Vol. 12, No. 7, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 16
Issue 5, 727–903
Issue 4, 547–726
Issue 3, 365–546
Issue 2, 183–364
Issue 1, 1–182

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1944-4184 (e-only)
ISSN: 1944-4176 (print)
Author Index
Coming Soon
Other MSP Journals
The linking-unlinking game

Adam Giambrone and Jake Murphy

Vol. 12 (2019), No. 7, 1109–1141

Combinatorial two-player games have recently been applied to knot theory. Examples of this include the knotting-unknotting game and the region unknotting game, both of which are played on knot shadows. These are turn-based games played by two players, where each player has a separate goal to achieve in order to win the game. In this paper, we introduce the linking-unlinking game which is played on two-component link shadows. We then present winning strategies for the linking-unlinking game played on all shadows of two-component rational tangle closures and played on a large family of general two-component link shadows.

knot, knot diagram, link, link diagram, linking-unlinking game, pseudodiagram, rational link, rational tangle, splittable, two-player game, unsplittable, winning strategy
Mathematical Subject Classification 2010
Primary: 57M25, 91A46
Received: 30 July 2018
Revised: 17 May 2019
Accepted: 11 June 2019
Published: 12 October 2019

Communicated by Kenneth S. Berenhaut
Adam Giambrone
Elmira College
Elmira, NY
United States
Jake Murphy
Louisiana State University
Baton Rouge, LA
United States