as the generalization is straightforward.

Let X1, . . . , Xn be continuous random variables with CDFs FX1(x1), . . . , FXn (xn).
Let their joint PDF be HX1,...,Xn (X1, . . . , Xn). By Theorem 2.7, we know there
exists a copula C such that

HX1,...,Xn (X1, . . . , Xn)= C(FX1(X1), . . . , FXn (Xn)). (3-1)

Assume X1, . . . , Xn are such that their copula C is absolutely continuous. This
allows us to define the joint probability density function [Nelsen 2006, page 27] by
∂nC/(∂x1 · · · ∂xn). Furthermore, we restrict ourselves to X i such that all FX i are
uniformly continuous, as this allows us to use Lemma 2.1 to later ensure that the
PDFs approach zero in their right- and left-end limits.

From here we have the following lemma.

Lemma 3.1. Given X1, . . . , Xn positive, continuous random variables with joint
distribution modeled by the absolutely continuous copula C , let Ui = logB X i for
all i ≤ n and for some base B, and let the CDFs of each Ui be Fi (ui ). Also, let
fi (ui ) be the PDF of Ui for all i . Finally, let

u0 = (u1, . . . , un−1, s+ k− (u1+ · · ·+ un−1)).

Then

Prob
(( n∑

i=1

Ui

)
mod 1≤ s

)

=

s∫
0

∞∑
k=−∞

∞∫
u1=−∞

· · ·

∞∫
un−1=−∞

∂nC(F1(u1), . . . ,Fn−1(un−1),Fn(un))

∂u1 · · ·∂un

∣∣∣∣
u0

du1 · · · dun−1.

Therefore, the PDF of (U + V ) mod 1 is given by

∞∑
k=−∞

∞∫
u1=−∞

· · ·

∞∫
un−1=−∞

∂nC(F1(u1), . . . ,Fn−1(un−1),Fn(un))

∂u1 · · ·∂un

∣∣∣∣
u0

du1 · · · dun−1.

(3-2)

See Appendix 1 for the proof.
If (3-2) equals 1 for all s, then our product is Benford. If it is not identically

equal to 1 for all s, then at each point we may assign a value εs that represents our
distance from a Benford distribution. Thus we have

εs = |1−P|, (3-3)

where P is the PDF given in (3-2). This formulation will form the basis of Section 5.



BENFORD’S LAW BEYOND INDEPENDENCE 1199

Unfortunately, the infinite sum and improper integral in (3-2) make it highly
impractical to use in application unless we can determine a method to closely
approximate them by a finite sum and finite integral. We note that (3-2) is a PDF,
and so is ∂nC/(∂x1 · · · ∂xn), so we have the following properties (for notational
convenience we state them in the two-dimensional case; similar results hold for
n-dimensions).

(1)

1∫
0

( ∞∑
k=−∞

∞∫
−∞

Cu1u2(F1(u1), F2(s+k−u1)) f1(u1) f2(s+k−u1) du1

)
ds= 1.

(2)
∞∑

k=−∞

∞∫
−∞

Cu1u2(F1(u1), F2(s+k−u1)) f1(u1) f2(s+k−u1) du1≥ 0 for all s.

(3)

∞∫
−∞

Cu1u2(F1(u1), F2(s+ k− u1)) f1(u1) f2(s+ k− u1) du1→ 0 as k→±∞.

(4) Cu1u2(F1(u1), F2(s+ k− u1)) f1(u1) f2(s+ k− u1)→ 0 as u1→±∞.

Property (1) is simply the definition of a PDF, and property (2) is a direct result
of the fact that a PDF is always positive. Properties (3) and (4) are required,
under Lemma 2.1, by the convergence of the integral in property (1) and by the
convergence of the sum.

From properties (3) and (4) and the definition of convergence we obtain the
following.

Lemma 3.2 (approximating the PDF). Given U1, . . . ,Un continuous random vari-
ables modeled by the copula C with marginal CDFs F1, . . . ,Fn and PDFs f1, . . . , fn ,
there exist a1, . . . , an−1, b1, . . . , bn−1, and c1 and c2 completely dependent on the
Fi such that ai < bi for all i and c1 < c2 and

∞∑
k=−∞

∞∫
u1=−∞

· · ·

∞∫
un−1=−∞

∂nC(F1(u1), . . . ,Fn−1(un−1),Fn(un))

∂u1 · · ·∂un

∣∣∣∣
u0

du1 · · · dun−1

=

c2∑
k=c1

b1∫
u1=a1

· · ·

bn−1∫
un−1=an−1

∂nC(F1(u1), . . . ,Fn−1(un−1),Fn(un))

∂u1 · · ·∂un

∣∣∣∣
u0

du1 · · · dun−1

+Ea,b,c(s), (3-4)

where Ea,b,c(s)→ 0 as each ai and c1 go to−∞ and each bi and c2 go to∞. Thus,
for any ε > 0, there exists (for each i) |ai |, |bi |, |c1|, and |c2| large enough such
that |Ea,b,c(s)| ≤ ε.

The proof of this claim can be found in Appendix 1.
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The specific values of c1, c2, and each ai and bi are best determined by nu-
merically testing the errors caused by truncating the interval using either known
error bounds or appropriate software. As seen in Appendix 2, the values for these
constants are often quite reasonable, as long as the functions decay fast enough in
the limit.

Because s only ranges from 0 to 1, we can always find a value of s that maximizes
Ea,b,c for any given set of a, b, and c and set this to be the maximum error.
Furthermore, since all fi should have similar tail-end behavior, we do not have to
worry about the divergence of one canceling out the divergence of the other. Thus,
for this analysis to work, it is sufficient to understand the tail-end behavior of only
one of the marginals.

In Appendix 2, we provide several examples of this method for testing for
Benford behavior computationally with two variables.

4. Testing For Benford behavior: examples

Now that an effective method for testing the Benford behavior of copulas has
been established, we investigate how this behavior varies for specific copulas and
marginals. In all χ2 tests, we follow standard procedure for multiple comparison
problems. We are sampling our distribution at 12 values of s, necessitating 11
degrees of freedom, and we impose a significance level of 0.005, meaning we
only accept a 0.5% probability of false rejection. Thus, we reject the hypothesis,
specifically we reject that the distribution displays Benford behavior, if the χ2-value
exceeds 2.6. Our main interest, however, is to observe how and if these values trend
towards this critical value.

Please note that the α used in this section is the dependence parameter of the
copula and does not represent the significance level, as traditionally seen in statistical
analysis.

2-copulas with varying dependence parameter. The following figures display the
nonerror values of (3-4) at various values of s for three different copulas. The line in
each plot indicates the constant function y= 1, which will be achieved if the product
XY is exactly Benford. For each copula, we test three different pairings of marginals:

(A) log X ∼ N(0, 1) and log Y ∼ Exp(1).

(B) log X ∼ Pareto(1) and log Y ∼ N(0, 1).

(C) log X ∼ Pareto(1) and log Y ∼ Exp(1).

In each case, we vary the dependence parameter α and compare the results to the
case of independence. Our Pareto distribution has scale parameter xm = 1 and shape
parameter αp = 2. We note that in some cases the axes must be adjusted to be able
to show any change in the Benford behavior.
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Figure 1. The Ali–Mikhail–Haq 2-copula (see Definition 2.12)
modeled on three different sets of marginals with varying depen-
dence parameter α ∈ [−1, 1). The y-axes of these plots represent
the approximate values of the copula PDF of log10 XY mod 1 at
various values of x ∈ [0, 1], where X and Y are the marginal
distributions. The line represents the Benford distribution.
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χ2 χ2 χ2

α α α

Figure 2. The χ2-values associated to the plots in Figure 1 for
the Ali–Mikhail–Haq copula for pairings (A), (B) and (C), shown
from left to right. Each shows the comparison to Benford behavior
as α increases. We have 11 degrees of freedom and a significance
level of 0.005, so we reject the hypothesis if the value exceeds
2.6. Clearly, only case (C) comes within one order of magnitude
of rejecting the hypothesis, so, in loose terms, it is the only case
that “comes close” to rejecting the hypothesis. We have imposed a
very strict significance level, but it can be clearly seen that a looser
significance level of 0.05, perhaps, would likely cause us to reject
case (C) entirely.

Ali–Mikhail–Haq copula. Considering the independence case, α = 0, in Figure 1
we note that marginal pairings (A) and (B) have an approximately Benford product
when independent. Pairing (C), however, does not. From these plots, it is evident
that the Ali–Mikhail–Haq copula displays notably consistent Benford behavior, as
each plot remains very close to the independence case as α moves over its full
range. This is reinforced by the corresponding plots in Figure 2, which display
the χ2 values of each marginal pairing for each value of alpha. We point out
that although each plot indicates a general trend away from Benford behavior (the
constant function 1), the values for pairing (A) are all smaller than 10−7, making
them effectively 0. Similarly, the values for pairing (B) appear to increase linearly,
but they are all of order of 10−6. The values for pairing (B) vary from order 10−2

to order 10−1, suggesting that the behavior is both significantly less Benford and
more variable than the other two pairings.

Gumbel–Barnett copula. These plots suggest that the Gumbel–Barnett copula un-
dergoes even less change over α than the Ali–Mikhail–Haq copula. For pairings
(A) and (B), the range for the plots must be restricted to [0.9999, 1.0001] and
[0.995, 1.010], respectively, in order to show any change at all. Pairing (C) is not
nearly Benford, so its range is expected to vary (recall that the function described
by each plot should integrate to 1 in the continuous case). We note, however, that
the value at s = 0 in pairing (C) appears to vary over a range of 0.1 as α increases.
The χ2 plots in Figure 4 reinforce this interpretation, as in each case the values
vary over a significantly small range.
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Figure 3. The Gumbel–Barnett 2-copula (see Definition 2.13)
modeled on three different sets of marginals with varying depen-
dence parameter α ∈ (0, 1]. The y-axes of these plots represent
the approximate values of the copula PDF of log10 XY mod 1 at
various values of x ∈ [0, 1], where X and Y are the marginal
distributions. The line represents the Benford distribution.
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χ2

α

χ2

α

χ2

α

Figure 4. The χ2-values associated to the plots in Figure 3 for the
Gumbel–Barnett copula for pairings (A), (B) and (C), shown from
left to right. Each shows the comparison to Benford behavior as
α increases. We have 11 degrees of freedom and a significance
level of 0.005, so we reject the hypothesis if the value exceeds 2.6.
Despite the apparent variation, none of these cases approach the
critical value.

This lack of variation is likely due to the actual formula of the copula,

C(x, y)= xye−αxy . (4-1)

In this case, we have the independence copula, C(x, y)= xy multiplied by a mono-
tonic transformation of the independence copula, e−axy. Thus, it is possible that one
or both of these elements serves to preserve the Benford properties of the marginals.

Clayton copula. Unlike the previous two examples, the Clayton copula shows
notable variance over α. Although it is not shown here, the independence case for
Clayton copulas is α = 0. For pairings (A) and (B), it appears that the plots diverge
farther and farther away from y = 1 as α moves away from 0. For pairing (C),
the plots appear to get more random as α grows, and there is no suggestion that
Benford behavior may develop as we depart from independence. Furthermore, the
plots in Figure 6 show χ2-values that are significantly higher than those seen for the
previous two copulas, suggesting that the dependence imposed by Clayton copula
tends to heavily alter any Benford behavior of the marginals.

The results from these three copulas suggest that the preservation of Benford
behavior relies more heavily on the underlying structure of the copula than on
the Benford behavior of the marginals. Both the Ali–Mikhail–Haq copula and the
Gumbel–Barnett copula formulas contain the independence copula, C(x, y)= xy.
The Clayton copula, however, does not contain the independence copula and is
also the only copula of the three to show noticeable variation as the dependence
parameter changes.

n-copulas. The previous results suggest that the underlying copula structure has a
strong influence on the Benford behavior of 2-copulas. Thus the logical next step
is to investigate whether this holds true as we increase the number of marginals.
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Figure 5. The Clayton 2-copula (see Definition 2.13) modeled on
three different sets of marginals with varying dependence parameter
α ∈ (0, 1]. The y-axes of these plots represent the approximate
values of the copula PDF of log10 XY mod 1 at various values of
x ∈ [0, 1], where X and Y are the marginal distributions. The line
represents the Benford distribution.
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χ2

α

χ2

α

χ2

α

Figure 6. The χ2 values associated to the plots in Figure 5 for
the Clayton copula for pairings (A), (B) and (C), shown from left
to right. Each shows the comparison to Benford behavior as α
increases. We have 11 degrees of freedom and a significance level
of 0.005, so we reject the hypothesis if the value exceeds 2.6.
Unlike the previous two copulas, only cases (B) and (C) stay below
the critical value. However, the behavior of the plots suggests they
will quickly surpass the critical value as α continues to increase.

For all χ2-tests, we have 8 degrees of freedom and again take a significance level
of 0.005. In practice, this means we reject the hypothesis if the value exceeds 1.3.

We consider the most stable of the three previous copulas, the Gumbel–Barnett
copula. We fix α = 0.1 and set the log, base 10, of all marginals to be identically
distributed according to the normal distribution with mean 0 and variance 1, our
most Benford-like marginal. We then consider cases where the copula has 2 to 7
marginals. We can see from Figure 7 that the Benford behavior of the Gumbel–
Barnett copula begins to fall apart as marginals are added. This is in direct contrast
to what would be expected from a central-limit-type property, which should become
increasingly more uniform as variables are added. This is further reinforced by the
χ2-values in Figure 8 and suggests that the dependence structure imposed by the
copula prevents any leveling-off from happening.

2 marginals 3 marginals 4 marginals

5 marginals 6 marginals 7 marginals

Figure 7. Gumbel–Barnett copula with two to seven marginals.
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χ2

n

Figure 8. The χ2-values comparing the behavior of the product
to a Benford PDF as the number of marginals increases. We have
8 degrees of freedom and a significance level of 0.005, so we reject
the hypothesis if the value exceeds 1.3.

5. Benford distance

Now that we know that we can test for Benford behavior of a product, regardless
of dependence, it would be prudent to know how often this behavior is expected to
show up. In order to do this, we investigate if the absorptive property of Benford
products is common in dependent random variables, or if its presence relies on
some sort of proximity to independence.

To get an idea of this, let W be the space of all n-tuples of continuous random
variables (X1, X2, . . . , Xn) for which at least one is Benford. Now let us assume
that our set of marginals, (X1, X2, . . . , Xn), form an element in W . Then we know
that their product, assuming independence, will always be Benford.

From this, we can restrict our Benford distance, (3-3), to W and define it as

εs,W =

∣∣∣∣ ∞∑
k=−∞

∞∫
u1=−∞

· · ·

∞∫
un−1=−∞

(N (u1, . . . , un)|u0 du1 · · · dun−1)

∣∣∣∣, (5-1)

where

N (u1, . . . , un)= 1−
∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1 · · · ∂un

and u0 is defined as in Lemma 3.1. Therefore, our problem becomes minimizing
the value of εs,W = 0, as proximity to 0 should indicate proximity to a Benford
distribution.

Cases that are ε away from Benford. Rather than directly calculating the value
of εs,W , it may often be more convenient to provide a bound that depends only on
the copula C . If the value of ∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))/(∂u1 · · · ∂un)

is identically 1 for all values of (u1, . . . , un), then the value of εs,W will be
identically 0 and our product will be Benford. Even though this case does not
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cover all situations in which our product will be Benford, it suggests that a prod-
uct’s distance from Benford may be related to the distance between the function
∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))/(∂u1 · · · ∂un) and the constant function 1.
This brings us to the main result of this section.

Theorem 5.1. Suppose that X1, . . . , Xn are continuous random variables where
(X1, . . . , Xn) ∈ W . Assume also that they are jointly described by a copula C ,
where the function

N (u1, u2, . . . , un)= 1−
∂nC(F1(u1), . . . , Fn−1(un−1), Fn(un))

∂u1 · · · ∂un

is in L1(Rn). Let Ui = logB X i for each i and some base, B, and let Fi be the CDFs
of Ui for each i . Then the L1 distance from Benford, defined by

1∫
0

∣∣∣∣ ∞∑
k=−∞

∞∫
u1=−∞

· · ·

∞∫
un−1=−∞

(N (u1, . . . , un)|u0) du1 · · · dun−1

∣∣∣∣ ds (5-2)

is bounded above by the L1 norm of N. In other words
1∫

0

∣∣∣∣ ∞∑
k=−∞

∞∫
u1=−∞

· · ·

∞∫
un−1=−∞

(1−N (u1, . . . ,un)|u0)du1 · · · dun−1

∣∣∣∣ds

≤‖N (u1, . . . ,un)‖L1 . (5-3)

We prove this for the two-dimensional case, as the results in n dimensions
proceed similarly. We need the following result (see Appendix 1 for a proof).

Lemma 5.2. Given Cuv, F(u), and G(v) as defined before, we have

‖1−Cuv(u, v)‖L1 =

∞∫
−∞

∞∫
−∞

f (u)g(v)|1−Cuv(F(u),G(v))| du dv. (5-4)

Proof of Theorem 5.1. From the positivity of f and g we have
1∫

0

∣∣∣∣ ∞∑
k=−∞

∞∫
−∞

f (u)g(s+ k− u)(1−Cuv(F(u),G(s+ k− u))) du
∣∣∣∣ ds

≤

1∫
0

∞∑
k=−∞

∞∫
−∞

f (u)g(s+ k− u)|1−Cuv(F(u),G(s+ k− u))| du ds. (5-5)

We investigate exactly what region (5-5) covers. The lines shown in Figure 9 are
the sets Ak = {(u, v) : v = s+ k− u}. We integrate

f (u)g(s+ k− u)(1−Cuv(F(u),G(s+ k− u)))
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A0

A1

A2

A3

Figure 9. The plane broken up into a few of the sections Ak .

along each of these lines and sum the results over k. The shaded region shows the
area covered when A2 is integrated over s from 0 to 1.

As all of our sums and integrals converge absolutely, by Fubini’s theorem we
may switch our sum and integral in (5-5) and get

1∫
0

∞∑
k=−∞

∞∫
−∞

f (u)g(s+ k− u)|1−Cuv(F(u),G(s+ k− u))| du ds

=

∞∑
k=−∞

1∫
0

∞∫
−∞

f (u)g(s+ k− u)|1−Cuv(F(u),G(s+ k− u))| du ds. (5-6)

From this, we can quickly see that for any k,
1∫

0

∞∫
−∞

f (u)g(s+ k− u)|1−Cuv(F(u),G(s+ k− u))| du ds (5-7)

is the integral of f (u)g(s+k−u)|1−Cuv(F(u),G(s+k−u))| over a region inbe-
tween and including Ak and Ak+1, just like the shaded region in Figure 9. Therefore,
(5-6) is the sum of the integrals of f (u)g(s+ k−u)|1−Cuv(F(u),G(s+ k−u))|
over all of these (disjoint) regions (over all k), which is equivalent to integrating
over all of R2, giving us

∞∫
−∞

∞∫
−∞

f (u)g(v)|1−Cuv(F(u),G(v))| du dv. (5-8)

Finally, from Lemma 5.2, we know that this is equal to ‖1−Cuv(u, v)‖L1 . �

Consequences of an L1 bound in R2. What Theorem 5.1 provides is a way to
understand the behavior of our probabilities. To see this, let S ⊂ [0, 1] be the region
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over which εs,W > εN . If εs,W is large on S, then the measure of S must be small
in order to conform to (5-3), which requires that if ‖1−Cuv(u, v)‖L1 ≤ εN , then∫ 1

0 εs,W ds ≤ εN as well. In fact, the following corollary proves that Theorem 5.1
provides useful information regarding how large |S| can be.

Corollary 5.3. Let S ⊂ [0, 1] be the set {s : εs,W ≥ ε}. Then

|S| ≤
‖1−Cuv(u, v)‖L1

ε
. (5-9)

Proof. This result comes directly from Markov’s inequality:

|{s : εs,W ≥ ε}| ≤
1
ε

1∫
0

εs,W ≤
‖1−Cuv(u, v)‖L1

ε
. �

6. Applications, future work, and conclusion

Fitting copulas. The results of Section 3 allow us to determine the Benford behavior
of the product of n distributions jointly modeled by a specific copula. However,
we may wish to go in the other direction and, instead, find a copula that best fits
n correlated data sets. Statisticians have several methods for testing the goodness-
of-fit to find the best choice of copula in these situations (see [Genest et al. 2006]
for some examples and an analysis of several forms of goodness-of-fit tests), but
it is not known whether or not these goodness-of-fit tests take Benford behavior
into account. That is to say, will the prescribed copula mimic the Benford behavior
observed in the data?

The results of Section 4 have shown us that the product of the same set of
marginals will not display the same Benford behavior when modeled by different
copulas. Thus, Benford behavior is not guaranteed. A natural next step is to
investigate how the goodness-of-fit of a copula may or may not be correlated with
how well it preserves the expected Benford behavior of the product of two or more
marginals. A comparison between the L1 norm and well-known goodness of fit
tests would enable us to see whether or not a strong Benford fit corresponds to a
well-fit distribution as a whole. Furthermore, if a stronger Benford fit may be shown
to correspond to a smaller L1 bound, then we may be able to define this bound as a
new goodness of fit test for distributions with one or more Benford marginals.

With these results, it is now reasonable to begin searching for specific situations
where this analysis of dependence structure would prove useful. As Benford analysis
for single-variate distributions has already proven useful in a variety of situations, it
is reasonable to assume that the multivariate analysis will be similarly useful. Thus
future work may also be directed towards investigating the various applications of
these results and how they may be used to improve current practices.
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Conclusion. In fields such as actuarial sciences and statistics Benford’s law is
useful for fraud detection. Furthermore, copulas are a highly effective tool for
modeling systems with dependencies. In Section 3 we demonstrated that Benford
behavior for dependent variables modeled by a copula may be detected and therefore
analyzed to investigate the product of the variables. Thus these results indicate
that the Benford’s law methods used by professionals on single-variate and/or
independent data sets are now at the disposal of individuals who wish to model
dependent data via a copula. We then applied these results in Section 4, where we
observed that the preservation of Benford behavior appears to rely more heavily on
the structure of the copula than on the marginals.

Essentially, the results of Section 3 permit analyses like those carried out in
[Cuff et al. 2015; Durst et al. 2016] in which a known distribution, in these cases
the Weibull and the inverse-gamma distributions, is analyzed to determine the
conditions under which Benford behavior should arise. Once these conditions
are established, any non-Benford data set which is expected to come from such a
distribution may be considered suspicious enough to warrant a fraud investigation.
In the case of copulas, the results of Section 3 allow one to conduct this exact
method of analysis on the product of n random variables jointly modeled by a
copula C .

Finally, in Section 5 we encountered a useful consequence of considering a
distribution’s L1 distance from a Benford distribution to determine a useful bound
for this Benford distance. We determined that the Benford distance of a product
of n random variables will always be bounded above by the distance between the
copula PDF and the class of copulas whose PDFs are identically 1.

Appendix A: Proofs for supporting lemmas and theorems

Lemma 3.1. Given X and Y positive, continuous random variables with joint
distribution modeled by the absolutely continuous copula C , let U = logB X and
V = logB Y for some base, B, and let the (marginal) CDFs of U and V be F(u) and
G(v), respectively. Also, let f (u) and g(v) be the PDFs of U and V, respectively.
Then

Prob((U + V ) mod 1≤ s)

=

s∫
0

( ∞∑
k=−∞

∞∫
−∞

Cuv(F(u),G(s+ k− u)) f (u)g(s+ k− u) du
)
. (A-1)

Therefore, the PDF of (U + V ) mod 1 is given by

∞∑
k=−∞

∞∫
−∞

Cuv(F(u),G(s+ k− u)) f (u)g(s+ k− u) du. (A-2)
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Proof. By the invariance of copulas under monotonically increasing functions
(Theorem 2.9), we know that the joint CDF of U and V is given by the same copula
as X and Y. Thus, the joint CDF of U and V is given by

C(F(U ),G(V )). (A-3)

Then, by definition, the joint PDF of U and V is given by the mixed partial
derivative.

∂

∂v

∂

∂u
C(F(u),G(v))= Cuv(F(u),G(v)) f (u)g(v)+Cu(F(u),G(v)) ∂

∂v
f (u)

= Cuv(F(u),G(v)) f (u)g(v). (A-4)

Note that we assume that du/dv = 0 since all dependence between U and V is
modeled by C .

Note, also, that Prob(XY ≤ 10s)= Prob((U + V )≤ s). Thus we have

Prob((U + V ) mod 1≤ s)

=

∞∑
k=−∞

∞∫
u=−∞

s+k−u∫
v=k−u

Cuv(F(u),G(v)) f (u)g(v) dv du. (A-5)

If XY is Benford, then (A-5) will equal s for all s. It is, however, easier to test
the PDF than the CDF. So we differentiate with respect to s. Let C1(u, v) be the
antiderivative of Cuv(F(u),G(v)) f (u)g(v) with respect to v. Then

∂

∂s

∞∑
k=−∞

∞∫
u=−∞

s+k−u∫
v=k−u

Cuv(F(u),G(v)) f (u)g(v) dv du

=
∂

∂s

∞∑
k=−∞

( ∞∫
u=−∞

(C1(u, s+ k− u)−C1(u, k− u))
)

du

=

∞∑
k=−∞

∞∫
−∞

Cuv(F(u),G(s+ k− u)) f (u)g(s+ k− u) du. �

Lemma 3.2. Given U and V, continuous random variables modeled by the copula
C with marginals F and G, respectively, there exist a1, a2, b1, and b2 completely
dependent on F or G such that a1 < a2 and b1 < b2, and

∞∑
k=−∞

∞∫
−∞

Cuv(F(u),G(s+k−u)) f (u)g(s+k−u)du

=

b2∑
k=b1

a2∫
a1

Cuv(F(u),G(s+k−u)) f (u)g(s+k−u)du+Ea,b(s), (A-6)
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where Ea,b(s)→ 0 as a1, b1→−∞ and a2, b2→∞. Thus, for any ε > 0, there
exists |a1|, |a2|, |b1|, and |b2| large enough such that |Ea,b(s)| ≤ ε.

Proof. Since both the sum and the integral are convergent, the proofs for a1,
a2 and b1, b2 are nearly identical, so we only provide the work here for a1 and
a2. The same steps may be used in the proof for b1 and b2. We also know that
Cuv(F(u),G(s+ k− u)) f (u)g(s+ k− u) must go to 0 as u goes to ±∞ because
of this convergence. Thus we choose to prove the case where f and/or g converge
faster than Cuv . If Cuv were to converge faster, the results derived here would still
suffice. We prove that for any ε > 0 we can find a1 and a2 such that, for all u ≤ a1

and all u ≥ a2, we have

|Cuv(F(u),G(s+ k− u)) f (u)g(s+ k− u)| ≤ ε.

Let ε > 0, set s and k to be constant, and assume Cuv is nonzero everywhere. If
Cuv is zero at any point, then we have a trivial case. Because F and G are CDFs,
we know that f → 0 as u→±∞ and g→ 0 as −u→±∞; thus, we may choose
a f 1, a f 2, ag1, and ag2 such that, for all u ≤ a f 1 and all u ≥ a f 2, we have

f (u)≤
√

ε

Cuv(F(u)G(s+ k− u))
. (A-7)

The same can be done for g such that, for all u ≥ ag1 and all u ≤ ag2, we have

g(s+ k− u)≤
√

ε

Cuv(F(u)G(s+ k− u))
. (A-8)

Thus, we let a1 =min{a f 1, ag1} and a2 =max{a f 2, ag2}. Then, for all u ≤ a1 and
all u ≥ a2, we have

|Cuv(F(u),G(s+ k− u)) f (u)g(s+ k− u)| ≤ ε. �

Lemma 5.2. Given Cuv, F(u), and G(v) as defined in Theorem 5.1, we have

‖1−Cuv(u, v)‖L1 =

∞∫
−∞

∞∫
−∞

f (u)g(v)|1−Cuv(F(u),G(v))| du dv. (A-9)

Proof. We know that u and v are defined on [0, 1]. Thus,

‖1−Cuv(u, v)‖L1 =

1∫
0

1∫
0

|1−Cuv(u, v)| du dv. (A-10)

However, by a simple change of variables u→ F(u), v→ G(v) (defined as CDFs,
just like before, so their derivatives are f (u) and g(v), both of which are greater
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than or equal to 0), we get

‖1−Cuv(u, v)‖L1 =

∞∫
−∞

∞∫
−∞

f (u)g(v)|1−Cuv(F(u),G(v))| du dv. �

Appendix B: Computationally testing for Benford behavior

In this section, we use Clayton copulas (see Definition 2.11) to determine the
Benford behavior of different combinations of marginals. We specifically look at
marginals of the form X = 10U and Y = 10V, where U and V are N(0, 1) or Exp(1).
In all analyses, we let α = 2 and B = 10. We also provide the independence case
for each set of marginals to allow for comparison.

All numerical results and coding were done using Wolfram Mathematica, ver-
sion 10.1 or later.

Case 1: U and V ∼ N (0, 1). Given our definition of X and Y, (3-2) we first
determine acceptable values for a1, b1, a2, and b2 by using an error analysis to test
whether or not −10 and 10 should be acceptable values for a1 and a2.

We generated a list of the errors caused by truncating the integral at these values
for various values of s; the first value of each triple in the list is s, the second is the
lower error and the third is the upper error:

In[262]:= errorsb =
Table[{N[Log[10, s]], ea[Log[10, s]], eb[Log[10, s]]}, {s, 1, 9}]

Out[262]= {{0., 6.86784*10^-22, 1.28213*10^-22},
{0.30103, 9.38169*10^-24, 1.28257*10^-22},
{0.477121, 3.03058*10^-25, 1.28274*10^-22},
{0.60206, 2.74232*10^-26, 1.28266*10^-22},
{0.69897, 4.3443*10^-27, 1.28249*10^-22},
{0.778151, 9.77379*10^-28, 1.28234*10^-22},
{0.845098, 2.79567*10^-28, 1.28223*10^-22},
{0.90309, 9.52164*10^-29, 1.28216*10^-22},
{0.954243, 3.70245*10^-29, 1.28213*10^-22}}

To determine the error caused by truncating the integral, we used the approximation
method detailed in Section 3. As the list shows, the error is on the order of 10−22 or
smaller, indicating that our selections for a1 and a2 are good bounds. We took the
sum from k =−20 to k = 20 because we know this will be sufficient, as indicated
by the convergence in Figure 10 below.

We now plot in Figure 10 the value of our truncated form of our PDF for different
values of s. The line y = 1 is included to demonstrate how close to 1 our PDF is
for all values of s, suggesting that the product of X and Y with joint PDF modeled
by a Clayton copula with α = 2 should display Benford behavior.
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Figure 10. U ∼ N(0, 1) and V ∼ N(0, 1).

Case 2: U ∼ N (0, 1) and V ∼ Exp(1). A similar analysis as before was conducted
on this new set of variables. Through an identical analysis, we defined the bounds
for our integral to be a =−5 and b= 10, and provide the accumulated errors in the
code below, where the first term in each pair is s and the second and third are the
lower and upper errors, respectively:

In[419]:= Table[{N[Log[10, s]], ea2[Log[10, s]], eb2[Log[10, s]]},
{s, 1, 9}]

Out[419]= {{0., 3.30411*10^-21, 1.23628*10^-22},
{0.30103, 2.43577*10^-21, 1.27151*10^-22},
{0.477121, 2.03887*10^-21, 1.31758*10^-22},
{0.60206, 1.79746*10^-21, 1.32924*10^-22},
{0.69897, 1.63021*10^-21, 1.32387*10^-22},
{0.778151, 1.50526*10^-21, 1.31045*10^-22},
{0.845098, 1.40717*10^-21, 1.2933*10^-22},
{0.90309, 1.32741*10^-21, 1.27456*10^-22},
{0.954243, 1.26084*10^-21, 1.25536*10^-22}}

As we can see, the errors are still very, very small.

Figure 11. U ∼ N (0, 1) and V ∼ Exp(1).
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Figure 12. U and V ∼ Exp(1).

We now plot in Figure 11 the value of our truncated form of our PDF for various s.
We again note how close the PDF remains to 1 for all values of s, suggesting that
the product of X and Y, with joint PDF modeled by a Clayton copula with α = 2
should display Benford behavior.

Case 3: U ∼ Exp(1) and V ∼ Exp(1).
Finally, we conduct our analysis on the case of two exponentials. Our error

terms for a = 25 are generated in the code below (By inspection, we can tell that
Cuv(F(u),G(s + k − u)) f (u)g(s + k − u) will be zero for negative values of u).
Again we choose k from 0 to 50, and the first term in each pair is s:

In[363]:= Table[{N[Log[10, s]], N[eb1[Log[10, s]]]}, {s, 1, 9}]

Out[363]= {{0., 5.57839*10^-11}, {0.30103, 5.73736*10^-11},
{0.477121, 5.94524*10^-11}, {0.60206, 5.99786*10^-11},
{0.698970, 5.97362*10^-11}, {0.778151, 5.91306*10^-11},
{0.845098, 5.83566*10^-11}, {0.90309, 5.75112*10^-11},
{0.954243, 5.66447*10^-11}}

Now that we know a = 25 provides a small enough error, we plot, once again,
the PDF for various values of s, as shown in Figure 12. We quickly see that the PDF
does not converge to 1 and actually changes for each value of s. Even though we
only take our sum out to k =±50, this is enough to suggest that Benford behavior
is unlikely.

Checking the marginals: To understand why this might be the case, we took a look
at the marginal distributions. We note that X = 10U , where U ∼ N [0, 1] is a closely
Benford distribution with χ2

≈ 0.9918, but Y = 10V, where V ∼Exp[1] is not, with
χ2
≈ 0.7084. Thus, in the independent case we would expect that two variables

modeled like X , or any product with X , should yield a Benford distribution. The
product of two variables modeled like Y, however, should not be Benford.
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