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We study 1/k-geodesics, those closed geodesics that minimize on any subinterval
of length L/k, where L is the length of the geodesic. We investigate the existence
and behavior of these curves on doubled polygons and show that every doubled
regular n-gon admits a 1/(2n)-geodesic. For the doubled regular p-gons, with p
an odd prime, we conjecture that k = 2p is the minimum value for k such that the
space admits a 1/k-geodesic.

1. Introduction

Traders and explorers have long sought shorter paths across our globe. Columbus
in the fifteenth century thought it was possible to reach the East by sailing west.
Alas, a continent stood in the way, and in the nineteenth century many explorers
searched for the elusive Northwest Passage, a sea route connecting the Atlantic
and Pacific via the Arctic Ocean. With the advent of air travel more direct routes
became possible; planes often follow the shortest path between two points on the
globe. In flat Euclidean space (like the xy-plane) the shortest path between any
two points is a straight line. On a sphere the shortest paths are great circles, those
curves of intersection between the surface of the sphere and a plane containing its
center. This is why when you fly between cities in the northern hemisphere your
route travels north towards the pole (see Figure 1).

A geodesic is a locally length-minimizing curve; it is the shortest path between
any pair of sufficiently close points on the curve. In flat Euclidean space the
geodesics are straight lines. We note that these geodesics are not only locally
length-minimizing, but also globally length-minimizing; the straight line is the
shortest path between any pair of points on the line, regardless of how close they
are. In this paper we study geodesics that fail to minimize globally. As a first
example of such a curve consider the geodesic in Figure 2. Another important class
of geodesics that fail to minimize globally are the closed geodesics, those geodesics
that close up on themselves after finite time.
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Figure 1. Great circle on a sphere showing the shortest path.
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B

Figure 2. Geodesic on the cylinder that is not the shortest path
between points A and B.

Definition 1.1. We use the symbol S1 to denote the circle. A closed geodesic is a
map γ : S1

→ M that is locally length-minimizing at every t ∈ S1.

The great circles on the sphere are examples of closed geodesics. Fixing any
point on the curve, the great circle is the shortest path to every other point on the
circle up to its antipodal point, halfway along the length of the curve. If we traverse
past the antipodal point, then a shorter path can be found by traversing the circle in
the opposite direction, demonstrating that the great circles are not globally length-
minimizing. Indeed, every closed geodesic fails to be globally length-minimizing,
as traversing in the opposite direction always guarantees a shorter path to points
beyond the halfway point.

It is not the case that a closed geodesic will always be the shortest path between
pairs of points halfway along the curve. In Figure 3 we see an example of a closed
geodesic on a flat torus (the red curve) which does not minimize between pairs
of points that are half the length apart. Indeed, the green (dashed) curve provides
a shorter path between p and s. Logically, this poses the question of the largest
interval on which a given closed geodesic minimizes. To examine this, Sormani
[2007, Definition 3.1] introduced the notion of a 1/k-geodesic.

Definition 1.2. A 1/k-geodesic is a constant-speed closed geodesic γ : S1
→ M

which minimizes on all subintervals of length L/k, where L is the length of the
geodesic and k ∈ N.
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Figure 3. Closed geodesic on a flat torus.

Note that the great circles on the sphere are 1
2 -geodesics, or half-geodesics. The

curve in Figure 3 is a 1
4 -geodesic, as it minimizes between all points at length L/4

(for example, between the points p and q). The curve does not minimize beyond
points at length L/4, as is evidenced by the blue (dotted) curve between p and a point
on the geodesic beyond q. See also [Adelstein 2016a; 2016b; Ho 2008; Sormani
2007] for more on 1/k-geodesics. An important first fact about 1/k-geodesics is
that they are as ubiquitous as closed geodesics.

Proposition 1.3 [Sormani 2007, Theorem 3.1]. Every closed geodesic is a 1/k-
geodesic for some k ≥ 2.

Proof. Let γ : S1
→M be a constant-speed closed geodesic. Then by the local length-

minimization property of γ we have for every t ∈ S1
= [0, 2π ] that there exists an

εt > 0 such that γ minimizes on the interval (t−εt , t+εt). These intervals form an
open cover of S1 and by compactness of the circle we can choose a finite subcover.
Let ε be the Lebesgue number of the finite subcover, and by the Archimedean
property choose k ≥ 2π/ε. Then γ minimizes on all parameter intervals (t −π/k,
t +π/k) and hence γ minimizes on all subintervals of length L/k. �

2. The over-under curve on doubled polygons

We proceed by studying 1/k-geodesics on doubled regular n-gons. We define a
doubled regular n-gon, denoted by Xn , to be the metric space obtained by gluing
two regular n-gons along their common edges. We think of the doubled regular
n-gons as having a top face and bottom face, so that traversal from one face to the
other is possible only by crossing through a point along the shared edges or vertices
of the faces. The distance between any two points lying on the same face is the
standard Euclidean distance, whereas the distance between two points x, y ∈ Xn

lying on opposite faces is given by minz{d(x, z)+d(z, y)}, where d is the Euclidean
distance function on each face and the minimum is taken over all edge points z ∈ Xn .

We next need to determine the behavior of geodesics on these doubled polygons.
On any given face the space is Euclidean and the geodesics are straight lines; if
two points are on the same face the straight line path between them is a geodesic.
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Figure 4. The n/2 half-geodesics on Xn , n even. Note that
we only depict one face of the doubled polygon, and that these
geodesics are the concatenation of straight line paths on the top
and bottom faces.

If two points are on opposite faces, a geodesic connecting them must consist of a
straight line segment on each face, connected via a shared edge or vertex point. If
this geodesic traverses an edge, we can reflect the doubled polygon over this edge,
creating a Euclidean space, and conclude that the geodesic on this reflected space
must be a straight line. Upon reflecting back over the edge, we see that the angle of
incidence is equal to the angle of reflection, i.e., that the geodesics billiard around
the edges of the doubled polygons; see [Veech 1992]. An application of Heron’s
solution to the shortest path problem illuminates this billiard behavior. We also
have the following lemma.

Lemma 2.1 [Adelstein 2016a, Lemma 2.1]. Geodesics on doubled regular n-gons
do not contain vertices as interior points.

Proof. By contradiction assume that the geodesic contains a vertex point. Because
regular polygons are convex, we can always reflect the doubled polygon over one of
the edges adjacent to the vertex (as in the paragraph above) such that the geodesic
in the resulting Euclidean space is kinked with an acute angle. Choosing a pair of
geodesic points on either side of the vertex, and considering the triangle formed in
the resultant Euclidean space from these two points and the vertex, we conclude via
the triangle inequality that there exists a shorter path connecting these points. This
contradicts the local length-minimizing property of the geodesic at the vertex. �

The closed geodesics on the doubled regular polygons are interesting to study
because of their simplicity. Our research is motivated by the following result:

Proposition 2.2 [Adelstein 2016a, Proposition 2.5]. Let Xn be a doubled regular
n-gon:

(1) If n is odd then Xn has no half-geodesics.

(2) If n is even then Xn has exactly n/2 half-geodesics: those curves which pass
through the center of each face and perpendicularly through parallel edges;
see Figure 4.
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Figure 5. Over-under curves on Xn . Note that we now depict as
solid the segments of the geodesic on the top face, and as dashed
the segments on the bottom face.

For n odd, the result states that Xn admits no half-geodesics. This naturally
leads to the question of the smallest k ∈ N such that Xn admits a 1/k-geodesic. To
examine this question we introduce the notion of an over-under curve on Xn .

Definition 2.3. Let γ : S1
→ Xn be the closed geodesic on the doubled regular

n-gon that passes through the midpoints of adjacent edges of Xn . We call γ an
over-under curve between adjacent edges on Xn .

If γ is an over-under curve and γ (t0), γ (t1), and γ (t2) are edge points of Xn

with the edge containing γ (t1) adjacent to the edges containing γ (t0) and γ (t2)
then the following facts are immediate:

(1) γ |(t0,t1) and γ |(t1,t2) are on opposite faces of Xn .

(2) For every t ∈ (t0, t1) and s ∈ (t1, t2) the minimum path between γ (t) and γ (s)
through the edge containing γ (t1) passes through the point γ (t1).

The over-under curves on Xn exhibit distinct behavior depending on the parity
of n. If n is even, the curves close smoothly after n segments. If n is odd, the
curves close after n segments, but not smoothly. The first and n-th segments are on
the same face of Xn , thus forming a corner when they meet at an edge. The curve
needs 2n segments before closing smoothly, so that the first and 2n-th segments are
on opposite faces (see Figure 5). The following theorem states that the minimizing
index of the over-under curves equals the number of segments.

Theorem 2.4. Let γ : S1
→ Xn be an over-under curve between adjacent edges on

a doubled regular n-gon:

(1) If n is even then γ is a 1/n-geodesic.

(2) If n is odd then γ is a 1/(2n)-geodesic.

Proof. We prove the theorem for n even and note that the proof of the odd case is
equivalent after a reparametrization of the curve. Start by parametrizing γ by a
circle of length 2π so that each edge point is given by pi = γ (2π i/n). To prove
the theorem we show that γ is the minimizing path between any pair of points
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Figure 6. The over-under curve on X4.

q1 = γ (t) and q2 = γ (t + 2π/n). First note that if the q j are edge points then γ
is indeed the minimizing path, as γ is a straight line path on a single face of Xn .
Otherwise the q j are on opposite faces and the segment of γ connecting the pair
contains an edge point pi . Any shorter path between the q j must cross an edge
distinct from the edge containing pi . It is only necessary to consider paths through
the edges containing pi±1 as we can easily provide a lower bound of l(γ )/n for the
length of paths through other edges. Without loss of generality we consider only
those paths through the edge containing pi+1.

By reflecting the doubled polygon over the edge containing pi+1 and considering
the top and bottom faces as part of the same plane, we are able to complete the proof
in the Euclidean setting. Assume q1 is on the top face and let r2 denote the reflection
of q2 through the edge containing pi+1 (see Figure 6). We show that the straight-line
path between q1 and r2 has length at least l(γ )/n. Let c be the point of intersection
between the line segments q1r2 and pi pi+1. Consider the pair of triangles 4q1cpi

and 4r2cpi+1. By construction we have that the sides opposite 6 c in each triangle
have equal length so that applying law of sines to both triangles yields

sin(6 q1)

Q1
=

sin(6 pi )

Pi
=

sin( 6 c)
C
=

sin(6 r2)

R2
=

sin(6 pi+1)

Pi+1
,

where we have used a capital letter to denote the length of the side opposite its
angle. We note that 6 pi = π − 6 pi+1 so that 6 r2 = 6 pi − 6 c and

sin(π − 6 c− 6 pi )

Q1
=

sin( 6 pi )

Pi
=

sin(6 pi − 6 c)
R2

=
sin(π − 6 pi )

pi+1
.

Via the trigonometric identity sin(π − x)= sin(x) we have Pi = Pi+1 and

Q1+ R2

2Pi
=

sin(6 pi − 6 c)+ sin(6 pi + 6 c)
2 sin(6 pi )

=
2 sin(6 pi ) cos(6 c)

2 sin(6 pi )
= cos( 6 c)≤ 1.

We have therefore shown that 2Pi = Pi + Pi+1 ≥ Q1+ R2 = l(γ )/n and conclude
that γ minimizes on all subintervals of length l(γ )/n. �
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3. Bounding the minimizing index

We have shown for n odd that Xn admits a 1/(2n)-geodesic by explicitly constructing
such curves. We now consider whether these curves realize the optimal minimizing
property on Xn , i.e., if k = 2n is the smallest k ∈ N for which Xn (n odd) admits a
1/k-geodesic. To quantify this notion Sormani introduced the minimizing index.

Definition 3.1 [Sormani 2007, Definition 3.3]. The minimizing index of a metric
space M, denoted by minind(M), is the smallest k ∈ N such that the metric space
admits a 1/k-geodesic.

For n odd the results of the previous section give an upper bound of 2n on
minind(Xn). Furthermore, we have seen that such Xn do not admit half-geodesics
and consequently that 2<minind(Xn)≤ 2n. A natural question is whether we can
sharpen this bound on the minimizing index of Xn . Given a doubled prime-gon it
is compelling to believe that its minimizing index is 2p.

Conjecture 3.2. If p is an odd prime, then minind(X p)= 2p.

Observe here that the primality of p is necessary, since if we have n = kp with
k ≥ 2, we can construct a 1/(2p)-geodesic by creating an over-under curve between
the midpoints of every k-th edge of Xn . Evidence towards this conjecture begins
with the following:

Proposition 3.3. The conjecture is true for the case p = 3; i.e., the minimizing
index of the doubled regular triangle is 6.

Proof. We first define the period of a closed geodesic on a doubled polygon to be
its total number of segments. As these geodesics must close smoothly, we have that
the period is always even. Also note because a geodesic on a doubled polygon will
never minimize on an open segment that contains multiple edge points, the period
provides a lower bound on the minimizing index of a geodesic (the smallest k ∈ N

such that it is a 1/k-geodesic).
We have therefore reduced the problem to showing that those closed geodesics

with period less than 6 have minimizing index at least 6. We have already estab-
lished that X3 does not admit half-geodesics, and that the period must be even,
so we need only consider those closed geodesics with period 4. Such curves can
be classified: they must leave an edge with angle π

6 , traverse an adjacent edge
perpendicularly, return to the starting edge (at the same point, but not with the same
velocity), traverse the remaining edge perpendicularly, and return to the starting
point to close up smoothly (see Figure 7).

It remains to show that any period-4 geodesic on X3 has minimizing index at least
6. We first show that the period-4 geodesic from Figure 7 has minimizing index
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P1

P2

P3

R

Q

V

Figure 7. Closed geodesic on X3 with period 4 and minimizing
index 6.

at least 6. In this figure QV is the bisector of angle V and Q R is perpendicular
to V P2. Using properties of similar triangles we have

|Q R| = |Q P3| =
|P2 P3|

3
=

L
12
.

This demonstrates that there exist two equal-length paths between Q and its corre-
sponding point on the bottom face: one along our geodesic through P3, and another
through R. The geodesic therefore cannot minimize beyond this segment of length
L/6, and we conclude that the minimizing index must be at least 6. For a period-4
geodesic on X3 that does not contain the midpoint of an edge, a similar argument
shows that the minimizing index must be strictly greater than 6. �

Please note that Proposition 3.3 did not appear in the original version of this paper.
The proof was sketched by the undergraduate research group [Adelstein et al. 2019]
and independently by one of the referees (who also produced Figure 7). The original
paper had an argument equivalent to the last paragraph of the proof showing that
the minimizing index of the geodesic from Figure 7 is at least 6, but did not classify
all period-4 geodesics, and therefore did not determine the minimizing index of X3.

It is reasonable to believe that a similar argument could be used to show that
minind(X5) = 10. It need only be shown that closed geodesics of period 4, 6,
or 8 have minimizing index at least 10. One quickly realizes that this direction of
reasoning will prove untenable for resolving the conjecture; as p grows it becomes
prohibitively difficult to complete such an analysis. As a partial solution to the
conjecture we present the following:

Theorem 3.4 [Adelstein et al. 2019, Theorem 2]. For p prime, as p→∞, the
minimizing index of X p grows without bound.

This theorem was proved after the completion of this paper by a subsequent
undergraduate research group [Adelstein et al. 2019]. The proof involves a careful
study of the closed geodesics on doubled polygons, developing new techniques to
study their minimizing properties. To the best of our knowledge Conjecture 3.2
remains open, and we invite the reader to pursue their own investigations.
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