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On the zero-sum group-magicness
of cartesian products

Adam Fong, John Georges, David Mauro, Dylan Spagnuolo,
John Wallace, Shufan Wang and Kirsti Wash

(Communicated by Kenneth S. Berenhaut)

Let G = (V (G), E(G)) be a graph and let A = (A,+) be an abelian group with
identity 0. Then an A-magic labeling of G is a function φ from E(G) into A \ {0}
such that for some a ∈ A,

∑
e∈E(v) φ(e) = a for every v ∈ V (G), where E(v)

is the set of edges incident to v. If φ exists such that a = 0, then G is zero-sum
A-magic. Let G be the cartesian product of two or more graphs. We establish
that G is zero-sum Z-magic and we introduce a graph invariant j∗(G) to explore
the zero-sum integer-magic spectrum (or null space) of G. For certain G, we
establish A(G), the set of nontrivial abelian groups for which G is zero-sum
group-magic. Particular attention is given to A(G) for regular G, odd/even G,
and G isomorphic to a product of paths.

1. Introduction

Let G = (V (G), E(G)) be a graph. Let A be the set all nontrivial abelian groups
and let A = (A,+) ∈ A, where 0 denotes the identity of A. Then an A-labeling
of G is a function φ from E(G) into A \ {0}. For fixed e ∈ E(G), φ(e) is called
the label of e under φ, and for fixed v ∈ V (G), the sum of the labels of the edges
incident to v is called the weight of v under φ. The graph G is A-magic if and
only if there exists an A-labeling φ of G such that for some a ∈ A, the weight of
every vertex in V (G) under φ is a. In such a case, φ is called an A-magic labeling
of G. Additionally, G is zero-sum A-magic if and only if there is an A-labeling φ
of G such that the weight of every vertex in V (G) under φ is 0. In this case, φ
is called a zero-sum A-magic labeling of G. Letting A(G) denote the set of all
A ∈ A such that G is zero-sum A-magic, we observe that if H0 ∈ A(G) and H0

is isomorphic to a subgroup of an abelian group H, then H ∈ A(G). Particularly,
if A ∈ A(G), then for a positive integer k, we have Ak

∈ A(G). In Figure 1, we

MSC2010: 05C78.
Keywords: cartesian product of graphs, grid graph, magic labeling, group-magic labeling, zero-sum
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Figure 1. Zero-sum Z4 and Z2
4-magic labelings of G.

illustrate a zero-sum Z4-magic labeling and a zero-sum Z2
4-magic labeling of a

graph G. (The group Z4 is the cyclic group of integers under addition mod 4. In the
specification of elements of Z2

4 , parentheses are omitted.) Note that an alternative
zero-sum Z2

4-magic labeling can be formed by changing each label (a, 0) to (a, a).
Other obvious alternatives exist.

The zero-sum integer-magic spectrum of a graph G, denoted by zim(G), is the
set of positive integers k such that G is zero-sum Zk-magic, where Z1 is the group Z

of integers under addition and, for k ≥ 2, Zk is the cyclic group of integers under
addition mod k. Let N denote the set of positive integers. By the fundamental
theorem of finite abelian groups, N \ {1} is a subset of zim(G) if and only if G is
zero-sum A-magic for all finite A in A. Moreover, for any infinite abelian group
A = (A,+) with nonzero a ∈ A, a generates a subgroup of A that is isomorphic
to either Z or Zk for some k ≥ 2. Thus zim(G)=N if and only if A(G)=A. We
note especially that if zim(G)=N \ {2}, then A \ {Zk

2 | k ∈N } ⊆A(G).
Sedláček [1964] first introduced magic labelings, motivated by magic squares

in number theory. Stanley [1973] later showed that the study of magic labelings is
related to the study of linear homogeneous diophantine equations. It was shown inde-
pendently in [Low and Lee 2006] and [Shiu et al. 2004] that if G and H are A-magic
graphs, then the cartesian product of G and H is also A-magic. More recently,
Akbari et al. [2014] proved that every r-regular graph G with r ≥ 3, r 6= 5 has
zim(G)=N if r is even; otherwise zim(G)⊇N \{2, 4}. And, Shiu and Low [2018]
have determined the zero-sum integer-magic spectrum of the cartesian product of
two trees. For a dynamic survey of results on magic labelings, see [Gallian 2018].

In this paper, we consider the zero-sum A-magicness of cartesian products. In
Section 2, we give definitions and preliminary results. In Section 3, we develop our
main results, with particular attention given to graph parity and regularity. And in
Section 4, we consider the cartesian products of paths, also known as grid graphs.

2. Definitions and preliminary results

Throughout this paper, graphs will be finite, nontrivial, simple, loopless, and
connected unless specified otherwise. An even graph (resp. odd graph) shall refer
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G1 G2 G1�G2

Figure 2. The cartesian product G1 �G2.

to a graph G of which each vertex v has even (resp. odd) degree, denoted by dG(v).
Abelian groups shall have identity element 0 and binary operator +.

For i ∈ {1, . . . , n}, let Gi = (V (Gi ), E(Gi )) be a graph. The cartesian product
of G1,G2, . . . ,Gn , denoted by �n

i=1Gi or G1 � G2 � · · ·� Gn , is the graph G
such that

(1) the vertex set of G is
∏n

i=1 V (Gi ), and

(2) vertices (u1, u2, . . . , un) and (w1, w2, . . . , wn) of G are adjacent if and only
if (u1, u2, . . . , un) and (w1, w2, . . . , wn) differ in precisely one component i0,
and ui0 is adjacent to wi0 in Gi0 .

The following are well known. Note that the results in (b), (c), and (d) extend to
cartesian products of arbitrary finite length by part (a):

(a) As a binary operator on the set of graphs, � is associative and commutative
with respect to isomorphism.

(b) If (u, w) is a vertex of G1 �G2, then dG1�G2((u, w))= dG1(u)+ dG2(w).

(c) G1 �G2 is regular if and only if each of G1 and G2 is regular.

(d) If G1 and G2 are graphs with no isolated vertices, then G1 �G2 is bridgeless.

In Figure 2, we demonstrate the cartesian product G1 �G2 where G1 is isomor-
phic to the claw on four vertices and G2 is isomorphic to the cycle C3.

Let G be a graph and let h be a positive integer. Then a factor of G is a spanning
subgraph of G, and an h-factor of G is an h-regular factor of G. (The term factor
may also refer to a factor of a cartesian product. Its usage will clarify its intended
meaning.)

For n ≥ 2, let G be a cartesian product �n
i=1Gi . For fixed i0, 1 ≤ i0 ≤ n,

suppose that Hi0 is an hi0-factor of Gi0 . Then there exists a natural hi0-factor of G,
comprising the union of C disjoint subgraphs of G, each isomorphic to Hi0 , where
C is the product of the orders of the graphs Gi , 1≤ i ≤ n, except for i = i0. If, for
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Figure 3. An illustration of regular factors.

each i , E(Gi ) is partitioned by the edge sets of regular factors Hi,1, Hi,2, . . . , Hi,mi

of Gi , then these n partitions of E(G1), E(G2), . . . , and E(Gn) induce a natural
partition of E(G) by the edge sets of regular factors Fi, j , 1≤ i ≤ n, 1≤ j ≤ mi ,
where the regularity of Fi, j equals the regularity of Hi, j . Note that each vertex
of G is a vertex of each Fi, j as illustrated in Figure 3. Therein, graph G1 ∼= P2

has a 1-factor H1,1 = G1 whose edge set trivially partitions E(G1). And, G2

has a 1-factor H2,1 isomorphic to four vertex-disjoint copies of P2 and a 2-factor
H2,2 isomorphic to two vertex-disjoint copies of C4, where E(H2,1) and E(H2,2)

together partition E(G2). These regular factors respectively induce F1,1, F2,1, and
F2,2, which together partition E(G1�G2). (Note that G2 is itself a cartesian product
isomorphic to P2 �C4.)

Let G be a graph that has a zero-sum Z-magic labeling and let Z(G) represent
the (nonempty) set of all zero-sum Z-magic labelings of G. For each φ ∈ Z(G),
let j (φ) equal maxe∈E(G) |φ(e)|. Then j∗(G) shall denote minφ∈Z(G) j (φ). To
illustrate, we note that there exists a zero-sum Z-magic labeling φ of K4 such that
maxe∈E(K4) |φ(e)| = 2. Yet, since K4 is an odd graph, there is no such labeling
φ such that maxe∈E(K4) |φ(e)| = 1. Thus j∗(K4) = 2. On the other hand, some
graphs, including C2n−1 and Pn for n ≥ 2, are not zero-sum Z-magic. For such
graphs G, j∗(G) does not exist.

Theorem 1. If G is zero-sum Z-magic, then G is zero-sum Zk-magic for all k >
j∗(G). Additionally, if j∗(G)= 1, then A(G)=A.

Proof. Let φ be any zero-sum Z-magic labeling of G such that j (φ)= j∗(G), and fix
k> j∗(G). We form a zero-sum Zk-magic labeling of G by assigning φ(e) (mod k)



ON THE ZERO-SUM GROUP-MAGICNESS OF CARTESIAN PRODUCTS 1265

to e ∈ E(G). Consequently, if j∗(G) = 1, then zim(G) = N, implying that G is
zero-sum A-magic for all A ∈A. �

We observe that Georges, Mauro, and Wash [Georges et al. 2017] established
necessary and sufficient conditions under which a graph G is zero-sum Z k

2 j -magic.
In particular, they showed that G has a bridge whose removal results in an isolate
or bipartite component if and only if G is not zero-sum Z k

2 j -magic for any positive
integers j, k. Theorem 1 immediately implies that such G is not zero-sum Z -magic
for otherwise G would be zero-sum Z2 j -magic for 2 j > j∗(G).

Theorems 2 through 8, useful in the sequel, can be found in the existing literature.

Theorem 2 [Petersen 1891]. Let G be a 2t-regular graph. Then there exist t
2-factors of G that partition E(G).

Theorem 3 [Ore 1957]. Let G be a bridgeless regular graph of odd degree k and
let h be an even integer, 2≤ h ≤ 2

3 k. Then there exists an h-factor of G.

Theorem 4 [Georges et al. 2010]. Let G be a 3-regular graph. Then G is zero-sum
Z2

2-magic if and only if the chromatic index of G is 3.

Theorem 5 [Georges et al. 2010]. Let G be a graph with a bridge. Then for each
positive integer k, G is not zero-sum Zk

2-magic.

Theorem 6 [Choi et al. 2012]. Let G be a bridgeless graph. Then for each positive
integer k ≥ 3, G is zero-sum Zk

2-magic.

Theorem 7 [Low and Lee 2006; Shiu et al. 2004]. If G1,G2, . . . ,Gn are zero-sum
A-magic graphs, then �n

i=1Gi is zero-sum A-magic.

Theorem 8 [Akbari et al. 2014]. Let G be an r-regular graph, r ≥ 3, r 6= 5. If r is
even, then zim(G)=N. Otherwise, N \ {2, 4} ⊆ zim(G).

Corollary 9. Suppose that G is a graph with j∗(G)≤ 2. Then the following hold:

(a) If G is bridgeless, then A \ {Z2,Z2
2} ⊆A(G).

(b) If G is bridgeless and even, then A(G)=A.

(c) If G is bridgeless with a vertex of odd degree, then

A \ {Z2,Z2
2} ⊆A(G)⊆A \ {Z2}.

(d) If G has a bridge, then A(G)=A \ {Zk
2 | k ∈N }.

Proof. (a) We note that 1 ∈ zim(G) since j∗(G) is assumed to exist. The result
follows by Theorems 1 and 6.

(b) Since G is even, G is zero-sum Z2-magic (assign 1 to each edge of G), and
hence zero-sum Z2

2-magic. The result follows by part (a).
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(c) Part (c) follows from part (a) and the fact that any Z2-labeling of G must assign
1 to each edge; hence, no graph with a vertex of odd degree can be zero-sum
Z2-magic.

(d) We again observe that 1 ∈ zim(G) and, by Theorem 1, k ∈ zim(G) for k ≥ 3.
Thus N \ {2} ⊆ zim(G). The result now follows from Theorem 5. �

We note that j∗(K4)= 2 and, by the upcoming Corollary 10 and Theorem 11,
j∗(K7) = 2 as well. Yet zim(K4) = N \ {2} and, by Theorem 8, zim(K7) = N.
Moreover, the three graphs K4, the Petersen graph PG, and the (unique) 3-regular
graph G on 10 vertices with one bridge (see Figure 1) are each easily verified to
have zero-sum integer-magic spectrum N \ {2}. Yet, by Theorem 4 and Corollary 9,
A(K4)=A \ {Z2}, A(PG)=A \ {Z2,Z2

2}, and A(G)=A \ {Zk
2 | k ∈N }.

In the following corollary, we utilize j∗(G) to give an alternative proof of
Theorem 8 in the case r is even, r ≥ 4.

Corollary 10. Let G be an even-regular graph with degree r = 2t such that t ≥ 2.
Then the following hold:

(a) If t is even, then j∗(G)= 1 and A(G)=A.

(b) If t is odd, then j∗(G)≤ 2 and A(G)=A.

Proof. By Theorem 2, E(G) partitions into t 2-factors. If t is even, we construct a
zero-sum Z-magic labeling φ of G by assigning the label 1 to each edge of precisely
t
2 2-factors, and −1 to each edge of the remaining t

2 2-factors. Since j (φ) = 1,
we have j∗(G)= 1, implying A(G)=A by Theorem 1 or (since even graphs are
bridgeless) Corollary 9(b). On the other hand, if t is odd, we construct a zero-sum
Z-magic labeling φ of G by assigning the label 1 to each edge of precisely 1

2(t+1)
2-factors, −1 to each edge of precisely 1

2(t − 3) 2-factors, and −2 to each edge
of the one remaining 2-factor. Since j (φ) = 2, we have j∗(G) ≤ 2, implying
A(G)=A by Corollary 9(b). �

For illustration, Figure 4 displays vertex α of a 14-regular graph G whose edge
set is partitioned by the 2-factors H1, H2, H3, H4, H5, H6, H7. Suppose that for
each i , the edge set of Hi includes the edges αui and αwi . Since t = 7, we assign
the label 1 to the edges of each of four 2-factors H1, H2, H3, and H4, we assign
the label −1 to the edges of each of two 2-factors H5 and H6, and we assign the
label −2 to the edges of the remaining 2-factor H7. Since these labels bear upon
every vertex, the weight of every vertex is 0.

We observe that the graphs K6 � P2 and K7 illustrate the case t odd, yet
j∗(K6 � P2)= 1 (see Theorem 11), while j∗(K7)= 2.

Theorem 11. Let G be a (connected) graph. Then j∗(G)= 1 if and only if G is an
even graph with even size.
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Figure 4. An illustration of Corollary 10.

Proof. Suppose j∗(G)= 1. Then it is clear that G is even. To show that G has even
size, let φ be a zero-sum Z-magic labeling of G with j (φ)= 1. Also let x denote
the number of edges of G which receive the label 1 under φ, and let y denote the
number of edges of G which receive the label −1 under φ. Then

0=
∑

v∈V (G)

wv(φ)= 2
∑

e∈E(G)

φ(e)=
∑

e∈E(G)

φ(e),

implying x = y. Thus G has even size.
Now suppose that G is even with even size. Since G is even (and connected),

there exists an Eulerian circuit in G with even length. We produce a zero-sum
Z-magic labeling φ of G with j (φ)= 1 by assigning alternating labels of 1 and −1
to the edges of the circuit. �
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Figure 5. Zero-sum Z-magic labelings of G1 �G2 and G1 �G3.
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Because this paper emphasizes cartesian products, Theorem 11 is illustrated
in Figure 5 with an even graph G1�G2 with even size, and a noneven graph
G1�G3. We exhibit a zero-sum Z-magic labeling φ of G1�G2 with j (φ) = 1
along with indication (via subscripts) of a corresponding Eulerian circuit. And, we
show j∗(G1�G3)= 2 by exhibiting a zero-sum Z-magic labeling of G1�G3 with
maximum absolute label 2.

If M and N are connected odd graphs, then each has even order and M � N is
an even graph with even size |V (M)||E(N )|+|V (N )||E(M)|. As well, if M or N
is not connected, then each component of M � N is even with even size. Therefore
we have the following.

Corollary 12. Let M and N be odd graphs (not necessarily connected). Then
j∗(M � N )= 1.

3. Main results

As noted in the preceding section, not all graphs are zero-sum Z-magic. On the
other hand, if G is the cartesian product of nontrivial graphs, we have the following
result.

Theorem 13. Let M and N be graphs with δ(M), δ(N ) ≥ 1. Then M � N is
zero-sum Z-magic with j∗(M � N )≤max{1(M),1(N )}.

Proof. Let V (M)={u1, . . . , um} and V (N )={w1, . . . , wn}. For fixed i , 1≤ i ≤ n,
let M(i) be the subgraph of M�N induced by the vertices in {(u j , wi ) | 1≤ j ≤m}.
Similarly, for fixed i , 1≤ i ≤m, let N (i) be the subgraph of M �N induced by the
vertices in {(ui , w j ) | 1≤ j ≤ n}. Form a Z-labeling of M � N as follows: to each
edge of M(β), assign the label dN (wβ) and to each edge of N (α), assign the label
−dM(uα). Then the weight of any vertex (uα, wβ)∈V (M�N ) is dM(uα)dN (wβ)−

dM(uα)dN (wβ)= 0. Since the maximum absolute label is max{1(M),1(N )}, the
result follows. �

It is easy to show the following.

Theorem 14. Let M and N be zero-sum Z-magic graphs. Then M � N is zero-sum
Z-magic with j∗(M � N )≤max{ j∗(M), j∗(N )}.

Theorem 15. Let G =�n
i=1Gi where n ≥ 2 and δ(Gi )≥ 1 for each i . Then G is

zero-sum Z-magic. Moreover, for ζ =max{1(Gi )} over i , we have j∗(G)≤ ζ if n
is even, and j∗(G)≤ 2ζ if n is odd.

Proof. By Theorem 13, G is zero-sum Z-magic.
If n = 2t , let Hi = G2i−1 � G2i for 1 ≤ i ≤ t . Then by Theorem 13, each

Hi is zero-sum Z-magic with j∗(Hi )≤max{1(G2i−1),1(G2i )} ≤ ζ . Since G is
isomorphic to�t

i=1 Hi , it follows from Theorem 14 that j∗(G)≤max{ j∗(Hi )} ≤ ζ .
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If n = 2t + 1, let H1 = G1 � (G2 �G3) and let Hi = G2i �G2i+1 for 2≤ i ≤ t .
By Theorem 13, each Hi is zero-sum Z-magic. Observing that 1(G2 � G3) =

1(G2)+1(G3), we have from Theorem 13 that j∗(H1)≤max{ζ, 2ζ } = 2ζ . Since
j∗(Hi )≤ ζ for i ≥ 2, we have j∗(G)≤ 2ζ by Theorem 14. �

Lemma 16. Let G1,G2 and G3 be odd graphs, and let M = �3
i=1Gi . Then

j∗(M)= 2 and A(M)=A \ {Z2}.

Proof. Since M is odd, we show j∗(M) = 2 by developing a zero-sum Z-magic
labeling λ of M with j (λ)= 2.

Let G1, G2, and G3 have respective vertex sets {ui | 1≤ i ≤ n1}, {vi | 1≤ i ≤ n2},
and {wi | 1 ≤ i ≤ n3}. Letting V (P2) = {1, 2}, we have j∗(Gi � P2) = 1 by
Corollary 12. We thus let φ′′i denote a zero-sum Z-magic labeling of Gi � P2 such
that j (φ′′i )= 1. Let φ′i be the Z-labeling of Gi such that for each edge αβ of Gi ,
φ′i (αβ)= φ

′′

i ((α, 1)(β, 1)). Note that the weight of each vertex under φ′i is 1 or −1.
Now consider G1 � G2. We construct a Z-labeling ψ of G1 � G2 as follows.

To each edge (ux , v)(u y, v) of G1 �G2, assign the label φ′1(ux u y)wφ′2(v). And, to
each edge (u, vx)(u, vy) of G1�G2, assign the label φ′2(vxvy)wφ′1(u). We observe
that under ψ , each edge of G1 �G2 has label 1 or −1 and each vertex of G1 �G2

has weight 2 or −2.
Each edge e in E(M) has one of the following two forms:

• Type I: e = (zx , w)(zy, w), where zx zy ∈ E(G1 �G2) and w ∈ V (G3).

• Type II: e = (z, wx)(z, wy), where z ∈ V (G1 �G2) and wxwy ∈ E(G3).

Let λ be a Z-labeling of M such that

λ(e)=
{
ψ(zx zy)wφ′3(w) if e is of type I,
−wψ(z)φ′3(wxwy) if e is of type II.

Since ψ(zx zy) ∈ {−1, 1}, wφ′3(w) ∈ {−1, 1}, wψ(z) ∈ {−2, 2}, and φ′3(wxwy) ∈

{−1, 1}, the edges of type 1 receive ±1 under λ and edges of type II receive labels
of ±2 under λ. It is easily checked that λ is a zero-sum Z-magic labeling of M
and that j (λ)= 2. Hence j∗(M)= 2. (In Figure 6, the evolution of λ is illustrated
via edges incident to (u, v, w) ∈ V (G1 �G2 �G3), where each of u, v, and w is
assumed to have degree 3 in G1,G2, and G3 respectively. Labels assigned to edges
under φ′1, φ

′

2, and φ′3 are notional, from which labels under ψ and λ follow.)
By Corollary 9(c), it suffices to produce a zero-sum Z2

2-magic labeling of M. For
each edge e ∈ E(M) of the form (ui , v, w)(u j , v, w), let ρ(e)= (0, 1). For each
edge e of the form (u, vi , w)(u, v j , w), let ρ(e)= (1, 0). And for each edge e of
the form (u, v, wi )(u, v, w j ), let ρ(e)= (1, 1). It follows from the oddness of each
Gi that the weight of each vertex under ρ is 0. �
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Figure 6. An illustration of the labeling λ of Lemma 16.

Theorem 17. For 1≤ i ≤ n, let Gi be an odd graph, and let G =�n
i=1Gi . Then

(a) If n is even, j∗(G)= 1 and A(G)=A.

(b) If n is odd, j∗(G)= 2 and A(G)=A \ {Z2}.

Proof. (a) Let n = 2t . Then G is isomorphic to �t
i=1 Hi , where Hi = G2i−1 �G2i .

By Corollary 12, j∗(Hi )= 1. The result now follows from Theorems 14 and 1.

(b) Let n = 2t + 1, where t ≥ 1. Let H1 = G1 � G2 � G3 and for 2 ≤ i ≤ t , let
Hi = G2i � G2i+1. By Lemma 16, j∗(H1) = 2 and A(H1) = A \ {Z2}. And, by
Corollary 12, j∗(Hi )= 1 for 2≤ i ≤ t , implying A(Hi )=A. Thus, by Theorem 7,
Theorem 14 and the fact that G is odd, j∗(G)= 2 and A(G)=A \ {Z2}. �

We now consider graphs G =�n
i=1Gi such that n ≥ 2, Gi is nontrivial, and

G is r-regular. Since the regularity of G coimplies the regularity of each Gi , we
assume Gi is ri -regular, ri ≥ 1. Then the degree of G is r =

∑n
i=1 ri .

The next theorem follows from Theorem 8 or alternatively Corollary 10 with the
4-cycle handled as a trivial special case.

Theorem 18. Let n ≥ 2 and let G =�n
i=1Gi be an even-regular graph. Then

A(G)=A.
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We turn to the case r is odd. For odd-regular graphs M except 5-regular,
Theorem 8 indicates that M is zero-sum A-magic for all A except possibly Zk

2,Zk
4,

k ≥ 1. (Certainly M is not zero-sum Z2-magic.) However, if M is a cartesian
product of at least two factors, then more definitive results can be given for any odd
regularity.

Lemma 19. Let G = G1 � G2 be an odd-regular graph, where δ(Gi ) ≥ 1. Then
A \ {Z2,Z2

2} ⊆A(G)⊆A \ {Z2}. Moreover, if either G1 or G2 has degree 1, then
A(G)=A \ {Z2}.

Proof. Since G is regular if and only if each Gi is regular, we assume without loss
of generality Gi is ri -regular for odd r1 and even r2. Let r2 = 2t .

If r1 ≥ 3, then by Theorem 3, E(G1) partitions into a 1
2(r1 + 1)-factor and a

1
2(r1− 1)-factor. By Petersen’s theorem, E(G2) partitions into t 2-factors. Thus
E(G) naturally partitions into t 2-factors F1, F2, . . . , Ft , a 1

2(r1+1)-factor F ′, and
a 1

2(r1−1)-factor F ′′. We form a zero-sum Z-magic labeling φ of G with j (φ)= 2
based on the parity of t .

If t = 2k+ 1,

φ(e)=


1 if e ∈ Fi , 1≤ i ≤ k,
−1 if e ∈ Fi , k+ 1≤ i ≤ 2k+ 1,

2 if e ∈ F ′,
−2 if e ∈ F ′′.

If t = 2k,

φ(e)=



1 if e ∈ Fi , 1≤ i ≤ k,
−1 if e ∈ Fi , k+ 1≤ i ≤ 2k− 1,
−2 if e ∈ F2k,

2 if e ∈ F ′,
−2 if e ∈ F ′′.

Since j (φ) = 2 in each case, we have j∗(G) ≤ 2. The result follows by
Corollary 9(c).

Suppose r1 = 1. Then the edge set E(G) partitions naturally into a 1-factor F ′

(of which there are |V (G2)| components each isomorphic to P2) and, by Petersen’s
theorem, t 2-factors F1, F2, . . . , Ft . We form a zero-sum Z-magic labeling φ of G
with j (φ)= 2 as above, accounting for the vacuous 1

2(r1− 1)-factor.
If t = 2k+ 1 is odd,

φ(e)=


1 if e ∈ Fi , 1≤ i ≤ k,
−1 if e ∈ Fi , k+ 1≤ 1≤ 2k+ 1,

2 if e ∈ F ′.
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If t = 2k is even,

φ(e)=


1 if e ∈ Fi , 1≤ i ≤ k,
−1 if e ∈ Fi , k+ 1≤ i ≤ 2k− 1,
−2 if e ∈ F2k,

2 if e ∈ F ′.

Thus j∗(G) ≤ 2, implying A \ {Z2,Z2
2} ⊆ A(G) ⊆ A \ {Z2} by Corollary 9(c). It

remains to show that G is zero-sum Z2
2-magic.

Let H denote a 2-factor of G2. Then P2 � H is a 3-factor of G (not necessarily
connected) in which each component is a prism. Since each prism is hamiltonian
and hence 3-edge colorable, P2 � H is zero-sum Z2

2-magic by Theorem 4. Letting
φ′ be a zero-sum Z2

2-magic labeling of P2 � H , we form a zero-sum Z2
2-magic

labeling φ of G as follows:

φ(e)=
{
φ′(e) if e ∈ E(P2 � H),
(1, 1) if e ∈ E(G− (P2 � H)). �

Lemma 20. Suppose G = G1 � G2 � G3 is odd-regular, where Gi is ri -regular,
ri ≥ 1. Suppose also that either ri = 1 for some i or ri is odd for all i . Then
A(G)=A \ {Z2}.

Proof. If ri is odd for all i , then the result follows from Theorem 17. So, with no
loss of generality, suppose r1 = 1 and r2, r3 are even. Since G is isomorphic to
G1 � H , where H = G2 �G3, the result follows from Lemma 19. �

Theorem 21. Suppose G =�n
i=1Gi is odd-regular, where n ≥ 3 and Gi is ri -

regular, ri ≥ 1. Let ω denote the number of odd-regular Gi . Then the following
hold:

(a) If ω ≥ 3, then A(G)=A \ {Z2}.

(b) If ω=1, then A\{Z2,Z2
2}⊆A(G)⊆A\{Z2}. Moreover, if the sole odd-regular

Gi has degree 1, then A(G)=A \ {Z2}.

Proof. We observe that ω must be odd since G is odd-regular with degree equal to∑n
i=1 ri .

(a) With no loss of generality, let G1 and G2 be odd-regular. Then �n
i=3Gi is odd

regular as well, which implies that G is isomorphic to the cartesian product of three
odd-regular graphs G1,G2, and �n

i=3Gi . The result follows by Lemma 20.

(b) With no loss of generality, let G1 be odd-regular. Then �n
i=2Gi is even-regular,

which implies that G is isomorphic to the cartesian product of one odd-regular graph
G1 and one even-regular graph �n

i=2Gi . The result follows by Lemma 19. �
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4. Grid graphs

In this section we consider the cartesian product of paths G =�n
i=1 Pai , where

n ≥ 2 and ai ≥ 2. We denote the vertex set of Pm by {1, 2, 3, 4, . . . ,m}, where x is
adjacent to y if and only if |x− y| = 1. We note that if α is the number of ai ’s equal
to 2, then 1(G)= 2n−α, δ(G)= n, and for all integers j , n ≤ j ≤ 2n−α, there
exists a vertex of G with degree j . We also note that G is regular (in particular,
n-regular) if and only if ai = 2 for all i .

Lemma 22. Let M be a graph such that j∗(M) ≤ 2 and j∗(M � P2) ≤ 2. Then
j∗(M � Pn)≤ 2 for n ≥ 3.

Proof. Let H ′ denote the subgraph of M � Pn induced by the vertices in {(v, 1) |
v ∈ V (M)} and let H ′′ denote the subgraph of M � Pn induced by the vertices
in {(v, i) | v ∈ V (M), i = 1, 2}. Since H ′ and H ′′ are respectively isomorphic to
M and M � P2, we can find zero-sum Z-magic labelings φ′ of H ′ and φ′′ of H ′′

such that j (φ′) and j (φ′′) are each at most 2. As follows, we construct a zero-sum
Z-magic labeling φ of M � Pn that draws its labels from the images of φ′ and φ′′

(this labeling is illustrated in Figure 7 with n = 5 and a graph M that is seen by
inspection to satisfy the hypotheses of the lemma):

φ(e)=



φ′′(e) if e = (u, 1)(w, 1),
φ′((u, 1)(w, 1)) if e = (u, i)(w, i), 2≤ i ≤ n− 1,
φ′′((u, 1)(u, 2)) if e = (u, i)(u, i + 1), 1≤ i ≤ n− 1, i odd,
−φ′′((u, 1)(u, 2)) if e = (u, i)(u, i + 1), 1≤ i ≤ n− 1, i even,
−φ′′((u, 1)(w, 1)) if e = (u, n)(w, n), n odd,
φ′′((u, 1)(w, 1)) if e = (u, n)(w, n), n even.

Thus j (φ)≤ 2, giving the result. �

Lemma 23. Let M be a graph and let A ∈ A such that both M and M � P2 are
zero-sum A-magic. Then M � Pn is zero-sum A-magic for n ≥ 3.

Proof. Let H ′ and H ′′ denote the subgraphs of M � Pn given in the proof of
Lemma 22, and let φ′ and φ′′ be zero-sum A-magic labelings of H ′ and H ′′,
respectively. Then the labeling φ of that proof is a zero-sum A-magic labeling of
M � Pn . �

Theorem 24. Suppose G =�n
i=1 Pai , where n ≥ 2. If n is even and ai = 2 for all i ,

then A(G)=A. Otherwise, A(G)=A \ {Z2}.

Proof. If n is even and ai = 2 for all i , the result follows from Theorem 18. If n is
odd and ai = 2 for all i , the result follows from Lemma 19 and the observation that
G is isomorphic to H1 � H2, where H1 = P2 and H2 =�n

i=2 P2. We thus assume
ai ≥ 3 for some i , which implies that G has a vertex of odd degree.
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M �P5 and �

Figure 7. An illustration of the labeling φ of Lemma 22.

Express G as follows:

• If n = 2k, then G =�k
i=1 Hi , where Hi = Pa2i−1 � Pa2i .

• If n = 2k + 1, then G =�k
i=1 Hi , where H1 = Pa1 � Pa2 � Pa3 and Hi =

Pa2i � Pa2i+1 for 2≤ i ≤ k.

Each Hi must be isomorphic to one of the following:

• Class 1: P2 � P2.

• Class 2: Pr � Ps , r ≥ 2, s > 2.

• Class 3: P2 � P2 � P2.

• Class 4: P2 � P2 � Ps , s ≥ 3.

• Class 5: P2 � Ps � Pt , s, t ≥ 3.

• Class 6: Ps � Pt � Pr , s, t, r ≥ 3.

We first show that for each Hi , we have j∗(Hi )≤ 2.
By Theorem 15, the graphs Hi of classes 1, 2, and 3 have j∗(Hi )≤ 2.
Consider graphs of class 4. Since j∗(P2 � P2)≤ 2 and j∗((P2 � P2)� P2)≤ 2,

graphs Hi of class 4 have j∗(Hi )≤ 2 by Lemma 22.
Consider graphs of class 5. Since j∗(P2 � Ps)≤ 2 and j∗((P2 � Ps)� P2)≤ 2,

graphs Hi of class 5 have j∗(Hi )≤ 2 by Lemma 22.
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Figure 8. A zero-sum Z2
2-magic labeling of P4 � P5.

Consider graphs of class 6. Since j∗(Ps � Pt)≤ 2 and j∗((Ps � Pt)� P2)≤ 2,
graphs Hi of class 6 have j∗(Hi )≤ 2 by Lemma 22.

Thus, by Theorem 14, j∗(G)≤ 2, which implies by Corollary 9(c) that

A \ {Z2,Z2
2} ⊆A(G)⊆A \ {Z2}.

It now suffices to show that G is zero-sum Z2
2-magic. To that end, we next show

that each Hi is zero-sum Z2
2-magic.

By inspection, the graph Hi of class 1 has A(Hi )=A.
By Corollary 9(c), the graphs Hi of class 2 are zero-sum A-magic for all A except

Z2 and possibly Z2
2. But it is an easy matter to construct a zero-sum Z2

2-magic
labeling of Hi , thereby establishing that A(Hi )=A \ {Z2}. Particularly, consider
the following sequence of vertices that specifies a cycle:

(1, 1), . . . , (1, s), (2, s), . . . , (r, s), (r, s− 1), . . . , (r, 1), (r − 1, 1), . . . , (1, 1).

Moving around the cycle, assign each edge a label from {(0, 1), (1, 0)} according
to the following algorithm and as illustrated in Figure 8 (where parentheses are
omitted): assign (0, 1) to the edge (1, 1)(1, 2). For every two distinct edges e′ and
e′′ of the cycle, assign distinct labels if e′ and e′′ are incident to a common vertex of
degree 3 in G; otherwise, assign equal labels if e′ and e′′ are incident to a common
vertex of degree 2 in G. To each other edge of G, assign (1, 1).

By Theorem 21(a), the graph Hi of class 3 has A(Hi )=A \ {Z2}.
Consider graphs of class 4. Since P2 � P2 is of class 1, it is zero-sum A-magic

for all A. And since (P2 � P2)� P2 is of class 3, it is zero-sum A-magic for all A

except Z2. Thus, by Lemma 23 and the fact that graphs Hi of class 4 have vertices
of odd degree, A(Hi )=A \ {Z2}.

Consider graphs of class 5. Since P2 � Ps is of class 2, it is zero-sum A-magic
for all A except Z2. And since (P2 � Ps)� P2 is of class 4, it is zero-sum A-magic
for all A except Z2. Thus, by Lemma 23 and the fact that graphs Hi of class 5 have
vertices of odd degree, A(Hi )=A \ {Z2}.

Consider graphs of class 6. Since Ps � Pt is of class 2, it is zero-sum A-magic
for all A except Z2. And since (Ps � Pt)� P2 is of class 5, it is zero-sum A-magic



1276 FONG, GEORGES, MAURO, SPAGNUOLO, WALLACE, WANG AND WASH

for all A except Z2. Thus, by Lemma 23 and the fact that graphs Hi of class 6 have
vertices of odd degree, A(Hi )=A \ {Z2}.

We therefore see by Theorem 7 that A \ {Z2} ⊆A(G). But since G has a vertex
of odd degree, G is not zero-sum Z2-magic. Thus A(G)=A \ {Z2}. �

We close this section with a theorem that utilizes Corollary 12.

Theorem 25. Let n ≥ 3 and let G be an odd graph. Then A(G � Pn)=A \ {Z2}.

Proof. Let H ′ be the subgraph of G � Pn induced by {(v, i) | v ∈ V (G), i = 1, 2}.
Since H ′ is isomorphic to G � P2, Corollary 12 implies the existence of a zero-sum
Z-magic labeling φ′ of H ′ such that j (φ′)= 1. We establish a zero-sum Z-magic
labeling φ of G � Pn with j (φ)= 2, thereby establishing j∗(G � Pn)≤ 2:

φ(e)=


φ′((u, 1)(w, 1)) if e = (u, 1)(w, 1) or (u, n)(w, n),
2φ′((u, 1)(w, 1)) if e = (u, i)(w, i), 2≤ i ≤ n− 1,
φ′((u, 1)(u, 2)) if e = (u, i)(u, i + 1), 1≤ i ≤ n− 1.

By Corollary 9(c), it now suffices to establish a zero-sum Z2
2-magic labeling φ of

G � Pn:

φ(e)=



(0, 1) if e = (u, 1)(w, 1),
(1, 1) if e = (u, i)(w, i), 2≤ i ≤ n− 1,
(0, 1) if e = (u, n)(w, n), n even,
(1, 0) if e = (u, n)(w, n), n odd,
(0, 1) if e = (u, i)(u, i + 1), i odd,
(1, 0) if e = (u, i)(u, i + 1), i even. �

5. Closing remarks

We close this paper with suggestions for further study.
If G is the cartesian product of two odd graphs, then j∗(G)= 1. What can be

said of j∗(G) if one or each factor is even?
If T1, T2, . . . , Tn is a collection of nontrivial trees and G =�n

i=1Ti , we are able
to show that j∗(G)≤ 4. Is this a sharp upper bound?

What can be said of j∗(G) if G is an odd cartesian product?
We have seen that the graphs G under study have j∗(G)≤ 2, with j∗(G)= 1 if

and only if G is an even graph with even size. We have also seen that j∗(G)= 1 is a
sufficient but not necessary condition for A(G)=A. Are there cartesian products G
such that j∗(G)≥ 3? Are there necessary and sufficient conditions for j∗(G)= 2?
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The variable exponent
Bernoulli differential equation

Karen R. Ríos-Soto, Carlos E. Seda-Damiani
and Alejandro Vélez-Santiago

(Communicated by Toka Diagana)

We investigate the realization of a Bernoulli-type first-order differential equation
with a variable exponent. Using substitution methods, we show the existence of
an implicit solution to the Bernoulli problem. Numerical simulations applied to
several examples are also provided.

1. Introduction

The aim of this paper is to investigate a Bernoulli-type first-order ordinary differen-
tial equation with a variable exponent, formally written as

dy
dx
+ a(x)y = b(x)y p(x). (1-1)

Here a(x), b(x) are continuous functions and p(x) is a function of class C1 in a
bounded interval [α, β], with p(x) 6= 1 for all x .

Equation (1-1) is well known and standard in the case when p(x)= p, a constant;
e.g., see [Boyce and DiPrima 2012; Edwards and Penney 2008; Zill and Cullen
2012]. However, when the exponent is variable, to the best of our knowledge, this
problem has not been investigated up to the present time. The focus of this work is
to provide a first attempt to solve the generalized Bernoulli-type problem (1-1) for
particular functions p(x). Unfortunately, even for simple types of functions p(x),
the solution of problem (1-1) cannot be given explicitly, and its formulation is in
most cases quite complicated. At the end, for the main examples, we will provide
numerical simulations for the solutions of ODEs of the type presented in this paper,
and we will analyze and compare them with the analytical solutions.

Problem (1-1) for p a constant, known as the Bernoulli ODE, was proposed
by James Bernoulli in 1695. A year later, Leibniz solved the equation by making
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substitutions and simplifying to a linear equation, similar to the method employed
in this work. This type of ODE can be viewed as a generalization of the frictional
forces equation. Furthermore, modern physics uses Bernoulli differential equations
for modeling the dynamics behind certain circuit elements, known as Bernoulli
memristors (for more details, we refer to [O’Neil 2012], among others). The
Bernoulli differential equation also shows up in some economic utility maximization
problems; see, e.g., [Merton 1969]. As mentioned above, all these models consider
p to be constant, and there is no literature known for the case when p = p(x) is
nonconstant.

Over the recent years, various mathematical problems with variable exponent
have attracted the attention of many authors. Interest in variational problems
and differential equations with nonstandard growth conditions has grown, highly
motivated by various applications, such as elastic mechanics, electrorheological
fluids, fluid dynamics, and image restoration; see [Acerbi and Mingione 2002; Bollt
et al. 2009; Chen et al. 2006; Cruz-Uribe and Fiorenza 2013; Diening et al. 2011;
Diening and Růžička 2003], among others. However, to the best of our knowledge,
there is no work done on variable exponent ordinary differential equations.

The paper is organized as follows. In Section 2 we work with (1-1) in all its
generality. By making proper substitutions, we transform (1-1) into an exponential-
type first-order ODE with variable coefficients, which depends on the variable
exponent function p(x). We show that under appropriate conditions on p(x), the
corresponding initial value problem of type (1-1) is well-posed. Section 3 is devoted
entirely to the solvability of problem (1-1) in the case when the coefficients a, b
are constant. However, up to the present time, there are no known appropriate tools
that could allow us to solve the problem (1-1) in a general form. Consequently, in
this section we focus on the realization of problem (1-1) under particular choices
of the function p(x). Even under such restrictions, the solution of problem (1-1)
turns out to be of a very complicated structure, and in almost all cases only implicit
solutions are achieved. Under some additional restrictions, we are able to provide
a concrete formula for the solution of problem (1-1) (under the assumptions of
Section 3), which is given as an elaborated convergent infinite series which involves
complicated expressions, such as exponential integral functions. In Section 4, we
consider a particular case when the coefficients are variable with a specific structure
directly related with the exponent p(x). Several examples will be illustrated, whose
structure will coincide with the structure outlined at Section 2. Consequently,
solutions can only be given implicitly, as argued in the previous section. Finally, in
Section 5, some numerical methods are performed over the solutions of particular
examples of ODEs of types given by problem (1-1). When possible, we will discuss
the relationship between the behavior shown by the solution deduced through
numerical methods, in comparison with the analytic solution.
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2. Reformulation of the problem

In this section, simple calculations to transform the original Bernoulli equation
(1-1) into a simple differential equation will be employed.

Let us start by performing the substitution

v = y1−p(x). (2-1)

Then one has

y = v1/(1−p(x)),

y′ =
d

dx
(v1/(1−p(x)))= v1/(1−p(x))

(
p′(x)

(1− p(x))2
ln v+

1
(1− p(x))

v′

v

)
.

(2-2)

Substituting (2-2) and (2-1) into (1-1), and multiplying both sides by v we obtain

v1/(1−p(x))
(

p′(x)
(1− p(x))2

v ln v+
1

(1− p(x))
v′+ a(x)v

)
= b(x)v1/(1−p(x)),

where we recall that p = p(x). Dividing both sides of the equality above by
v1/(1−p(x)), we arrive at

p′(x)
(1− p(x))2

v ln v+
1

(1− p(x))
v′+ a(x)v = b(x). (2-3)

Performing the substitution w = ln v in (2-3), we have the nonlinear ODE

p′(x)
(1− p(x))2

eww+
1

(1− p(x))
eww′+ a(x)ew = b(x),

which, in turn, can be further simplified into the ODE

w′ = b(x)e−w(1− p)− a(x)(1− p)−
p′

1− p
w. (2-4)

Note that (2-4) is fully nonlinear, and cannot be linearized, and consequently its
solvability is quite nontrivial (as we will see in the subsequent section, even for
particular cases). However, the following result asserts that the ODE (2-4) can be
solved under certain conditions.

Theorem 2.1 (see [Edwards and Penney 2008]). Assume that both f (x, y) and
its partial derivative ∂y f (x, y) are continuous over a rectangular region R in the
xy-plane that contains the point (a, b) in its interior. Then, there exists some open
interval I containing the point a such that the initial value problem

dy
dx
= f (x, y), y(a)= b,

is uniquely solvable over I .
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For our case of interest, namely, the solution of (2-4), under suitable conditions
on the functions a(x), b(x) and p(x), we have

f (x, w)= b(x)e−w(1− p)− a(x)(1− p)−
p′

1− p
w,

∂w f (x, w)=−e−wb(x)(1− p)−
p′

1− p
.

Hence we can easily find a rectangle in R2 in which both f (x, w) and ∂w f (x, w)
are continuous. Consequently, we can apply Theorem 2.1 to obtain that (2-4) is
solvable over some interval I = (α, β).

3. Solvability of problem (1-1): constant coefficients case

The following section will be devoted in finding tools to solve the problem (1-1).
Because of the generality and difficulty of the original problem (1-1), we will
investigate the solvability for particular constant coefficient cases. It is shown that
even in very simple cases the problem will be highly nontrivial, as will its solution,
and basically impossible to be solved explicitly.

3A. The case: a = 0 and b = 1. Consider the situation when a(x) = 0 and
b(x) = 1. Then (1-1), using the substitution argument in (2-4), becomes the
simplified differential equation

w′ = e−w(1− p)−
p′

1− p
w. (3-1)

We seek an even more simplified version of the problem (3-1). In fact, below we
present some particular cases when the problem (3-1) can be solved implicitly
(under suitable conditions that will be explained in more detail).

3A1. A separable case. We consider the case when the exponent p= p(x) satisfies
the ordinary differential equation

p′

(1− p)
= λ(1− p), (3-2)

where λ ∈ R\ {0} is a fixed constant. Then (3-2) becomes

1
(1− p)2

dp = λ dx, (3-3)

which is clearly separable. The function p(x)= 1− 1/(λx) is a particular solution
to the problem (3-3). For this particular case, substituting the function p(x) in (3-1)
yields

dw
dx
=

1
λx
(e−w − λw), (3-4)
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which is also a separable first-order ODE. Hence solving (3-4), we get the implicit
equation ∫

1
e−w − λw

dw =
ln |x |
λ
+C, (3-5)

where the integral on the left-hand side cannot be computed explicitly. We then
examine the case when ∣∣∣∣e−wλw

∣∣∣∣< 1. (3-6)

This condition guarantees the uniform convergence of the series in the right-hand
side of (3-5) in the function h(w), defined by

h(w)=
1

e−w − λw
=−

1
λw

(
1

1− e−w/(λw)

)
=−

∞∑
k=0

1
(λw)k+1ekw . (3-7)

The uniform convergence of the series in h(w) allows us to perform term by term
integration, arriving at∫

h(w) dw =−
∞∑

k=0

∫
1

(λw)k+1ekw dw =
1
λ

∞∑
k=0

(λw)−k Ek+1(kw), (3-8)

where En(x) is the so called n-th exponential integral function, defined by

En(x)=
∫
∞

1

e−xt

tn dt (n ∈ N). (3-9)

Thus in view of (3-5) and (3-8) (under the special assumption (3-6)), the implicit
solution to (3-4) with a(x)= 0, b(x)= 1 and p(x)= 1− 1/(λx) is given by

∞∑
k=0

(λw)−k Ek+1(kw)− ln |x | = C. (3-10)

Performing backward substitutions on w and using the explicit formula for the
variable exponent p(x), the solution for (3-1) becomes

G(x, y)= C

for

G(x, y) :=
∞∑

k=0

(
x

ln y

)k

Ek+1(k(λx)−1 ln y)− ln |x |, (3-11)

whenever

0< y <
(
| ln y|
λx

)λx

.
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A further analysis on the solution (3-11) together with the condition above shows
that the solution y = y(x) fulfills y(x)≥ ex, with y ≈ ex as x is large enough. In
particular, the solution blows up as x tend to infinity.

3A2. The exact method. The previous case can be worked with an exact ODE by
taking (3-4) and rewriting it such that

(e−w − λw) dx − λx dw = 0, (3-12)

where M(x, w) = e−w − λw and N (x, w) = −λx , and looking over the partial
derivatives Mw and Nx it is clear that (3-12) is not exact; see, e.g., [Boyce and
DiPrima 2012]. Thus, suppose that an integration factor µ(x, w) = µ(w) exists
such that

µ(w)(e−w − λw) dx −µ(w)λx dw = 0 (3-13)

is an exact differential equation. Then M̃w= Ñx , where M̃(x, w)=µ(w)(e−w−λw)
and Ñ (x, w)=−µ(w)λx , from which we obtain

µ(w)= exp
(∫

1
1− λwew

dw
)
. (3-14)

Now let

8(w)=
1

1− λwew
=

∞∑
k=0

λkwkekw

for |λwew|< 1, and where the integration of this series is∫
8(w) dw = 1+

∞∑
k=1

∫
λkwkekw dw = 1+

∞∑
k=1

−w(λw)k E−k(−kw). (3-15)

Substitution of (3-15) into (3-14) yields

µ(w)= exp
(

1+
∞∑

k=1

−w(λw)k E−k(−kw)
)
. (3-16)

With this function we are now able to perform partial integration over (3-13) and
obtain an expression for the implicit solution of problem (3-1) for a = 0, b= 1 and
p(x)= 1− 1/(λx):

F(x, w)= µ(w)(e−w − λw)x = C, (3-17)

where µ(w) is as shown in (3-14).
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3B. The case a = b = 1. In this subsection we take a quick look into the case
when a 6= 0; for simplicity we take a = 1. In fact, setting a(x)= b(x)= 1, (1-1)
and (2-4) become

dy
dx
+ y = y p(x), (3-18)

w′ = (e−w − 1)(1− p)−
p′

1− p
w, (3-19)

respectively. Then as in the previous subsection, we concentrate on the separable
case for (3-19).

In fact, to have separability, as before we require that the function p(x) fulfill
(3-2) (here for simplicity we take λ= 1). Proceeding as in Section 3A1, we have that
p(x)= 1− 1/x is the required function. Inserting this function into (3-19), we get

dw
dx
=

1
x
(e−w −w− 1), (3-20)

a clearly separable ODE whose integral equation is given by∫
dw

e−w −w− 1
= ln |x | +C. (3-21)

Now let

h(w)=
1

e−w−w−1
=−

1
1+w

(
1

1−e−w/(1+w)

)
=−

∞∑
k=0

e−kw

(1+w)k+1 , (3-22)

where we are requiring that ∣∣∣∣ e−w

1+w

∣∣∣∣< 1. (3-23)

Then under such restriction, the series appearing in (3-22) converges absolutely,
and consequently, we have∫

h(w)dw=−
∞∑

k=0

∫
e−kw

(1+w)k+1 dw=
∞∑

k=0

e−k(w+1)−k Ek+1(k(w+1)). (3-24)

In view of (3-23) and (3-24), the solution of the ODE (3-18) is given implicitly by
H(x, y)= C for

H(x, y) :=
∞∑

k=0

e−k
(

ln y
x
+ 1
)−k

Ek+1

(
k ln y

x
+ k
)
− ln |x |, (3-25)

whenever (3-23) holds for w = ln v = (ln y)/x . A careful examination of this
condition shows that (3-23) is valid if and only if w > 0, or equivalently, if and
only if (ln y)/x > 0. Going over the solution (3-25) over the given interval of
convergence shows that the solution y satisfies y = y(x) ≥ 1 when x > 0, with
y ≈ 1 as x tends to infinity.
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3C. Method of differences. In this subsection we consider another approach to
solve (3-1) (and consequently (1-1)) in the case when a(x)= a and b(x)= b are
constant coefficients. For simplicity, we take a = b = 1.

We begin by considering the ODE

γ ′+
p′

1− p
γ = (1− p)[e−w − 1], (3-26)

where γ := γ (x) and w = w(x) is the solution of problem (3-1). One sees that
(3-26) is a linear first-order ODE, and thus the solution γ (x) of problem (3-26) is
given by

γ (x)= (1− p(x))
∫
(e−w − 1) dx = (1− p(x))

[
−x +

∫
e−w dx

]
. (3-27)

On the other hand, since w solves the ODE (3-19), we have

w′+
p′

1− p
w = (1− p)[e−w − 1]. (3-28)

Substituting the solution (3-27) into (3-26), and then taking the difference of (3-26)
and (3-28), we obtain

dφ
dx
=

p′

1− p
φ, (3-29)

where φ(x) :=γ (x)−w(x). Equation (3-29) is separable, and its solution is given by

φ(x)=
E

1− p(x)
(3-30)

for E = eD some arbitrary constant. Using the definition of φ, we arrive at the
integral equation

w(x)= (1− p(x))
[
−x +

∫
e−w dx

]
−

E
1− p(x)

. (3-31)

Substituting back into the original variable y = y(x), solution (3-31) becomes the
exponential integral equation

y(x)= exp
(
−x +

∫
[y(x)]p(x)−1 dx −

E
(1− p(x))2

)
. (3-32)

4. Solvability of problem (1-1): variable coefficients case

In this section, we will look into problem (1-1) for particular cases of the (variable)
coefficients a(x), b(x). A careful examination of (2-4) shows that the cases where
such problem can be solved (with the standard tools) are very few. In particular, one
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can deduce that a requirement is that a(x)= b(x), and this may equal a particular
function depending on the exponent function p(x), as we show below.

In view of the above paragraph, we let

a(x)= b(x)=
p′(x)

(1− p(x))2
. (4-1)

Then, substituting these choices into (2-4) gives the ODE

w′ =
p′

1− p
(e−w − 1−w). (4-2)

Equation (4-2) is clearly a separable differential equation, and consequently, its
solution is given by the integral equation∫

dw
e−w − 1−w

=− ln |p(x)− 1| +C, (4-3)

where the solution to the left-hand side of (4-3) is given by solution (3-24) (under
the assumption (3-23)). The following examples illustrate in a more concrete way
the above formulations.

Example 4.1. Consider the differential equation

y′− ex y =−ex y1+e−x
. (4-4)

Here a(x) = b(x) = −ex and p(x) = 1+ e−x . Observe that a, b, p ∈ C∞(R)
with p(x) > 1 for all x ∈ R. Furthermore, one clearly sees that (4-1) holds, and
consequently applying (4-3), recalling (3-24) and proceeding as in the derivation of
(3-25), the solution of the differential equation (4-4) is given by

∞∑
k=0

e−k
(

ln y
x
+ 1
)−k

Ek+1

(
k ln y

x
+ k
)
− x = C, (4-5)

provided that the condition (ln y)/x > 0 is valid.

Example 4.2. Consider the differential equation

y′+ 2 tan x sec2 xy = 2 tan x sec2 xysin2 x (4-6)

for x ∈
(
−
π
2 ,

π
2

)
. Then a(x) = b(x) = 2 tan x sec2 x ∈ C∞

(
−
π
2 ,

π
2

)
and p(x) =

sin2 x ∈ C∞
([
−
π
2 ,

π
2

])
with |p| < 1 over

(
−
π
2 ,

π
2

)
. Again, (4-1) holds, and thus

proceeding as in the previous example, one gets that the solution of ODE (4-6) is
given implicitly by

∞∑
k=0

e−k
(

ln y
x
+ 1
)−k

Ek+1

(
k ln y

x
+ k
)
− 2 ln(cos x)= D, (4-7)

whenever the inequality (ln y)/x > 0 holds.
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Figure 1. Solutions of dw/dx = (1/x)(e−w −w) with different
initial conditions (left) and the solution of dy/dx = y1−1/x with
initial condition y(1)= 5 (right).

5. Numerical simulations: some examples

In this section, we look at numerical solutions the problems (1-1) and (3-4) (for
a, b constant). Several examples are examined for particular choices of the function
p = p(x). With MATLAB software we tested numerical convergence to a solution
using the Runge–Kutta solution method through the built in function ode45. In
each of the examples provided, the plot on the left represents the solution of
the substitution problem given by (2-4) (under the specific assumptions for each
example) with five initial conditions taken randomly at x0 = 1. The plot on the
right shows a solution with initial condition y(1)= 5 for the original Bernoulli-type
equation (1-1), under the same assumptions as the plot on the left. All solutions are
plotted over their respective vector fields.

5A. The separable case. As shown in Section 3, the separable case of the problem
(2-4) (for a, b constants, b 6= 0) is given when p(x) = 1− 1/(λx) (for λ 6= 0 an
arbitrary fixed constant).

Example 5.1. We take the constants a = 0 and b= λ= 1 and p(x)= 1−1/x . The
solutions produced are given in Figure 1. Notice that, as described in Section 3A1
solutions blow up as x tends to infinity.

Observe that Figure 1(left) illustrates that as x tends to infinity, the numerical
solution converges, whereas the graph of the solution of the original equation,
Figure 1 (right) seems to blow-up as x goes to infinity. These facts agree with the
analysis performed over (3-11).

Example 5.2. We consider now the case where the constants satisfy a = b= λ= 1,
and p(x)= 1− 1/x . The simulations produced are given in Figure 2.



THE VARIABLE EXPONENT BERNOULLI DIFFERENTIAL EQUATION 1289

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

Solution of the ODE dw/dx=1/x (e -w-1) with different initial conditions

w

x
1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

Solution of the ODE dy/dx=y -y with initial condition y(1)=5

y

x
Figure 2. Solutions of dw/dx= (1/x)(e−w−w−1)with different
initial conditions (left) and the solution of dy/dx = y1−1/x

− y
with initial condition y(1)= 5 (right).

Notice, again, we have numerical convergence in Figure 2 (left) and Figure 2
(right) shows convergence to y = 1; this agrees with the analysis done over (3-25).

5B. Other examples. In this section, we examine numerical solutions to the (non-
separable) problem (2-4) and the original equation, by exploring other choices for
the function p(x), but over the same domain and conditions used in the previous
simulations. Unlike the previous cases, we will be unable to provide a more rigorous
examination of the solution for these examples, since in these cases both (1-1) and
(2-4) become unsolvable with any of the known methods for ODEs. For simplicity,
we will assume that a(x)= 0 and b(x)= 1 in the following examples.

Example 5.3. Let p(x)= 1− ex . The resulting simulations are given in Figure 3.

Example 5.4. Let p(x)= 1− e−x . The resulting simulations are given in Figure 4.
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Solution of the ODE dy/dx=y  with initial condition y(1)=5
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x
Figure 3. Solutions of dw/dx = ex−w

+w with different initial
conditions (left) and the solution of dy/dx = y1−ex

with initial
condition y(1)= 5 (right).
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Figure 4. Solutions of dw/dx = e−(x+w)+w with different initial
conditions (left) and the solution of dy/dx = y1−e−x

with initial
condition y(1)= 5 (right).
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Figure 5. Solutions of dw/dx = xe−w+w/x with different initial
conditions (left) and the solution of dy/dx = y1−x with initial
condition y(1)= 5 (right).

Example 5.5. Let p(x)= 1− x . The resulting simulations are given in Figure 5.

In the examples above of nonseparable ODEs, one can notice that the corre-
sponding solutions to problem (2-4) are unbounded as x becomes large enough.
Nevertheless, their corresponding solutions to the original equation (1-1) can be
bounded, as Examples 5.3 and 5.5 show. Since for these particular examples, there
is no method available to allow a more rigorous and deep analysis on the solutions
of problems (1-1) and (2-4), further details concerning these last examples cannot
be provided.
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The supersingularity of Hurwitz curves
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We study when Hurwitz curves are supersingular. Specifically, we show that
the curve Hn;` WX

nY `CY nZ`CZnX ` D 0, with n and ` relatively prime, is
supersingular over the finite field Fp if and only if there exists an integer i such
that pi � �1 mod .n2 � n`C `2/. If this holds, we prove that it is also true
that the curve is maximal over Fp2i . Further, we provide a complete table of
supersingular Hurwitz curves of genus less than 5 for characteristic less than 37.

1. Introduction

In 1941, Deuring defined the basic theory of supersingular elliptic curves. Super-
singular curves are useful in error-correcting codes called Goppa codes. They also
have potential applications to quantum resistant cryptosystems.

In this paper we determine a condition for supersingularity of Hurwitz curves
Hn;` when n and ` are relatively prime. In particular we show that every super-
singular Hurwitz curve Hn;` is maximal over some finite field. We also provide a
classification of supersingular Hurwitz curves with genus less than 5 over fields with
characteristic less than 37 and find some restrictions on the genera of Hurwitz curves.

2. Background information

We first define the Hurwitz curve and the Fermat curve. Next we define the zeta
function of a curve. From the zeta function we compute the normalized Weil
numbers which we use to study supersingularity. We must also state the Hasse–Weil
bound in order to define maximality and minimality.

2A. The Hurwitz curve and the Fermat curve. Let n, `, and d be positive integers.
Let F be a field.
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Keywords: Hurwitz curve, Hasse–Weil bound, maximal curve, minimal curve, Fermat curve,
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Definition 2.1 (Hurwitz curve Hn;`). The Hurwitz curve Hn;` over F is given by
the projective equation

Hn;` WX
nY `CY nZ`

CZnX `
D 0:

Throughout this paper, set mD n2�n`C`2. The Hurwitz curve Hn;` has genus

g D
mC 2� 3 gcd .n; `/

2

and is smooth when the characteristic p of F is relatively prime to m.

Definition 2.2 (Fermat curve Fd ). The Fermat curve of degree d over F is given
by the projective equation

Fd W U
d
CV d

CW d
D 0:

The Fermat curve Fd has genus 1
2
.d � 1/.d � 2/ and is smooth when the

characteristic p of F does not divide d . Note that the Hurwitz curve Hn;` is covered
by the Fermat curve of degree mD n2� n`C `2; see Section 3B for more details.

2B. Zeta function. Let Fq be a finite field of cardinality q, where q is a power of
a prime p. For a curve C defined over Fq , denote the number of points on C by
#C.Fq/. For extensions of Fq , define Ns D #C.Fqs /.

Definition 2.3 (zeta function). The zeta function of a curve C=Fq is the series

Z.C=Fq;T /D exp
� 1X

sD1

NsT s

s

�
: (1)

Rationality of the zeta function for curves was proven by Weil [1948a; 1949]. In
particular, Weil showed that the zeta function can be written as

Z.C=Fq;T /D
L.C=Fq;T /

.1�T /.1� qT /
: (2)

The L-polynomial, L.C=Fq;T / 2 ZŒT �, has degree 2g [Ireland and Rosen 1990,
p. 152]:

L.C=Fq;T /D 1CC1T C � � �CC2gT 2g: (3)

The L-polynomial of a curve C over Fq with genus g factors in CŒT � as

L.C=Fq;T /D

2gY
iD1

.1�˛iT /:

Furthermore, j˛i j D
p

q for each 1 � i � 2g [Ireland and Rosen 1990, p. 155].
The normalized Weil numbers (NWNs) are the normalized reciprocal roots of the
L-polynomial.
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Definition 2.4 (normalized Weil numbers). The Weil numbers of C=Fq are the
reciprocal roots ˛i of L.C=Fq;T / for 1� i � 2g. The normalized Weil numbers
are the values ˛i=

p
q for 1� i � 2g.

Remark 2.5. If f˛1; : : : ; ˛2gg are the normalized Weil numbers over Fq , then
f˛i

1
; : : : ; ˛i

2g
g are the normalized Weil numbers over Fqi .

The coefficients of L.C=Fq;T / follow a pattern. For k 2 N, we denote the set
of partitions of k by par.k/ and the length of a partition  by len. /.

Lemma 2.6. In (3) for 0� k � 2g, the coefficient Ck has the form

Ck D

X
2par.k/

Q
j2 Nj=j

len. /!
�

k�1X
iD0

�
Ci

k�iX
�D0

q�
�
:

Proof. Equation (1) can be expanded using the Taylor series of the exponential
function

Z.C=Fq;T /D

1X
iD0

.N1T C .N2=2/T
2C � � �C .N2g=.2g//T 2g/i

i !
:

Collecting terms up through T 3 gives a pattern to follow:

Z.C=Fq;T /

D 1C .N1/T C

�
N2

2
C

N 2
1

2

�
T 2
C

�
N3

3
C

N1N2

2
C

N 3
1

6

�
T 3
C � � � : (4)

The key step is to recognize that the subscripts on the Nj are the partitions of k.
The coefficient on T k can be written asX

2par.k/

Q
j2 Nj=j

len. /!
:

Equation (2) gives a simplified version of Z.C=Fq;T /. Using the Taylor series
for each of the denominator terms as well as (3) yields the expansion

Z.C=Fq;T /

D .1CC1T C � � �CC2gT 2g/.1CT CT 2
C � � � /.1C qT C q2T 2

C � � � /: (5)

Expanding and collecting terms, the coefficients on T k are given by
k�1X
iD0

�
Ci

k�iX
jD0

qj

�
CCk :

Setting (4) and (5) equal and comparing coefficients gives a linear system allowing
one to solve for Ck in terms of the values of Ns . �
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2C. The Newton polygon and supersingularity. Fix a curve C=Fq with associated
L-polynomial L.C=Fq;T /.

Definition 2.7 (supersingularity). The curve C is supersingular if all its normalized
Weil numbers are roots of unity.

Another way to check if C is supersingular is with its Newton polygon.

Definition 2.8 (normalized valuation on Fpr ). Let nDplk be an integer with p−k.
We denote the normalized Fpr -valuation of n by valpr .n/D l=r and the prime-to-p
part of n by np D k. If nD 0, we say valpr .0/D1.

Definition 2.9 (Newton polygon). Fix a curve C=Fpr with L-polynomial in the
form of (3). The Newton polygon of C=Fpr is the lower convex hull of the points
f.i; valpr .Ci// j 0� i � 2gg.

Remark 2.10. Because C0 D 1 for every curve C=Fpr , the Newton polygon will
always have initial point .0; 0/. Likewise the final coefficient of L.C=Fpr ;T /

is always C2g D prg. For this reason the Newton polygon always has terminal
point .2g;g/.

From Remark 2.10, we can see that the Newton polygon of a curve C over Fpr

is always a union of line segments on or below the line y D 1
2
x with increasing

slopes.

Remark 2.11. A curve C=Fq is supersingular if and only if its Newton polygon is
a line segment with slope 1

2
.

2D. Minimality and maximality. As a consequence of the Weil conjectures, the
number of points on a curve C=Fq is controlled by the Hasse–Weil bound:

1C q� 2g
p

q � #C.Fq/� 1C qC 2g
p

q:

The Hasse–Weil bound for curves was proven by Weil [1948a].

Definition 2.12 (minimal). A curve C=Fq is minimal if

#C.Fq/D 1C q� 2g
p

q:

Definition 2.13 (maximal). A curve C=Fq is maximal if

#C.Fq/D 1C qC 2g
p

q:

Remark 2.14 [Weil 1948a, p. 22; 1948b, p. 69]. The curve C is maximal over Fq

if and only if all its normalized Weil numbers are �1 over Fq , and it is minimal
over Fq if and only if all its normalized Weil numbers are 1 over Fq .

In the following remark, we use the notation that �k is the primitive k-th root of
unity e2�i=k. Notice that there is a power s such that �s

k
D�1 if and only if k is

even.
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Lemma 2.15. Let C be a supersingular curve over Fq . Suppose the normalized
Weil numbers of C=Fq are of the form �

t1

k1
; : : : ; �

t2g

k2g
. Assume gcd.ki ; ti/D 1. The

curve C is maximal over Fqr if and only if

� there exists s � 1 and bi odd such that ki D 2s.bi/,

� and r is an odd multiple of 2s�1 lcm.b1; : : : ; bn/.

Proof. Assume C is maximal over Fqr . By Remark 2.14, the curve C is maximal
over Fqr if and only if �rti

ki
D�1 for all i . Consequently, ki is even for all i . Thus

ki D 2si bi for some positive integer si and odd integer bi . The condition �rti

ki
D�1

for all i implies that there exists an s such that s D si for all i and r is an odd
multiple of 2s�1 lcm.b1; : : : ; bn/.

For the converse, the conditions imply that the normalized Weil numbers of C

over Fqr are all �1. �

3. Curve maps and covers

3A. Aoki’s curve. Let ˛ D .a; b; c/ 2 N3 with aC bC c Dm. Note that S3, the
symmetric group on three letters, acts on ˛ by permuting the coordinates. For � 2S3

we denote the action by ˛�. We say two triples ˛D .a1; a2; a3/ and ˇD .b1; b2; b3/

are equivalent, denoted by ˛ � ˇ, if there exist elements t 2 .Z=m/� and � 2 S3

such that

.a1; a2; a3/� .tb�.1/; tb�.2/; tb�.3// mod m:

Aoki [2008a; 2008b] studied curves of the form

D˛ W v
m
D .�1/cua.1�u/b:

He provides the following conditions for when D˛ is supersingular.

Theorem 3.1 [Aoki 2008b, Theorem 1.1]. The curve D˛ is supersingular over Fpr

if and only if at least one of the following conditions holds:

� pi ��1 mod m for some i .

� ˛D .a; b; c/� .1;�pi ;pi�1/ for some integer i such that dDgcd.pi�1;m/>1

and pj ��1 mod .m=d/ for some integer j .

3B. Covers of Hn;` by Fm. In Section 2A, we noted that the Hurwitz curve Hn;`

is covered by the Fermat curve Fm, where mD n2� n`C `2. On an affine patch
the Fermat and Hurwitz curves are given by the equations

Fm W u
m
C vm

C 1D 0;

Hn;l W x
ny`Cyn

Cx` D 0:
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Then the following covering map is provided by [Aguglia et al. 2001, Lemma 4.1]:

� W Fm!Hn;`; .u; v/ 7! .unv�l ;ulvn�l/:

Furthermore, it is known that Fm is supersingular over Fp if and only if pi �

�1 mod m for some integer i [Shioda and Katsura 1979, Proposition 3.10]. See
also [Yui 1980, Theorem 3.5]. In [Tafazolian 2010, Theorem 5] it is shown that
Fm is maximal over Fp2i if and only if pi ��1 mod m.

Remark 3.2. If X!Y is a covering of curves defined over Fpr , then the normalized
Weil numbers of Y=Fpr are a subset of the normalized Weil numbers of X=Fpr ;
see [Serre 1985].

Thus when a covering curve is supersingular (or maximal or minimal) the curve
it covers is as well.

3C. A birational transformations. Bennama and Carbonne [1997] show that Hn;`

is isomorphic to a curve with affine equation

y0m D x0�.x0� 1/ (6)

via the following variable change. Suppose 1 � ` < n and gcd.n; `/ D 1. Then
there exist integers � and ı such that 1 � � � `, 1 � ı � n� 1, and n� � ı`D 1.
Let �D ın� �.n� `/ and mD n2� n`C `2. The birational transformation is�

x D .�x0/�ı..�1/�y0/n;

y D .�x0/�� ..�1/�y0/`
and

�
x0 D�x`y�n;

y0 D .�1/�x�y�ı:

Equation (6) is very similar to the equation for D˛ that Aoki studied but there
are small differences. The following argument shows that these can be reconciled.
Consequently, this variable change can be used to apply Aoki’s results to Hurwitz
curves.

Notice that (6) is divisible by .x0�1/ while Aoki studied curves whose equation
contains a .1�x0/ factor. Aoki requires that aC bC c Dm so the exponent on the
negative sign is important. Inspecting (6) we see that m will always be odd since
.n; `/D 1. Consequently, this negative sign is not an issue. Since m is always odd
we can replace v with �v. This choice allows us to pick cDm�a�b. Then bD 1

and aD �.

4. Supersingular Hurwitz curves

We arrive at explicit conditions on supersingularity for Hn;` when n and ` are
relatively prime. We use results from [Bennama and Carbonne 1997; Aoki 2008a]
to accomplish this. We will be using affine equations for the Hurwitz curve in this
section.
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Lemma 4.1. If n and ` are relatively prime then xny`CynCx` D 0 is supersin-
gular over Fp if and only if at least one of the following conditions holds:

(1) There exists i 2 Z>0 such that pi ��1 mod m. (In this case the Fermat curve
covering the Hurwitz curve is maximal over Fp2i .)

(2) There exists i 2 Z>0 with d D .pi � 1;m/ > 1 such that

.ı.n� `/C `� � 1; 1;�.ı.n� `/C `�//� .1;�pi ;pi
� 1/

and pj ��1 mod .m=d/ for some integer j .

Proof. We use the variable substitution from [Bennama and Carbonne 1997] to
apply Aoki’s results to Hurwitz curves. We use the substitutions

mDn2
�n`C`2; aD�Dı.n�`/C`��1; bD1; cDm�.ı.n�`/C`�/: (7)

Combining these with Aoki’s results completes the proof. �

Remark 4.2. If n and ` are relatively prime, then n and ` are relatively prime to
n2� n`C `2.

Theorem 4.3. Suppose n and ` are relatively prime and mD n2� n`C `2. Then
Hn;` is supersingular over Fp if and only if pi � �1 mod m for some positive
integer i .

Proof. If pi � �1 mod m for some positive integer i , then Fm is supersingular
over Fp by [Shioda and Katsura 1979, Proposition 3.10]. Recall from Section 3B
that Fm covers Hn;`. Thus Hn;` is supersingular over Fp by Remark 3.2.

Suppose Hn;` is supersingular over Fp. By Lemma 4.1 it is enough to show
condition (2) in Lemma 4.1 cannot happen. We begin by simplifying it using the
substitution � D .1C `ı/=n and reducing modulo m to show that condition (2)
is equivalent to .`=n� 1; 1;�`=n/ � .1;�pi ;pi � 1/ for some i such that d D

.pi � 1;m/ > 1 and pj ��1 mod .m=d/ for some integer j . Recall that ˛ � ˛0

if ˛ D t˛0� for some t 2 .Z=m/� and � 2 S3. We will show that pi � 1 and m are
relatively prime. We label the three coordinates of .`=n� 1; 1;�`=n/ as .a; b; c/
and the three coordinates of .1;�pi ;pi � 1/ as .A;B;C /.

The proof will address six cases accounting for the orbit of .A;B;C / under the
action of S3. In each case we will show that gcd.pi � 1;m/D 1. Specifically, we
show d D 1 by taking these congruences modulo d . By Remark 4.2 we know that
n�1 exists modulo m and modulo d . Finally, note that `=n is relatively prime to d .

� .a; b; c/� t.A;B;C / mod m: Comparing c and tC yields

�
`

n
� t.pi

� 1/ mod m:

Consequently, `=n� 0 mod d . Therefore, d D 1.
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� .a; b; c/� t.B;A;C / mod m: Comparing a with tB and b with tA yields

`

n
� 1��tpi mod m; 1� t mod m:

Substituting we have `=n� pi � 1 mod m. Reducing modulo d produces `=n�

0 mod d , thus d D 1.

� .a; b; c/� t.A;C;B/ mod m: Comparing b and tC yields

�
`

n
� t.pi

� 1/ mod m:

This is identical to the first case.

� .a; b; c/� t.C;B;A/ mod m: Comparing a and tC yields

`

n
� 1� t.pi

� 1/ mod m:

Thus `=n�1� 0 mod d . Recall by the definition of m and selection of d , we have
d j .n2 � n`C `2/. Hence, d divides 1� `=nC .`=n/2. We conclude d j .`=n/;
thus d D 1.

� .a; b; c/� t.C;A;B/ mod m: Comparing b with tA and c with tB yields

1� t mod m;
`

n
� tpi mod m:

This case is completed as in the previous case.

� .a; b; c/� t.B;C;A/ mod m: Comparing b with tC yields

1� t.pi
� 1/ mod m:

Modulo d this reduces to 1� 0 mod d . Therefore, d D 1. �

Remark 4.4. There is a family of Hurwitz-type curves with affine equations
Ca1;a2;n1;n2

W xn1ya1 C yn2 C xa2 D 0. Set ı D a1a2 � a2n2 C n1n2. When
qDpr is coprime to ı, the curve Ca1;a2;n1;n2

is Fq-covered by the Fermat curve Fı
of degree ı. Tafazolian and Torres [2017, Theorem 2.9] showed that under certain
numerical conditions the statements

� the Fermat curve Fı is maximal over Fq2 ,

� the Hurwitz-type curve C1;a2;n1;n2
is maximal over Fq2 ,

� and qC 1� 0 mod ı

are all equivalent.
The Hurwitz-type curve C`;`;n;n is the Hurwitz curve Hn;`. Thus in the case that

` D a1 D a2 and n D n1 D n2, Theorem 4.3 generalizes [Tafazolian and Torres
2017, Theorem 2.9].
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Remark 4.5. Consider the family of curves with affine equations

Na1;a2;n1;n2
W xn1ya1 C k1yn2 C k2xa2 D 0

over Fpr with k1; k2 2 .Fq/
�, n1 � a1, n1C a1 > a2, n1C a1 > n2, if n1 D a1

then n2 � a2, and p− gcd.a1; a2; n1; n2/. Set d D gcd.a1; a2; n1; n2/ and ı as in
Remark 4.4. Recall the definition of np in Definition 2.8. With these assumptions
[Nie 2016, Theorem 4.12] shows that if .ı=d/p divides q C 1 then Na1;a2;n1;n2

is maximal over Fq and if Na1;a2;n1;n2
is maximal over Fq2 then .ı=d/p divides

q2C 1.
Note N`;`;n;n DHn;`. Thus Theorem 4.3 generalizes [Nie 2016, Theorem 4.12]

when a1 D a2 D ` and n1 D n2 D n.

Corollary 4.6. If n and ` are relatively prime and Hn;` is supersingular over Fp,
then it will be maximal over Fp2i , where i is the same as in Theorem 4.3.

Proof. By Theorem 4.3, if Hn;` is supersingular over Fp , then pi ��1 mod m for
some i . By [Tafazolian 2010], this implies Fm will be maximal over Fp2i . Since
Fm covers Hn;`, this implies Hn;` will also be maximal over Fp2i . �

A priori, if Hn;` is supersingular (or maximal or minimal) over Fp then Fm may
not be because it has more normalized Weil numbers.

Corollary 4.7. If n and ` are relatively prime and Hn;` is supersingular over Fp,
then Fm is supersingular over Fp.

Proof. If Hn;` supersingular over Fp and gcd.n; `/ D 1, Theorem 4.3 shows the
existence of positive integer i such that pi � �1 mod m. Then by [Shioda and
Katsura 1979, Proposition 3.10], Fm is supersingular over Fp. �

Partial results are known for when a Hurwitz curve is maximal.

Theorem 4.8 [Aguglia et al. 2001, Theorem 3.1]. Let ` D 1. The curve Hn;1 is
maximal over Fq2j if and only if pj ��1 mod m for some positive integer j .

Theorem 4.9 [Aguglia et al. 2001, Theorem 4.5]. Assume that gcd.n; `/D 1 and
m is prime. Then Hn;` is maximal over Fp2j if and only if pj � �1 mod m for
some positive integer j .

Note that the key property used in [Aguglia et al. 2001] is the existence of some
positive integer j such that

pj
��1 mod m: (8)

Remark 4.10. Under the requirements `D 1, or gcd.n; `/D 1 and m prime, the
results in [Aguglia et al. 2001] and [Tafazolian 2010, Theorem 5] show that Fm is
maximal over Fq2 if and only if Hn;` is maximal over Fq2 .

We consider the case when Hn;` and Fm are minimal.
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Corollary 4.11. If `D 1, or n and ` are relatively prime and m is prime, Hn;` is
minimal over Fp4i if and only if Fm is minimal over Fp4i .

Proof. First suppose Fm is minimal over Fp4i with set N of normalized Weil
numbers. Then the normalized Weil numbers of Hn;` are a subset of N. Thus Hn;`

will also be minimal over Fp4i .
Now assume Hn;` is minimal over Fp4i . Minimality implies supersingularity,

thus Hn;` must also be supersingular. By Theorem 4.3 supersingularity of Hn;` over
Fp implies pj ��1 mod m for some positive integer j . Choose a minimal such j .
Then Corollary 4.6 shows Hn;` is maximal over Fp2j and thus minimal over Fp4j .
Minimality of j implies that Fp4j is a subfield of Fp4i . Consequently, j j i .

Now, by [Aguglia et al. 2001] pj � �1 mod m implies that Fm is maximal
over Fp2j . Hence, Fm is minimal over Fp4j . Because j j i , we have Fm is minimal
over Fp4i . �
Remark 4.12. The curve H3;3 is maximal over F52 but F9 is not. The theorems
above show a supersingular Hurwitz curve and its covering Fermat curve will both
be maximal over Fp2i . This does not imply that the Fermat curve will always be
maximal over the same field extension that the Hurwitz curve is. The Hurwitz
curve could also be maximal over Fp2j , where j j i with i=j odd. In this case the
Fermat curve may not be maximal over this field because it has a higher genus.
Unfortunately our example of this does not have n and ` being relatively prime. It is
difficult to find an example with n and ` relatively prime, as the genera of Hurwitz
curves grow quickly causing the point counts to become computationally expensive.

Figure 1 illustrates how the current theory fits together. The straight, dotted
arrows are under the conditions `D 1, or gcd.n; `/D 1 and m prime. The notation

Fm s.s.=Fp Fm max=Fq2 Fm min=Fq4

Hn;` s.s.=Fp Hn;` max=Fq2 Hn;` min=Fq4

[Tafazolian 2010]

[Serre 1985] [Serre 1985] [Serre 1985]

Corollary 4.6

Corollary 4.7 [Aguglia et al. 2001] Corollary 4.11

Figure 1. Current results regarding supersingularity, minimality,
and maximality of Hurwitz and Fermat curves.
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max/Fq2 means, for some power q of p, the curve is maximal over Fq2 . If a curve
is maximal over Fq2 then it is minimal over Fq4 . The curved arrows show that
under appropriate conditions a Hurwitz or Fermat curve is supersingular if and only
if it is minimal over some field extension. Corollaries 4.6 and 4.7 are under the
condition that gcd.n; `/ D 1, while [Aguglia et al. 2001] and Corollary 4.11 are
under the condition that `D 1, or gcd.n; `/D 1 and m is prime.

5. Genera of Hurwitz curves and additional data

Here we provide information about which genera occur for Hurwitz curves and
provide a classification of supersingular Hurwitz curves having genus less than 5,
defined over Fp when p < 37.

Recall that the genus of the Hurwitz curve Hn;` is

g D
n2� n`C `2� 3 gcd.n; `/C 2

2
:

From this, it can be seen that the genus is determined by the quadratic form
q.x;y/ D x2 � xy C y2 and gcd.x;y/. In this section, we provide information
about which genera can appear as a result of these equations.

Theorem 5.1 [Fermat 1999, Volume II, pp. 310–314]. The equation m D x2 �

xy C y2 has solutions x;y 2 Z if and only if for every prime p in the prime
decomposition of m, either p � 0; 1 mod 3 or p is raised to an even power.

There is no restriction in Theorem 5.1 on what the values x and y are. However,
for Hurwitz curves we require n and ` to be positive. The question remains as to
when the equation mD q.x;y/ has solutions in the positive integers. To solve this
we study the following automorphisms of q.x;y/Dm:

f W Z2
! Z2; f .x;y/ 7! .y;x/;

g W Z2
! Z2; g.x;y/ 7! .�x;�y/;

' W Z2
! Z2; '.x;y/ 7! .x;x�y/;

I W Z2
! Z2; I.x;y/ 7! .x;y/:

To see that '.x;y/ is an automorphism, we compute

q ı'.x;y/D x2
�x.x�y/C .x�y/2

D x2
�x2

CxyCx2
� 2xyCy2

D x2
�xyCy2

D q.x;y/:

Corollary 5.2. If the equation mD q.x;y/ has a solution .x;y/ 2 Z2 then there
is a solution with .x0;y0/ 2 N2.
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n l p g L-polynomial NWNs (multiplicity)

2 1 5 1 5T 2C1 i, -i
2 1 11 1 11T 2C1 i, -i
2 1 17 1 17T 2C1 i, -i
2 1 23 1 23T 2C1 i, -i
2 1 29 1 29T 2C1 i, -i

3 3 5 1 5T 2C1 i, -i
3 3 11 1 11T 2C1 i, -i
3 3 17 1 17T 2C1 i, -i
3 3 23 1 23T 2C1 i, -i
3 3 29 1 29T 2C1 i, -i

3 1 3 3 27T 6C1 i,-i, �12; �
5
12; �

7
12; �

11
12

3 1 5 3 125T 6C1 i,-i, �12; �
5
12; �

7
12; �

11
12

3 1 13 3 2197T 6C507T 4C39T 2C1 i(3), -i(3)
3 1 17 3 4913T 6C1 i, -i, �12; �

5
12; �

7
12; �

11
12

3 1 19 3 6859T 6C1 i, -i, �12; �
5
12; �

7
12; �

11
12

3 1 31 3 29791T 6C1 i, -i, �12; �
5
12; �

7
12; �

11
12

3 2 3 3 27T 6C1 i,-i, �12; �
5
12
; �7

12
; �11

12

3 2 5 3 125T 6C1 i,-i, �12; �
5
12
; �7

12
; �11

12

3 2 13 3 2197T 6C507T 4C39T 2C1 i(3), -i(3)
3 2 17 3 4913T 6C1 i, -i, �12; �

5
12
; �7

12
; �11

12

3 2 19 3 6859T 6C1 i, -i, �12; �
5
12
; �7

12
; �11

12

3 2 31 3 29791T 6C1 i, -i, �12; �
5
12
; �7

12
; �11

12

4 2 5 4 625T 8C500T 6C150T 4C20T 2C1 i(4), -i(4)
4 2 17 4 83521T 8C19652T 6C1734T 4C68T 2C1 i(4), -i(4)
4 2 29 4 707281T 8C97556T 6C5046T 4C116T 2C1 i(4), -i(4)

4 1 5 6 15625T 12C1875T 8C75T 4C1 �8.3/;�
3
8
.3/;�5

8
.3/;�7

8
.3/

4 3 5 6 15625T 12C1875T 8C75T 4C1 �8.3/;�
3
8
.3/;�5

8
.3/;�7

8
.3/

5 5 3 6 729T 12C243T 8C27T 4C1 �8.3/;�
3
8
.3/;�5

8
.3/;�7

8
.3/

5 5 7 6 117649T 12C7203T 8C147T 4C1 �8.3/;�
3
8
.3/;�5

8
.3/;�7

8
.3/

5 5 13 6 4826809T 12C85683T 8C507T 4C1 �8.3/;�
3
8
.3/;�5

8
.3/;�7

8
.3/

Table 1. Supersingular Hurwitz curves in characteristic p < 37

with genus < 5.

Proof. We separate into cases, depending on the values of x and y:

(1) If both x and y are negative, then g.x;y/D .�x;�y/ 2 N2.

(2) If y is negative and x is positive, then '.x;y/D .x;x�y/ 2 N2.
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(3) If x is negative and y is positive, then '.f .x;y//D .y;y �x/ 2 N2.

(4) If x is 0, then ' ıf .0;y/D .y;y/ and if y is 0, then '.y; 0/D .y;y/. �

By counting points and using Lemma 2.6 we computed, using CoCalc, the
L-polynomials and normalized Weil numbers of many supersingular Hurwitz curves
over Fp. When n and ` are not relatively prime, it is possible that certain points
of the equation for Hn;` are singular. Resolving these singularities requires taking
a field extension of Fp. To adjust for this we check if q � 1 mod gcd.n; `/ and
count the multiplicities of singular points. This gives the correct point counts to
compute the L-polynomial of the normalization of the equation. Table 1 has all
supersingular Hurwitz curves Hn;` of genus less than 5 for primes less than 37.
Table 1 also includes some curves of genus 6.
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Multicast triangular semilattice network
Angelina Grosso, Felice Manganiello, Shiwani Varal and Emily Zhu

(Communicated by Nigel Boston)

We investigate the structure of the code graph of a multicast network that has a
characteristic shape of an inverted equilateral triangle. We provide a criterion that
determines the validity of a receiver placement within the code graph, present
invariance properties of the determinants corresponding to receiver placements
under symmetries, and provide a complete study of these networks’ receivers and
required field sizes up to a network of four sources. We also improve on various
definitions related to code graphs.

1. Introduction

A communication network is a collection of directed links connecting transmit-
ters, switches, and receivers, whose underlying structure can be mathematically
represented by a directed graph G = (V, E) as introduced in [Ahlswede et al. 2000].
Koetter and Médard [2003] studied the network code design as an algebraic problem
that depends on the structure of the underlying graph. They made a connection
between a given network information flow problem and an algebraic variety over
the closure of a finite field.

In particular, a multicast network is an error-free network with unit-capacity
channels represented by a directed acyclic graph and with the communication
requirement that every receiver demands the message sent by every source. Treating
the messages as elements of some large enough finite field Fq , it is known that
linear network coding suffices to transmit the maximal number of messages.

Code graphs condense the information in a choice of edge-disjoint paths of a
multicast network based on the coding points, i.e., edges which are “bottlenecks”
where messages are combined in linear network coding. Under this framework,
linear network coding is reduced to assigning vectors to vertices in the code graph
with independence conditions based on receivers. The triangular semilattice net-
works are then a family of code graphs embedded in the integer lattice restricted to
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Keywords: multicast network, triangular semilattice, determinantal condition, finite field, multivariate

polynomial, linear network coding, multicast communication, code graph.
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nonnegative coordinates of some maximum 1-norm with edges between adjacent
lattice points directed towards the origin.

This paper is organized as follows. In Section 2, we refer briefly to and im-
prove upon coding points, code graphs, and Fq-labelings of code graphs; these
are discussed in detail in [Anderson et al. 2017]. We then present a result with
regards to determinants in the Fq -labeling. In Section 3, we introduce a type of code
graph called the triangular semilattice network. We discuss receiver placements and
invariance of the minors corresponding to receiver placements under symmetries.
From this general study, we shift to a complete study of triangular semilattice
networks with up to four sources in Section 4.

2. Coding points and code graphs

In this work, we represent a multicast network by a directed acyclic graph G= (V, E)
with a set S ⊂ V of sources, i.e., vertices without incoming edges, and a set R⊂ V
of receivers, i.e., vertices without outgoing edges. Each directed edge is a unit
capacity noise-free communication channel over a finite field Fq . We further assume
that the edge mincut between each source and each receiver is at least 1 and the
overall mincut between the set of sources and each receiver is at least the number of
sources. Together with the assumption of coordination at source level and with the
requirement that every receiver R ∈R gets the message from every source S ∈S, the
network is equivalent to a multicast network as defined in [Ahlswede et al. 2000].

If R consists of a single receiver, the communication requirement is satisfied
by a routing solution if and only if |S| ≤ mincut(S, R) as a result of Menger’s
theorem, which states that the edge mincut(S, R) is equal to the maximum number
of edge-disjoint paths between the source set S and the receiver R [Anderson
et al. 2017]. In the case of multiple receivers where |S| ≤minR∈R mincut(S, R),
Ahlswede et al. [2000] first showed that a network coding solution exists; later it
was found that a linear network coding solution over a finite field Fq exists when q
is sufficiently large [Li et al. 2003]; in particular, q ≥ |R| was found to be sufficient
[Jaggi et al. 2005]. Interested readers may also refer to [Médard and Sprintson
2011] for a complete algebraic proof showing that q > |R| is sufficient.

To condense the information about these receiver requirements, we consider the
corresponding code graph of a multicast network. Anderson et al. [2017] explain
coding points of a network as the bottlenecks of the network where the linear
combinations occur. More formally:

Definition 2.1. Let G be the underlying directed acyclic graph of a multicast network
and for each R ∈R let PR = {PS,R | S ∈ S} be a set of edge-disjoint paths, where
PS,R denotes a path from S to R. A coding point of G is an edge e = (v, v′) ∈ E
such that:
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• There are distinct sources S, S′ ∈ S and distinct receivers R, R′ ∈R such that
e appears in both PS,R ∈ PR and PS′,R′ ∈ PR′ .

• The parents of v in PS,R and PS′,R′ are distinct.

Definition 2.2. A coding-direct path in G from v1 ∈ V to v2 ∈ V is a path from v1 to
v2 that does not pass through any coding point in G, except possibly in the first edge.

Note that coding points are dependent on the choices of edge-disjoint paths to
each receiver. With G = (V, E,S,R, {PR | R ∈R}) we denote a multicast network
with chosen sets of edge-disjoint paths from the sources to each receiver. For a
given multicast network, Anderson et al. [2017] define the code graph as a directed
graph with labeled vertices that preserves the essential information of the network:

Definition 2.3. Let G = (V, E,S,R, {PR | R ∈R}) be a multicast network and let
Q be its set of coding points. Let the code graph 0 = 0(G) be the vertex-labeled
directed acyclic graph constructed as follows:

• The vertex set of 0 is S ∪Q. Given a vertex v of 0, the corresponding source
or coding point in G is called the G-object of v.

• The edge set of 0 is the set of all ordered pairs of vertices of 0 such that there
is a coding-direct path in G between the corresponding G-objects.

• Each vertex v of 0 is labeled with a subset Lv ⊆R. A receiver R ∈R is in Lv
if and only if there is a coding-direct path in G from the G-object of v to R.

In general, Anderson et al. [2017] present the following proposition that attempts
to outline the properties of a code graph:

Proposition 2.4. For any code graph 0 = 0(G), we have that:

• 0 is an acyclic graph.

• Every vertex in 0 either has in-degree 0, in which case its G-object is a source,
or it has in-degree at least 2, in which case its G-object is a coding point.

• For each R ∈R, the set of vertices VR = {v ∈ V | R ∈ Lv} has cardinality |S|,
and there are |S| vertex-disjoint paths from the sources to this set corresponding
to the original |S| edge-disjoint paths.

The networks we consider in this work will satisfy these properties. Nonethe-
less, the condition on the in-degree of a coding point seems to require additional
constraints. In Figure 1, the code graph construction only produces one edge to the
bottom coding point.

Figure 2 represents a slight modification of this construction and shows that
taking a set of paths with the minimum number of coding points is insufficient to
guarantee that the in-degree of every coding point is at least 2. For simplicity, edges
between sources and receivers are omitted.
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S1 S2

R1 R2

S1 S2

R1 R2

S1 S2

R1 R2

R1 R2

R1 R2

(a) The network. (b) Paths to R1. (c) Paths to R2. (d) Code graph.

Figure 1. Convoluted choice of paths.

S1 S2

R1 R2

S3 S4

R3 R4

Figure 2. Bottom coding point has in-degree 1 when taking paths
analogous to the above.

Anderson et al. [2017] also provide a criterion to determine when a labeled
network is a code graph:

Proposition 2.5. Let 0 = (V, E) be a vertex-labeled, directed acyclic graph where
each vertex v is labeled with a finite set Lv. Let S := {v ∈ V | v has in-degree 0},
Q := V \S, and R=

⋃
v∈V Lv. Suppose:

• The in-degree of every vertex in Q is at least 2.

• For each R ∈R, the set VR = {v ∈ V : R ∈ Lv} has |S| vertices.

• For each R ∈ R there is a set 5R = {πS,R | S ∈ S} of vertex-disjoint paths
where every vertex and edge of 0 is contained in some πS,R .
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(a) The code graph. (b) Paths to R1. (c) Paths to R2.

Figure 3. Insufficiency of modification of Proposition 2.5.

Then 0 is the code graph for a reduced multicast network whose sources, coding
points, and receivers are in one-to-one correspondence with the elements of S, Q,
and R, respectively.

In Figure 3, we find that the condition that a single choice of vertex-disjoint
paths using all edges and vertices may be insufficient to guarantee that a graph is a
code graph of some multicast network. In this case, the bottom node cannot act as
a coding point as the two paths to it originate from the same source. One can note
that the edge between the coding points can be avoided completely when instead
taking the path directly from the second source to the bottom coding point as the
path to R1.

Note that it is still insufficient to require that all choices of vertex-disjoint paths
{5R}R∈R use all edges/vertices. Consider Figure 4 below, which has only the
shown vertex-disjoint paths but for which the bottom vertex cannot be a coding
point. Further in this paper, we will require various receiver placements which will
ensure that the formed labeled directed acyclic graphs are code graphs.

There exists extensive literature, e.g., [Koetter and Médard 2003; Médard and
Sprintson 2011; Sun et al. 2015], that follows the approach of assigning edge
transfer coefficients or vertex transfer matrices directly to the multicast network.
Fragouli and Soljanin [2006] introduced (as coding vectors) and Anderson et al.
[2017] expanded on the concept of Fq -labelings of code graphs, which allow us to
focus on the linear dependence and independence conditions of a single matrix.
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R1

(a) The code graph. (b) Paths to R1. (c) Paths to R2.

Figure 4. Only one choice of paths (but not a code graph).



1312 ANGELINA GROSSO, FELICE MANGANIELLO, SHIWANI VARAL AND EMILY ZHU

Definition 2.6. Let G = (V, E,S,R, {PR | R ∈ R}) be a multicast network and
0 = (V, E) be its corresponding code graph. Each v ∈ V is labeled with a set of
receivers Lv ⊆R. Let VR = {v ∈ V | R ∈ Lv}. An Fq -labeling of 0 is an assignment
of elements of F

|S|
q to the vertices of 0 satisfying:

• The vectors assigned to the source nodes of the code graph are linearly inde-
pendent and without loss of generality they can be chosen to be the standard
basis.

• The vectors assigned to vertices labeled with a common receiver are linearly
independent.

• The vector assigned to a coding point Q ∈ V is in the span of vectors assigned
to the tails of the directed edges terminating at Q.

We call the |S| × |V | matrix consisting of the vectors of the Fq-labeling, an Fq-
labeling matrix of 0.

Anderson et al. [2017] note that the capacity of G is achievable over Fq if and
only if there exists an Fq -labeling of 0. With this, it suffices to examine properties
of code graphs as opposed to complete networks. In this paper, we study the
solvability of a multicast network over various finite fields upon the addition of
receiver placements.

Definition 2.7. Let G = (V, E,S,R, {PR | R ∈ R}) be a multicast network and
0 = (V, E) be its corresponding code graph and R ∈ R. We call the set VR =

{v ∈ V | R ∈ Lv} a receiver placement of R and a vertex v ∈ VR a label of R or
more generally, a receiver label. The determinant of a receiver placement of R is
the maximal minor of the Fq -labeling matrix of 0 with columns corresponding to
its labels.

Since a set of vectors forming a square matrix is linearly independent if and only
if the matrix’s determinant is nonzero, we examine the structure of the determinants
of receiver placements. In particular, to assist in determining if such an Fq -labeling
matrix exists, we will consider the matrix over Fq [α(u,v) : (u, v) ∈ E] formed by
assigning the standard basis to the sources and variable linear combinations of the
parents’ vectors; i.e., if Nu is the vector in the Fq -labeling matrix corresponding to
a vertex u ∈ V, for some v ∈Q, we would consider the vector

∑
u:(u,v)∈E α(u,v) ·Nu .

Definition 2.8. Let S = {S1, . . . , Sn} and VR be a receiver placement, i.e., VR =

{R(1), . . . , R(n)} ⊂ V. We introduce the following notation:

• πi, j denotes a path from Si to R( j).

• 5R,σ = {πi,σ (i) | i ∈ [n]} for some σ ∈ Sn , where [n] = {i}ni=1 and Sn is the
symmetric group of degree n, is a set of paths matching the sources to the
receiver-labeled vertices
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• 9R = {5
( j)
R,σ | σ ∈ Sn, j ∈ [mσ ]}, where mσ is the number of paths, possibly 0,

for this given matching of sources to receiver-labeled vertices, consists of all
sets of paths from the sources to the receiver-labeled vertices.

• 8R ={5R,σ =5
( j)
R,σ ∈9R | j ∈ [mσ ], πi,σ (i) are vertex-disjoint} consists of all

sets of vertex-disjoint paths from the sources to the receiver-labeled vertices.

Note that the σ corresponding to 5R,σ is well-defined and unique as we have
n sources and n labels, but for a given σ , the set 5R,σ is not necessarily unique —
it may not even exist. In a slight abuse of notation, we will also write (u, v) ∈5R,σ

to denote that (u, v) ∈ πi,σ (i) for some πi,σ (i) ∈5R,σ .

Proposition 2.9. Let S1, . . . , Sn denote the sources in a code graph with the
Fq-labeling matrix denoted by N. Given a receiver placement of R, i.e., VR =

{R(1), . . . , R(n)}, we have

det(NR)=
∑

5R,σ∈8R

sign(σ )
∏

(u,v)∈5R,σ

α(u,v) ∈ Fq [α(u,v) : (u, v) ∈ E],

where NR is the submatrix of N corresponding to R(1), . . . , R(n) and α(u,v) is the
transfer coefficient, also called channel gain, corresponding to the edge (u, v)
and Fq [α(u,v) : (u, v) ∈ E] is the multivariate polynomial ring where variables
correspond to the transfer coefficients.

This proposition says that the minor corresponding to a receiver placement in
an Fq -labeling matrix can be calculated by the sum over the sets of vertex-disjoint
paths to the receiver-labeled vertices of the product of the transfer coefficients
corresponding to the edges in any of those paths. In other words, sets including
vertex-intersecting paths do not affect the minor.

We first show the following property about the set 9R\8R of sets of paths with
vertex-intersecting paths.

Lemma 2.10. There is a matching of 9R\8R without fixed points, meaning a
bijective map µ :9R\8R→9R\8R with µ ◦µ= id and µ(5R,σ ) 6=5R,σ for all
5R ∈9R\8R such that for µ(5R,σ )=5

′

R,σ ′

sign(σ )=− sign(σ ′) and
∏

(u,v)∈5R,σ

α(u,v) =
∏

(u,v)∈µ(5R,σ )

α(u,v).

Proof. Let5R,σ ∈9R\8R be arbitrary and let sources Si , S j be the minimum (i, j)
(under lexicographic ordering) such that πi,σ (i) and π j,σ ( j) intersect at some vertex.
Let x be the first vertex at which these paths intersect. Furthermore, let πl,x ⊆πl,σ (l)

denote the subset of the path πl,σ (l) going from Sl to x and πx,σ (l) ⊆ πl,σ (l) denote
the subset of the path πl,σ (l) going from x to R(σ (l)) for l = i, j .
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We define µ(5R,σ )= {π
′

k,σ ′(k) : k ∈ [n]}, where

σ ′(k)=


σ(k) if k 6= i, j,
σ ( j) if k = i,
σ (i) if k = j

and π ′k,σ ′(k) =


πk,σ (k) if k 6= i, j,
πi,x ∪πx,σ ( j) if k = i,
π j,x ∪πx,σ (i) if k = j.

Note that this µ satisfies the desired properties:

• Clearly there is no µ(5R,σ ) = 5R,σ since necessarily distinct portions of the
paths from two sources are swapped to get µ(5R,σ ).

• µ ◦µ(5R,σ ) =5R,σ as the minimum (i, j) and first vertex of intersection are
the same for 5R,σ and µ(5R,σ ), so applying µ again simply swaps the swapped
portion back to the original paths, returning µ(µ(5R,σ )) to 5R,σ .

• This is bijective since by the above, µ is its own inverse.

• We have that sign(σ ) = − sign(σ ′) as σ ′ = τi, j ◦ σ (where τi, j denotes the
transposition of i, j , which fixes all other elements).

•
∏
(u,v)∈5R,σ

α(u,v) =
∏
(u,v)∈µ(5R,σ )

α(u,v) as both sets of paths use exactly the
same edges with the same multiplicity by definition. �

We now turn to the proof of the proposition:

Proof of Proposition 2.9. Note that by the definition of determinant

det(NR)=
∑
ρ∈Sn

sign(ρ)
n∏

i=1

(NR)i,ρ(i),

where we note that ρ(i) determines at which receiver a path ends and i determines
from which source a path originates. As such, based on the line graph (like in
Kschischang’s argument in Appendix C [Médard and Sprintson 2011]), we see that
an entry of the matrix is the sum over the paths from Si to R(ρ(i)) of the product
over the edges of the transfer coefficients, so

(NR)i,ρ(i) =
∑

πi,ρ(i) a path

∏
(u,v)∈πi,ρ(i)

α(u,v),

where πi,ρ(i) is any path from Si to R(ρ(i)). Now expanding
∏n

i=1(NR)i,ρ(i), which
is the product over the sources of the sums over different paths from that source
to the desired receiver and thus the sum over the different sets of paths from the
sources to the receivers of the product over those paths, we get

n∏
i=1

(NR)i,ρ(i) =

n∏
i=1

( ∑
πi,ρ(i) a path

( ∏
(u,v)∈πi,ρ(i)

α(u,v)

))
=

∑
5R,σ∈9R :σ=ρ

( ∏
(u,v)∈5R,σ

α(u,v)

)
,
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so by the uniqueness of σ for a given 5R,σ , we have

det(NR)=
∑
ρ∈Sn

sign(ρ)
∑

5R,σ∈9R :σ=ρ

( ∏
(u,v)∈5R,σ

α(u,v)

)
=

∑
5R,σ∈9R

sign(σ )
∏

(u,v)∈5R,σ

α(u,v)

Now the only difference between our current expression for det(NR) and the desired
expression is that the set of paths 5R,σ for the determinant might not be vertex-
disjoint. But as a result of the matching in Lemma 2.10, we have∑

5R,σ∈9R\8R

sign(σ )
∏

(u,v)∈5R,σ

α(u,v) =
∑

{5R,σ ,µ(5R,σ )}⊆9R\8R

0= 0,

making
det(NR)=

∑
5R,σ∈8R

sign(σ )
∏

(u,v)∈5R,σ

α(u,v)

as desired. �

Corollary 2.11. The number of terms in det(NR) is the number of sets of vertex-
disjoint paths from S1, . . . , Sn to R(1), . . . , R(n).

This follows from Proposition 2.9.

Corollary 2.12. For a receiver placement VR , the α(u,v)-degree of det(NR) has
degree at most 1.

This follows by noting that since the paths are vertex-disjoint, any edge can be
traversed at most once among a set of paths. Therefore the corresponding variable
can only appear once in a monomial corresponding to some path.

3. Triangular semilattice network

We now introduce and discuss properties of the triangular semilattice network, a
code graph with a structure that visually resembles an inverted equilateral triangle.
We then seek to add receiver placements to require a greater minimum field size.

Definition 3.1. Let a triangular semilattice code graph On of length n for n ∈N\{0}
be a code graph with underlying directed acyclic graph given by the vertex and
edge sets

V ={(x, y)∈Z2
| x, y≥ 0, x+y< n},

E ={((x+1, y), (x, y)) | 0≤ x+y< n−1}∪{((x, y+1), (x, y)) | 0≤ x+y< n−1}.

For 1 ≤ i ≤ n, we call the set of vertices {(a, b) | a+ b = n− i} the i-th level,
where the first level is called the top level and the n-th level is called the bottom
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(a) Definition of O3. (b) Enumeration of the vertices.

Figure 5. Representation of a triangular semilattice code graph O3

with vertex enumeration.

level. We enumerate the vertices in increasing order of level and then increasing
order of the x-coordinate within the level.

We may refer to the triangular semilattice network of length n as any network
with associated code graph On .

Figure 5 showsO3 without receiver labels but with the enumeration of the vertices.
Later in this work, we will often identify vertices with the value in this enumeration.

Definition 3.2. Let the left-side refer to the n vertices in the On with x-coordinate
equal to 0. Similarly the right-side refers to the n vertices with y-coordinate equal
to 0. We collectively refer to these as the sides.

Note that embedding On as above, the left side corresponds with vertices without
left children and the right side corresponds with vertices without right children.

Valid receiver placements. We introduce some more definitions and lemmas to
help us prove the characterization of valid receiver placements, meaning labeled
vertices distributed such that there is a choice of disjoint paths between sources and
labeled vertices.

Definition 3.3. A k-triangle in a triangular semilattice network On is a subgraph
isomorphic as a directed graph to a triangular semilattice network Ok . We call k the
length of a k-triangle.

We will drop k if the length of the triangle is clear from the context. Note that
length can also be defined via the length of the longest path between any two vertices
in the triangle (also considering number of vertices for length) or the number of
vertices along the top of the triangle.

Definition 3.4. Given a receiver placement of R, a k-triangle is overcrowded if
there are at least k+ 1 labels among its vertices. It is crowded if there are exactly
k labels. A k-triangle is distributed if no triangle contained in it is overcrowded.

Definition 3.5. The extension of a k-triangle is the (k+1)-triangle containing the
original k-triangle and all parents of the vertices in the k-triangle.
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Figure 6. A graph with no overcrowded 3-triangles but an over-
crowded 2-triangle.

Remark 3.6. It is insufficient to just consider (n−1)-triangles for the distributed
property. Consider the network in Figure 6, where the receiver-labeled vertices
are shown in gray. Note that there are three labels in a 2-triangle, making it not
distributed but there are not four labels in a 3-triangle.

Definition 3.7. We say that two vertices a and b are consecutive if they share a
child. A sequence a1, . . . , ak of distinct vertices has consecutive vertices if ai and
ai+1 are consecutive for every i = 1, . . . , k− 1. A vertex c is between a and b if
there is a sequence of consecutive vertices with extremals a and b containing c.

Intuitively, consecutive vertices are “next to” each other on the same level of the
network.

Definition 3.8. For two distinct vertices a, b on the same level, we say that a is to
the left of b (equivalently that b is to the right of a) if its value in the enumeration
is less than (greater than) that of b.

Definition 3.9. For a vertex a to the left of some vertex b on some i-th level, we
say some vertex c is trapped between a and b if the vertex is in the level i + 1 and
it is between a’s right child and b’s left child; see Figure 7.

Lemma 3.10. Let On be a distributed triangular semilattice network with a se-
quence of consecutive vertices where each vertex is contained in a crowded triangle.
Then, there is a crowded triangle containing all vertices in this sequence.

Proof. We induct on the length of the sequence. If there is just one such vertex, we
are done.

On two consecutive vertices x and y, we have a crowded k-triangle corresponding
to x which may intersect a crowded l-triangle corresponding to y (where k, l are

Figure 7. The thickly outlined vertices are trapped between the
two filled-in vertices.
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some lengths). Note that if the intersection has length i ≥ 0, it has at most i labels
or we have a contradiction. In that case, consider the triangle of length k + l − i
containing the two crowded triangles; note that it contains at least the labels in the
k-triangle and l-triangle, which by inclusion/exclusion have at least k+ l − i labels
combined. By assumption, a (k+ l − i)-triangle must have at most k+ l − i labels,
so we have equality, thus forming a crowded triangle.

Now for our inductive step, assume the result for m ≥ 2 and consider m + 1
consecutive vertices contained in crowded triangles. By the inductive hypothesis,
we have some crowded l-triangle containing the first m vertices. We can then apply
the case for two vertices to the m-th vertex (with the crowded l-triangle) and the
(m+1)-th vertex (with some crowded k-triangle) to get some crowded j-triangle
containing all m+ 1 vertices (where j, k, l are some lengths). �

Lemma 3.11. Let On be an distributed triangular semilattice network with t > 1
labels in the top level. Then, there are t − 1 unlabeled vertices in the second level
such that upon labeling them, the bottom (n−1)-triangle is distributed.

Proof. Let L be the leftmost labeled vertex in the top level. Note that it suffices
to show that iteratively, for every top-level labeled vertex v 6= L , we can label a
previously unlabeled vertex trapped by u, the rightmost labeled vertex to the left
of v, and v such that the bottom (n−1)-triangle is distributed.

We prove the claim by contraposition: Assume that at some point, there exists a
labeled vertex v 6= L in the top level such that we create an overcrowded triangle in
the bottom (n−1)-triangle for every such labeling. Then, we show that there was
originally an overcrowded triangle in the network. In particular, we claim that if
every labeling creates an overcrowded triangle, every vertex trapped by v and the
previous labeled vertex u is in some crowded triangle. Each of the labeled trapped
vertices forms a crowded 1-triangle. Moreover, by assumption, upon labeling each
of the unlabeled trapped vertices, it is in a k-triangle with at least k + 1 labeled
vertices. Without that added label, we thus have at least k labeled vertices in a k-
triangle. If we have more than k labels in this k-triangle, we arrive at a contradiction;
otherwise, we have a crowded triangle. We can then apply Lemma 3.10 to get a
crowded l-triangle containing all of the trapped vertices. From there, we can extend
the triangle to the first level to include u and v as in Definition 3.5, getting l + 2
labels in an (l+1)-triangle in the original graph. �

Theorem 3.12. Given a triangular semilattice network On , a labeling VR of n ver-
tices corresponding to some receiver R is valid, meaning that there are vertex-
disjoint paths to the vertices labeled by VR from the sources if and only if the
network is distributed.

Proof. We first show the forward direction. Fix a valid receiver placement and a
triangle of length k. Consider the set Sk of the vertices corresponding to the labels
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in the triangle. Note that the mincut from the sources to the set Sk is at most k,
since the top level of the triangle is a cut of size k. As such, by Menger’s theorem,
there are at most k vertex-disjoint paths to the set Sk , and thus, at most k labels in
the triangle.

We now show the other direction by induction on n. The base cases of n = 1, 2
are trivial. Now assume the result for n ≥ 2. Consider a triangular semilattice
network On+1 and a receiver placement satisfying the desired property. As there are
at most n labels in the bottom triangle of length n, there must be at least one label
in the top level. We call the leftmost label L and match the remaining n vertices in
the top level with the next level as follows.

If there is only one label in the top level, we can iteratively match/biject all
vertices in the first level, from left to right, to the leftmost unmatched vertex in the
next level — in particular, we match the vertices to the left of L with their right child
and those to the right of L with their left child. Applying the inductive hypothesis
to the bottom n-triangle, we can extend the n vertex-disjoint paths from the second
level to the receivers to begin at the sources via the matching. With {L}, we then
have our n+ 1 vertex-disjoint paths to the labels.

Otherwise there are at least two labels in the top level. By Lemma 3.11, we
have a matching of the labeled vertices in the top level to some trapped vertices in
the next level. Note that if we enumerate the top level’s vertices as a1, . . . , an+1

and the second level’s vertices as b1, . . . , bn , a vertex ai has children bi−1, bi if
i −1, i ∈ [n]. Now, we match each remaining unlabeled vertex in the top level with
an unmatched child as follows:

• We can match any consecutive vertices a1, . . . , am up to L (exclusive) by matching
ai with bi for i = 1, . . . ,m. None of those bi have been matched as they are not
trapped by any two labeled vertices.

• We can match any consecutive vertices at , . . . , an+1 after the rightmost labeled
vertex in the top level by matching ai+1 with bi for i = t−1, . . . , n. Again we note
that none of these bi are trapped by any two labeled vertices.

• For the unlabeled vertices ar , . . . , as between two labeled vertices u and v in the
top level, we match these to {br−1, . . . , bs}\{bp}, where bp is the vertex matched
to v. For 1< r ≤ i ≤ p, we match ai with bi−1 and for p< i ≤ s, we match ai with bi .

Note that this process creates a bijection between vertices. Within a section (between
the trapped vertices or at the ends), the process is clearly injective. Across the
consecutive sections, we reach a label at position a j where the furthest right vertex
the left section matches to is b j−1 (and sections further left match to vertices further
left) and the furthest left vertex the right section matches to is b j .

Finally, by our inductive hypothesis, we have vertex-disjoint paths from the
sources/top level of the bottom n-triangle to the labels originally there and those
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added by Lemma 3.11. The set of vertex-disjoint paths in the original (n+1)-triangle
is then as follows. Every label in the top level is just a path with a single vertex. For
every other label in a lower level, we extend the path found in the bottom n-triangle
via the matching with the unlabeled sources that we just found. This is vertex-
disjoint as there are no intersections in the top level and the paths when restricted to
the bottom n-triangle are either empty or are as found in the inductive hypothesis. �

We can further locate some receiver placements with well-understood determi-
nants. Previously we denoted transfer coefficients using α(u,v), where (u, v) ∈ E .
Henceforth we use α(i)j for the transfer coefficients of the triangular semilattice
network On for i ∈ [|On−1|], where |On−1| is the number of vertices in On−1 and thus
the bottom (n−1)-triangle of On , and j ∈ [2]. Here, α(i)1 is the transfer coefficient
of the edge between vertex i+n and its left parent and α(i)2 is the one between i+n
and its right parent.

Proposition 3.13. Let VR be a receiver placement in a triangular semilattice net-
work On consisting of exactly one label per level, where each label is along the sides
of the network, and let VR′ be the reflected receiver placement, meaning that its
labels are the remaining side labels together with the bottom one. Then

det(NR) det(NR′)=±
∏

i∈[|On−1|], j∈[2]

α
(i)
j .

Proof. We prove this by induction on the length n of the triangular semilattice
network On . This is trivial in the case of O1, as there are no variables. In the case
of O2, we either take the right source and the bottom vertex — for a determinant
of α(1)2 — or the left source and the bottom vertex — for a determinant of α(1)1 , and
we have the product is then α(1)1 α

(1)
2 , as desired.

Now consider the triangular semilattice network On+1 for n ∈ N, n ≥ 2, where
we fix a receiver placement such that we have a label in each level along the sides.
Let NR be the submatrix corresponding to this receiver placement. Consider

L =


1 α(1)1 0 · · · 0
0 α(1)2 α(2)1 · · · 0
...

...
. . .

...

0 0 0 · · · α(n)2

 or L i, j =


1 if i = j = 1,
α( j−1)

1 if i + 1= j ≥ 2,
α( j)

2 if i = j ≥ 2
0 otherwise,

T =


0 α(1)1 0 · · · 0
0 α(1)2 α(2)1 · · · 0
...

...
. . .

...

1 0 0 · · · α(n)2

 or Ti, j =


1 if i = n and j = 1,
α( j−1)

1 if i + 1= j ≥ 2,
α( j)

2 if i = j ≥ 2
0 otherwise.
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Extending to the field of fractions Fq(α
(i)
j | i ∈ [|On|], j ∈ [2]), note that L−1

corresponds to the basis change taking the leftmost label and the second level
and T−1 corresponds to the basis change taking the rightmost label and the sec-
ond level. Further note that det(L) =

∏n
i=1 α

(i)
2 and det(T ) = ±

∏n
i=1 α

(i)
1 . To

calculate det(NR), it suffices to calculate det(L L−1 NR) = det(L) det(L−1 NR) or
det(T T−1 NR) = det(T ) det(T−1 NR). Now after the basis change (using L if we
picked the top left label and T if we picked the top right label), the label’s structure
of the bottom n-triangle is identical to that of a triangular semilattice network On .

Further note that the basis-changed matrix N R = L−1 NR or T−1 NR is in the
block matrix form

N R =

(
1 0
0 N ′R

)
,

where N ′R is the matrix corresponding to the bottom n labels in On . Expanding
by minors, we have det(N R)= det(N ′R). By inductive hypothesis we have that
det(N ′R) is a monomial where the product of this determinant and that corresponding
to the reflection of the bottom n labels is a monomial with all transfer coefficients
in On . As switching between the leftmost top label and the rightmost top label
swaps between L and T, combining this with the bottom n-triangle for the original
determinants, we get the desired result. �

As a consequence we obtain that a receiver placement VR for a triangular semi-
lattice network On defined as in Proposition 3.13 is a valid receiver placement
for any choice of triangular semilattice network of length n and there exists an
Fq -labeling with nonzero transfer coefficients for any finite field Fq . As such, for the
rest of the paper we consider the triangular semilattice network On to be equipped
with two receivers: the left-side and the right-side receivers, meaning the receivers
with placements {(0, n− 1), . . . , (0, 0)} and {(n− 1, 0), . . . , (0, 0)} respectively as
defined in Definition 3.2.

Invariance under symmetries of receiver placements. In this section we study
properties of minors of Fq -labelings from receiver placements. We will show that
the property of having an Fq -labeling for a receiver placement implies the existence
of an Fq -labeling for any receiver placement that is obtained from the original from
either rotation or reflection with respect to the underlining graph of the network.

Definition 3.14. Let On be defined as in Definition 3.1. Then, the map ρ : V → V
defined as ρ(x, y) = (n − 1 − x − y, x) and the map σ : V → V defined as
σ(x, y) = (y, x) are bijections of the set of vertices with ρ3

= id and σ 2
= id

respectively.

Roughly speaking, ρ represents a counterclockwise rotation of the vertices,
whereas σ represents a reflection. These two maps can be naturally extended
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(a) VR receiver placement. (b) Vρ(R) receiver placement. (c) Vσ(R) receiver placement.

Figure 8. Receiver placements of the 3-semilattice.

to subsets of vertices. We are going to use these maps prevalently on receiver
placements, meaning that the directed structure of the network is not going to change.
Let VR={v∈V | R∈ Lv} be a receiver placement; then Vρ(R) :={ρ(v)∈V | R∈ Lv}
and Vσ(R) := {σ(v) ∈ V | R ∈ Lv} are two others receiver placements. Figure 8
provide examples for the 3-semilattice network.

Theorem 3.15. Let VR be a receiver placement for a triangular semilattice net-
work On . The following hold:

(1) Vρ(R) and Vσ(R) are valid if and only if VR is valid.

(2) If On is equipped with the side receivers, there exists an Fq-labeling for On

with valid receiver placements Vρ(R) or Vσ(R) if and only if there exists an
Fq -labeling for On with the valid receiver placement VR .

Proof. By Theorem 3.12, the receiver placement VR is valid if the triangular
semilattice network On with the labels in VR is distributed. It is evident that being
distributed is a property of the labeled network which is preserved by rotation or
reflection of the labels. So it holds that Vρ(R) and Vσ(R) are valid if and only if VR

is valid.
Let N be an Fq-labeling of the triangular semilattice network On with side

receivers. Let VS , V` and Vr in V refer to the placements of the sources, the left
receiver and the right receiver respectively. It holds that

Vρ(`) = Vr and Vρ(r)= VS, (1)

Vσ(`) = Vr and Vσ(S)= VS . (2)

Let VR be a valid receiver placement and let N be an Fq-labeling. Let Nv denote
the column of N corresponding to vector v ∈ V and NT denote the submatrix of
N with columns indexed by T ⊆ V. Let Nρ be the matrix defined by the relation
Nρ
v := Nρ−1(v). Up to a multiplication of an invertible |S| × |S| matrix, Nρ is an

Fq -labeling of On with side receivers and receiver placement Vρ(R). In fact, by (1),
Nρ
S , Nρ

` , Nρ
r and Nρ

Vρ(R) are invertible since, up to reordering of the columns, they
correspond to matrices Nr , NS , N` and NVR . Similar reasoning works for the
reflection map σ . �
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Figure 9. The triangular semilattice network O4.

4. Complete study of triangular semilattice network up to four sources

We now will demonstrate various properties relating to the receiver placements and
minimum field sizes required to solve the Fq-labeling conditions for the triangle
semilattice network on small lengths.

The triangular semilattice networks O2 and O3. The 2-semilattice has three differ-
ent valid receiver placements and is trivially solvable over F2. Note that it is the
code graph for the butterfly network.

The 3-semilattice has 17 different valid receiver placements. Excluding the
receiver placement corresponding to the three corner nodes, all valid receiver
placements have one term in their associated minors. Therefore, any choice of
receiver placements that does not include the receiver placement corresponding to
the three corner nodes is solvable over F2 by assigning all of the variables a value
of 1. When receiver placements are chosen to include those receiver placements
along the left-side, along the right-side, and corresponding to the three corner nodes,
F2 will cause one associated minor to equal zero, so the minimum field size over
which the network is solvable is F3.

The triangular semilattice network O4. The triangular semilattice network O4, see
Figure 9, has 150 possible receiver placements. Through exhaustion, we know that
F5 is sufficient forO4 to be solvable when all 150 receiver placements are considered.
We consider O4 together with the side receivers and we find the solvability of the
network by increasing its receivers.

Proposition 4.1. The semilattice network O4 together with any two receivers is
solvable over Fq for q ≤ 3.

Proof. First recall that having {1, 5, 8, 10} and {4, 7, 9, 10} as receiver placements
forces every transfer coefficient of O4 to be nonzero as shown in Proposition 3.13.
Moreover, let VR be a receiver placement; then, from Corollary 2.11, det(NR) ∈

Fq [α
(i)
j | i ∈ [6], j ∈ [2]] is a multivariate polynomial with at most three terms.

Let [i, j] for 1 ≤ i ≤ j ≤ 3 represents the number of terms of the minors
corresponding to the two further receivers, where we assume i ≤ j without loss of
generality. We are going to prove the theorem by working through the different cases.
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Case 1: [1, 1], [1, 3], [3, 3]: The minors all have odd numbers of terms and by
setting all variables to 1 over F2, the value of every minor is then 1.

Case 2: [1, 2], [2, 2]: Setting all variables to 1 over F3, the value of the 1-term
minor would be 1 and the value of the 2-term minor(s) would be 2.

Case 3: [2, 3]: This case is not solvable over F2 since then the 2-term minor is 0.
We prove that this case is solvable over F3 by contradiction; assume that for every
evaluation point a= (a(i)j | i ∈ [6], j ∈ [2]) ∈ F12

3 without zero entries at least one
of the minors is zero.

Since all transfer coefficients must be nonzero, without loss of generality we can
denote the minors as A+ B and C + D+ E , where A, B and C, D, E are terms
with no common factor respectively. In the following, swapping a nonzero value
a ∈ F3 corresponds to taking the value 2a ∈ F3.

(i) Let a∈ F12
3 be such that (A+ B)(a)= (C+D+E)(a)= 0 and α(i)j be a variable

in C + D+ E . Define a′ ∈ F12
3 to be equal to a except for a(i)j , which is swapped;

then (C + D + E)(a′) 6= 0. If the same α(i)j appears in A+ B as well, we have
(A+ B)(a′) 6= 0, a contradiction. If no variable in C + D+ E appears in A+ B,
instead define a′ ∈ F12

3 from a by swapping two values of it corresponding to some
variable in A+ B and to some variable in C + D+ E independently to again get
(C + D+ E)(a′) 6= 0, (A+ B)(a′) 6= 0, a contradiction.

(ii) Let instead for all a ∈ F12
3 exactly one of (A+ B)(a) and (C + D+ E)(a) be 0.

Note that all variables in A+ B must appear in C + D+ E ; assume for the sake
of contradiction that there is some variable α(i)j which appears in A+ B which does
not appear in C + D+ E . Then, if (A+ B)(a)= 0 and (C + D+ E)(a) 6= 0, the
evaluation point a′ ∈ F12

3 defined from a by swapping the value of a(i)j produces
(A+ B)(a′) 6= 0 and (C+ D+ E)(a′) 6= 0, a contradiction. If (C+ D+ E)(a)= 0,
(A+ B)(a) 6= 0, then taking a′ ∈ F12

3 defined from a by swapping the value of a(i)j
produces (A+ B)(a′)= 0, (C + D+ E)(a′)= 0, again a contradiction of item (i).
This proves that all variables in A+ B must appear in C + D+ E .

Let a ∈ F12
3 be such that (A+ B)(a)= 0 and (C + D+ E)(a) 6= 0. Then if a′ is

obtained by a by swapping one of the values corresponding to a variable contained
in A+ B, then (A+ B)(a′) 6= 0 and (C + D+ E)(a′)= 0.

Without loss of generality we can focus on the case where a ∈ F12
3 is such that

(A+ B)(a) 6= 0 and (C + D+ E)(a)= 0.

• Consider now the case where there exists a variable α(i)j which appears in C+D+E
but not in A+ B and define a′ ∈ F12

3 from a by swapping the value of a(i)j . Then,
(A+ B)(a′) 6= 0 and (C + D+ E)(a′) 6= 0, a contradiction.

• Consider instead the case where A+ B and C + D + E share the same set of
variables. Let a∈ F12

3 be a root of C+D+E . As each swap changes whether A+B



MULTICAST TRIANGULAR SEMILATTICE NETWORK 1325

is nonzero, if a′ ∈ F12
3 is obtained from a by swapping the values of two distinct

variables α(i1)
j1 , α(i2)

j2 contained in C + D+ E , we get back to (C + D+ E)(a′)= 0.
Indeed, either the distinct variables appear in the same terms or they partition the
terms. Note that two such variables α(i1)

j1 , α
(i2)
j2 partitioning the terms exist since we

cannot have everything sharing the same terms by assumption. Then, we are able
to partition all variables as to whether they share a term with α(i1)

j1 or α(i2)
j2 , so we

can represent our sum in the form of C+C+ E . This is impossible as the minor is
formed by a sum of the product of transfer coefficients over different sets of paths,
while the repetition of C corresponds to a repeated set of paths. �

We can also characterize some sets of receivers in the 4-semilattice which require
a larger field size.

Proposition 4.2. There exists a choice of three receivers of the semilattice network
O4 which is not solvable over Fq for q ≤ 3 but it is over F4.

Proof. We prove that there is no evaluation point a ∈ F12
q without zero entries for

q=2, 3 such that the minors related to receiver placements {2, 5, 7, 10}, {2, 4, 9, 10},
{1, 4, 5, 10} are simultaneously nonzero. It holds that

det(N{2,5,7,10})= α
(1)
1 α

(2)
2 α

(3)
2 α

(4)
2 α

(6)
1 +α

(1)
1 α

(2)
2 α

(3)
2 α

(5)
1 α

(6)
2 = A+ B,

det(N{2,4,9,10})= α
(1)
1 α

(2)
2 α

(4)
1 α

(5)
1 α

(6)
1 +α

(1)
1 α

(3)
1 α

(4)
1 α

(5)
2 α

(6)
1 = C + D,

det(N{1,4,5,10})= α
(1)
2 α

(2)
2 α

(4)
2 α

(6)
1 +α

(1)
2 α

(2)
2 α

(5)
1 α

(6)
2 +α

(1)
2 α

(3)
1 α

(5)
2 α

(6)
2

= α
(1)
2

(A+ B)(C + D)− AD

(α
(1)
1 )2α

(2)
2 α

(3)
2 α

(4)
1 α

(5)
1 α

(6)
1

.

It is enough to show at least one of the three polynomials of the forms A+ B,
C+D and (A+B)(C+D)− AD evaluate to zero. Over F2, note that (A+B)(a)=
1+ 1 = 0. Over F3, if either (A + B)(a) = 0 or (C + D)(a) = 0, we are done.
Otherwise, if there exists a ∈ F12

3 such that (A+ B)(a) 6= 0 and (C + D)(a) 6= 0,
then A(a)= B(a) and C(a)= D(a). It follows that

((A+ B)(C + D)− AD)(a)= ((2A)(2D))(a)− (AD)(a)= (AD− AD)(a)= 0.

A solution over F4=F2/(a2
+a+1) for O4 with receiver placements {2, 5, 7, 10},

{2, 4, 9, 10} and {1, 4, 5, 10} is

a= (1, a+ 1, a+ 1, a+ 1, a, a, a+ 1, a+ 1, a, 1, a, a) ∈ F12
4 . �

By exhaustive search, there exist 324 choices of three receiver placements (fixing
the sides) that require a minimum field size of F4 to be solved. Also through
exhaustive search, we know that any selection of up to five receiver placements is
solvable over F4 or a smaller finite field.
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Proposition 4.3. There exists a choice of six receivers of the semilattice network
O4 which is not solvable over Fq for q ≤ 4 but it is over F5.

Proof. We prove that there is no evaluation point a ∈ F12
q without zero entries for

q ≤ 4 such that the minors related to receiver placements

{1, 2, 4, 9}, {1, 3, 4, 8}, {2, 5, 7, 10}, {1, 4, 8, 9}, {1, 4, 5, 10}, {1, 3, 4, 10}

are simultaneously nonzero. It holds that

det(N{1,2,4,9})= α
(2)
2 α

(5)
1 +α

(3)
1 α

(5)
2 = A+ B,

det(N{1,3,4,8})= α
(1)
2 α

(4)
1 +α

(2)
1 α

(4)
2 = C + D,

det(N{2,5,7,10})= α
(1)
1 α

(2)
2 α

(3)
2 α

(4)
2 α

(6)
1 +α

(1)
1 α

(2)
2 α

(3)
2 α

(5)
1 α

(6)
2 = E + F,

det(N{1,4,8,9})= α
(1)
2 α

(2)
2 α

(4)
1 α

(5)
1 +α

(1)
2 α

(3)
1 α

(4)
1 α

(5)
2 +α

(2)
1 α

(3)
1 α

(4)
2 α

(5)
2

= (A+ B)(C + D)− AD,

det(N{1,4,5,10})= α
(1)
2 α

(2)
2 α

(4)
2 α

(6)
1 +α

(1)
2 α

(2)
2 α

(5)
1 α

(6)
2 +α

(1)
2 α

(3)
1 α

(5)
2 α

(6)
2

= α
(1)
2
(A+ B)(E + F)− B E

α
(1)
1 α

(2)
2 α

(3)
2 α

(5)
1

,

det(N{1,3,4,10})= α
(1)
2 α

(4)
1 α

(6)
1 +α

(2)
1 α

(4)
2 α

(6)
1 +α

(2)
1 α

(5)
1 α

(6)
2

=
(C + D)(E + F)−C F

α
(1)
1 α

(2)
2 α

(3)
2 α

(4)
2

.

The cases of q = 2, 3 follow from Proposition 4.2 by just considering A+ B,
C+D, (A+ B)(C+D)− AD. Let F4 = F2/(a2

+ a+ 1) and a ∈ F12
4 be such that

(A+ B)(a) 6= 0, (C + D)(a) 6= 0 and (D + E)(a) 6= 0. Since a is not a zero of
A,C, E , we can normalize the sums

(A+ B)(a)= A(a)(1+ b′),

(C + D)(a)= C(a)(1+ d ′),

(E + F)(a)= E(a)(1+ f ′),

where b′, d ′, f ′ ∈ F∗4. It also holds that

((A+ B)(C + D)− AD)(a)
(AC)(a)

= (1+ b′)(1+ d ′)− d ′ = 1+ b′+ b′d ′,

((A+ B)(E + F)− B E)(a)
(AE)(a)

= (1+ b′)(1+ f ′)− b′ = 1+ f ′+ b′ f ′,

((C + D)(E + F)−C F)(a)
(C E)(a)

= (1+ d ′)(1+ f ′)− f ′ = 1+ d ′+ d ′ f ′.
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If any of 1+b′, 1+d ′, 1+ f ′ are 0, then we are done. Otherwise if all of 1+b′, 1+d ′,
1+ f ′ are nonzero, then b′, d ′, f ′ ∈ {a, a+ 1}, and by the pigeonhole principle we
have that two of them are equal. Without loss of generality, let b′= d ′; then note that

1+ b′+ b′d ′ = 1+ b′+ (b′)2 = 0

by the field equation, which implies

((A+ B)(C + D)− AD)(a)= 0.

A solution over F5 for O4 with receiver placements {1, 2, 4, 9}, {1, 3, 4, 8},
{2, 5, 7, 10}, {1, 4, 8, 9}, {1, 4, 5, 10} and {1, 3, 4, 10} is

a= (1, 4, 3, 1, 1, 4, 4, 1, 4, 3, 3, 2) ∈ F12
5 . �

We have also found that there exist 8748 choices of six receiver placements that
are solvable over minimum field size of F5.

Valid receiver placements and field sizes’ implementations. Valid receiver place-
ments for triangular semilattice networks On for n up to 9 were calculated based on
Theorem 3.12 using Python and SML (see Table 1).

To calculate whether a set of receiver placements is solvable for a given field
size, we first calculate the minors corresponding to the receiver placements and
multiply them together to get a polynomial f . As in the proof of the linear network
coding theorem in [Médard and Sprintson 2011], we have a nonzero solution for
all of these minors if and only if f has a nonzero root. This is also true if and only
if the remainder of f modulo (xq

i − xi | i ∈ [n]) in Fq is nonzero [Geil et al. 2008,
Proposition 2]. The largest possible minimum field size required for any set of
receiver placements for O4 and O5 has been computed implementing this method
on MAGMA [Bosma et al. 1997].

length valid invalid total

1 1 0 1
2 3 0 3
3 17 3 20
4 150 60 210
5 1848 1155 3003
6 29636 24628 54264
7 589362 594678 1184040
8 14032452 16227888 30260340
9 389622192 496540943 886163135

Table 1. Number of valid receiver placements.
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Edge-transitive graphs and combinatorial designs
Heather A. Newman, Hector Miranda,
Adam Gregory and Darren A. Narayan

(Communicated by Anant Godbole)

A graph is said to be edge-transitive if its automorphism group acts transitively
on its edges. It is known that edge-transitive graphs are either vertex-transitive or
bipartite. We present a complete classification of all connected edge-transitive
graphs on less than or equal to 20 vertices. We investigate biregular bipartite
edge-transitive graphs and present connections to combinatorial designs, and we
show that the Cartesian products of complements of complete graphs give an
additional family of edge-transitive graphs.

1. Introduction

A graph is vertex-transitive (edge-transitive) if its automorphism group acts transi-
tively on its vertex (edge) set. We note the alternative definition given in [Andersen
et al. 1992].

Theorem 1 (Andersen, Ding, Sabidussi, and Vestergaard). A finite simple graph G
is edge-transitive if and only if G � e1 ŠG � e2 for all pairs of edges e1 and e2.

We also mention the following well-known result, which appears as Proposi-
tion 15.1 in [Biggs 1974].

Proposition 2. If G is an edge-transitive graph, then G is either vertex-transitive
or bipartite; in the latter case, vertices in a given part belong to the same orbit of
the automorphism group of G on vertices.

Given a graph G we will denote its vertex set by V.G/ and edge set by E.G/.
We will use Kn to denote the complete graph with n vertices, and Km;n to denote
the complete bipartite graph with m vertices in one part and n in the other. The path
on n vertices will be denoted by Pn and the cycle on n vertices by Cn. The disjoint
union of t copies of a graph H will be denoted by tH. The cube on n vertices will
be denoted by Qn. The complement of a graph G will be denoted by G. For any
undefined notation, please see [West 2001].

MSC2010: 05C25.
Keywords: edge-transitive, combinatorial designs.
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Definition 3. A graph is regular if all of its vertices have the same degree. A
bipartite graph is said to be biregular if all vertices on the same side of the bi-
partition have the same degree. Particularly, we refer to a bipartite graph with
parts of size m and n as an .r; s/-biregular subgraph of Km;n if the m vertices in
the same part each have degree r and the n vertices in the same part each have
degree s.

It follows from Proposition 2 that bipartite edge-transitive graphs are biregular.

Definition 4. Given a group G and generating set S , the Cayley graph �.G; S/ is
a graph with vertex set V.�/ and edge set

E.�/D ffx; yg j x; y 2 V.�/; there exists an integer s in S such that y D xsg:

It is known that all Cayley graphs are vertex-transitive. Next we recall a special-
ized class of Cayley graphs known as circulant graphs.

Definition 5. A circulant graph Cn.L/ is a graph on vertices v1; v2; : : : ; vn where
each vi is adjacent to v.iCj / .mod n/ and v.i�j / .mod n/ for each j in a list L. Alge-
braically, circulant graphs are Cayley graphs of finite cyclic groups. For a list L
containing m items, we refer to Cn.L/ as an m-circulant. We say an edge e is a
chord of length k when e D vivj , ji � j j � k .mod n/.

In our next definition we present another family of vertex-transitive graphs.

Definition 6. A wreath graph, denoted by W.n; k/, has n sets of k vertices each,
arranged in a circle where every vertex in set i is adjacent to every vertex in bunches
i C 1 and i � 1. More precisely, its vertex set is Zn �Zk and its edge set consists
of all pairs of the form f.i; r/; .i C 1; s/g.

It was proved in [Onkey 1995] that all wreath graphs are edge-transitive. We
next recall the definition of the line graph which we use later to show that certain
graph families are edge-transitive.

Definition 7. Given a graph G, the line graph L.G/ is a graph where V.L.G//D
E.G/ and two vertices in V.L.G// are adjacent in L.G/ if and only if their
corresponding edges are incident in G.

Finally we recall the operation of the Cartesian product of graphs.

Definition 8. Given two graphs H and K, with vertex sets V.H/ and V.K/, the
Cartesian product G DH �K is a graph where

V.G/D f.ui ; vj / j ui 2 V.H/ and vj 2 V.K/g

and f.ui ; vj /; .uk; vl/g 2E.G/ if and only if i D k and vj and vl are adjacent inK
or j D l and ui and uk are adjacent in H .
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The properties vertex-transitive and edge-transitive are distinct. This is clear
with the following examples:

� Kn, n� 2, is both vertex-transitive and edge-transitive.

� Cn.1; 2/, n� 6, is vertex-transitive, but not edge-transitive.

� K1;n�1 is not vertex-transitive, but is edge-transitive.

� Pn, n� 4, is neither vertex-transitive nor edge-transitive.

However the two properties are linked, as is evident from the following proposi-
tion, which is a consequence of results of [Whitney 1932; Sabidussi 1961].

Proposition 9. A connected graph is edge-transitive if and only if its line graph is
vertex-transitive.

Note, however, that a graph may not be the line graph of some original graph.
For example, K1;3�C4 is vertex-transitive, but it follows by a theorem of [Beineke
1968] that this graph is not the line graph of some graph.

We used the databases from Brendan McKay1 to obtain all connected edge-
transitive graphs on 20 vertices or less. We then reported the number of edge-
transitive graphs up to 20 vertices to the Online Encyclopedia of Integer Sequences,
and they are listed under sequence #A095424. The full classification of these graphs
is given in the online supplement. We can extrapolate much from this data and
these results are presented in this paper. It was recently brought to our attention
that Marston Conder and Gabriel Verret independently determined the edge-sets
of the connected edge-transitive bipartite graphs on up to 63 vertices2 using the
Magma system, and a complete list of all connected edge-transitive graphs on up to
47 vertices3 with their edge sets.4 In our paper we provide additional details about
these graphs, allowing us to generalize some cases to infinite families of graphs.

We note the following graph families are edge-transitive: Kn, n� 2; Cn, n� 3;
Kn;n minus a perfect matching; K2n minus a perfect matching; and all complete
bipartite graphs Kt;n�t , 1� t �

�
n
2

˘
. Wreaths [Onkey 1995] and Kneser graphs

[Godsil and Royle 2001, pp. 135–161] are also edge-transitive. Besides these
predictable and apparent cases, we can identify other infinite families of edge-
transitive graphs, using the data up through 20 vertices.

We say thatH is an .r; s/-biregular subgraph ofKm;n ifH is bipartite graph with
degrees r and s. In Section 2 of this paper we begin by exploring the problem of

1http://users.cecs.anu.edu.au/�bdm/data/graphs.html
2 https://www.math.auckland.ac.nz/�conder/AllSmallETBgraphs-upto63-summary.txt
3 https://www.math.auckland.ac.nz/�conder/AllSmallETgraphs-upto47-summary.txt
4 https://www.math.auckland.ac.nz/�conder/AllSmallETgraphs-upto47-full.txt

http://msp.org/involve/2019/12-8/involve-v12-n8-x01-GraphClassification.pdf
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://www.math.auckland.ac.nz/~conder/AllSmallETBgraphs-upto63-summary.txt
https://www.math.auckland.ac.nz/~conder/AllSmallETgraphs-upto47-summary.txt
https://www.math.auckland.ac.nz/~conder/AllSmallETgraphs-upto47-full.txt
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determining which values ofm; n; r; s, wheremrDns, result in a (connected) .r; s/-
biregular subgraph of Km;n that is edge-transitive. In Section 2.1, we investigate
bipartite edge-transitive graphs where one of the two vertex degrees in G is 2.

Connections between balanced incomplete block designs and graphs are well-
known. For some recent papers, see [Abueida and Pike 2013; Mamut et al. 2004;
McKay and Pike 2007]. In Section 2.2, we investigate connections between edge-
transitive graphs and balanced incomplete block designs.

2. Connected bipartite graphs

Given positive integers m and n, we first describe which values of r and s are
possible for an .r; s/-biregular subgraph of Km;n. Note that if gcd.m; n/D 1, the
only biregular subgraph of Km;n is Km;n.

Proposition 10. An .r; s/-biregular subgraph of Km;n satisfies

mr D ns;

r D
n

gcd.m; n/
k; k D 1; 2; : : : ; gcd.m; n/:

Proof. We know

s D
mr

n
D
m=gcd.m; n/
n=gcd.m; n/

r;

and since

gcd
�

m

gcd.m; n/
;

n

gcd.m; n/

�
D 1;

r is a multiple of n=gcd.m; n/ (and is less than or equal to n). �

Corollary 11. If gcd.m; n/D 2, there are only two possible pairs .r; s/, namely,
.r; s/ D

�
n
2
; m

2

�
and .r; s/ D .n;m/. The latter case is the complete bipartite

graph Km;n.

We now introduce a construction for generating nontrivial edge-transitive (con-
nected) bipartite subgraphs of Km;n for gcd.m; n/ > 2. This construction involves
a process of extending a nontrivial edge-transitive (connected) bipartite graph to a
larger one, which we describe in the following lemma.

Lemma 12. Let G be an edge-transitive (connected) .r; s/-biregular subgraph
of Km;n. Then, for any positive integers a; b, and r , the subgraph G can be
extended to an edge-transitive (connected) .ra; sb/-biregular subgraph of Kmb;na.

Proof. It suffices to show that, by letting G be a (connected) edge-transitive .r; s/-
biregular subgraph of Km;n, we can build a (connected) edge-transitive graph H
that is an .r; 2s/-biregular subgraph of K2m;n. Let G consist of partite sets A;B ,
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Figure 1. An example of the construction in the theorem, with
vertices drawn in the same color being vertices that are connected
to the graph in the same way.

where A D fa1; a2; : : : ; amg and B D fb1; b2; : : : ; bng. Now create the set A0 D
fa1; a2; : : : ; am; a

0
1; a
0
2; : : : ; a

0
mg and create a graph H with partite sets A0 and B

as follows. For each ai , let NH .ai /DNG.ai /. For each a0i , let NH .a
0
i /DNG.ai /.

Then by construction, H is a (connected) .r; 2s/-biregular subgraph of K2m;n.
Since G is edge-transitive, H is edge-transitive by construction. �

It turns out we can use the results above to state the following general theorem.

Theorem 13. Let gcd.m; n/ > 2. Then there exists a noncomplete edge-transitive
(connected) subgraph of Km;n.

Proof. We appeal to the construction in the preceding lemma, and consider the
following two cases. It may be helpful to refer to Figure 1.

Case 1: m jn. Then n D mk for some positive integer k. Let G be the graph
that results from removing a perfect matching from Km;m. Then G is connected,
biregular, and edge-transitive but not complete. Repeating the construction in the
lemma k � 1 times, we obtain a subgraph of Km;mk D Km;n that is connected,
biregular, edge-transitive, and not complete.

Case 2: m−n. Let l D gcd.m; n/ and m D k1l , n D k2l . Let G be the graph
that results from removing a perfect matching from Kl;l . Then G is connected,
biregular, and edge-transitive but not complete. Following the construction in the
lemma, increase the left partite set by l vertices k1� 1 times and the right partite
set by l vertices k2� 1 times. The resulting graph will be a connected, biregular,
and edge-transitive subgraph of Kk1l;k2l DKm;n but not complete. �

Remark 14. Theorem 13 gives rise to the following observations/questions:

� When gcd.m; n/ D 1, the only possible (connected) biregular subgraph is the
complete graph Km;n.
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� When gcd.m; n/ D 2, the method fails because the only connected, biregular
subgraph of K2;2 is K2;2, and we seek a noncomplete bipartite graph.

� When gcd.m; n/ D 2, under what additional conditions does the theorem still
hold?

2.1. Edge-transitive .connected/ .r; 2/-biregular subgraphs of Km;n. We now
investigate bipartite edge-transitive graphs where one of the two vertex degrees in
G is 2. We will provide a construction for some graphs in this family. As pointed
out by a referee, such a graph G can be obtained by subdividing every edge of
another multigraph F. Here F is formed by taking a complete graph on m vertices
and “cloning” each of its edges a fixed number of times. Let F be the graph with
m vertices and t edges between each pair of distinct vertices. This forms a multi-
graph with m vertices and s D t

�
m
2

�
edges. Subdividing each edge yields a bipartite

subgraph of Km;s with degrees .t.m� 1/; 2/. We could also create F by taking
other arc-transitive graphs and cloning each of the edges a fixed number of times.

Using this construction, in general G is edge-transitive if and only if F is arc-
transitive. In these arc-transitive multigraphs, every edge must have the same
multiplicity, hence reducing this case to the study of arc-transitive graphs. We
formalize these ideas in the following theorem.

Theorem 15. G is an edge-transitive connected .r; 2/-biregular subgraph of Km;n

if and only if there exists an arc-transitive graph F such that F is obtained by
contracting every edge of G.

Proof. Let G is an edge-transitive connected .r; 2/-biregular subgraph of Km;n.
Then any two edges e1 and e2 incident to the same vertex in the part of size n
are indistinguishable. Then contracting the P3 with edges e1 and e2 results in an
edge between vertices in F that is indistinguishable in either direction. Hence
F is arc-transitive. For the other direction, using reasoning similar to the above,
note that subdividing edges of an arc-transitive graph results in a graph that is
edge-transitive. �

We use this theorem for small cases of jV.G/j. We first consider the case where
mD 4. Assume that G is an .r; 2/-biregular subgraph of K4;n. Then F is an arc-
transitive multigraph of order 4 with degrees equal to r . Since the only arc-transitive
graphs of order 4 are K4, C4, and 2P2, we know F must be one of these three
graphs with each edge cloned a fixed number of times. This will give a complete
classification for G. This method can be generalized for cases where all of the
arc-transitive graphs of a given order are known.

We next use the same procedure on graphs of up to nine vertices. A list of all
of the arc-transitive graphs for small orders (with a minor correction) is found on
MathWorld [Weisstein]:
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� jV.G/j D 2:
- P2 with edges cloned t � 2 times gives a .t; 2/-biregular subgraph of K2;t .

� jV.G/j D 3:
- C3 with edges cloned t � 2 times gives a .2t; 2/-biregular subgraph of K3;3t .

� jV.G/j D 4:
- K4 with edges cloned t � 2 times gives a .3t; 2/-biregular subgraph of K4;6t .
- C4 with edges cloned t � 2 times gives a .2t; 2/-biregular subgraph of K4;4t .

� jV.G/j D 5:
- K5 with edges cloned t � 2 times gives a .4t; 2/-biregular subgraph of K5;10t .
- C5 with edges cloned t � 2 times gives a .2t; 2/-biregular subgraph of K5;5t .

� jV.G/j D 6:
- K6 with edges cloned t � 2 times gives a .5t; 2/-biregular subgraph of K6;15t .
- C6 with edges cloned t � 2 times gives a .2t; 2/-biregular subgraph of K6;6t .
- C6.1; 2/ with edges cloned t � 2 times gives a .4t; 2/-biregular subgraph

of K6;12t .
- K3;3 with edges cloned t � 2 times gives a .3t; 2/-biregular subgraph of K9;9t .

� jV.G/j D 7:
- K7 with edges cloned t � 2 times gives a .6t; 2/-biregular subgraph of K7;21t .
- C7 with edges cloned t � 2 times gives a .4; 2/-biregular subgraph of K7;7t .

� jV.G/j D 8:
- K8 with edges cloned t � 2 times gives a .7t; 2/-biregular subgraph of K8;28t .
- C8 with edges cloned t � 2 times gives a .4; 2/-biregular subgraph of K8;8t .
- C8.2; 4/ with edges cloned t � 2 times gives a .4t; 2/-biregular subgraph

of K8;16t .
- C8.1; 2; 3/ with edges cloned t � 2 times gives a .6t; 2/-biregular subgraph

of K8;24t .
- Q8 doubled gives a .3t; 2/-biregular subgraph of K8;12t .
- K4;4 doubled gives a .4t; 2/-biregular subgraph of K8;16t .

� jV.G/j D 9:
- K9 with edges cloned t � 2 times gives a .8t; 2/-biregular subgraph of K9;36t .
- C9 with edges cloned t � 2 times gives a .4; 2/-biregular subgraph of K9;9t .
- C3 �C3 doubled gives a .4t; 2/-biregular subgraph of K9;18t .
- K3;3;3 doubled gives a .8; 2t/-biregular subgraph of K9;36t .

We can also state a result of a general nature. For every positive integer n,
Kn and Cn are arc-transitive graphs. As a result, we can double Kn to obtain an
.n�1; 2/-biregular subgraph of Kn;n2�n and double Cn to obtain a .4; 2/-biregular
subgraph of Kn;2n. For even n we can double Kn

2
; n

2
to obtain an .n; 2/-biregular

subgraph of Kn;2n2 . Other graphs will depend on the prime factorization of n.
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2.2. Edge-transitive graphs and combinatorial designs. We now explore regular
and biregular edge-transitive bipartite graphs, where the valences can be larger
than 2. In fact we will provide constructions of edge-transitive bipartite graphs
where the valences can be made arbitrarily large. We investigate connections
between biregular bipartite edge-transitive graphs and combinatorial designs. Here
the edge incidences arise directly from the combinatorial structure. We begin by
recalling the definition of a balanced incomplete block design (BIBD).

Definition 16. A .v; b; r; k; �/-BIBD is an arrangement of v objects (varieties) into
b blocks such that

(i) each object appears in exactly r blocks,
(ii) each block contains exactly k .k < v/ objects, and
(iii) each pair of distinct objects appear together in exactly � blocks.

A partially balanced incomplete block design is a design where � is not fixed.
A BIBD is called symmetric if v D b. Connections are known between the

existence of symmetric BIBDs and edge-transitive graphs [Levi 1942; Yang et al.
2016]. A symmetric BIBD is defined for any block design .P;B/, where P is the
set of points and B is the set of blocks with every edge representing an incident
point-block pair .p; B/. We note that a projective plane of order n is equivalent to
a bipartite graph with two parts each of size n2C nC 1, where every vertex has
degree nC1, and every two vertices in the same part have a unique common neighbor.
The edge-transitive Levi graphs are incidence graphs of the projective plane. Yang,
W. Liu, H. Liu, and Feng [Yang et al. 2016] proved a relationship between incidence
graphs and BIBDs. These showed a connection between edge-transitive regular
bipartite graphs and flag transitive symmetric block designs.

We note here that connections also exist between nonsymmetric .v; b; r; k; �/-
balanced incomplete block designs and edge-transitive graphs.

Example 17. Consider the .4; 6; 3; 2; 1/-block design with blocks

fy1; y2g; fy1; y3g; fy1; y4g; fy2; y3g; fy2; y4g; fy3; y4g:

This corresponds to the graph in Figure 2 where the edges connect vertices corre-
sponding to the different points in P and different elements of the blocks.

The edge-transitivity of this graph follows from the symmetry as the neigh-
borhoods of the vertices on the left side are the

�
4
2

�
different pairs of the vertices

y1; y2; y3, and y4. As a result the .4; 6; 3; 2; 1/-block design corresponds to an
edge-transitive .2; 3/-biregular subgraph of the complete bipartite graph K6;4.

Example 18. Consider the .5; 10; 4; 2; 1/-block design with blocks

fy1; y2g; fy1; y3g; fy1; y4g; fy1; y5g; fy2; y3g;

fy2; y4g; fy2; y5g; fy3; y4g; fy3; y5g; fy4; y5g:
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Figure 2. The bipartite graph from Example 17.

This corresponds to an edge-transitive .2; 4/-biregular subgraph of the complete
bipartite graph K10;5.

We can generalize the past two examples in the following theorem, where we
consider the different subsets of size k from the set fy1; y2; : : : ; ytg.

Theorem 19. For any k 2 ZC, a
�
t;

�
t
k

�
; r; k; 1

�
-balanced incomplete block design

forms the incidences of an edge-transitive K. t
k/;t

graph.

Proof. The edge-transitivity of the graph follows from the fact that neighbors of the
vertices on the left are the different subsets of k vertices on the right. �

Theorem 19 can be further generalized by replacing each yi with multiple
elements.

Example 20. Using the design from Example 17, we replace each yi with the
elements yi;1 and yi;2. This creates the design˚

fy1;1; y1;2g; fy2;1; y2;2g
	
;

˚
fy1;1; y1;2g; fy3;1; y3;2g

	
;˚

fy1;1; y1;2g; fy4;1; y4;2g
	
;

˚
fy2;1; y2;2g; fy3;1; y3;2g

	
;˚

fy2;1; y2;2g; fy4;1; y4;2g
	
;

˚
fy3;1; y3;2g; fy4;1; y4;2g

	
:

This will correspond to a
�
2t;

�
t
k

�
; .t�1/Š

.k�1/Š .t�k/Š
; 2k; �

�
-partially balanced incomplete

block design which forms the incidences of an edge-transitive K. t
k/;2t graph.

In general we can replace each yi with the elements yi;1; yi;2; : : : ; yi;s to form
a larger class of edge-transitive graphs.

Theorem 21. For integers k � 1 and s � 0 a
�
st;

�
t
k

�
; .t�1/Š

.k�1/Š .t�k/Š
; sk; �

�
-partially

balanced incomplete block design forms the incidences of an edge-transitiveK.t
s/;kt

graph.

In Example 18 we provided an example of a .2; 4/-biregular subgraph of the
complete bipartite graph K10;5 that corresponded a .5; 10; 4; 2; 1/-block design.
We can form a second .2; 4/-biregular subgraph of the complete bipartite graph
K10;5 (nonisomorphic to the first) by starting with a different block design. Let the
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blocks of this design be

B1Dfy1;y3g; B3Dfy1;y5g; B5Dfy2;y3g; B7Dfy2;y4g; B9Dfy4;y5g;

B2Dfy1;y3g; B4Dfy1;y5g; B6Dfy2;y3g; B8Dfy2;y4g; B10Dfy4;y5g:

This is a .5; 10; 4; 2; �/-block design whose structure represents the incidences of
the Folkman graph.

For designs where there is an initial block and other blocks can be obtained by
a linear transformation, it is straightforward to show that the resulting graph is
edge-transitive. However if this is not the case, the graph may not be edge-transitive
as shown below.

Consider a .9; 18; 8; 4; 3/-BIBD whose incidences form a biregular bipartite
graph, but the resulting graph is not edge-transitive. Consider the design

.0; 1; 2; 4/; .6; 7; 8; 1/; .3; 6; 7; 1/;

.1; 2; 3; 5/; .7; 8; 0; 2/; .4; 7; 8; 2/;

.2; 3; 4; 6/; .8; 0; 1; 3/; .5; 8; 0; 3/;

.3; 4; 5; 7/; .0; 3; 4; 7/; .6; 0; 1; 4/;

.4; 5; 6; 8/; .1; 4; 5; 8/; .7; 1; 2; 5/;

.5; 6; 7; 0/; .2; 5; 6; 0/; .8; 2; 3; 6/

[Bose 1939]. This corresponds to a .4; 8/-biregular subgraph of K18;9 with the
incidences

x1 W y0; y1; y2; y4; x7 W y6; y7; y8; y1; x13 W y3; y6; y7; y1;

x2 W y1; y2; y3; y5; x8 W y7; y8; y0; y2; x14 W y4; y7; y8; y2;

x3 W y2; y3; y4; y6; x9 W y8; y0; y1; y3; x15 W y5; y8; y0; y3;

x4 W y3; y4; y5; y7; x10 W y0; y3; y4; y7; x16 W y6; y0; y1; y4;

x5 W y4; y5; y6; y8; x11 W y1; y4; y5; y8; x17 W y7; y1; y2; y5;

x6 W y5; y6; y7; y0; x12 W y2; y5; y6; y0; x18 W y8; y2; y3; y6;

However, the graph G is not edge-transitive, as G � x1y1 is not isomorphic to
G�x18y6. Verification of this fact is far from trivial. Using Mathematica we found
that G � x1y1 has 172924 cycles of length 10 and G � x18y6 has 172926 cycles
of length 10. Hence by Theorem 1, G is not edge-transitive.

We also note that there can exist an edge-transitive .r; k/-biregular subgraph of
the complete bipartite graphKv;b where the incidences are not a .v; b; r; k; �/-BIBD
design.

For example, consider the blocks

B1 D fy1; y2; y7; y8g; B3 D fy5; y6; y7; y8g; B5 D fy1; y3; y5; y7g;

B2 D fy3; y4; y5; y6g; B4 D fy1; y2; y3; y4g; B6 D fy2; y4; y6; y8g:
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This is not a design as the pair fy1; y5g does not appear in any block. However the
incidences give rise to an edge-transitive .4; 3/-biregular subgraph of the complete
bipartite graphK6;8. We used Mathematica to show that this graph is edge-transitive
and is nonisomorphic to the graph in Example 17. Both graphs are noted in the
online supplement.

3. Complements of Cartesian products

Recall that some previously known infinite families of vertex-transitive graphs are
wreath graphs and Kneser graphs. We identify an additional infinite family of edge-
transitive graphs that are vertex-transitive, stated in terms of Cartesian products.

Theorem 22. The graph Km�Kn is edge-transitive.

Proof. It may be helpful to refer to Figure 3. The graph Km�Kn is precisely the
graph L.Km;n/, that is, the complement of the line graph of Km;n [Weisstein and
Wagon]. First, we observe the structure of L.Km;n/. Let the partite sets of Km;n

be AD fa1; a2; : : : ; amg and B D fb1; b2; : : : ; bng. The graph L.Km;n/ consists
of m sets of n vertices, which we denote by V1; V2; : : : ; Vm. The n vertices in each
Vi correspond to the edges incident to ai in the graph of Km;n. Specifically, Vi D

fvi;1; vi;2; : : : ; vi;ng, where vi;k corresponds to the edge aibk in the graph Km;n.
By construction, all of the vertices in a given set Vi are adjacent to each other,
since these vertices correspond to all edges incident to ai in Km;n. Additionally,
each vi;k is adjacent to vj;k for all j ¤ i , since these vertices correspond to all
edges incident to bk in Km;n. This completes the construction of L.Km;n/. To
construct L.Km;n/, we retain the vertex sets V1; : : : ; Vm. However, now we have
an m-partite graph, since none of the edges in Vi are connected to each other in
L.Km;n/. Each vi;k is connected to vj;l for all j ¤ i and all l ¤ k. In other words,
all possible edges of the m-partite graph exist except for edges of the form vi;kvj;k .
It is clear from this description that L.Km;n/ is edge-transitive. This follows from

1

2

3
1

2

3

1

2
3

1

2

3

1
2

3

1

2

3

1
2

3

1

2

3

Km;n L.Km;n/ L.Km;n/

Figure 3. An example of the construction in the proof of Theorem 22
for mD 4, nD 3.

http://msp.org/involve/2019/12-8/involve-v12-n8-x01-GraphClassification.pdf
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the fact every vertex in a given partite set is indistinguishable from every other
vertex in that set, and the fact that each partite set is indistinguishable from every
other partite set. Hence Km�Kn D L.Km;n/. �

4. Conclusion

In Section 2.2 we explored .r; 2/-bipartite subgraphs of Km;n. More results of
this type can be obtained by determining all arc-transitive graphs of order larger
than 9. It would be an interesting but challenging problem to explore the family of
.r; k/ and determine which graphs are edge-transitive and determine the number of
nonisomorphic graphs of this form.
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A logistic two-sex model
with mate-finding Allee effect

Elizabeth Anderson, Daniel Maxin, Jared Ott and Gwyneth Terrett

(Communicated by Kenneth S. Berenhaut)

We analyze a logistic two-sex model with mate-finding Allee effects assuming
distinct sex-related parameters. We compute the threshold of the Allee-effect
strength that separates population extinction from persistence and prove that a
bistability regimen appears whereby the total population either goes extinct or
stabilizes at a positive level depending on the initial demographic conditions.
We show that this effect is the only possible outcome as far as the population
limiting behavior is concerned. In addition, we compute the optimal female-sex
probability at birth that maximizes this threshold.

1. Introduction

Mathematical population models are a compromise between realism and mathe-
matical tractability. It is obvious that no model can fully resemble the complexity
of population interactions (both human or from the animal world). On the other
hand, the simplest possible models are not acceptable for long-term predictions.
The classical example is given by the exponential model, which appears whenever
the vital rates such as birth and death are constant:

d P
dt
= r P,

where P is the total population at time t and r is the difference between a constant
birth and death rate. Such a model will always predict an exponentially increasing
population as long as births exceeds deaths. This results in completely unrealistic
population sizes as t increases.

The most well-known improvement on this model is the logistic equation:

d P
dt
= r

(
1−

P
K

)
P. (1)
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This model takes into account the fact that there are always factors present that
limit the growth rate as the total population increases. Indeed the population cannot
grow if it surpasses K in the equation above (also known as carrying capacity).
Typically, these logistic effects are modeled by considering the mortality rate as an
increasing function of the total population size. What that means in real life varies
depending on the context. In the ecological models the logistic effect can mean the
effect of finite resources such as food. In the human populations the same effect can
mean anything which affects the population negatively in overcrowding situations
(i.e., infectious diseases, competition for resources, conflicts and other limiting
effects). Altogether, logistic effects are examples of a negative correlation between
population growth rate and the total population size: the bigger the population size
the lower the growth rate.

While logistic effects make perfect sense whenever the population reaches high
levels, they should not have any effect when the population density is low. For
example, in many models, the logistic mortality is modeled as an increasingly linear
function in P:

logistic mortality= µ+ bP,

where µ denotes the natural mortality (without population-dependent limiting
factors) and b > 0 is a technical term that controls how fast the mortality increases
with P. It is important to always assume that b is a very small coefficient. Otherwise,
the mortality will increase too fast for relatively small increases in P. Indeed, at
low population values, in many situations, an opposite effect happens: the growth
rate should increase with P. This is the core assumption of the Allee effect, which,
by definition, means that the population growth rate is positively correlated with
the total population size if this size is low. One typical explanation for this effect is
geographical dispersal: if the density is low the opportunity for reproduction is rare
and it increases if the population density increases.

To summarize, a logistic effect assumes that the population cannot grow past
a certain maximum level (the logistic threshold) and the Allee effect requires a
minimum population level for the growth to occur (the Allee threshold). Most
researchers agree that in many ecosystems both assumptions should be present
for a more realistic model. A simple modification of the logistic equation (1) is
the following one found in [Courchamp et al. 2008], among many other proposed
functional forms:

d P
dt
= r

(
P
A
− 1
)(

1−
P
K

)
.

Notice that the population can only grow if A< P(t)< K . Should the population
size drop below the Allee threshold A, the total population goes extinct. This
phenomenon is called a strong Allee effect to separate it from the weak Allee effect
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in which low population values cause an exceedingly lower growth rate but without
causing extinction. For a more detailed description of various types of Allee effects
in ecology see [Courchamp et al. 2008].

One particular type of Allee effect, which is the focus of this paper, is the mate-
finding Allee effect. This effect is considered in two-sex population models. It
assumes that, whenever an individual of one sex is actively looking for a mating
partner, the scarcity of the population of the opposite sex induces a strong Allee
effect. In other words, the reproduction is hindered by the low population level
of the opposite sex. Consider a two-sex population where F and M denote the
total population of females and males at time t . Assuming that the female is the
mate-searching sex, the mating probability of a given female will be a function of
the total male population p(M) with the properties

p(0)= 0, lim
M→∞

p(M)= 1, and p increasing in M.

These assumptions reflect that, if M is small, the reproduction chance is also
small, whereas, if M is large, the reproduction probability approaches 1. It is
important to point out that the actual reproduction term also depends on other
factors. The total male population p(M) is only the mate-finding Allee effect as
part of the mating term. There are many explicit forms for p(M) considered in the
literature; see again [Courchamp et al. 2008]. Here we focus on the form

p(M)=
M

M + θ
.

Other possible forms, with the properties listed above, are

1− e−M/θ and
Md

Md + θ
with d > 1.

The constant term θ > 0 is a measure of the Allee-effect strength and it describes
how low the male population should be in order to notice a significant drop in the
mating probability. In other words, if θ is very small, the male population should
be very small as well in order for p(M) to significantly drop below 1. A large θ
indicates that the mating probability decreases faster as M decreases. As we will
show in this paper, there exists a threshold θ∗ above which the population always
goes extinct.

A model containing this type of mate-finding Allee effect has been analyzed in
[Berec et al. 2018] under the assumptions that the sex ratio at birth is even and that
the background mortality rates of females and males are equal. In reality, these
parameters are sometimes different. One example, discussed later in this article, is
provided by some mosquito populations. Seasonal conditions exert an influence in
the hatching stimuli for the eggs of mosquitoes (as shown in [Lounibos and Escher
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2008]) which leads to uneven sex ratios. Variation in the sex birth ratios is observed
in other species as well, including birds and mammals; see [Mondard et al. 1997;
Weimerskirch et al. 2005].

In this article we improve the result from [Berec et al. 2018] by keeping all
sex-related parameters distinct. The paper is structured as follows: in Section 2
we introduce the two-sex model with mate-finding Allee effect and provide its full
stability analysis. We also compute the threshold of the Allee-effect strength θ that
separates population persistence from extinction. In Section 3 we consider θ as a
function of the female-sex probability at birth and compute its optimal value that
maximizes it. We conclude the paper with some interpretations of these results in
Section 4 and thoughts on possible avenues for future research in Section 5.

2. A two-sex model with mate-finding Allee effect

The logistic two-sex population model with mate-finding Allee effect that we
consider is 

d F
dt
= βγ f

F M
M+θ

− µ̄ f F,

d M
dt
= βγm

F M
M+θ

− µ̄m M,
(2)

where:

• F and M are the female and male population sizes at time t .

• β is the per capita female birth rate when there is no mate-finding Allee effect
(i.e., when M is large).

• γ f and γm are the probabilities that a newborn is a female or male respectively.
Hence, γ f + γm = 1.

• θ is the strength of the mate-finding Allee effect.

• µ f and µm are the background female and male mortality rates respectively, in
the absence of logistic effects.

• µ̄ f := µ f + b(F + M) and µ̄m := µm + b(F + M) are the female and male
logistic mortality rates as linear functions of the total population; b > 0 represents
the strength of the logistic effect.

Remark. While model (2) assumes that the female is the mate-searching sex, the
result we establish in this paper holds if the roles are reversed; i.e., the male being
the mate-searching sex while the mate-finding Allee effect would be F/(F + θ). It
is not necessary to analyze this scenario separately: one would simply interchange
the subscripts f and m throughout the paper.
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Consider also the following additional notation (which will be justified in the
proof of the main result):

θ∗ :=
γm

b

[
βγ f−µ f+2(γ fµm+γmµ f )−2

√
γ f (γ fµm+γmµ f )(β−µ f+µm)

]
, (3)

and

R f :=
βγ f

µ f
.

Since 1/µ f is the expected female lifetime without the logistic effects, R f can be
interpreted as the maximum net female reproductive number (the expected female
offspring per reproductive female during her lifetime).

We now state our main result:

Theorem 2.1. If R f < 1 or θ > θ∗ then the population goes extinct due to either
low female reproductive ability or too high a mate-finding Allee effect. If R f > 1
and θ < θ∗ then there exist two positive equilibria: one unstable and the other one
locally asymptotically stable. The total population either goes extinct if it drops to
low levels or it approaches the stable equilibrium.

Proof. The Jacobian of model (2) is

J (F,M)=


βγ f M
M+θ

−µ̄ f−bF
βγ f F
M+θ

−
βγ f F M
(M+θ)2

−bF

βγm M
M+θ

−bM βγm F
M+θ

−
βγm F M
(M+θ)2

−µ̄m−bM

 .
The model always admits an extinction equilibrium (0, 0) which is always locally

stable since

J (0, 0)=
[
−µ f 0

0 −µm

]
with two negative eigenvalues −µ f and −µm .

Consider now a positive equilibrium (F∗,M∗) with P∗ := F∗+M∗. Notice that
any positive equilibrium must satisfy

βγ f M∗

M∗+ θ
= µ f + bP∗ and

βγm F∗

M∗+ θ
= µm + bP∗.

Using these identities, the Jacobian evaluated at this steady state becomes

J (F∗,M∗)=

 −bF∗
βγ f F∗

M∗+θ
−
βγ f F∗M∗

(M∗+θ)2
−bF∗

βγm M∗

M∗+θ
−bM∗ −

βγm F∗M∗

(M∗+θ)2
−bM∗

 .
In a system of two differential equations, the necessary and sufficient condition for
the local stability of a steady state is Trace(J (F∗,M∗))<0 and det(J (F∗,M∗))>0.
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It is easy to see that the trace of this matrix is always negative and its determinant is

det(J (F∗,M∗))=
βF∗M∗

(M∗+ θ)3
[b(M∗+ θ)(θ + γm P∗)−βγ f γmθ ].

Hence the stability condition for any biologically feasible (positive) steady state is

b(M∗+ θ)(θ + γm P∗)−βγ f γmθ > 0. (4)

Concerning the existence of a positive steady state, first, notice that

F∗ =
γ f θ(µm + bP∗)

γm(βγ f −µ f − bP∗)
and M∗ =

θ(µ f + bP∗)
βγ f −µ f − bP∗

.

Hence, to ensure they are positive, any feasible value for P∗ must satisfy

P∗ <
βγ f −µ f

b
. (5)

However this requires βγ f −µ f > 0, which is equivalent to R f > 1. Thus, if
the opposite holds, i.e., R f < 1, then (0, 0) is the only equilibrium point.

From here on we assume R f > 1, i.e.,

βγ f > µ f .

From

P∗ = F∗+M∗ =
γ f θ(µm + bP∗)

γm(βγ f −µ f − bP∗)
+

θ(µ f + bP∗)
βγ f −µ f − bP∗

it follows, after some computations, that P∗ must be a positive root of

f (P) := bγm P2
+ [bθ − γm(βγ f −µ f )]P + θ(γ fµm + γmµ f )

and P∗ must satisfy (5). Furthermore, the stability condition (4) can be rewritten in
terms of P∗ as

P∗ > Pv :=
γm(βγ f −µ f )− bθ

2bγm
. (6)

Notice also that Pv is the P-coordinate vertex of the parabola f (P).
Consider now the discriminant of f (P) as a function of θ :

g(θ) := b2θ2
− 2bγm[βγ f −µ f + 2(γ fµm + γmµ f )]θ + (βγ f −µ f )

2(γm)
2.

The discriminant of g(θ) is

16b2γ f (γm)
2(γ fµm + γmµ f )(β −µ f +µm).

Under our current assumptions, this is positive since

β > βγ f > µ f .
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Taking into account the signs of the coefficients of g(θ) we conclude that g(θ)
has two positive roots θ1 and θ2:

θ1=
γm

b

[
βγ f−µ f+2(γ fµm+γmµ f )−2

√
γ f (γ fµm+γmµ f )(β−µ f+µm)

]
,

θ2=
γm

b

[
βγ f−µ f+2(γ fµm+γmµ f )+2

√
γ f (γ fµm+γmµ f )(β−µ f+µm)

]
.

Hence, g(θ) is positive whenever 0 < θ < θ1 and θ2 < θ <∞. From the sign of
the coefficients of f (P) it is clear that, if f (P) has real roots, they are either both
negative or both positive. They are positive provided that

θ <
γm

b
(βγ f −µ f ).

However a straightforward computation shows that

g
(
γm

b
(βγ f −µ f )

)
=−4(γm)

2(βγ f −µ f )(γ fµm + γmµ f ) < 0,

which means
θ1 <

γm

b
(βγ f −µ f ) < θ2.

This shows that the model (2) admits two positive equilibrium points (F1,M1)

and (F2,M2) corresponding to the two positive roots P1 < P2 if and only if the
mate-finding Allee-effect strength θ is less than the threshold

θ∗ := θ1 =
γm

b

[
βγ f −µ f + 2(γ fµm + γmµ f )

− 2
√
γ f (γ fµm + γmµ f )(β −µ f +µm)

]
. (7)

If θ > θ∗ then the extinction equilibrium (0, 0) would be the only steady state.
Notice also that P1 and P2, when they exist and are positive, both satisfy the
feasibility condition P∗ < (βγ f −µ f )/b since

f
(
βγ f −µ f

b

)
= θγ f (β −µ f +µm) > 0,

f ′
(
βγ f −µ f

b

)
= γm(βγ f −µ f )+ bθ > 0,

which means P1 < P2 < (βγ f −µ f )/b.
Furthermore, P1 < Pv < P2, which means (F1,M1) is unstable and (F2,M2) is

locally asymptotically stable. Thus we have bistability between the extinction and
the positive steady state (F2,M2).

It remains now to show that the asymptotic behavior established in this proof
holds in the global sense and not just within an unspecified basin of attraction of
each locally stable steady state. In other words, we want to show that, regardless of
the initial population size, the population converges to either (0, 0) or (F2,M2). In
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the case of a planar system, the only other possible limiting behavior is that of a
limit cycle or, more generally, a finite number of equilibria cyclically chained. We
show that this is not possible for our model (2).

First notice that it is not possible to have the extinction equilibrium (0, 0) as part
of a group of equilibrium points that are cyclically chained. This is because (0, 0)
is a sink (i.e., both eigenvalues are real and negative). Any other possible cycle
would be entirely contained in a compact subset of the positive quadrant. We rule
out also this possibility using the Dulac criterion [Perko 1991]. It states that if

∂

∂F
(ϕ(F,M)F ′)+

∂

∂M
(ϕ(F,M)M ′)

has a constant sign on that compact subset for some differentiable function ϕ(F,M)
then the system (2) does not have any periodic solutions or limit cycles. A typical
choice for the Dulac function is ϕ(F,M)=1/(F M). Indeed, in our case, this leads to

∂

∂F

(
1

F M
F ′
)
+

∂

∂M

(
1

F M
M ′
)
=−

1
F M

[
βγm F M
(M + θ)2

+ b(F +M)
]
< 0. �

3. Maximization of the Allee-effect strength

As mentioned earlier, the model (2) has been analyzed in [Berec et al. 2018] using
equal sex-related parameters. In this section we illustrate the advantage of keeping
these parameters distinct whenever the biological question under study is specific to
one sex only. To this end, we can see that the threshold θ∗ can be analyzed further
for various optimal scenarios. For example, if population persistence is a desired
objective, then a natural question to ask is what combinations of parameters will
maximize θ∗. Based on our results, a larger threshold θ∗ means that the population
may persist for relatively stronger Allee effects. One will still have bistability
between extinction and persistence but, as long as θ < θ∗ and the population size is
not too low to begin with, the long-term outcome is persistence. For example, it is
easy to see that whenever µ f approaches zero then, unsurprisingly, the threshold
θ∗ is maximized. When we analyze other parameters, the optimal combination
that maximizes θ∗ is less obvious. As an example, we compute in this section the
female-sex probability at birth (γ f ) that maximizes θ∗ for a numerical case. We
will provide a more general result for a simplified version of θ∗.

Theorem 3.1. If R f > 1 there exists an optimal female-sex probability at birth, γ f ,
that maximizes θ∗.

In the case of equal mortality rates µ f = µm := µ, this optimal value is

1
16

(√
µ

β
+

√
µ

β
+ 8

)2

.
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Proof. Consider the threshold θ∗ written in a more compact form:

θ∗ =
γm

b

[√
γ f (β −µ f +µm)−

√
γ fµm + γmµ f

]2
.

Substituting γ f := x and γm := 1− x we can see that maximizing θ∗ under the
assumption R f > 1 is equivalent to maximizing the following function in x for
µ f /β ≤ x ≤ 1:

h(x) :=
1
b
(1− x)

[√
x(β −µ f +µm)−

√
xµm + (1− x)µ f

]2
.

It is easy to see that h(1)=0 and also, after some simplifications, that h(µ f /β)=0.
This is expected since x = 1 means no male births and x = µ f /β means there
is no net gain in the female reproduction. Since h(x) is positive, continuous and
differentiable on µ f /β < x < 1, it will have an absolute maximum x = x∗. Its exact
value is difficult to obtain in general but it is relatively easy under the assumption
of equal mortality rates, µ f = µm := µ, while still keeping γ f 6= γm . Setting
R := β/µ > 1, h(x) becomes

h(x) :=
1
R
(1− x)(

√
Rx − 1)2,

1
R
≤ x ≤ 1.

We now show that h(x) has a unique critical value in its domain. Its first
derivative is

h′(x)=
1
R

(
R−

√
R
x

)(
−2x +

√
x
√

R
+ 1
)
.

The expression in the second set of parentheses can be viewed as a quadratic in
√

x .
We make the change of variable y :=

√
x with 1/

√
R ≤ y ≤ 1 and the expression

becomes
k(y)=−2y2

+
y
√

R
+ 1.

Notice that k(y) has two real roots, one positive and one negative. The positive
root is

y∗ =
1
4

(√
1
R
+

√
1
R
+ 8

)
.

Furthermore

k(1)=−1+
1
√

R
< 0 and k

(
1
√

R

)
=−

1
R
+ 1> 0,

since we are under the assumption R> 1. Hence y∗ is in the domain 1/
√

R< y< 1.
Thus h(x) has a unique critical value

x∗ = (y∗)2 =
1
16

(√
1
R
+

√
1
R
+ 8

)2

.
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Since h(x) is positive and vanishes at the end points of its domain, it follows that
x = x∗ maximizes the threshold θ∗. �

Remark. Notice that if R→∞ then x∗→ 1
2 and if R→ 1 then x∗→ 1. If we

think of R as the overall net reproductive number, these limits suggest that if the
net-gain rate in the population is unbounded then the optimal sex ratio is even since
there will be plenty of individuals of the mate-searching sex (the females) with
plenty choices for mating (the males). On the other hand, as the net gain is close
to zero, the optimal sex ratio is more and more biased toward the mate-searching
sex. These results make intuitive sense and confirm the validity of the optimal
female-sex probability at birth as a function of the net reproductive number.

4. Example

We illustrate this result with a numerical example applied to a generic population of
mosquitoes. In [Xue et al. 2017] the authors analyze a two-sex population model of
mosquitoes deliberately infected by Wolbachia bacteria, which is known to reduce
the ability of mosquitoes to transmit viral infections such as Zika or dengue fever.
While the authors do not include Allee effects in their model, they do use different
sex probabilities at birth. In [Lounibos and Escher 2008], the authors observed
variations in the sex ratio at birth of mosquitoes. We argue here that the inclusion of
Allee effects in such models and the computation of the threshold θ∗ may be helpful
in predicting whether the population of mosquitoes will persist or go extinct.

It is important to point out that persistence happens only if the initial population
size is large enough as the Allee effect always causes the extinction equilibrium
to be locally asymptotically stable. With larger Allee-effect values, naturally, the

F,M

t
F M

Figure 1. θ∗ = 81.2 with suboptimal female-sex probability at
birth γ f = 0.4. Allee-effect strength used in the example is θ = 70,
which leads to population persistence.
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F,M

t
F M

Figure 2. θ∗ = 81.2 with suboptimal female-sex probability at
birth γ f = 0.4. Allee-effect strength used in the example is θ = 90,
which leads to extinction.

initial population needs to be larger to escape the basin of attraction of the extinction
steady state. Therefore, θ∗ indicates a threshold beyond which the Allee effect is
strong enough to drive the population to extinction regardless of initial conditions.

In our example below we will use numerical values for the vital parameters from
the ranges provided in [Xue et al. 2017] for the mosquito population except θ and
the logistic effect b. The θ-values are chosen by us to illustrate the result in this
section. The logistic effect b only affects the overall population size and not the
threshold θ∗ or any other stability condition. We chose a value for it that provides a
clearer figure. In all three figures, these values are β = 0.55, µ f = 0.05, µm = 0.08
and b = 0.0004.

F,M

t
F M

Figure 3. θ∗ = 108.4 with optimal female-sex probability at birth
γ f = 0.61. Allee-effect strength used in the example is θ = 90,
which, unlike the suboptimal scenario, now leads to population
persistence.
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With these values, h(x) becomes

h(x)= 2500(1− x)(0.762
√

x −
√

0.03x + 0.05)2

and, using a computer algebra system, it is straightforward to see that it is maximized,
in its domain, for x∗ = 0.61 and its maximum value is θ∗ = 108.4.

First, we use a suboptimal female-sex probability at birth γ f = 0.4. Its corre-
sponding threshold is θ∗ = 81.2. In Figures 1 and 2 we show an example where the
population may persist if θ < θ∗, while it goes extinct if θ > θ∗. We chose θ = 70
in the first case and θ = 90 in the second case. Finally, in Figure 3, we use the same
Allee effect θ = 90 that caused extinction in the previous case and show that, using
the optimal value γ f = 0.61, the population now may persist.

5. Conclusions

We analyzed a planar two-sex model with mate-finding Allee effect assuming
sex-specific vital parameters: sex ratio at birth and mortality rate. We proved that
the total population either goes extinct or exhibits a bistability regimen between a
positive steady state and the extinction equilibrium. The specific outcome depends
on the strength of the Allee effect. This confirms an earlier result proved under the
assumption of equal female and male populations. We further illustrate, with an
example, a possible avenue of inquiry which requires maintaining a sex-specific
assumption on the model parameters.

There are several limitations of our result that also suggest avenues of future
research. First, a planar system for two-sex modeling is not suitable for populations
that form long-lasting pairs in order to reproduce. Modeling in this case requires at
least three state variables: single females, males and couples. Such behavior is seen
in many species and, obviously, is also prevalent in human populations. A next step
is then to replicate this analysis for a two-sex model with pair-formation in which
F and M will denote the single female and male populations, while a third state
variable C will be introduced to model couples. Births will then be a function either
exclusively of couples or a mixed system in which births from single individuals
are considered as well. The pair-formation term will then contain the mate-finding
Allee effect. Since, at the very least, such models will have three equations, the
stability analysis will be considerably more difficult.

Another important generalization is to use a different form for the mate-finding
Allee effect, possibly one that allows both sexes to play the “mate-searching” role
to a various degree. Finally, a generalization that does not even assume a specific
Allee-effect form might be desirable since there are already various forms proposed
in the literature and a model containing an unspecified one might have a unifying
value for this concept. We plan to address some of these questions in the near future.
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Unoriented links and the Jones polynomial
Sandy Ganzell, Janet Huffman, Leslie Mavrakis,

Kaitlin Tademy and Griffin Walker
(Communicated by Joel Foisy)

The Jones polynomial is an invariant of oriented links with n ≥ 1 components.
When n = 1, the choice of orientation does not affect the polynomial, but for
n > 1, changing orientations of some (but not all) components can change the
polynomial. Here we define a version of the Jones polynomial that is an invariant
of unoriented links; i.e., changing orientation of any sublink does not affect the
polynomial. This invariant shares some, but not all, of the properties of the Jones
polynomial.

The construction of this invariant also reveals new information about the
original Jones polynomial. Specifically, we show that the Jones polynomial of a
knot is never the product of a nontrivial monomial with another Jones polynomial.

1. Introduction

Jones’ original construction [1985] of the polynomial VL = VL(t) ∈ Z[t1/2, t−1/2
]

was through the skein relation

t−1VL− − tVL+ = (t
1/2
− t−1/2)VL0,

where L+, L− and L0 are three oriented links that are identical except inside a ball
that contains respectively, a positive crossing, a negative crossing, and two uncrossed
strands. It is easy to see that when L is a knot (i.e., a link of one component), the
polynomial VL(t) is unchanged by reversing the orientation on L , since crossing
signs are preserved by such a change in orientation.

For links of more than one component, however, the Jones polynomial may
change depending on the choice of orientation for each component. The Hopf link
is the simplest example. The oriented Hopf link with linking number +1 has Jones
polynomial −t1/2

− t5/2, but reversing the orientation of one component gives us
−t−5/2

− t−1/2. A complete list of oriented links up to nine crossings, together with
their polynomials can be found in [Doll and Hoste 1991].

MSC2010: 57M25, 57M27.
Keywords: Jones polynomial, unoriented link.
Supported by NSF grant DMS-1560301.

1357

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-8
http://dx.doi.org/10.2140/involve.2019.12.1357


1358 S. GANZELL, J. HUFFMAN, L. MAVRAKIS, K.TADEMY AND G. WALKER

Based on the skein-relation definition, it is a surprising result that a change in
orientation of some components of L simply multiplies VL by a power of t . Let
L = M ∪ N be an oriented link with components M1, . . . ,Mr , N1, . . . , Ns , and
write L N =M∪−N for the link formed by reversing the orientations on N1, . . . , Ns .
Morton [1986] proved that

VL(t)= t3λVL N (t),

where λ is the linking number of M with N, defined as

λ= lk(M, N )=
∑
i, j

lk(Mi , Nj ).

A much simpler proof using Kauffman’s bracket polynomial construction of the
Jones polynomial appears below.

Recall [Kauffman 1988] the bracket polynomial 〈L〉 ∈ Z[A, A−1
] is defined

recursively: 〈 〉
= A

〈 〉
+ A−1〈 〉

,

〈©L〉 = (−A2
− A−2)〈L〉,

〈©〉 = 1.

The bracket polynomial is invariant under Reidemeister moves R2 and R3, but not
under move R1. Define X L(A) = (−A3)−w〈L〉, where w = w(L) is the writhe
(sum of all crossing signs) of L , to obtain a link invariant. Under the change of
variables A= t−1/4, we have X L(A)= VL(t). We will often write d =−A2

− A−2;
thus 〈©L〉 = d〈L〉.

Now it is clear that changing the orientations of some components of L multiplies
the Jones polynomial by a power of t , since only the writhe (but not the bracket
polynomial) is affected by such a change. Using the notation above, if L = M ∪ N,
then the crossing signs that change to produce L N are the ones that involve some
crossing of component Mi with component Nj . Since the linking number of M
with N involves precisely the same crossings, we have

w(L N )= w(L)− 2
∑

(crossing signs of Mi with Nj )

= w(L)− 4 · lk(M, N ).

Thus
VL(t)= X L(A)= (−A3)−w(L)〈L〉

= (−A3)−4·lk(M,N )−w(L N )〈L〉

= (−A)−12·lk(M,N )(−A3)−w(L N )〈L〉

= (A4)−3λX L N (A)= t3λVL N (t),

confirming Morton’s result.
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Given an unoriented link of n components, there may be up to 2n−1 associated
Jones polynomials for the links obtained by choosing an orientation for each
component. (Note: it is not up to 2n, since changing all orientations does not affect
the Jones polynomial.) None of these is a natural choice to be the Jones polynomial
of the unoriented link since there is no preferred orientation. In the next section we
define a version of the Jones polynomial that is an invariant of unoriented links.

2. The Jones polynomial for unoriented links

We begin by defining the self-writhe of a link diagram.

Definition 1. For a link diagram L with components K1, . . . , Kn , we define the
self-writhe of L , denoted by ψ(L), to be the sum of the writhes of each component
of L , ignoring the other components when computing each writhe. That is,

ψ(L)=
n∑

j=1

w(K j ).

Equivalently, the self-writhe can be defined as the sum of the signs of those crossings
of L for which both the under and over strands are from the same component.

Reidemeister moves affect the self-writhe exactly as they do the writhe. Both are
invariant under moves R2 and R3. This is because the two crossings involved in
move R2 are of opposite sign regardless of orientation, and the crossing signs εi are
unchanged by R3 moves regardless of orientations and components. See Figure 1.
Under move R1, both the writhe and self-writhe change by ±1, since move R1
always involves a single component of the link. See Figure 2.

Unlike the writhe, however, the self-writhe of a link L is independent of the
choice of orientations of the components of L . This is because changing the
orientation of a component K of L does not affect the writhe of K , and hence does
not affect ψ(L).

Figure 1. Crossing signs and Reidemeister moves.

Figure 2. Crossing signs and move R1.
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Thus we can define UL(A)= (−A3)−ψ 〈L〉. This modified Jones polynomial is an
invariant for the same reason that X L(A) is: both 〈L〉 and ψ(L) are invariant under
moves R2 and R3, and 〈L〉 changes by a factor of (−A3)±1 with each R1 move.

But since ψ(L) is unaffected by changing orientations of any components of L ,
the polynomial UL(A) is also unaffected by such changes. We can thus make the
same change of variables A = t−1/4 to obtain WL(t) ∈ Z[t1/2, t−1/2

], noting that
WL(t)=UL(A).

Definition 2. Let L be an unoriented link with self-writhe ψ . The Laurent polyno-
mial UL(A)= (−A3)−ψ 〈L〉 (or equivalently WL(t)) for any choice of orientation
of components of L is the unoriented Jones polynomial of L . We will refer to
UL(A) as the U -polynomial of L .

3. Properties of the unoriented Jones polynomial

For knots we have WK (t)= VK (t) since w(K )=ψ(K ). Thus we will examine the
properties of the unoriented Jones polynomial for links of at least two components.
Jones [1985] established that if the link L has an odd number of components, then
VL(t) is a Laurent polynomial over the integers; if the number of components of
L is even then VL(t) is

√
t times a Laurent polynomial. WL(t) does not share

these properties. For example, if L is the Hopf link, then WL(t)=−t−1
− t , since〈 〉

=−A4
− A−4, and ψ

( )
= 0.

On the other hand, if L is link 52
1 (Figure 3), then ψ(L)=w(L)=−1, regardless

of orientation. Therefore,

WL(t)= VL(t)= t−7/2
− 2t−5/2

+ t−3/2
− 2t−1/2

+ t1/2
− t3/2.

There are two different oriented links corresponding to 73
1 (Figure 3), both of which

have integral exponents for the original Jones polynomials, but the unoriented Jones
polynomial is

t−5/2
− t−3/2

+ 4t−1/2
− 3t1/2

+ 4t3/2
− 3t5/2

+ 3t7/2
− t9/2.

For the remainder of this paper we use A as the indeterminate. This is simply to
avoid fractional exponents.

Figure 3. Links 52
1 and 73

1.
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Figure 4. L#M.

Some properties of the Jones polynomial do carry over to UL(A). Let L∗ denote
the mirror image of L .

Proposition 3. UL∗(A)=UL(A−1).

Proof. This follows immediately from Definition 2, since ψ(L)=−ψ(L∗). �

Theorem 4. If L and M are links, then UL#M =ULUM .

Proof. Observe that for diagrams L and M , the self-writhe of L#M is just ψ(L)+
ψ(M). Now take diagrams for L , M and L#M as in Figure 4. Let〈 〉

= p1

〈 〉
+ p2

〈 〉
and

〈 〉
= q1

〈 〉
+ q2

〈 〉
,

where p1, p2, q1 and q2 are polynomials in A. Then we have 〈L〉 = p1+ p2d , and
〈M〉 = q1+ q2d . Moreover,

〈L#M〉 =
〈 〉
= p1

〈 〉
+ p2

〈 〉
= p1q1

〈 〉
+ p1q2

〈 〉
+ p2q1

〈 〉
+ p2q2

〈 〉
= p1q1+ p1q2d + p2q1d + p2q2d2.

Thus,

UL#M(A)= (−A3)−ψ(L#M)(p1q1+ p1q2d + p2q1d + p2q2d2)

= (−A3)−ψ(L)(−A3)−ψ(M)(p1+ p2d)(q1+ q2d)

=UL(A)UM(A). �

When two links have the same number of components, their U -polynomials are
related algebraically. Specifically, if L and L ′ are both n-component links, then
U (L)−U (L ′) is divisible by a certain fixed polynomial C(A), independent of L ,
L ′ and n. Equivalently, we may say U (L) and U (L ′) are equal in the quotient ring
Z[A, A−1

]/〈C(A)〉. For convenience, we will write U (L)≡U (L ′) (mod C(A)).

Theorem 5. Let L and L ′ be two links with the same number of components. Then
UL(A)≡UL ′(A) (mod A6

− 1).

Proof. Suppose L and L ′ are two links that differ by a crossing change. We will
show that UL(A)−UL ′(A) is divisible by A6

−1. Since any link can be transformed
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Figure 5. Two links that differ by a crossing change.

by crossing changes to any other link with the same number of components, the
theorem follows.

Draw L and L ′ as the numerator closures of tangles that differ by a crossing as in
Figure 5. Take the self-writhes of L and L ′ to be ψ and ψ ′ respectively. Therefore
ψ ′ will equal ψ , ψ+2, or ψ−2, depending on the orientation of the strands in the
crossing change, and whether they are from the same component. We compute
UL(A)−UL ′(A). Write 〈 〉

= p1

〈 〉
+ p2

〈 〉
,

where p1 and p2 are polynomials in A. Then〈 〉
= A

〈 〉
+ A−1

〈 〉
= Ap1

〈 〉
+ Ap2d

〈 〉
+ A−1 p1

〈 〉
+ A−1 p2

〈 〉
,

〈L〉 = Ap1+ Ap2d + A−1 p1d + A−1 p2

= p1(A+ A−1d)+ p2(Ad + A−1)

= p1(−A−3)+ p2(−A3),

UL(A)= (−A3)−ψ [p1(−A−3)+ p2(−A3)].

Similarly,
〈L ′〉 = p1(−A3)+ p2(−A−3),

UL ′(A)= (−A3)−ψ
′

[p1(−A3)+ p2(−A−3)].

Since ψ ′ ∈ {ψ,ψ + 2, ψ − 2}, either

UL(A)−UL ′(A)= (−A3)−ψ [p1(−A−3
+ A3)− p2(A3

− A−3)]

= (−1)−ψ(A3)−ψ−1(p1− p2)(A6
− 1),

or
UL(A)−UL ′(A)= (−A3)−ψ p2(−A3

+ A−9)

= (−A3)−ψ−3 p2(A6
+ 1)(A6

− 1),
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or
UL(A)−UL ′(A)= (−A3)−ψ p1(−A−3

+ A9)

= (−A3)−ψ−1 p1(A6
+ 1)(A6

− 1). �

Corollary 6. Let L be a link with n components. Then UL(1)= (−2)n−1.

Proof. Let©n be the unlink of n components. Then

U©n (A)= dn−1
= (−A2

− A−2)n−1.

Therefore by Theorem 5, we can write UL(A)= (A6
−1)q(A)+ (−A2

− A−2)n−1,
where q is some polynomial in A. Thus UL(1)= (−2)n−1. �

Theorem 5 establishes that A6
−1 divides the difference of any two U -polynomials

of links with the same number of components. However, A6
− 1 does not appear to

be the highest-degree such polynomial. In all examples known to the authors, the
difference is a multiple of A8

− A6
− A2

+ 1, which equals (A6
− 1)(A2

− 1). We
conjecture this is always the case.

Conjecture 7. Let L and L ′ be two links with the same number of components.
Then UL(A)≡UL ′(A) (mod A8

− A6
− A2

+ 1).

We prove Conjecture 7 for links of three or fewer components.

Theorem 8. Let L and L ′ be two n-component links, where n ≤ 3. Then UL(A)≡
UL ′(A) (mod A8

− A6
− A2

+ 1).

Proof. It is shown in [Ganzell 2014] that when L is a knot (i.e., n = 1), then
X L(A)− X L ′(A) (and hence UL(A)−UL ′(A)) is always divisible by A16

− A12
−

A4
+ 1, which equals (A8

− A6
− A2

+ 1)(A8
+ A6

+ A2
+ 1).

For n = 2, we proceed as follows. It is proved in [Murakami and Nakanishi
1989] that the link L can be transformed into the link L ′ by 1-moves (Figure 6) if
and only if L and L ′ have the same number of components and the pairwise linking
numbers of the components of L equal those of L ′. That is, if L = K1 ∪ · · · ∪ Kn

and L ′ = K ′1∪· · ·∪K ′n′ , then L can be transformed into L ′ by 1-moves if and only
if n = n′ and lk(Ki , K j )= lk(K ′i , K ′j ) for 1≤ i < j ≤ n. In this case we say L and
L ′ are 1-move equivalent. Thus every 2-component link is 1-move equivalent to a
link of the form in Figure 7, where k ∈ Z is the linking number.

Figure 6. 1-move.
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Figure 7. L2k , a 2-component link with linking number k.

It is shown in [Ganzell 2014] that two links that differ by a sequence of 1-moves
have bracket polynomials that are congruent mod A8

− A6
− A2

+ 1 (in fact mod
A16
−A12

−A4
+1). Since1-moves do not affect the self-writhe, the U -polynomials

are also congruent mod A8
− A6
− A2
+1. Now, let L2k be the link in Figure 7. We

will show that 〈L2k〉−〈©©〉 is also a multiple of A8
− A6
− A2
+1. Thus every 2-

component link has bracket polynomial congruent to 〈©©〉 (mod A8
−A6
−A2
+1).

Since L2k has self-writhe equal to 0, this will complete the proof.
We first compute 〈L2k〉. We have〈 〉

= p1

〈 〉
+ p2

〈 〉
,

where p1 = A2k and p2 =
∑2k

m=1
(2k

m

)
A2k−2mdm−1. Now observe that

2k∑
m=0

(2k
m

)
A2k−2mdm

=

2k∑
m=0

(2k
m

)
A2k−2m(−A2

− A−2)m

=

2k∑
m=0

(2k
m

)
A2k−m(−A− A−3)m = [(−A− A−3)+ A]2k

by the binomial theorem. The last expression simplifies to A−6k . Therefore p2 =

(A−6k
− A2k)/d , and

〈L2k〉 = A2kd +
A−6k
− A2k

d

=
A2k(A4

+ 2+ A−4)+ A−6k
− A2k

−A2− A−2

=
−A2k+6

− A2k+2
− A2k−2

− A−6k+2

A4+ 1
.

Thus,

〈L2k〉− 〈©©〉 =
−A2k+6

− A2k+2
− A2k−2

− A−6k+2

A4+ 1
+ A2

+ A−2

=
A8k+4

+ A8k
+ A8k−4

− A6k+4
− 2A6k

− A6k−4
+ 1

−A6k−2(A4+ 1)
. (1)
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Figure 8. A 3-component link with linking numbers k1, k2, k3.

Let N (A) be the numerator of (1). Since

A8
− A6

− A2
+ 1= (A+ 1)2(A− 1)2(A2

+ A+ 1)(A2
− A+ 1),

we must show that N (A) has these factors. (Actually, we only need to prove that 1
and −1 are double roots, since we have already established Theorem 5. But it is
not hard to show directly.) Rewrite N (A) in the form

N (A)= (A8k+4
+ A8k

+ A8k−4)− (A6k+4
+ A6k

+ A6k−4)− (A6k
− 1).

Observe that

A8k+4
+ A8k

+ A8k−4
= A8k−4(A4

− A2
+ 1)(A2

+ A+ 1)(A2
− A+ 1),

A6k+4
+ A6k

+ A6k−4
= A6k−4(A4

− A2
+ 1)(A2

+ A+ 1)(A2
− A+ 1),

and

A6k
− 1= (A2

+ A+ 1)(A2
− A+ 1)

6k−6∑
m=0

(Am+2
− Am).

It remains to show that (A+ 1)2 and (A− 1)2 are factors of N (A). It is straight-
forward to verify that 1 and −1 are both roots of N (A) and of the derivative N ′(A),
completing the proof for 2-component links.1

The proof for n = 3 is similar. Observe that every 3-component link is 1-move
equivalent to a link of the form in Figure 8. Define

q(k)=
k∑

m=1

( k
m

)
Ak−2mdm−1,

so that 〈 〉
= Ak

〈 〉
+ q(k)

〈 〉
.

1Note that N (A) must also be divisible by A4
+ 1, since bracket polynomials are Laurent

polynomials. We can see this directly by writing N (A) = (A8k
+ A8k−4) − (A6k+4

+ A6k) −

(A6k
+ A6k−4)+ (A8k+4

+ 1). The first three binomials are multiples of A4
+ 1, and A8k+4

+ 1=
(A4
+ 1)(A8k

− A8k−4
+ A8k−8

− · · ·+ 1).
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Then if L is the link in Figure 8, we have

〈L〉 = A2k1+2k2+2k3d2

+ A2k1+2k2q(2k3)d + A2k1+2k3q(2k2)d + A2k2+2k3q(2k1)d

+ A2k1q(2k2)q(2k3)+ A2k2q(2k1)q(2k3)+ A2k3q(2k1)q(2k2)

+ q(2k1)q(2k2)q(2k3)d,

and we must verify that 〈L〉 − 〈©©©〉 is divisible by A8
− A6

− A2
+ 1. The

proof is tedious but elementary, and follows the same outline as for 2-component
links. �

Corollary 9. For n-component links L , L ′ with n ≤ 3, the U-polynomial of L
can never be a nontrivial monomial times the U-polynomial of L ′. That is, if
UL ′(A)= r AkUL(A), then r = 1 and k = 0.

Proof. Let p(A) = A8
− A6

− A2
+ 1, so that UL(A)−UL ′(A) = p(A)g(A) for

some Laurent polynomial g. Now suppose UL ′(A)= r AkUL(A). Then

UL(A)− r AkUL(A)= p(A)g(A). (2)

Setting A = 1, we obtain

(−2)n−1
− r(−2)n−1

= 0

from Corollary 6. Thus r = 1.
Differentiating (2) with respect to A and setting r = 1, we obtain

(1− Ak)U ′L(A)− k Ak−1UL(A)= p′(A)g(A)+ p(A)g′(A).

Again, setting A = 1 produces

kUL(A)= 0.

Thus k = 0. �

Corollary 9 does not hold for the original Jones polynomial. Example 10 below,
shows a pair of 2-component links whose Jones polynomials do not satisfy the
conclusion of the corollary. However, since the U -polynomial for a knot is iden-
tical to the original Jones polynomial, Corollary 9 does apply. Hence, the Jones
polynomial of a knot cannot be the product of a nontrivial monomial with another
Jones polynomial.

Example 10. In [Eliahou et al. 2003], examples are given of n-component links
(for n ≥ 2) that have the same Jones polynomial as©n . The link in Figure 9 (left)
is the first of an infinite family of such links. Those examples all have w = ψ = 0,
and therefore satisfy UL =U©n . Other examples are given in that paper of links
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Figure 9. Links with UL =U©n .

whose Jones polynomial has the form tkdn−1, as in Figure 9 (right). These links
have ψ = 0, and as a result, U (A)= dn−1.
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Nonsplit module extensions over
the one-sided inverse of k[x]

Zheping Lu, Linhong Wang and Xingting Wang
(Communicated by Scott T. Chapman)

Let R be the associative k-algebra generated by two elements x and y with
defining relation yx = 1. A complete description of simple modules over R is
obtained by using the results of Irving and Gerritzen. We examine the short exact
sequence 0→U→ E→V→ 0, where U and V are simple R-modules. It shows
that nonsplit extension only occurs when both U and V are one-dimensional, or,
under certain condition, U is infinite-dimensional and V is one-dimensional.

1. Introduction

In this short note, we study nonsplit extensions of simple modules over the asso-
ciative algebra R = k{x, y}/〈yx − 1〉 over a base field k of characteristic 0. The
algebra R is also known as the one-sided inverse of the polynomial algebra k[x] and
appeared in [Bavula 2010; Gerritzen 2000; Jacobson 1950; Irving 1979]. Note that

y(1− xy)= (1− xy)x = 0.

The algebra R is not a domain, and Z(R)= k. As a k-vector space R has basis

{x i y j
| i, j = 0, 1, 2, . . .}.

Moreover, R admits the involution η : x 7→ y and y 7→ x . Hence, the left and right
algebraic properties of R are the same.

Jacobson [1950] gave a faithful irreducible representation of R as follows. Let S
be the infinite-dimensional k-vector space with the basis {e1, e2, . . .} and let R act
on S by assigning

xen = en+1, n > 0,
yen = en−1, n > 1,
ye1 = 0.

It was proved by Bavula [2010] and Gerritzen [2000] that there is only one iso-
morphic class of infinite-dimensional simple R-modules. Note that there is an
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Keywords: simple modules, representations, module extensions.
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algebra monomorphism R→ Endk(k[x]) such that x 7→ x and y 7→ H−1 d
dx , where

H ∈ Endk(k[x]) is given by H( f )= d
dx (x f ) for any f ∈ k[x]. In particular,⊕

i≥0

kx i (1− xy)∼= k[x]

is a simple and faithful left R-module, where the left R-module structure on k[x] is
via the algebra map R→ Endk(k[x]) discussed above. Following [Bavula 2010],
R contains a subring which is canonically isomorphic to the ring (without identity)
of infinite-dimensional matrices. Let

F =
⊕
i, j≥0

k Mi j ∼= M∞(k),

where Mi j = x i (1 − xy)y j can be identical to the matrix units of M∞(k). In
particular, we have

x ∼


0
1 0

1 0
...

...

 , y ∼


0 1

0 1
0
...
...

 . (1)

As a left R-module,

F =
⊕
i, j≥0

kx i (1− xy)y j ∼=
⊕
i≥0

(⊕
t≥0

kx t x i (1− xy)yi
)
∼=

⊕
i≥0

k[x]

is a direct sum of infinitely many simple R-modules. Hence R is neither left nor right
noetherian. Similarly, we see that there is an ascending chain of left annihilators
in R which is not stable. Then R is neither left nor right Goldie. Moreover, F is
equal to the ideal of R generated by 〈1− xy〉. Since F2

= F , lann(F) and rann(F)
are both zero, we have F is an essential left and right ideal of R, which equals the
socle of left and right R-module R. Hence F is contained in any nonzero ideal of
R and it follows that the set of proper (two-sided) ideals of R is

{0, 〈1− xy〉, 〈1− xy, f (x)〉},

where f (x) is a monic polynomial in k[x] which is not a monomial. In particular,
the ideals of R satisfy the ascending chain condition.

It follows from [Bavula 2010; Gerritzen 2000; Irving 1979] that the prime ideals
are given by

Spec(R)= {0, 〈1− xy〉, 〈1− xy, f (x)〉},

where f (x) is a monic irreducible polynomial in k[x] which is not a monomial. In
particular, 〈1−xy, f (x)〉 are the maximal ideals of R. Therefore simple R-modules
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are isomorphic to k[x] or k[x±1
]/〈 f (x)〉. When k is algebraically closed, the simple

R-modules are either one-dimensional or infinite-dimensional.
A discussion of how Jategaonkar’s main lemma and a theorem of Stafford apply

to this nonnoetherian R is given in Section 3.

2. Nonsplit extensions of simple R-modules

Throughout k is an algebraically closed field with char(k) = 0. All modules are
left modules. Then simple R-modules are isomorphic to k[x] or k[x±1

]/〈x − λ〉
for λ ∈ k×. When a simple module is one-dimensional, i.e., isomorphic to k as
a vector space, the x-action is multiplication by a scalar λ, and the y-action is
multiplication by its inverse λ−1. We denote such a simple R-module by kλ. It is
clear that kλ1

∼= kλ2 as simple R-modules for any λ1, λ2 ∈ k× if and only if λ1 = λ2.
We consider the R-module extension E with the short exact sequence (s.e.s.)

0→U → E→ V → 0 (2)

of R-modules U and V. It is clear that E is isomorphic to U⊕V, as k-vector spaces.
The R-action on E is then given by the ring homomorphism

ρδ : r 7→
(
α(r) δ(r)

0 β(r)

)
,

where
α : R→ Endk(U ) and β : R→ Endk(V )

are ring homomorphisms, and δ(r) is a k-linear map in Homk(V,U ) such that

δ(r1r2)= α(r1)δ(r2)+ δ(r1)β(r2)

for any r1, r2 ∈ R. In particular,

α(y)δ(x)+ δ(y)β(x)= δ(yx)= δ(1).

Since ρδ(1) must be the identity matrix, we have δ(1)= 0. Therefore,

α(y)δ(x)+ δ(y)β(x)= 0. (3)

That is, given α and β, the map δ is uniquely determined by the pair of k-linear
maps δ(x), δ(y) ∈ Homk(V,U ) satisfying the compatibility condition (3). If δ is
the zero mapping, then E ∼=U ⊕V. Let Eδ and Eδ′ be two module extensions of U
by V, equipped with ring homomorphisms ρδ and ρδ′ . Then Eδ ∼= Eδ′ if and only if
there is a k-vector space isomorphism f : Eδ→ Eδ′ such that f ◦ρδ(r)= ρδ′(r)◦ f .
Note that R has the k-basis {x i y j

| i, j = 0, 1, 2, . . .}. Therefore, it is sufficient to
verify ρδ(x)= f −1

◦ ρδ′(x) ◦ f and ρδ(y)= f −1
◦ ρδ′(y) ◦ f .
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Now consider another R-module extension E ′ with the s.e.s.

0→U ′→ E ′→ V ′→ 0 (4)

of R-modules U ′ and V ′. We say that the two s.e.s. (2) and (4) are equivalent if
there is an R-module isomorphism f : E→ E ′ such that the restriction of f on U
yields an isomorphism from U to U ′.

We focus on the R-module extension E of a simple R-module U by another
simple R-module V. We start with the case when V is infinite-dimensional. It
is shown in the following lemma that the s.e.s in this case is always split. This
result can be directly derived from Bavula’s proof that the infinite-dimensional
simple R-module k[x] is projective. We include an alternative proof without using
projectivity.

Lemma 2.1. Suppose 0→ U → Eδ → V → 0 is an s.e.s., where U and V are
simple R-modules and dimk(V )=∞. Then the s.e.s. is always split.

Proof. Let {b0, b1, b2, . . .} be a basis of V such that y and x are left and right shift
operators, respectively. As vector spaces, Eδ ∼=U ⊕ V. Consider the element

a := b0− xδ(y)b0

of Eδ. It is clear that a ∈ Eδ \U . Then the left cyclic submodule Ra of Eδ is
distinct from 0 and U. For any element r ∈ R, we have

ra = δ(r)b0+β(r)b0− r xδ(y)b0.

Hence ra ∈ Ra ∩U only if β(r)b0 = 0, that is, r = sy for some s ∈ R. But

ya = yb0− yxδ(y)b0 = δ(y)b0+β(y)b0− δ(y)b0 = 0.

That is, Ra ∩U = 0. Then Ra ⊕U = Eδ since Eδ/U ∼= V is simple. Therefore
Eδ ∼=U ⊕ V as left R-modules. �

The next case deals with the module extension when U is infinite-dimensional
and V is one-dimensional.

Lemma 2.2. Let U and U ′ be two infinite-dimensional simple R-modules, kλ and
kλ′ be two one-dimensional R-modules for nonzero scalars λ and λ′. Suppose Eδ
and Eδ′ are two R-module extensions with the respective s.e.s.

0→U → Eδ→ kλ→ 0 and 0→U ′→ Eδ′→ kλ′→ 0.

Then Eδ ∼= Eδ′ if and only if λ = λ′ and δ′(x) = cδ(x) for some nonzero c ∈ k. In
this case the two s.e.s. are equivalent if and only if Eδ ∼= Eδ′ . As a consequence, Eδ
(resp. Eδ′) is nonsplit if and only if δ 6= 0 (resp. δ′ 6= 0).
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Proof. We will fix a basis {e0, e1, e2, . . . , d} for both Eδ and Eδ′ as k-vector spaces,
where {e0, e1, e2, . . .} is a basis of U (and U ′) such that y and x are left and right
shift operators, respectively. For any r ∈ R, we can identify the map δ(r), under
the fixed basis, with an infinite-dimensional vector

〈δ(r)0, δ(r)1, δ(r)2, . . .〉

with only finitely many nonzero components. Note that α(y)δ(x)+ δ(y)β(x)= 0,
where β(x)= λ and y is the upper diagonal line matrix given in (1). It follows that

δ(y)i = λ−1δ(x)i+1 for i ≥ 1. (5)

A similar result for δ′(x) and δ′(y) holds. Suppose that m is the smallest integer
such that δ(y)i = δ′(y)i = 0 for any i > m. Consequently, δ(x)i = δ′(x)i = 0 for
any i > m+ 1.

Suppose that f is an R-module isomorphism Eδ′→ Eδ; that is, f is a k-vector
space isomorphism such that both ρδ(x) f = fρδ′(x) and ρδ(y) f = fρδ′(y). We
will obtain necessary conditions on f through its images on the basis elements of
the selected basis. Let

f (e0)= ae0+ a1e1+ a2e2+ · · ·+ a′d

for some a′, ai ∈ k, i = 1, 2, . . . , where only finitely many ai ’s are nonzero. First,

f ◦ ρδ′(y)(e0)= 0,

ρδ(y) ◦ f (e0)=
∑
i≥0

(ai+1+ a′δ(y)i )ei +
1
λ

a′d.

Hence, a′ = ai = 0 for all i = 1, 2, . . . , and so f (e0)= ae0. Moreover,

f (e1)= f (xe0)= x f (e0)= x(ae0)= ae1

implies f (e1)= ae1. Inductively, f (ei )= aei for some a 6= 0 and all i ≥ 0. Next,
suppose that

f (d)= b0e0+ b1e1+ b2e2+ · · ·+ bd,

where b 6= 0, bi ∈ k for i ≥ 0, and only finitely many bi ’s are nonzero. Then

ρδ(y) ◦ f (d)=
∑
i≥0

bi+1ei +
∑
i≥0

bδ(y)i ei + λ
−1bd,

f ◦ ρδ′(y)(d)=
∑
i≥0

(
aδ′(y)i +

1
λ′

bi

)
ei +

1
λ′

bd.

Thus, we have

λ= λ′, bi+1+ bδ(y)i = aδ′(y)i + λ−1bi for i ≥ 0.
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Since δ(y)i = δ′(y)i = 0 for any i > m, we have bi+1 = λ
−1bi for any i > m. But

only finitely many bi ’s are nonzero; it then follows inductively that

bm+1 = bm+2 = · · · = 0.

Hence, we have the m+ 1 relations

bδ(y)m = aδ′(y)m + λ−1bm,

bi+1+ bδ(y)i = aδ′(y)i + λ−1bi for i = 0, 1, . . . ,m− 1.
(6)

Similarly, we have

ρδ(x) ◦ f (d)=
∑
i≥1

bi−1ei +
∑
i≥0

bδ(x)i ei + λbd,

f ◦ ρδ′(x)(d)=
∑
i≥0

(aδ′(x)i + λ′bi )ei + λ
′bd.

Note that δ(x) j = δ
′(x) j = 0 for any j > m+ 1. It then follows that

bδ(x)0 = aδ′(x)0+ λb0,

bm + bδ(x)m+1 = aδ′(x)m+1,

bi−1+ bδ(x)i = aδ′(x)i + λbi for i = 1, 2, . . . ,m.

(7)

Combining the relations (5) and (7), we have

bδ(y)m − aδ′(y)m =−λ−1bm,

bδ(y)i − aδ′(y)i = bi+1− λ
−1bi for i = 0, 1, . . . ,m− 1.

From (6), we have

bδ(y)m − aδ′(y)m = λ−1bm,

bδ(y)i − aδ′(y)i = λ−1bi − bi+1 for i = 0, 1, . . . ,m− 1.

Hence, bi = λbi+1 for 0≤ i ≤ m− 1 and bm = 0. Thus, b0 = b1 = · · · = bm = 0.
Therefore, f (ei )= aei and f (d)= bd for some nonzero scalars a, b ∈ k and all

i ≥ 0. Such a k-vector space isomorphism is an R-module isomorphism if and only
if δ′(x)= b

a δ(x) for the nonzero scalars a, b ∈ k or equivalently, δ′(r)= b
a δ(r) for

any r ∈ R.
Therefore, any module extension Eδ such that Eδ/U ∼= kλ is nonsplit if and only

if δ(x) 6= 0. Let Eδ and Eδ′ be nonsplit extensions such that

0→U → Eδ→ kλ→ 0 and 0→U ′→ Eδ′→ kλ′→ 0.

Then Eδ ∼= Eδ′ if and only if λ = λ′ and δ′(x) = cδ(x) for some nonzero scalar
c ∈ k. Observe that the isomorphism f from Eδ to Eδ′ yields an isomorphism from
U to U ′. Therefore, the two s.e.s. are equivalent if and only if Eδ ∼= Eδ′ . �
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Now we can state our main result.

Theorem 2.3. Suppose 0→ U → Eδ → V → 0 is an s.e.s. where U and V are
simple R-modules and Eδ is associated with the k-linear map δ in Homk(V,U ).
Let λ, λ′ be nonzero scalars:

(i) If dim(V )=∞, the s.e.s. is always split.

(ii) If dim(U )=∞ and V = kλ, the s.e.s. is nonsplit if and only if δ 6= 0. Any such
two s.e.s. are equivalent if and only if λ= λ′ and the infinite vectors δ(x) and
δ′(x) are proportional.

(iii) If U = kλ and V = kλ′ are both one-dimensional, then the s.e.s. is nonsplit only
if δ 6= 0 and λ= λ′. Any such two nonsplit s.e.s. are equivalent if and only if
the submodules U are the same.

Proof. The first two cases are proved in Lemmas 2.1 and 2.2. We only need
to consider the case when U and V are both one-dimensional. Suppose the two
modules U and V are uniquely determined by nonzero scalars λ and λ′. Let

0→ kλ→ Eδ→ kλ′→ 0

be an s.e.s. Then δ is uniquely determined by δ(x) since δ(y) = −(λλ′)−1δ(x).
Moreover, ρδ(y) is the inverse matrix of ρδ(x). Note that the 2× 2 matrix ρδ(x)
is similar to ρ0(x) if and only if λ 6= λ′. Hence, the s.e.s. is always split if λ 6= λ′,
whether or not δ = 0. Therefore, the nonsplit case occurs when δ 6= 0 and λ= λ′.
Consider two nonsplit s.e.s.

0→ kλ→ Eδ→ kλ→ 0 and 0→ kγ → Eδ′→ kγ → 0,

with nonzero δ and δ′. It is easy to see, by a linear transformation, that the two
nonsplit s.e.s. are equivalent if and only if Eδ ∼= Eδ′ if and only if the nonzero
scalars λ and γ are equal. Thus, there is only one, up to equivalence, nonsplit s.e.s.
0→ kλ→ Eδ→ kλ→ 0 for each one-dimensional simple R-module kλ. �

3. Closing discussion

Let A be an associative ring. Recall a left (respectively, right) module M over A is
called torsion-free if for any nonzero element m in M there is some r ∈ A such that
rm 6= 0 (respectively, mr 6= 0). Two prime ideals P and Q of an associative ring A
are linked, denoted as P Q, if there is an ideal I of A such that (P∩Q)> I ≥ P Q
and (P ∩ Q)/I is nonzero and torsion-free both as a left A/P-module and a right
A/Q-module. The graph of links of A is a directed graph whose vertices are prime
ideals of A, with an arrow from P to Q whenever P  Q. The vertex set of each
connected component is called a clique.
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Jategaonkar’s main lemma [1986] states that if M is a (right) module over a
noetherian ring A with a nonsplit short exact sequence 0→U→ M→ V → 0 and
corresponding annihilators Q = annA(U ) and P = annA(V ), then exactly one of
the following two alternatives occurs: (i) P < Q and P M = 0; (ii) P  Q.

Now let 0→U→ Eδ→ V→ 0 be a nonsplit short exact sequence, where U and
V are simple R-modules. Suppose Q= annR(U ) and P= annR(V ) are the affiliated
primes. When dim U =∞ and V ∼= kλ, we have Q = (0) and P = 〈1− xy, x −λ〉.
There is no link between P and Q, and P 6< Q. When U ∼= V ∼= kλ, we have
Q = P = 〈1− xy, x − λ〉. There is no link between P and Q, and P 6< Q. This
suggests that the noetherianess is necessary in the assumptions of Jategaonkar’s
main lemma.

On the other hand, [Stafford 1987, Corollary 3.13] states that all cliques of prime
ideals in any noetherian ring are countable. When k is algebraically closed, the
prime ideals of R are (0), F = 〈1− xy〉, and Pλ = 〈1− xy, x − λ〉, where λ ∈ k×.
One can check that

F = F2
= F ∩ Pλ = F Pλ = PλF = Pλ ∩ Pλ′ = PλPλ′

whenever λ 6= λ′. Moreover, Pλ/P2
λ
∼= (x − λ)/(x − λ)2 as in k[x±1

]. Hence the
cliques in the graph of links are

F, (0), Pλ,
��

Pλ′ .
��

This suggests that all cliques of R are countable.
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Split Grothendieck rings of rooted trees and
skew shapes via monoid representations

David Beers and Matt Szczesny

(Communicated by Ravi Vakil)

We study commutative ring structures on the integral span of rooted trees and
n-dimensional skew shapes. The multiplication in these rings arises from the
smash product operation on monoid representations in pointed sets. We interpret
these as Grothendieck rings of indecomposable monoid representations over
F1 — the “field” of one element. We also study the base-change homomorphism
from 〈t〉-modules to k[t]-modules for a field k containing all roots of unity, and
interpret the result in terms of Jordan decompositions of adjacency matrices of
certain graphs.

1. Introduction

In this paper we consider commutative ring structures on the integral spans of
rooted trees and n-dimensional skew shapes. The product in these rings arises
by first interpreting the corresponding combinatorial structure as a representation
of a monoid in pointed sets, and then using the smash product, which defines a
symmetric monoidal structure on the category of such representations. We proceed
to explain the construction in greater detail.

To a monoid A, one may associate a category Mod(A)F1 of “representations
of A over the field of one element”, whose objects are finite pointed sets with an
action of A. The terminology comes from the general yoga of F1, where pointed
sets are viewed as vector spaces over F1, and monoids are viewed as nonadditive
analogues of algebras; see [Chu et al. 2012; Lorscheid 2018]. Given Mod(A)F1 ,
their categorical coproduct M ⊕ N is given by the wedge sum M ∨ N and the
product by the Cartesian product M × N (equipped with diagonal A-action). One
may also consider a reduced version of the Cartesian product — the smash product
M ∧ N, with A-action a(m ∧ n)= am ∧ an, which while not a categorical product,
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defines a symmetric monoidal structure on Mod(A)F1 . The product ∧ is distributive
over ⊕; i.e.,

M ∧ (K ⊕ L)' (M ∧ K )⊕ (M ∧ L).

In certain cases, objects of Mod(A)F1 have a pleasant interpretation in terms of
familiar combinatorial structures. For example, when A is 〈t〉, the free monoid on
one generator t , we may associate to M ∈Mod(〈t〉)F1 a graph 0M which encodes
the action of t on M. The vertices of 0M correspond to the nonzero elements
of M (where the base-point plays the role of zero), and the directed edges join
m ∈ M to t ·m. The possible connected graphs arising this way, corresponding
to indecomposable representations, are easily seen to be of two types — rooted
trees and wheels (please note that the term wheel is also used in the graph theory
literature to describe a different type of graph). See Figure 1.

Given indecomposable M, N ∈Mod(〈t〉)F1 (corresponding to a tree or wheel),
one can ask how 0M∧N can be computed from 0M and 0N . We give the answer in
Section 3A, in the form of a simple algorithm, and show that 0M∧N corresponds to
the tensor product of graphs 0M ⊗0N in the sense of [Weichsel 1962].

In a similar vein, n-dimensional skew shapes can be interpreted as representations
of 〈x1, . . . , xn〉— the free commutative monoid on n generators x1, . . . , xn . We
illustrate this for n = 2, where the shape S

determines a module over the free commutative monoid on two generators 〈x1, x2〉,
whose nonzero elements correspond to the boxes in the diagram. The generator
x1 acts by moving one box to the right, and x2 by moving one box up, until the
edge of the diagram is reached, and by 0 beyond that. Connected skew shapes yield
indecomposable representations of 〈x1, . . . , xn〉, and we may once again ask how
to decompose MS ∧MT into

⊕
i MUi , where Ui are connected skew shapes. The

answer is given in Section 4A, where we prove the following theorem:

Theorem 1.1. If S1 and S2 are n-dimensional skew shapes, then

MS1 ∧MS2 =

⊕
t∈Zn

MS1∩(S2+t).

In other words, the Ui are those skew shapes that occur in the intersection of one
shape with a translate of the other.

Our results may be phrased in a more structured way as follows. Given a
monoid A and a monoidal subcategory C ⊂ (Mod(A)F1,∧), we may consider the
split Grothendieck ring K split(C). Elements of K split(C) may be identified with
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formal integer linear combinations
∑

ai [Mi ] of isomorphism classes of [Mi ] ∈

Iso(C), subject to the relations

[M ⊕ N ] ∼ [M] + [N ],

with multiplication induced by the smash product. In our examples, K split(C)
consists of integer linear combinations of trees/wheels or skew shapes. The results
of this paper amount to an explicit combinatorial description of the product in
K split(C).

Structures over F1 may be base-changed to those over a field (or any commutative
ring) k. We denote this functor by ⊗F1k. Then A⊗F1 k is the monoid algebra k[A],
and for M ∈Mod(A)F1 , M ⊗F1 k is the k[A]-module spanned over k by elements
of M. Since k[A] is a k-bialgebra, its category of modules monoidal. The functor
⊗F1k is monoidal, and so induces a ring homomorphism

8k : K
sp
0 (Mod(A)F1)→ Ksp

0 (Modk[A]).

We study this homomorphism in Section 3B in the simple case of the monoid
A= 〈t〉, in which case generators of Ksp

0 (Mod(k[t])) can be identified with Jordan
blocks. Understanding 8k in this case reduces to computing the Jordan form of the
adjacency matrices of the trees/wheels above. We show the image of 8k is spanned
by nilpotent Jordan blocks and cyclotomic diagonal matrices.

1A. Outline of paper. In Section 2 we recall basic facts regarding monoids and
the category Mod(A)F1 and define the split Grothendieck ring Ksp

0 (Mod(A)F1).
In Section 3A we consider the example of A = 〈t〉— the free monoid on one
generator, and identify the product in Ksp

0 (Mod(〈t〉)F1) with the graph tensor prod-
uct of trees/wheels. In Section 3B we consider the base-change homomorphism
8k :K

sp
0 (Mod(〈t〉)F1)→Ksp

0 (Modk[t]) and describe its image in terms of the Jordan
decomposition of the adjacency matrix of the corresponding graph. Section 4A
is devoted to the example of A = Pn = 〈x1, . . . , xn〉— the free commutative
monoid on n generators, and a certain subcategory of Mod(Pn)F1 corresponding
to n-dimensional skew shapes. We give an explicit description of the product in
Ksp

0 (Mod(Pn)F1) in terms of intersections of skew shapes.

2. Monoids and their modules

A monoid A will be a semigroup with identity 1A and zero 0A (i.e., the absorbing
element). We require

1A · a = a · 1A = a, 0A · a = a · 0A = 0A for all a ∈ A.

Monoid homomorphisms are required to respect the multiplication as well as the
special elements 1A, 0A.
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Example 2.1. Let F1 = {0, 1}, with

0 · 1= 1 · 0= 0 · 0= 0 and 1 · 1= 1.

We call F1 the field with one element.

Example 2.2. Let

Pn := 〈x1, . . . , xn〉 = {x
r1
1 xr2

2 · · · x
rn
n | r = (r1, r2, . . . , rn) ∈ Zn

≥0} ∪ {0};

i.e., Pn is the set of monomials in x1, . . . , xn , with the usual multiplication. We
will often write elements of Pn in multi-index notation as xr , r ∈ Zn

≥0, in which
case the multiplication is written as

xr
· x s
= xr+s .

We identify x0 with 1. Pn has a natural Zn
≥0-grading obtained by setting deg(xi )= ei ,

where ei is the i-th standard basis vector in Zn.

F1 and Pn are both commutative monoids.

2A. The category Mod(A)F1 .

Definition 2.3. Let A be a monoid. An A-module is a pointed set (M, 0M) (with
0M ∈ M denoting the base-point), equipped with an action of A. More explicitly,
an A-module structure on (M, 0M) is given by a map

A×M→ M, (a,m)→ a ·m,
satisfying

(a·b)·m=a·(b·m), 1·m=m, 0·m=0M , a·0M=0M for all a,b,∈A, m∈M.

A morphism of A-modules is given by a pointed map f : M→ N compatible
with the action of A, i.e., f (a ·m)= a · f (m). The A-module M is said to be finite
if M is a finite set, in which case we define its dimension to be dim(M)= |M | − 1
(we do not count the base-point, since it is the analogue of 0). We say that N ⊂ M
is an A-submodule if it is a (necessarily pointed) subset of M preserved by the
action of A. The monoid A always possesses the module 0 := {0}, which will
be referred to as the zero module. If A has no zero-divisors, it possesses a trivial
module 1 := F1, on which all nonzero elements of A act by the identity (this arises
via the augmentation homomorphism A→ F1 sending all nonzero elements to 1).

Note. This structure is called an A-act in [Kilp et al. 2000] and an A-set in [Chu
et al. 2012].

We denote by Mod(A)F1 the category of finite A-modules. It is the F1 analogue
of the category of finite-dimensional representations of an algebra. Note that for
M ∈Mod(A)F1 , EndMod(A)F1

(M) := HomMod(A)F1
(M,M) is a monoid (in general
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noncommutative). An F1-module is simply a pointed set, and will be referred to as
a vector space over F1. Thus, an A-module structure on M ∈ F1-mod amounts to a
monoid homomorphism A→ EndF1-mod(M).

Given a morphism f : M→ N in Mod(A)F1 , we define the image of f to be

Im( f ) := {n ∈ N | there exists m ∈ M such that f (m)= n}.

For M ∈Mod(A)F1 and an A-submodule N ⊂ M, the quotient of M by N, denoted
by M/N, is the A-module

M/N := M\N ∪ {0},

i.e., the pointed set obtained by identifying all elements of N with the base-point,
equipped with the induced A-action.

We recall some properties of Mod(A)F1 , following [Kilp et al. 2000; Chu et al.
2012; Szczesny 2014], where we refer the reader for details:

(1) For M, N ∈Mod(A)F1 , we have |HomMod(A)F1
(M, N )|<∞

(2) The zero A-module 0 is an initial, terminal, and hence zero object of Mod(A)F1 .

(3) Every morphism f : M→ N in CA has a kernel ker( f ) := f −1(0N ).

(4) Every morphism f : M→ N in CA has a cokernel coker( f ) := M/ Im( f ).

(5) The coproduct of a finite collection {Mi }, i ∈ I in Mod(A)F1 exists and is given
by the wedge sum ∨

i∈I

Mi =
∐

Mi/∼,

where ∼ is the equivalence relation identifying the base-points. We will denote the
coproduct of {Mi } by ⊕

i∈I

Mi .

(6) The product of a finite collection {Mi }, i ∈ I , in Mod(A)F1 exists and is given
by the Cartesian product

∏
Mi , equipped with the diagonal A-action. It is clearly

associative. It is however not compatible with the coproduct in the sense that
M × (N ⊕ L) 6' M × N ⊕M × L .

(7) The category Mod(A)F1 possesses a reduced version M ∧ N of the Cartesian
product M × N, called the smash product:

M ∧ N := M × N/M ∨ N,

where M and N are identified with the A-submodules {(m, 0N )} and {(0M , n)} of
M×N respectively. The smash product inherits the associativity from the Cartesian
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product, and is compatible with the coproduct — i.e.,

M ∧ (N ⊕ L)' M ∧ N ⊕M ∧ L .

It defines a symmetric monoidal structure on Mod(A)F1, with unit F1 (i.e., M∧F1'M).

(8) Mod(A)F1 possesses small limits and colimits.

(9) Given M in Mod(A)F1 and N ⊂ M, there is an inclusion-preserving correspon-
dence between flags N ⊂ L ⊂ M in Mod(A)F1 and A-submodules of M/N given
by sending L to L/N. The inverse correspondence is given by sending K ⊂ M/N
to π−1(K ), where π : M→ M/N is the canonical projection. This correspondence
has the property that if N ⊂ L ⊂ L ′ ⊂ M, then (L ′/N )/(L/N )' L ′/L .

These properties suggest that Mod(A)F1 has many of the properties of an abelian
category, without being additive. It is an example of a quasiexact and belian
category in the sense of [Deitmar 2012] and a protoabelian category in the sense of
[Dyckerhoff and Kapranov 2012]. Let Iso(Mod(A)F1) denote the set of isomorphism
classes in Mod(A)F1 , and [M] the isomorphism class of M ∈Mod(A)F1 .

We will regard Mod(A)F1 as a symmetric monoidal category with respect to ∧
and unit F1.

Definition 2.4. (1) We say that M ∈Mod(A)F1 is indecomposable if it cannot be
written as M = N ⊕ L for nonzero N , L ∈Mod(A)F1 .

(2) We say M ∈Mod(A)F1 is irreducible or simple if it contains no proper sub-
modules (i.e., those different from 0 and M).

It is clear that every irreducible module is indecomposable. We have the following
analogue of the Krull–Schmidt theorem [Szczesny 2014]:

Proposition 2.5. Every M ∈Mod(A)F1 can be uniquely decomposed (up to reorder-
ing) as a direct sum of indecomposable A-modules.

Remark 2.6. Suppose M =
⊕k

i=1 Mi is the decomposition of an A-module into
indecomposables, and N ⊂ M is a submodule. It then immediately follows that
N =

⊕
(N ∩Mi ).

2B. Monoid algebras. We now recall a few facts regarding monoid algebras fol-
lowing [Steinberg 2016]. Let k be a field. The monoid algebra k[A] consists of
linear combinations of nonzero elements of A with coefficients in k; i.e.,

k[A] =
{∑

caa
∣∣ a ∈ A, a 6= 0, ca ∈ k

}
,

with product induced from the product in A, extended k-linearly. The monoid
algebra k[A] is a bialgebra, with coproduct

1 : k[A] → k[A]⊗ k[A]
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determined by
1(a)= a⊗ a, a ∈ A.

The category Modk[A] of k[A]-modules is therefore symmetric monoidal under the
operation of tensoring over k.

There is a base-change functor

⊗F1k :Mod(A)F1 →Modk[A] (1)

to the category of k[A]-modules defined by setting

M ⊗F1 k :=
⊕

m∈M,m 6=0M

k ·m,

i.e., setting M ⊗F1 k to be the free k-module on the nonzero elements of M, with
the k[A]-action induced from the A-action on M. It sends f ∈ HomA(M, N ) to its
unique k-linear extension in Homk[A](M ⊗F1 k, N ⊗F1 k).

We will find the following elementary observation useful:

Proposition 2.7. The functor ⊗F1k :Mod(A)F1 →Modk[A] is monoidal.

As a consequence, we have that for M, N ∈Mod(A)F1

(M ∧ N )⊗F1 k ' (M ⊗F1 k)⊗k (N ⊗F1 k)

as k[A]-modules.

2C. The split Grothendieck ring.

Definition 2.8. The split Grothendieck ring of Mod(A)F1, denoted by Ksp
0 (Mod(A)F1)

is the Z-linear span of isomorphism classes in Mod(A)F1 modulo the relation
[M ⊕ N ] = [M] + [N ], i.e.,

Ksp
0 (Mod(A)F1)= Z[[M]]/I, [M] ∈ Iso(Mod(A)F1),

where I is the ideal generated by all differences [M ⊕ N ] − [M] − [N ], with
product induced by ∧. Since by Proposition 2.5 every module is a direct sum of
indecomposable ones, we can also describe Ksp

0 Mod(A)F1 as the Z-linear span of
indecomposable A-modules:

Ksp
0 (Mod(A)F1)

:=
{∑

ai [Mi ]
∣∣ ai ∈ Z, [Mi ] ∈ Iso(Mod(A)F1), Mi is indecomposable

}
, (2)

with the product of two isomorphism classes [M], [M ′] of indecomposables given
by

[M] · [M ′] =
∑
[Ni ] if M ∧M ′ '

⊕
Ni , Ni indecomposable.
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We note that Ksp
0 (Mod(A)F1) is a commutative ring. If A has no zero-divisors,

the isomorphism class [F1] of the trivial A-module is a multiplicative identity in
Ksp

0 (Mod(A)F1).
More generally, if C is a subcategory of Mod(A)F1 closed under ⊕ and ∧, we

may consider Ksp
0 (C), where the span in (2) is restricted to the indecomposable

modules in C.
The following is an immediate consequence of the of the functor ⊗F1k being

monoidal:

Proposition 2.9. There is a ring homomorphism

8k : K
sp
0 (Mod(A)F1)→ Ksp

0 (Modk[A]).

3. Rooted trees, wheels, and the monoid 〈t〉

We now study the ring Ksp
0 (Mod(A)F1) in the case where A is 〈t〉, the free monoid

on one generator, and the corresponding base-change homomorphism

8k : K
sp
0 (Mod(A)F1)→ Ksp

0 (Modk[t])

for a field k. Recall that finite-dimensional k[t]-modules correspond to pairs
(V, T ), where V is a finite-dimensional vector space over k, and T ∈ End(V ).
The indecomposable k[t]-modules thus correspond to Jordan blocks. It follows by
analogy that the study of finite 〈t〉-modules amounts to studying “linear algebra
over F1”, and the indecomposable 〈t〉-modules are the corresponding Jordan blocks
over F1.

Given M ∈Mod(〈t〉)F1 , we may associate to it a graph 0M which encodes the
action of t on M. The vertices of 0M correspond bijectively to the nonzero elements
of M, and the directed edges join m ∈ M to t ·m. We will make no distinction
between m ∈ M and the corresponding vertex of 0M when the context is clear.

Remark 3.1. The data of a function f : S 7→ S (where S is a set) may be encoded
in a directed graph with vertex set S and a directed edge from s to f (s) for every
s ∈ S. 0M is a special case of this construction where f : M 7→ M is the map
m 7→ t ·m.

The possible connected graphs arising as 0M , corresponding to indecomposable
〈t〉-modules, see [Ganyushkin and Mazorchuk 2009; Szczesny 2014], are easily
seen to be of two types.

We call the first type a rooted tree and the second a wheel; see Figure 1. Rooted
trees correspond to indecomposable 〈t〉-modules where t acts nilpotently, in the
sense that tn

·m = 0 for sufficiently large n. We call such a module nilpotent.
We will use the following terminology when discussing the graphs 0M :
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Figure 1. A rooted tree (left) and a wheel (right).

• We call a vertex with no outgoing edges a root. It is drawn at the top. A connected
0M can have at most one root.

• If M is nilpotent, hence 0M a tree, then the depth of a vertex m 6= 0, denoted by
depth(m), is the number of edges in the unique path connecting m to the root. The
only vertex of depth zero is the root. In general, depth(m)+1 is the smallest power
of t that annihilates m.

• The height of a rooted tree is the maximal depth of any of its vertices. The tree
in Figure 1 has height 4.

• A cycle of length n is a sequence of distinct elements Z = {m1, . . . ,mn}, mi ∈ M,
such that t ·mi = mi+1 and t ·mn = m1.

• A chain of length n is a sequence of distinct elements C = {m1,m2, . . . ,mn},
mi ∈ M, such that t ·mi = mi+1, 1≥ i < n, but t ·mn 6= m1.

Wheels contain a single directed cycle, possibly with trees attached. A wheel is
easily seen to arise from a 〈t〉-module M where tr

·m = tr+n
·m for some r, n ∈N

for every m ∈ M.
We begin with the problem of computing the product in Ksp

0 (Mod(〈t〉)F1) in
terms of the graphs above.

3A. Products in Ksp
0 (Mod(〈t〉)F1). Given a 〈t〉-module M, and m ∈ M, we define

pred(m)= {m′ ∈ M, t ·m′ = m}.

At the level of the graph 0M , pred(m), m 6= 0, corresponds to the vertices connected
to m via directed edge. Recall that for M, N ∈Mod(〈t〉)F1 and (m, n) ∈ M ∧ N,
t ·(m, n)= (t ·m, t ·n). In particular, t ·(m, n)= 0 if and only if t ·m = 0 or t ·n= 0.
The following observations are immediate:

Proposition 3.2. Let M, N ∈Mod(〈t〉)F1 be indecomposable:

(1) M ∧ N is nilpotent if and only if at least one of M, N is nilpotent.
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(2) If M, N are nilpotent and (m, n) ∈ M ∧ N, then

depth((m, n))=min(depth(m), depth(n)).

(3) If M is nilpotent and N is not, then for (m, n) ∈ M ∧ N,

depth((m, n))= depth(m).

(4) pred(0M)= ker(t). We have pred(0M) 6= {0M} if and only if M is nilpotent, in
which case this set contains a single nonzero element, corresponding to the
root of 0M .

(5) For (m, n) ∈ M ∧ N,

pred(m, n)= {(m′, n′) | m′ ∈ pred(m), n′ ∈ pred(n)},

i.e., pred(m, n)= pred(m)× pred(n).

(6) {pred(0)⊂ M ∧ N } =
{
{pred(0)⊂ M}× N } ∪ {M ×{pred(0)⊂ N }

}
.

We proceed to examine the three cases where each of 0M , 0N is a rooted
tree/wheel.

Case 1: If 0M , 0N are both rooted trees, 0M∧N consists of dim(M)+ dim(N )− 1
rooted trees whose roots correspond to pairs (m, n) ∈ M ∧ N where at least one of
m, n is a root. Each component has height ≤min(height(0M), height(0N )), and at
least one component where the inequality is sharp.

Case 2: If 0M is a tree and 0N is a wheel, 0M∧N consists of dim(N ) rooted trees
whose roots correspond to pairs (rM , n)where rM is the root of0M . Each component
has height ≤ height(0M).

Case 3: If0M , 0N are both wheels containing cycles of length lM , lN , then ker(t)=0
in both M and N, and so ker(t) = 0 on M ∧ N. Each connected component of
0M∧N is therefore a wheel, and contains a unique cycle. If (m, n) ∈ M ∧ N is part
of a cycle, then

tr
· (m, n)= (m, n) (3)

for some r , which implies tr
·m = m and tr

· n = n. It follows that m (resp. n) is
itself part of a cycle in 0M (resp. 0N ). Moreover, r must be a multiple of lM and lN .
Since the length of the cycle containing (m, n) is the least r such that (3) holds, it
follows that r = lcm(lM , lN ).

To summarize, have thus shown that each connected component of0M∧N contains
a (necessarily unique) cycle of length lcm(lM , lN ), and that (m, n) occurs in a cycle
if and only if m, n do as well. Since there are lM lN such pairs, it follows that 0M∧N

has lM lN/lcm(lM , lN )= gcd(lM , lN ) connected components.
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We note that each connected component of 0M∧N is determined recursively by
property (5) above. For instance, if at least one of 0M , 0N is a rooted tree, we may
begin with a vertex (rM , n) or (m, rN ) corresponding to a root in 0M∧N and build
the rest of the component using (5). The same approach works if both graphs are
wheels, though there is no preferred choice for the starting vertex.

Example 3.3. The two trees 0N and 0M yield the forest 0N∧M pictured below, with
six connected components, each of which has height ≤ 1:

a

b

dc
0N

f g

e

0M

(a, f ) (a, g) (c, e) (d, e)
(b, f ) (b, g)

(a, e)

(c, f ) (c, g) (d, f ) (d, g)

(b, e)

0N∧M

Example 3.4. The tree 0N and the wheel 0M yield the forest 0N∧M pictured below,
with three connected components, each of which has height ≤ 2:

a

b

dc

0N

e f g

0M

(a, g)

(d, f ) (c, f )

(b, e)

(a, f )

(b, g)

(d, e) (c, e) (d, g) (c, g)

(b, f )

(a, e)

0N∧M
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Example 3.5. The two wheels 0N and 0M yield 0N∧M pictured below, with
gcd(2, 2)= 2 wheels, each with a cycle of lcm(2, 2)= 2 vertices:

b c d

a

0N

e f g

0M

(b, e)

(a, e)

(c, f )

(d, e) (b, g)

(a, g)

(d, g)

(c, g) (b, f ) (c, e) (d, f )

(a, f )

0N∧M

Example 3.6. The two wheels 0N and 0M yield 0N∧M pictured below, which
consists of a single wheel as gcd(3, 2) = 1. This wheel contains a cycle of
lcm(3, 2)= 6 vertices:

a b c

d

0N

e f g

0M

(d, g)

(c, f ) (b, g)

(a, f )

(d, e)

(b, f )

(a, g) (c, g)

(c, e)

(a, e)

(b, e)

(d, f )

0N∧M

We end this section by collecting a couple of observations regarding the structure
of Ksp

0 (Mod(〈t〉)F1).
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(1) The map Ksp
0 (Mod(〈t〉)F1)→Z sending [M] → dim(M) is a ring homomor-

phism.

(2) N :=
{∑

i ai [Mi ]
∣∣ Mi is nilpotent

}
⊂ Ksp

0 (Mod(〈t〉)F1) is an ideal. The quo-
tient

Ksp
0 (Mod(〈t〉)F1)/N

can be naturally identified with the integral span of wheels, with product given
by ∧.

3B. The homomorphism 8k. We now study the ring homomorphism

8k : K
sp
0 (Mod(〈t〉)F1)→ Ksp

0 (Modk[t]),

where k is a field containing all roots of unity. For [M] ∈ Iso(Mod(〈t〉)F1), we
have 8k([M]) is the isomorphism class of the k[t]-module M ⊗F1 k with basis
m ∈ M , m 6= 0, and t-action extended k-linearly from M. In what follows, we will
denote M⊗F1 k by Mk and the linear transformation t ∈ End(Mk) by TM . Fixing an
ordering m1, . . . ,mdim(M) of the nonzero elements of M produces a basis for Mk ,
and the matrix of TM in this basis is the adjacency matrix Adj(0M) of 0M .

The isomorphism classes of indecomposable k[t]-modules correspond to n× n
Jordan blocks Jn(λ) with eigenvalue λ:

λ 1 0
0
. . .

. . .
...
. . .

. . . 1
0 · · · 0 λ

 .
Describing 8k thus amounts to decomposing (Mk, TM), or equivalently the

adjacency matrix Adj(0M), into Jordan blocks. It is clearly sufficient to consider
the case where 0M is connected, that is, when 0M is a ladder tree or a simple cycle;
see Figure 2.

The Jordan forms of Adj(0M) when M is a ladder tree of height n−1 or a simple
cycle of length n are easily seen to be the matrices Jn(0) and Dn:

Jn(0)=


0 1 0
...
. . .

. . .
...

. . . 1
0 · · · · · · 0

 , Dn =

ζ 0
. . .

0 ζ n

 ,
with ζ = e2π i/n

For more general directed graphs arising as 0M , this problem is solved in [Cardon
and Tuckfield 2011]. We proceed to recall the solution given there, specialized to
our setup.



1392 DAVID BEERS AND MATT SZCZESNY

Figure 2. A ladder (left) and a simple cycle (right).

Definition 3.7. A partition of 0M is a collection {C1, . . . ,Cr , Z1, . . . , Zs} of dis-
joint chains C1, . . . ,Cr and cycles Z1, . . . , Zs whose union is M\0. A proper
partition of M is a partition satisfying the following two additional properties:

(1) Each cycle in M is equal to one of Z1, . . . , Zs .

(2) For each 1 ≤ i ≤ r , if 0i
M is the graph obtained from 0M by deleting all of

the vertices in Z1, . . . , Zs,C1, . . . ,Ci , then Ci+1 is a chain of maximal length
in 0i

M .

It is easy to see that proper partitions of 0M exist, and can be obtained as follows.
Each connected component of 0M has at most one (necessarily unique) cycle —
take these to be Z1, . . . , Zs . Upon deleting the Z j , 1 ≤ j ≤ s, we are left with a
forest of rooted trees. We now look for the longest chain C1 in this forest, delete it,
and repeat, obtaining C2, . . . ,Cr .

Example 3.8. In the graph 0M given by

1 2 3 4 5

67

8
9

10

the set {C1,C2,C3, Z1}, where C1 = {1, 2, 3}, C2 = {9, 8}, C3 = {10}, and Z1 =

{4, 5, 6, 7}, is a proper partition.

The following theorem describes the Jordan form of Adj(0M).

Theorem 3.9 [Cardon and Tuckfield 2011]. Let {C1, . . . ,Cr , Z1, . . . , Zs} be a
proper partition of 0M into chains Ci of length l(Ci ) and cycles Z j of length l(Z j ).
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Then

Adj(0M)'

r⊕
i=1

Jl(Ci )(0)⊕
s⊕

j=1

Dn.

We are now able to characterize the image of the homomorphism 8k :

Theorem 3.10. The image of 8k is the subring of Ksp
0 (Mod(〈t〉)F1) generated by

[Jn(0)], [Dn], n ≥ 1.

We note one final consequence of the fact that 8k is monoidal. By the above
discussion, 8k(M) may be identified with the adjacency matrix of 0M . It follows
that

8k(M ∧ N )=8k(M)⊗k 8k(N ).

In other words, Adj(0M∧N )= Adj(0M)⊗Adj(0N ), where ⊗ on the right denotes
the Kronecker product of matrices. This is the defining property of the tensor
product graph 0M ⊗0N ; see [Weichsel 1962]. To summarize:

Proposition 3.11. For M, N ∈Mod(〈t〉)F1 , we have 0M∧N = 0M ⊗0N .

4. Skew shapes and the monoids 〈x1, . . . , xn〉

We now consider a subcategory Skewn ⊂ Mod(Pn)F1 (originally introduced in
[Szczesny 2018]) consisting of n-dimensional skew shapes. Our goal is to give an
explicit description of the product in the ring Ksp

0 (Skewn).

4A. Skew shapes and Pn-modules. Zn has a natural partial order where for x =
(x1, . . . , xn) ∈ Zn and y = (y1, . . . , yn) ∈ Zn , we have

x ≤ y⇐⇒ xi ≤ yi for i = 1, . . . , n.

Definition 4.1. An n-dimensional skew shape is a finite convex subposet S ⊂ Zn.
S is connected if and only if the corresponding poset is. We consider two skew
shapes S, S′ to be equivalent if and only if they are isomorphic as posets. If S, S′

are connected, then they are equivalent if and only if S′ is a translation of S, i.e., if
there exists a ∈ Zn such that S′ = a+ S.

The condition that S is connected is easily seen to be equivalent to the condition
that any two elements of S can be connected via a lattice path lying in S. The
name skew shape is motivated by the fact that for n = 2, a connected skew shape
in the above sense corresponds (nonuniquely) to a difference λ/µ of two Young
diagrams in French notation (for an explanation of this notation see for instance
[Fulton 1997]). For n = 3, these correspond to skew plane partitions.

Example 4.2. Let n = 2 and

S ⊂ Z2
= {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (0, 2)}
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(up to translation by a ∈ Z2). Then S corresponds to the connected skew Young
diagram

Let S⊂Zn be a skew shape. We may attach to S a Pn-module MS with underlying
set

MS = S t {0}

and action of Pn defined by

xe
· s =

{
s+ e, if s+ e ∈ S,
0 otherwise,

e ∈ Zn
≥0, s ∈ S.

In particular, xi · s = s+ei if s+ei ∈ S, and equals 0 otherwise, where ei is the i-th
standard basis vector. MS is a graded Pn-module with respect to its Zn

≥0-grading,
in which deg(xi )= ei .

Example 4.3. Let S be as in Example 4.2. Let x1 (resp. x2) act on the P2=〈x1, x2〉-
module MS by moving one box to the right (resp. one box up) until reaching the
edge of the diagram, and 0 beyond that. A minimal set of generators for MS is
indicated by the black dots:

•

•

We may consider the subcategory Skewn ⊂Pn-mod consisting of Pn-modules M
satisfying the following two conditions:

(1) M admits a Zn-grading.

(2) For a ∈ Pn , m1,m2 ∈ M,

a ·m1 = a ·m2 ⇐⇒ m1 = m2 or a ·m1 = a ·m2 = 0.

The following proposition follows from results in [Szczesny 2018]:

Proposition 4.4. Skewn forms a full monoidal subcategory of Mod(Pn)F1 . If M ∈
Skewn is indecomposable, then M ' MS for a connected skew shape S.

In other words, given connected skew shapes S1, S2, the Pn-module MS1 ∧MS2

is isomorphic to ⊕MUj , where Uj are connected skew shapes.

Lemma 4.5. If S1, S2 ∈ Skewn with chosen embeddings in Zn , and t ∈ Zn , then

S1 ∩ (S2+ t)

is also an n-dimensional skew shape, possibly empty or disconnected.
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Proof. As S2 is a skew shape, so is S2+ t . Hence, it suffices to show the intersection
of skew shapes is a skew shape, that is, S1 ∩ S2 is a skew shape.

It is immediate that S1 ∩ S2 is a finite poset of Zn. Further, if a, b, c ∈ S1 ∩ S2

and a ≤ c ≤ b, then as both S1 and S2 are convex, c ∈ S1 ∩ S2. Hence, S1 ∩ S2 is
convex and therefore a skew shape. �

Theorem 4.6. If S1, S2 ∈ Skewn with chosen embeddings in Zn then

MS1 ∧MS2 =

⊕
t∈Zn

MS1∩(S2+t).

Remark 4.7. Since S1, S2 are finite embedded skew shapes, the intersection S1 ∩

(S2+ t) is empty for all but finitely many t ∈ Zn. Moreover, by Lemma 4.5, the
right-hand side is an object in Skewn .

Proof. We will use the notation at ∈ MS1∩(S2+t) to denote an element occurring in
the t-th summand in

⊕
t∈Zn MS1∩(S2+t). Define

9 : MS1 ∧MS2 →

⊕
t∈Zn

MS1∩(S2+t)

by
9((a, b))= aa−b ∈ MS1∩(S2+a−b).

We proceed to show that9 is an isomorphism of Pn-modules. 9 is clearly injective,
and sends 0 to 0. Moreover, if at ∈ MS1∩(S2+t) is nonzero, then a = b+ t for some
nonzero b ∈ S2; hence at =9((a, b)). 9 is therefore a bijection.

It remains to check that 9 is a morphism of Pn-modules, or equivalently that
9 ◦ xi = xi ◦9 for i = 1, . . . , n.

Suppose (a, b) is a nonzero element in the domain of 9. If xi ((a, b))= 0, then
either xi (a)= 0 or xi (b)= 0, or equivalently, either a+ei /∈ S1 or b+ei /∈ S2. Thus
a+ ei /∈ S1 ∩ (S2+ a− b) and so

xi · aa−b = xi ◦9((a, b))= 0=9 ◦ xi ((a, b)).

Otherwise, xi ((a, b))= (a+ ei , b+ ei ) ∈ S1× S2 and so it follows that

9 ◦ xi ((a, b))= (a+ ei )a−b.

Meanwhile, 9(a, b) = aa−b. As a + ei ∈ S1, b + ei ∈ S2, we have a + ei ∈

S1 ∩ (S2+ a− b), and so xi · aa−b = (a+ ei )a−b. Hence

xi ◦9((a, b))=9 ◦ xi · (a, b). �

Remark 4.8. The situation can be visualized as follows. For two embedded skew
shapes S and T, the connected component of the skew shape in MS∧MT containing
some point (a, b) is the intersection of S with the unique translate of T that makes
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a and b coincide. Below is an example of S, T and their intersection in gray for
n = 2:

•

•

•

Example 4.9. Suppose the we have the following skew shapes S and T in n = 2
dimensions:

To find the collection of skew shapes occurring in MS ∧ MT we observe the
nontrivial intersections of S and T under translation are given below with regions
of intersection in dark gray, and regions of nonintersection in light gray:

It follows that MS∧MT decomposes into indecomposable modules corresponding
to the following skew shapes with the indicated multiplicities:

8 ⊕ 2 ⊕ 2

Note that we further decomposed the disconnected skew shape

into its connected components.
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On the classification of Specht modules
with one-dimensional summands

Aubrey Piper Collins and Craig J. Dodge

(Communicated by Kenneth S. Berenhaut)

This paper extends a result of James to a combinatorial condition on partitions for
the corresponding Specht module to have a summand isomorphic to the unique
one-dimensional F6-module over fields of characteristic 2. The work makes
use of a recursively defined condition to reprove a result of Murphy and prove a
new result for self-conjugate partitions. Finally we present a Python script which
utilizes this work to test Specht modules for a one-dimensional summand.

1. Introduction

Specht modules are crucial to understanding the representation theory of the symmet-
ric group; see [James 1978; James and Kerber 1981]. Gwendolen Murphy [1980]
classified the decomposable Specht modules which correspond to hook partitions.
Dodge and Fayers [2012] produced the first new examples of decomposable Specht
modules since Murphy’s work. More recently, Donkin and Geranios [2018] used
analogous modules for the general linear groups and applied the Schur functor in
order to find even broader families of decomposable Specht modules. Further work
on the question has been addressed in the Iwahori–Hecke algebra in [Speyer 2014;
Speyer and Sutton 2018].

Murphy additionally classified the Specht modules corresponding to hook parti-
tions which have a one-dimensional summand.

Theorem 1.1 [Murphy 1980, Theorem 5.5]. Let λ = (n− r, 1r ) and F be a field
of characteristic 2. Then there exists a nonzero F6n-module M such that Sλ ∼=
S(n)⊕M if and only if n is odd, r is even, and

(n−1
r

)
is odd.

This theorem was a consequence of determining the endomorphism ring of
Specht modules corresponding to hook partitions. In this paper we attempt to
address the question of one-dimensional summands in the spirit of [Dodge and
Fayers 2012] by constructing split exact sequences of F6n-modules.
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In Section 2, we present the foundational definitions as well as construct the
Specht modules in the style of [James 1978]. In Section 3, we work through the con-
sequences of James’s theorem [1978, Theorem 24.4] concerning HomF6n (S

(n), Sλ).
Utilizing this work we describe conditions sufficient for the Specht module to
decompose as desired (Theorem 3.5). While this final sufficient condition is
expressed as a sum of a recursively defined finite sequence, we can use it to
provide a new proof of Murphy’s result. Additionally in Section 4 we make use
of Theorem 3.5 and introduce the notion of the directed graph of a partition in
order to prove Specht modules corresponding to self-conjugate partitions cannot
have a one-dimensional summand. Finally in Section 5 we present Python [van
Rossum 2001] algorithms designed to apply Theorem 3.5 to determine which Specht
modules have a one-dimensional summand.

2. Preliminaries and notation

For any positive integer n, let 6n denote the symmetric group on n letters, and
F6n denote the group algebra of 6n over F. This paper builds greatly upon the
foundations found in [James and Kerber 1981; James 1978], adopting much of the
notation and constructions.

2A. Compositions, partitions, and Young diagrams. We say λ= (λ1,λ2,λ3, . . . )∈

NN
0 is a partition of n, and write λ ` n, if

∑
λi = n and for all i , λi ≥ λi+1. For a

partition λ of n, the Young diagram of λ, denoted by [λ], is the set

[λ] := {(i, j) ∈ N×N | j ≤ λi }.

Each of the elements in the Young diagram is referred to as a node. We call the set

Rλ(i)= {(i, j) | 1≤ j ≤ λi } ⊆ [λ]

the i-th row of [λ] and
Cλ( j)= {(i, j) | 1≤ i ≤ λ′j }

the j-th column of [λ]. Given a partition λ ` n, we define the conjugate of λ,
denoted by λ′, as the unique partition such that

[λ′] = {(i, j) ∈ N×N | ( j, i) ∈ [λ]}.

2B. Tableau. For a partition λ of n, if t : [λ]→{1, 2, . . . , n} is a bijection, we call t
a λ-tableau. Let T(λ) denote the set of all λ-tableaux. For a partition λ, a λ-tableau t
is called row standard if for (i, j), (i, k) ∈ [λ] with j < k, then t (i, j) < t (i, k). We
define column standard similarly. Moreover t is standard if it is both row standard
and column standard and T0(λ) will denote the set of standard λ-tableaux. We call
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Rt(i)= t[Rλ(i)] the set of entries in the i-th row of t . Similarly, Ct( j)= t[Cλ( j)]
is the set of entries in the j-th column of t .

Since each element σ ∈ 6n is a bijection on the set {1, 2, 3, . . . , n}, there is a
6n-action on T(λ) defined by σ t = σ ◦ t . From this action, we can define two
significant subgroups of 6n given a λ-tableau t . Define the row stabilizer of t ,
denoted by Rt , to be the subset of 6n which fixes the sets Rt(i). Similarly define
the column stabilizer of t , denoted by Ct , to be the subset of 6n which fixes the
sets Ct( j). We define an equivalence relation on T(λ) by t ∼ s if and only if there
exists π ∈ Rt such that π t = s. We will use X (λ) to denote the set of equivalence
classes of T(λ) and call an equivalence class {t} ∈ X (λ) a λ-tabloid. Notice that
since there is a well-defined action of 6n on T(λ) we can define an action of 6n

on X (λ) by σ {t} = {σ t} for all σ ∈6n and {t} ∈ X (λ).
Lastly we will make use of a dominance relation on the set of tabloids for a fixed

composition λ, using the notation of [James 1978, Definition 3.11]. For {t} ∈ X (λ)
we let mxy(t)=|{t (i, j)≤ x | i ≤ y}|; that is mxy(t) is the number of entries less than
or equal to x in the first y rows of {t}. Using this notation, we define the relation G
on X (λ) by {s} G {t} if and only if mxy(s)≤ mxy(t) for all positive integers x, y.

2C. Permutation modules and Specht modules. Define Mλ to be the free vector
space over F generated by the set X (λ). Additionally since X (λ) is the basis of Mλ,
we can define an F6n-action on Mλ by extending the 6n-action on X (λ) linearly.
We will call Mλ with this module action the permutation module associated to λ.

Let t ∈ T(λ). Then we define κt ∈ F6n by

κt :=
∑
σ∈Ct

(sgn σ)σ,

where sgn : 6n → {1,−1} is the signature function on the symmetric group. So
for any t ∈ T(λ), we can define the element in Mλ called the polytabloid of t by
et := κt {t}. Hence we can construct a submodule of Mλ called the Specht module,
denoted by Sλ, which we define explicitly by

Sλ := Span({et | t ∈ T(λ)})⊆ Mλ.

The following example describes two Specht modules which can be constructed for
any positive integer n and will be a central to the focus of this paper.

Example 2.1. The Specht module S(n) for F6n is one-dimensional and for all
v ∈ Sλ and σ ∈ 6, we have σv = v. Alternatively, the Specht module S(1

n) is a
one-dimensional F6n-module, again spanned by any appropriate polytabloid. For
all w ∈ S(1

n) and σ ∈6n

σw =

{
w if σ is an even permutation,
−w if σ is an odd permutation.
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For all n, S(n) and S(1
n) form a complete list of the isomorphism classes of the

one-dimensional modules of F6n .

We conclude this section by stating several significant results concerning Specht
modules that are relevant to our investigation.

Theorem 2.2. Let λ ` n.

(2.2.1) [James 1978, Proposition 4.5] Sλ is a cyclic F6n-module generated by
every polytabloid.

(2.2.2) [James 1978, Theorem 8.4] The set {et | t ∈ T0(λ)} is a basis for Sλ.

(2.2.3) [James 1978, Theorem 8.15] Let (Sλ)∗ denote the dual of Sλ. Then (Sλ)∗ ∼=
Sλ
′

⊗ S(1
n).

(2.2.4) [James 1978, Corollary 13.18] Suppose F has characteristic 2. Then Sλ is
indecomposable.

The basis in (2.2.2) is often referred to as the standard basis of Sλ. The poly-
tabloids will become very relevant to our discussion, in particular understanding
which tabloids appear with nonzero coefficient in certain polytabloids, and so we
introduce the following notation. If s, t ∈T0(λ) we say t produces s and write t→ s
if there exists π ∈ Ct and σ ∈ Rs such that s = σπ t . Note using this definition we
see that s appears with nonzero coefficient in et if and only if t→ s. In order to
further understand which standard tableaux produces other standard tableaux, we
introduce the following results.

Theorem 2.3. Let t be a λ-tableau and s, t ∈ T0(λ).

(2.3.1) [James 1978, Lemma 8.13] If t→ s then {s} G {t}.

(2.3.2) [James and Kerber 1981, Lemma 1.5.6] Suppose x, y appear in the same
column of t . If t→ s then x and y appear in different rows of s.

3. F6n-module homomorphisms

Noting (2.2.4), we will assume F is a field of characteristic 2 for the remainder of
the paper, and hence S(n)∼= S(1

n). Therefore there is a unique one-dimensional F6n-
module up to isomorphism, namely S(n). Next we will introduce a theorem of James
which will be fundamental to the remaining work of this paper. To this end, for λ`n,
let ld(λ) be the unique integer such that 2ld−1

≤ λd+1 < 2ld . Using this notation we
state the following theorem of James, specifically for the case when p = 2.

Theorem 3.1 [James 1978, Theorem 24.4 (p=2)]. Suppose that F is a field
of characteristic 2 and λ = (λ1, λ2, . . . , λs) is a partition of n. If λd ≡ −1
(mod 2ld (λ)) for all 1 ≤ d < s, then Hom(S(n), Sλ) is one-dimensional; otherwise
dim Hom(S(n), Sλ)= 0.
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Recall that when F is a field of characteristic 2, we have S(n) ∼= S(1
n). Moreover

we note that for all F6n-modules M, we have M ⊗ S(n) ∼= M. Thus when F is a
field of characteristic 2, (2.2.3) gives us (Sλ)∗ ∼= Sλ

′

⊗ S(n) ∼= Sλ
′

. Hence from the
previous theorem we have the following corollary.

Corollary 3.2. Suppose that F is a field of characteristic 2, λ ` n, and λ′ =
(λ′1,λ

′

2, . . . ,λ
′
t). Then dim Hom(Sλ, S(n)) = 1 if and only if λ′e ≡ −1 (mod 2le(λ

′))

for all 1≤ e < t .

Proof. First note the following isomorphisms of homomorphism spaces:

Hom(Sλ, S(n))∼= Hom(Sλ, S(1
n))∼= Hom((S(1

n))∗, (Sλ)∗)∼= Hom(S(n), Sλ
′

).

Hence the corollary follows from Theorem 3.1. �

3A. Composition of module homomorphisms. We can combine Theorem 3.1 and
Corollary 3.2 to motivate the following definition about partitions under considera-
tion.

Definition 3.3. Let λ= (λ1, λ2, . . . , λs) and λ′ = (λ′1, λ
′

2, . . . , λ
′
t). We say that λ

is Lucas perfect if λd ≡−1 (mod 2ld (λ)) for all 1≤ d < s and λ′e ≡−1 (mod 2le(λ
′))

for all 1≤ e < t .

In order to further our discussion, let us consider an arbitrary Lucas perfect parti-
tion of n, λ. We may fix nonzero F6n-module homomorphisms iλ : S(n)→ Sλ and
pλ : Sλ→ S(n). Our goal will be to understand the composition pλ ◦ iλ : S(n)→ S(n).
To that end, we first explore the image of iλ expressed as a linear combination of
polytabloids. Let v ∈ S(n) be nonzero. Since Sλ⊂Mλ, we may fix a{t} ∈ F such that

iλ(v)=
∑
{t}∈X (λ)

a{t}{t}.

Now let σ ∈6 be arbitrary. Observe by reindexing the λ-tabloids,

σ−1
( ∑
{t}∈X (λ)

a{t}{t}
)
=

∑
{t}∈X (λ)

a{σ t}{t}.

Additionally iλ(v)= iλ(σ−1v)= σ−1iλ(v), so∑
{t}∈X (λ)

a{t}{t} =
∑
{t}∈X (λ)

a{σ t}{t}.

Since X (λ) is a basis for Mλ it follows that a{t} = a{σ t} for all σ . Moreover since
6n acts transitively on X (t), we conclude that

iλ(v)= a
∑
{t}∈X (λ)

{t}.
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Moreover since iλ 6= 0, we know a 6= 0. To understand the composition pλ ◦ iλ,
we will be making use of the image of a polytabloid under pλ. To that end, we
will focus on expressing iλ(v) as a linear combination of polytabloids. From our
observations of iλ, we note ∑

{t}∈X (λ)

{t} ∈ Sλ.

Therefore by (2.2.2), we may fix xt ∈ F such that∑
t∈T0(λ)

xt et =
∑
{s}∈X (λ)

{s}. (3-1)

Ideally we would be able to determine a closed formula for the coefficients xt . For
now we will settle on developing a recursive formula. To assist with this task, let ρ
be the linear transformation defined by

ρ({s})=
{
{s} if {s} is standard,
0 if {s} is not standard.

Therefore ρ is a linear projection from Mλ to the span of {{t} | t ∈ T0(λ)}. We note
by (2.3.1) and (2.2.2) that {ρ(et) | t ∈ T0(λ)} is linearly independent. By applying
ρ to (3-1), we have ∑

t∈T0(λ)

xtρ(et)=
∑

s∈T0(λ)

{s}. (3-2)

Since both {et | t ∈ T0(λ)} and {ρ(et) | t ∈ T0(λ)} are linearly independent sets,
(3-1) and (3-2) have unique solutions and therefore the same solution sets. Using
these observations we prove the solution satisfies the following condition.

Lemma 3.4. If λ ` n is Lucas perfect and X t = {s ∈ T0(λ) | s→ t and s 6= t}, then

xt = 1+
∑
s∈X t

xs

is the unique solution to ∑
t∈T0(λ)

xt et =
∑
{s}∈X (λ)

{s}.

Proof. It follows from Theorem 3.1 that (3-1) has a unique solution. Thus we
complete the proof by demonstrating the solution proposed by the lemma satisfies
(3-2). Suppose t ∈ T0(λ), and define the sets

X t = {s ∈ T0(λ) | s→t and s 6=t},

Yt = {s ∈ T0(λ) | t→s and s 6=t},

W (λ)= {(u, v) | u ∈ T0(λ), v ∈ Yt } = {(u, v) | v ∈ T0(λ), u ∈ Xv}.



CLASSIFICATION OF SPECHT MODULES WITH ONE-DIMENSIONAL SUMMANDS 1405

Using this notation it follows that ρ(et)= {t}+
∑

s∈Yt
{s}. Therefore∑

t∈T0(λ)

xtρ(et)=
∑

t∈T0(λ)

xt

(
{t}+

∑
s∈Yt

{s}
)
=

∑
t∈T0(λ)

xt {t}+
∑

t∈T0(λ)

∑
s∈Yt

xt {s}.

Now observe ∑
t∈T0(λ)

∑
s∈Yt

xt {s} =
∑

(t,s)∈W (λ)

xt {s} =
∑

s∈T0(λ)

∑
t∈Xs

xt {s}.

Therefore by reindexing we have∑
t∈T0(λ)

xtρ(et)=
∑

s∈T0(λ)

xs{s}+
∑

s∈T0(λ)

∑
t∈Xs

xt {s}

=

∑
s∈T0(λ)

((
1+

∑
t∈Xs

xt

)
{s}+

∑
t∈Xs

xt {s}
)
=

∑
s∈T0(λ)

{s}. �

Now we will use the work thus far to demonstrate how understanding the solution
to (3-1) can be used to answer our question of decomposability.

Theorem 3.5. Let λ be a Lucas perfect partition of n such that λ 6= (n), (1n),
and let the coefficients xt ∈ F be as in Lemma 3.4. Then there exists a nonzero
F6n-module M such that Sλ ∼= S(n)⊕M if and only if

∑
t∈T0(λ)

xt 6= 0.

Proof. Fix nonzero F6n-module homomorphisms pλ : Sλ→ S(n) and iλ : S(n)→ Sλ.
Since S(n) is a simple F6n-module, pλ and iλ span their respective homomorphism
spaces, and Sλ is not one-dimensional, Sλ is decomposable with summand isomor-
phic to S(n) if and only if pλ ◦ iλ 6= 0. Let {r} be the unique tabloid in M (n)

= S(n).
Notice for all t, t ′ ∈ T(λ), we have pλ(et)= pλ(et ′)= α{r} for some α 6= 0 since
6n acts transitively on the polytabloids and as the identity on S(n). To complete the
proof we need only to observe if

iλ({r})= β
∑
{s}∈X (λ)

{s} = β
∑

t∈T0(λ)}

xt et

for some nonzero β ∈ F then

pλ ◦ iλ({r})= αβ
( ∑

t∈T0(λ)

xt

)
{r}.

Hence pλ ◦ iλ 6= 0 if and only if
∑

t∈T0(λ)
xt 6= 0. �

It is worth noting that this result has a simpler interpretation. Since we know the
coefficients of tabloids in polytabloids are either 1 or 0 in characteristic 2, it follows
that the xt are either 0 or 1. The sum of coefficients in Theorem 3.5 is congruent to
the number of nonzero coefficients modulo 2. Hence we can say for a Lucas perfect
partition, the Specht module is decomposable with a one-dimensional summand if
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and only if the sum of all tabloids can be expressed as a sum of an odd number of
standard polytabloids. In fact we do not need to insist in expressing the sum using
standard polytabloids, but rather any polytabloids.

3B. New proof of Murphy’s result. Our work thus far allows us to provide a new
proof of the result of Murphy, Theorem 1.1. First we will need a quick lemma
concerning hook partitions.

Lemma 3.6. Let λ= (n− r, 1r ) be a hook partition. Then for all t ∈ T0(λ),

X t = {s | s→t and s 6=t} =∅.

Proof. Let t be an arbitrary standard λ-tableau. Assume for contradiction there is a
nonidentity element π ∈ Ct such that {π t} = {s} for some s ∈ T0(λ). Suppose x is
the largest integer not fixed by π . Let y = π−1(x) and z = π(x), so y, z < x by
our assumption of x . Since the first column is the only one with multiple entries,
x, y, z ∈ Ct(1). We will consider two cases.

Case 1: Suppose y = 1. Then 1 is not fixed by π . So 1 ∈ Rπ t( j) for j > 1; thus
π t is not row equivalent to a standard tableau. So we have reached a contradiction.

Case 2: Suppose y 6= 1. Then y ∈ Rt(i) and x ∈ Rt( j) with 1 < i < j . Hence
π(y) = x ∈ Rπ t(i) and π(x) = z ∈ Rπ t( j) with 1 < i < j . Hence π t is not row
equivalent to a standard tableau and we again have reached a contradiction. �

In order to reproduce Murphy’s result suppose λ = (n − r, 1r ). First we note
that if n is even or r is odd then λ or λ′ is not Lucas perfect, so Sλ does not have
S(n) as a summand by Theorem 3.5. Now it suffices to consider the case when n is
odd, r even, and 0< r < n, so λ is Lucas perfect. Notice that a standard tableau is
uniquely determined by the choice of r entries not appearing in the first row; thus
|T0(λ)| =

(n−1
r

)
, since the entries can be any subset of {2, 3, . . . , n} of size r . Now

by Lemmas 3.6 and 3.4 we have a solution to (3-1), xt = 1 for all t ∈ T0(λ) since
X t =∅. Therefore ∑

t∈T0(λ)

xt =

(n−1
r

)
.

Hence Murphy’s result follows from Theorem 3.5.

4. The directed graph of λ

Let 0λ be the graph whose vertex set is T0(λ). The graph 0λ has a directed edge
from t to s if and only if t→ s and t 6= s. To illustrate the definition we will construct
the graph 0(4,3) in Figure 1 using the notation of [James 1978, Definition 3.6] to
represent a tableau t by a Young diagram where t (i, j) is the (i, j)-node of [λ]. We
will define a path γ on 0λ to be a sequence γ = (t1, t2, . . . , tl), such that ti → ti+1
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Figure 1. The directed graph of (4, 3).

and ti 6= ti+1 for 1≤ i < l. If γ = (t1, t2, . . . , tl) we will say γ has length l−1 and
terminates at tl . We consider γ = (t1) to be a path on 0λ of length zero. Let Pλ

be the set of all paths on 0λ and �t = {γ ∈ Pλ | γ terminates at t}. We note that
{�t | t ∈ T0(λ)} partitions Pλ. Using this notation we discover that |�t | satisfies a
familiar relationship.

Lemma 4.1. Let λ ` n and X t = {s | s→ t and s 6=t}. If

�t = {γ ∈ Pλ | γ terminates at t}

then
|�t | = 1+

∑
s∈X t

|�s |.

Proof. Let γ = (t1, t2, . . . , tl−1, t) ∈�t −{(t)}. Define F :�t −{(t)}→
⋃

s∈X t
�s

by F(γ )= (t1, t2, . . . , tl−1). We will complete the proof by demonstrating that F
is a bijection. If F(γ )= (t1, t2, . . . , tl−1)= F(γ ′) for γ, γ ′ ∈�t −{(t)} then γ =
(t1, t2, . . . , tl−1, t)= γ ′. If τ = (t1, t2, . . . , tl−1, tl) for some tl 6= t such that tl→ t ,
then γ = (t1, t2, . . . , tl−1, tl, t) ∈�t and F(γ )= τ . Therefore F is a bijection. �

Through Lemma 3.4, we establish an important connection between the directed
graph of λ and our question of S(n) appearing as a submodule Sλ. We summarize
this fact with the following theorem.

Theorem 4.2. Suppose λ` n is Lucas perfect. Then there exists an F6n-module M
such that Sλ⊕M if and only if |Pλ| is odd.
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Proof. Observe that xt ≡ |�t | (mod 2) is a solution to (3-1) by Lemmas 3.4 and 4.1.
Moreover

|Pλ| =
∑
T0(λ)

|�t | ≡
∑
T0(λ)

xt (mod 2).

Therefore the result follows immediately from Theorem 3.5. �

4A. Self-conjugate partitions. We say a partition λ is self-conjugate if λ= λ′. For
the remainder of the section we will assume that λ is self-conjugate and Lucas
perfect. In this circumstance, we are able to define an involution on T(λ). Suppose
t ∈ T(λ), and define t̄ ∈ T(λ) by t̄(i, j) := t ( j, i) for all (i, j) ∈ [λ]. Since the
action of 6n is relevant to our discussion we note that σ t = σ t̄ . From this fact we
can conclude the following lemma.

Lemma 4.3. For t, s ∈ T0(λ), if s→ t , then t̄→ s̄.

Proof. Suppose there exists σ ∈ Cs and π ∈ Rσ s = Rt such that πσ s = t . Then
πσ s̄ = πσ s = t̄ . So σ−1π−1 t̄ = s̄; moreover π−1

∈ Cs̄ and σ−1
∈ Rt̄ . �

This lemma allows us to induce an involution on Pλwhere if γ=(t1, t2, . . . , tl)∈Pλ

then γ̄ = (t̄l, t̄l−1, . . . , t̄1)∈ Pλ. Further, we wish to demonstrate that this involution
fixes no paths. In order to prove this, we will need the following corollary of (2.3.2).

Corollary 4.4. Suppose λ ` n > 1 is self-conjugate. Then for all t ∈ T(λ), we have
t 6→ t̄ .

Proof. Let λ ` n > 1 be self-conjugate. Then (2, 1), (1, 2) ∈ [λ]. Let a = t (1, 1)
and b = t (2, 1). Since a, b are in the same column of t , they are in the same row
of t̄ . Thus t 6→ t̄ by (2.3.2). �

Now we have the tools needed to prove that the involution on Pλ fixes no
elements.

Lemma 4.5. Suppose λ ` n > 1 is self-conjugate and γ ∈ Pλ. Then γ 6= γ̄ .

Proof. Let γ = (t1, t2, . . . , tl). Assume for the sake of contradiction that γ = γ̄ .
We will consider two cases.

Case 1: Assume γ has odd length. Then l is even and tl/2+1 = t̄l/2; thus tl/2→ t̄l/2,
which contradicts Corollary 4.4.

Case 2: Assume γ has even length. Then s is odd and t(l+1)/2 = t̄(l+1)/2, which is
impossible. �

Finally we can conclude the following result for self conjugate partitions.

Theorem 4.6. Suppose λ ` n > 1 is a self-conjugate partition. Then there does not
exist a nonzero F6n-module M such that Sλ ∼= S(n)⊕M.

Proof. By Lemma 4.5 there is an involution on the finite set Pλ with no fixed points;
hence |Pλ| is even. Therefore the theorem follows from Theorem 4.2. �
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5. Computing the sum of polytabloid coefficients

In this section, we present an algorithm to compute the sum of the polytabloid
coefficients described in Lemma 3.4. For the remainder of the section fix a particular
Lucas perfect partition λ of n. For simplicity of notation, we define m = |T0(λ)|

to be the dimension of the Specht module S(λ). Let t1, . . . , tm be an enumeration
of all standard λ-tableaux which preserves the dominance order, that is, {tj } G {tk}
only if k < j . Next, for the sake of convenience, we adopt the notation

X j = X tj = {s ∈ T0(λ) | s→tj and s 6=tj }.

Additionally for 1≤ j ≤ m, let Z j = {t1, t2, . . . tj } be the set of the first j standard
tableaux under our chosen ordering, using the convention that Z0 =∅.

Define the m× (m+ 1) matrix V = [v0, v1, v2, . . . , vm
] by

vi
j = 1+

∑
s∈X j∩Zi

xs

for all 0≤ i ≤m and 1≤ j ≤m. Since Z0=∅ we have that v0
j = 1 for all 1≤ j ≤m.

Also if ti → tj and i 6= j then ti B tj and hence i < j . So we conclude for k ≥ j ,
X j ∩ Zk = X j . Therefore

vm
j = 1+

∑
s∈Z j

xs = xtj .

Hence the sum of the coefficients of vm will be congruent to the sum of polytabloid
coefficients from Theorem 3.5. In this final section we develop the algorithm to
compute vm

j for all 1 ≤ j ≤ m in order to compute the sum of those coefficients.
To this end, observe if i = j or ti 6→ tj then X j ∩ Zi = X j ∩ Zi−1, so vi

j = v
i−1
j .

Additionally if i 6= j and ti→ tj , then i < j and X j ∩ Zi = (X j ∩ Zi−1)∪{ti }. Thus
for all 1≤ i ≤ m,

vi
j = 1+

∑
s∈X j∩Zi

xs = xti + 1+
∑

s∈X j∩Zi−1

xs

=

(
1+

∑
s∈X i

xs

)
+

(
1+

∑
s∈X j∩Zi−1

xs

)
= vi−1

i + vi−1
j

since X i∩Zi−1= X i . We summarize our observations by noting for all 1≤ i, j ≤m,

vi
j ≡

{
vi−1

i + vi−1
j (mod 2) if ti → tj and i 6= j,

vi−1
j (mod 2) otherwise.

We can now see that in order to develop an algorithm which will compute the desired
vectors, it is necessary for our algorithm to determine if t→ s for all t, s ∈ T0(λ).
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5A. Algorithm for testing the production of tabloids from polytabloids. For λ`n,
let t, s ∈ T0(λ) be such that {s} G {t}. By definition, t→ s if and only if there exist
π ∈ Ct and σ ∈ Rs such that σπ t = s. If such a π ∈ Ct exists, the image of t (i, j)
under π is uniquely determined as t (i0, j), where t (i, j) ∈ Rs(i0). The algorithm
defined below will attempt to build the permutation π , defining it by necessity.
It is possible that such a function does not exist, depending on the shape of λ.
Additionally even if such a function exists, it may not define a bijection. The
following algorithm tests to see if a permutation π can be defined.

Python Algorithm 5.1.

def produces(t, s):
is_mapped_to = {}
for val in t.vals:
# For each positive integer less than n, attempt to find
# the necessary image for that integer.

(i, j), (i0, j0) = t.coords_of(val), s.coords_of(val)
# Identify the column of t and row of s containing
# the current value.
try:

target = t[i0][j]
# Identify the necessary image of value by the function.

except IndexError:
# Return False since the target node is not in the
# young diagram, hence the function cannot be defined.
return False

if is_mapped_to.get(target):
# If the target is already an image of a previous value,
# the function cannot be a bijection, so we return False.

return False
is_mapped_to[target] = True
# After identifying the target for the value, record
# that the target has been used.

return True

The function produces(t, s) returns True if and only if the desired bijection π ∈Ct

exists, and hence t → s. Now we can use our observations and this function to
write an algorithm which will compute the desired sum of polytabloid coefficients.

5B. Algorithm to sum polytabloid coefficients. We note that produces(t, s) is
computationally demanding. This is not surprising as determining which s are
produced from t is inherently tied to generating the coefficients of the polytabloid.
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In an effort to be more computationally efficient we note since vi−1
i +v

i−1
j ≡ vi−1

j ≡

vi
j (mod 2) whenever vi−1

i ≡ 0 (mod 2), we have vi
≡ vi−1 (mod 2). Thus it is not

necessary to determine if ti → tj for such i . Hence our final algorithm will not
evaluate produces(ti , tj ) in these cases.

Python Algorithm 5.2.

def sum_of_coefficients(standard_tableaux):
# standard_tableaux contains a list of all standard tableaux
# for a fixed partition lambda of n, ordered with respect to
# the dominance relation, with the least dominant first.
standard=standard_tableaux[::-1]
# this creates a second list of standard tableaux with
# the order reversed, so most dominant is first.
v = [1] * len(standard)
# Define initial vector
for i, t in enumerate(standard_tableaux):
if v[i] == 0:
# Skip the evaluation of produce function since the
# entry is congruent to 0. The next vector in the
# sequence is congruent to the current vector.

continue
for j, s in enumerate(standard_tableaux[:i]):
# Create the next vector in the sequence adjusting

if produces(t, s):
# If the corresponding tableau produces the
# second, adjust the vector entry accordingly,
# otherwise leave it the same.
v[j] = (v[j] + 1) % 2

return sum(v) % 2

6. Conclusions

Using Python Algorithm 5.2, we are invoking Theorem 3.5 in order to determine
if a particular Specht module has a one-dimensional summand. We exhausted the
computational power available to us evaluating Lucas perfect partitions up to n= 19
excluding the partitions of the form (n) and (1n). Table 1 records the output of
our sum_of_coefficients() function for various partitions. We note in our results
that the partitions corresponding to the Specht module having a one-dimensional
summand were previously known Specht modules corresponding to hook partitions.
Our results again confirm Murphy’s result (Theorem 1.1) for these partitions.
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n λ 6

5 (3,1,1) 0
7 (3,1,1,1,1) 1
7 (5,1,1) 1
8 (3,3,2) 0
9 (3,1,1,1,1,1,1) 0
9 (5,1,1,1,1) 0
9 (7,1,1) 0
9 (3,3,3) 0

11 (3,1,1,1,1,1,1,1,1) 1
11 (5,1,1,1,1,1,1) 0
11 (7,1,1,1,1) 0
11 (9,1,1) 1
13 (3,1,1,1,1,1,1,1,1,1,1) 0
13 (5,1,1,1,1,1,1,1,1) 1
13 (7,1,1,1,1,1,1) 0
13 (3,3,3,1,1,1,1) 0
13 (9,1,1,1,1) 1
13 (11,1,1) 0
13 (7,3,3) 0
15 (3,1,1,1,1,1,1,1,1,1,1,1,1) 1
15 (5,1,1,1,1,1,1,1,1,1,1) 1

n λ 6

15 (7,1,1,1,1,1,1,1,1) 1
15 (9,1,1,1,1,1,1) 1
15 (11,1,1,1,1) 1
15 (13,1,1) 1
17 (3,3,3,1,1,1,1,1,1,1,1) 0
17 (11,3,3) 0
17 (9,1,1,1,1,1,1,1,1) 0
17 (11,1,1,1,1,1,1) 0
17 (7,1,1,1,1,1,1,1,1,1,1) 0
17 (7,3,3,1,1,1,1) 0
17 (13,1,1,1,1) 0
17 (5,1,1,1,1,1,1,1,1,1,1,1,1) 0
17 (15,1,1) 0
17 (3,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0
19 (3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 1
19 (17,1,1) 1
19 (5,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0
19 (15,1,1,1,1) 0
19 (7,1,1,1,1,1,1,1,1,1,1,1,1) 0
19 (13,1,1,1,1,1,1) 0
19 (9,1,1,1,1,1,1,1,1,1,1) 0
19 (11,1,1,1,1,1,1,1,1) 0

Table 1. The partitions which are not hook partitions are noted in bold.

We see that in the collection of partitions within our computational limits, there
are very few such nonhook partitions. Moreover a handful of these partitions are
self-conjugate, so based on Theorem 4.6, we know these partitions would not
have a one-dimensional summand. Perhaps with additional computational power
or a more refined algorithm, we may discover a nonhook Specht module with a
one-dimensional summand. It is worth noting that such an example would be the
first decomposable Specht module associated to a partition that is not 2-quotient
separated (see [James and Mathas 1996, Section 2] and [Dodge and Fayers 2012,
Section 8.2]) ever discovered.
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The monochromatic column problem
with a prime number of colors

Loran Crowell and Steve Szabo

(Communicated by Kenneth S. Berenhaut)

Let p1; : : : ;pn be a sequence of n pairwise coprime positive integers, P D

p1 � � �pn, and 0; : : : ;m� 1 be a sequence of m different colors. Let A be an
n �mP matrix of colors in which row i consists of blocks of pi consecutive
entries of the same color with colors 0 through m� 1 repeated cyclically. The
monochromatic column problem is to determine the number of columns of A in
which every entry is the same color. The solution for a prime number of colors is
provided.

1. Introduction

Let m be a positive integer. The colors for m are represented by the integers
0; 1; : : : ;m� 1. An n� s m-color matrix is an n� s matrix A D .aij / in which
every entry is one of the m colors. Column j of A is monochromatic if aij D a1j

for 1� i � n. For a positive integer p, row i of A is p-blocked with initial color �
if p j s and, for 1� j � s,

aij D

��
j � 1

p
C �

��
mod m:

For D D f.pi ; �i/g
n
iD1

, where p1; : : : ;pn are pairwise coprime positive integers
and �i 2 f0; : : : ;m� 1g, an n�mp1 � � �pn m-color matrix A is the .m;D/-color
matrix if for every i satisfying 1 � i � n, row i of A is pi-blocked with initial
color �i . For instance, the layout of the .5; f.2; 1/; .3; 4/g/-color matrix is�

1 1 2 2 3 3 4 4 0 0 1 1 2 2 3 3 4 4 0 0 1 1 2 2 3 3 4 4 0 0

4 4 4 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 0 0 0 1 1 1 2 2 2 3 3 3

�
:
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The monochromatic column problem (MCP) is to determine the number of monochro-
matic columns in the .m;D/-color matrix, which is denoted by N.m;D/. Note,
N.5; f.2; 1/; .3; 4/g/D 6.

The MCP was originally posed in [Nagpaul and Jain 2002]. Their stated motiva-
tion is captured in the following from their paper:

The motivation for studying this problem arose from a question asked by
a biomathematician working on the multiple sequence problem that deals
with finding, for given k sequences of characters from a fixed alphabet,
an alignment with optimal score according to a given scoring scheme.

The multiple sequence alignment problem is a well-studied problem in molecular
biology. It is of crucial importance according to [Jiang et al. 1999]. Independently
of its tenuous connections to the multiple sequence alignment problem, the MCP is
an interesting combinatorial problem in its own right.

The solution of the MCP for two colors is given in [Nagpaul and Jain 2002] and
for three colors is given in [Srivastava and Szabo 2008]. The technique developed
by Srivastava and Szabo for three colors is generalized here to give the solution for
a prime number colors. A partial solution for the prime color case was the topic of
[Crowell 2016].

Section 2 contains the complete solution to the prime color problem. In Section 3,
the three color solution is restated, correcting a small issue in the solution in
[Srivastava and Szabo 2008].

2. The monochromatic column problem: a prime number of colors

Throughout this section, let n be a positive integer, q a prime, D D f.pi ; �i/g
n
iD1

,
where p1; : : : ;pn are pairwise coprime positive integers and �i 2f0; : : : ; q�1g, and
AD .aij / be the .q;D/-color matrix. To solve the prime color problem, three cases
are considered which exhaust the possibilities. First, in Proposition 1, it is assumed
that p1; : : : ;pn are congruent to one another modulo q. Then in Proposition 2, it
is assumed that p1; : : : ;pn may not all be congruent to one another but none are
divisible by q. Finally, in Proposition 3, it is assumed that q jpn. In the statements
of the propositions, an ordering of p1; : : : ;pn is assumed, but of course this ordering
does not affect the number of monochromatic columns.

Proposition 1. Let s 2 f1; : : : ; q � 1g. Assume pi � s .mod q/ for i 2 f1; : : : ; ng.
Then

N.q;D/D q

minfp1;qgX
ˇD1

nY
iD1

pi � s

q
C

�
s� .ˇC s.�i � �1/� 1/ mod q� 1

q

�
C 1:
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Proof. Let P D p1p2 � � �pn. Note

aij D

��
j � 1

pi

�
C �i

�
mod q

since b.j � 1/=pic calculates the number of complete blocks that the element is
away from the beginning of the row. This number of blocks is added to the starting
color of the row, �i , and then taking this modulo q gives the color. We will first
show that if column j is monochromatic, then a column some multiple of P away
is also monochromatic.

Let 1� x;y � n, 1� j � P, and 0� ˛ � q� 1. Since px � py .mod q/,

˛P

px
�
˛P

py
.mod q/�

j � 1

px

�
�
˛P

px
�

�
j � 1

px

�
�

�
j � 1

py

�
�
˛P

py
�

�
j � 1

py

�
.mod q/�

j � 1

px

�
�

�
˛P C j � 1

px

�
�

�
j � 1

py

�
�

�
˛P C j � 1

py

�
.mod q/

ax;j � ax;˛PCj � ay;j � ay;˛PCj .mod q/:

(1)

This shows that if column j is monochromatic, then so is column ˛P C j . Hence,
it suffices to count the number of monochromatic columns in the first P columns
of A and multiply by q.

Let

kij D j �

�
j � 1

pi

�
pi :

This is the count into the b.j � 1/=pic-th monocolored block in the i -th row.
Since p1; : : : ;pn are pairwise coprime integers and 1� kij � pi , the Chinese

remainder theorem guarantees that jf.k1j ; : : : ; knj /g
P
jD1
j D P. Therefore, by count-

ing the n-tuples that map to a monochromatic column, the number of monochromatic
columns in the first P columns of A can be determined. For 1� i �n and 1� j �P,

aij D

��
j � 1

pi

�
C �i

�
mod q D

�
j � kij

pi
C �i

�
mod q:

Since pi � s .mod q/, we have aij D a1j if and only if kij � k1j C s.�i � �1/

.mod q/. So, column j is monochromatic if and only if kij � k1j C �is .mod q/

for all i 2 f1; : : : ; ng. Hence, the number of monochromatic columns in the first
P columns of A is the product of the number of integer solutions to

1� qxi C .k1j C s.�i � �1// mod q � pi
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for each i 2 f1; : : : ; ng; equivalently,

1� .k1j C s.�i � �1// mod q

q
� xi �

pi � .k1j C s.�i � �1// mod q

q
:

The number of integer solutions for a given i is�
pi�.k1jCs.�i��1// mod q

q

�
�

�
1�.k1jCs.�i��1// mod q

q

�
C1

D
pi�s

q
C

�
s�.k1jCs.�i��1// mod q

q

�
C

�
.k1jCs.�i��1// mod q�1

q

�
C1

D
pi�s

q
C

�
s�.k1jCs.�i��1/�1/ mod q�1

q

�
C1:

The possible values of Œ.k1j C s.�i � �1//� 1� mod q are given by

f.ˇC s.�i � �1/� 1/ mod q j ˇ 2 f1; : : : ;minfp1; qgg:

Summing over these possibilities for k1j , multiplying the number of solutions for
each row, and multiplying the sum by q, we find that the number of monochromatic
columns in A is

N.q;D/D q

minfp1;qgX
ˇD1

nY
iD1

pi�s

q
C

�
s�.ˇCs.�i��1/�1/ mod q�1

q

�
C1: �

Proposition 2. Let S D fpi mod q j i 2 Ig, r D jS j and s1; : : : ; sr 2 S be the
distinct elements of S . Assume q−pi for i 2 I and r > 1. Let i0; i1; : : : ; ir be such
that i0 D 0, ir D n, and pi � sl for il�1 < i � il . Let

B D
˚
.ˇ1; : : : ; ˇr / j ˇl 2 f1; : : : ;minfpil

; qgg
	
; (2)

where

ˇl D
ˇ1.sl � s2/Cˇ2.sl � s1/C sl.s2� s1/.�il

� �i1
/C s2.sl � s1/.�i1

� �i2
/

s2� s1

:

Then

N.q;D/

D

X
.ˇ1;:::;ˇr /2B

rY
lD1

ilY
iDil�1C1

pi�sl

q
C

�
sl�.ˇlCsl.�i��il

/�1/ mod q�1

q

�
C1:

Proof. Let P D p1 � � �pn. From the proof of Proposition 1, the following can be
deduced. The number of columns in the first P columns of A such that the color
vector of the column, .c1; : : : ; cn/, has the property that ciDcil

for il�1< i� il (i.e.,
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is a column where the colors are identical if the associated pi’s are congruent) isX
.ˇ1;:::;ˇr /2B0

rY
lD1

ilY
iDil�1C1

pi � sl

q
C

�
sl � .ˇl C sl.�i � �il

/� 1/ mod q� 1

q

�
C1;

where
B0 D

˚
.ˇ1; : : : ; ˇr / j ˇl 2 f1; : : : ;minfpil

; qgg
	
:

Such columns will be called r -chromatic columns. First, it is shown that for
1�˛� q�1 and 1� j �P, column j is r -chromatic if and only if column jC˛P

is r -chromatic. Fix l and let il � 1 � x;y � il , 1 � j � P , and 0 � ˛ � q � 1.
Since px � py .mod q/, the computations of (1) hold and we have

ax;j � ax;˛PCj � ay;j � ay;˛PCj .mod q/:

This shows that column j is r -chromatic if and only if column ˛PCj is r -chromatic.
Next, the conditions on an r -chromatic column, j , that guarantee that one and
only one of the set of columns fj ; j C P; : : : ; .q � 1/Pg is monochromatic is
developed. Let j 2 f1; : : : ;Pg and assume column j is r -chromatic. Denote by
the r -tuple .c1; : : : ; cr / the entries of an r -chromatic column where aij D cl for all
i 2 fi1; : : : ; ilg. Of the noted columns, the only ones that may be monochromatic
will have the property that

c1C
˛P

s1

� c2C
˛P

s2

.mod q/

for some ˛ 2 f0; : : : ; q� 1g. So,

˛ D .c2� c1/

�
P

s1

�
P

s2

�q�2

mod q:

This then shows that the only possible column that may be monochromatic is
˛P C j . Furthermore, for such a column to be monochromatic, working over Zp,
for l 2 f3; : : : ; qg,

cl�c1

1=s1�1=sl

D
c2�c1

1=s1�1=s2

s1sl

sl�s1

.cl�c1/D
s1s2

s2�s1

.c2�c1/�
j�kil j

sl

C�il
�

�
j�ki1j

s1

C�i1

��
D

s2.sl�s1/

sl.s2�s1/

�
j�ki2j

s2

C�i2
�

�
j�ki1j

s1

C�i1

��
and thus

kil j D
ki1j .sl � s2/C ki2j .sl � s1/

s2� s1

C sl.�il
� �i1

/C
s2.sl � s1/.�i1

� �i2
/

s2� s1

:
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This shows which elements of B0 correspond to a monochromatic column. Recall
the set B given in (2). Hence, the number of monochromatic columns is

N.q;D/

D

X
.ˇ1;:::;ˇr /2B

rY
lD1

ilY
iDil�1C1

pi�sl

q
C

�
sl�.ˇlCsl.�i��il

/�1/ mod q�1

q

�
C1: �

Proposition 3. Assume n> 1 and q jpn. Let D0 DD n f.pn; �n/g. Then

N.q;D/D
pn

q
N.q;D0/:

Proof. Let P D p1p2 � � �pn. Note,

aij D

��
j � 1

pi

�
C �i

�
mod q

since b.j � 1/=pic calculates the number of complete blocks that the element is
away from the beginning of the row. This number of blocks is added to the starting
color of the row, �i , and then taking this modulo q gives the color.

Let 1 � x;y � n� 1, 1 � j � P , and 0 � ˛ � q � 1. Since q j .P=px/ and
q j .P=py/, again the computations of (1) hold and we have

ax;j � ax;˛PCj � ay;j � ay;˛PCj .mod q/:

This shows that if the first n� 1 entries of column j are the same color then the
first n� 1 entries of column j C ˛P are the same color. Next, it is shown that
jfanj ; an;PCj ; : : : ; an;.q�1/PCj gj D q. Note that .P=pn/ 6� 0 .mod q/. Now,

anj � an;˛PCj �

�
j � 1

pn

�
�

�
˛P C j � 1

pn

�
.mod q/

�

�
j � 1

pn

�
�

�
j � 1

pn

�
C
˛P

pn
.mod q/

�
˛P

pn
.mod q/:

Since q is prime, every color is represented in the set

fanj ; an;PCj ; : : : ; an;.q�1/PCj g:

Therefore, N.q;D/D .pn=q/N.q;D
0/. �

3. Monochromatic column in three colors

In [Srivastava and Szabo 2008], there is a small issue in the results when 2 is one
of the coprimes. The issue is that there is a possibility that ˇ may only need to
run up to 2 instead of 3. This can be seen in the general results of the previous
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section. We make the corrections while also restating the results with our simplified
notation. Throughout this section, let n be a positive integer, D D f.pi ; �i/g

n
iD1

,
where p1; : : : ;pn are pairwise coprime positive integers and �i 2 f0; 1; 2g, and
A D .aij / be the .3;D/-color matrix. The first result is a direct application of
Proposition 1 for q D 3.

Proposition 4 [Srivastava and Szabo 2008, Lemma 1]. Let s 2 f1; 2g. Assume
pi � s .mod 3/ for i 2 f1; : : : ; ng. Then

N.3;D/D q

minfp1;3gX
ˇD1

nY
iD1

pi � s

3
C

�
s� .ˇC s.�i � �1/� 1/ mod 3� 1

3

�
C 1:

Proposition 5 [Srivastava and Szabo 2008, Lemma 2]. Assume

fpi mod 3 j i 2 Ig D f1; 2g:

Let i0 D 0, i2 D n, and i1be such that, for i 2 I, we have pi � l for il�1 < i � il .
Then

N.3;D/

D

3X
ˇ1D1

minfpn;3gX
ˇ2D1

2Y
lD1

ilY
iDil�1C1

pi � l

q
C

�
l � .ˇl C l.�i � �il

/� 1/ mod q� 1

q

�
C1:

Proof. In Proposition 2, if r D 2 then B D B0. Furthermore, when pi � 1 .mod 3/,
we have pi > 3. This result then follows. �

For completeness, the following result is included as well.

Proposition 6 [Srivastava and Szabo 2008, Lemma 3]. Assume n > 1 and 3 jpn.
Let D0 DD n f.pn; �n/g and A0 D .3;D0/. Then

N.3;D/D
pn

3
N.3;D0/:
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Total Roman domination edge-critical graphs
Chloe Lampman, Kieka (C. M.) Mynhardt and Shannon Ogden

(Communicated by Anant Godbole)

A total Roman dominating function on a graph G is a function f :V (G)→{0, 1, 2}
such that every vertex v with f (v)= 0 is adjacent to some vertex u with f (u)= 2,
and the subgraph of G induced by the set of all vertices w such that f (w) > 0
has no isolated vertices. The weight of f is

∑
v∈V (G) f (v). The total Roman

domination number γtR(G) is the minimum weight of a total Roman dominating
function on G. A graph G is k-γtR-edge-critical if γtR(G + e) < γtR(G) = k for
every edge e ∈ E(G) 6=∅, and k-γtR-edge-supercritical if it is k-γtR-edge-critical
and γtR(G+e)= γtR(G)−2 for every edge e ∈ E(G) 6=∅. We present some basic
results on γtR-edge-critical graphs and characterize certain classes of γtR-edge-
critical graphs. In addition, we show that, when k is small, there is a connection
between k-γtR-edge-critical graphs and graphs which are critical with respect to
the domination and total domination numbers.

1. Introduction

We consider the behaviour of the total Roman domination number of a graph G
upon the addition of edges to G. A dominating set S in a graph G is a set of vertices
such that every vertex in V (G)− S is adjacent to at least one vertex in S. The
domination number γ (G) is the cardinality of a minimum dominating set in G.
A total dominating set S (abbreviated by TD-set) in a graph G with no isolated
vertices is a set of vertices such that every vertex in V (G) is adjacent to at least one
vertex in S. The total domination number γt(G) (abbreviated by TD-number) is the
cardinality of a minimum total dominating set in G. For S ⊆ V (G) and a function
f : S→ R, define f (S)=

∑
s∈S f (s). A Roman dominating function (abbreviated

by RD-function) on a graph G is a function f : V (G)→ {0, 1, 2} such that every
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vertex v with f (v)= 0 is adjacent to some vertex u with f (u)= 2. The weight of f ,
denoted by ω( f ), is defined as f (V (G)). The Roman domination number γR(G)
(abbreviated by RD-number) is defined as min{ω( f ) : f is an RD-function on G}.
For an RD-function f , let V i

f = {v ∈ V (G) : f (v)= i} and V+f = V 1
f ∪ V 2

f . Thus,
we can uniquely express an RD-function f as f = (V 0

f , V 1
f , V 2

f ).
As defined by Ahangar, Henning, Samodivkin and Yero [2016], a total Roman

dominating function (abbreviated by TRD-function) on a graph G with no isolated
vertices is a Roman dominating function with the additional condition that G[V+f ]
has no isolated vertices. The total Roman domination number γtR(G) (abbreviated
by TRD-number) is the minimum weight of a TRD-function on G; that is, γtR(G)=
min{ω( f ) : f is a TRD-function on G}. A TRD-function f such that ω( f ) =
γtR(G) is called a γtR(G)-function, or a γtR-function if the graph G is clear from
the context; γR-functions are defined analogously.

The addition of an edge to a graph has the potential to change its total domination
or Roman domination number. Van der Merwe, Mynhardt and Haynes [1998b]
studied γt -edge-critical graphs, that is, graphs G for which γt(G+ e) < γt(G) for
each e ∈ E(G) and E(G) 6= ∅. We consider the same concept for total Roman
domination. A graph G is total Roman domination edge-critical, or simply γtR-
edge-critical, if γtR(G + e) < γtR(G) for every edge e ∈ E(G) and E(G) 6= ∅.
We say that G is k-γtR-edge-critical if γtR(G) = k and G is γtR-edge-critical. If
γtR(G+ e)≤ γtR(G)− 2 for every edge e ∈ E(G) and E(G) 6=∅, we say that G
is γtR-edge-supercritical. If γtR(G+ e)= γtR(G) for all e ∈ E(G), or E(G)=∅,
we say that G is stable.

Pushpam and Padmapriea [2017] established bounds on the total Roman domi-
nation number of a graph in terms of its order and girth. Total Roman domination
in trees was studied by Amjadi, Nazari-Moghaddam, Sheikholeslami and Volk-
mann [2017], as well as by Amjadi, Sheikholeslami and Soroudi [2019]. Amjadi,
Sheikholeslami, and Soroudi [2018] also studied Nordhaus–Gaddum bounds for
total Roman domination. Campanelli and Kuziak [2019] considered total Roman
domination in the lexicographic product of graphs. We refer the reader to the
well-known books [Chartrand and Lesniak 2016; Haynes, Hedetniemi, and Slater
1998] for graph theory concepts not defined here. Frequently used or lesser known
concepts are defined where needed.

We begin with some general results regarding the addition of an edge e ∈ E(G)
to a graph G in Section 2. In Section 3, we characterize n-γtR-edge-critical graphs
of order n. We characterize 4-γtR-edge-critical graphs in Section 4, and, after
investigating γtR-edge-supercritical graphs in Section 5, we present a necessary
condition for 5-γtR-edge-critical graphs in Section 6. In Section 7, we determine
the total Roman domination number of spiders and characterize γtR-edge-critical
spiders. As can be expected, every graph G with γtR(G) = k ≥ 4 is a spanning
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subgraph of a k-γtR(G)-edge-critical graph; a short proof is given in Section 8,
where we also show that for any k ≥ 4, there exists a k-γtR-edge-critical graph of
diameter 2. We conclude in Section 9 with ideas for future research.

2. Adding an edge

We begin with a result from [Van der Merwe, Mynhardt, and Haynes 1998a] which
bounds the effect the addition of an edge can have on the total domination number
of a graph and show that the same bounds hold with respect to the total Roman
domination number.

Proposition 2.1 [Van der Merwe, Mynhardt, and Haynes 1998a]. For a graph G
with no isolated vertices, if uv ∈ E(G), then γt(G)− 2≤ γt(G+ uv)≤ γt(G).

An edge uv∈ E(G) is critical if γtR(G+uv)<γtR(G). The following proposition
restricts the possible values assigned to the vertices of a critical edge uv by a
γtR(G+uv)-function f , which will be useful in proving subsequent results. For a
graph G and a vertex v ∈ V (G), the open neighbourhood of v in G is NG(v) =

{u ∈ V (G) : uv ∈ E(G)}, and the closed neighbourhood of v in G is NG[v] =

NG(v)∪ {v}. When G 6= K2, the unique neighbour of an end-vertex of G is called
a support vertex.

Proposition 2.2. Given a graph G with no isolated vertices, if uv ∈ E(G) is a
critical edge and f is a γtR(G+uv)-function, then

{ f (u), f (v)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}.

If , in addition, deg(u) = deg(v) = 1, then there exists a γtR(G+uv)-function f
such that f (u)= f (v)= 1.

Proof. Let G be a graph with no isolated vertices, uv∈ E(G) such that γtR(G+uv)<
γtR(G), and f a γtR-function on G + uv. Suppose for a contradiction that
{ f (u), f (v)} /∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}. Then { f (u), f (v)} ∈ {{0, 0}, {0, 1}}.
Note that, in either case, the edge uv cannot affect whether u and v are dom-
inated or whether, in the case where (say) f (v) = 1, v is isolated. Hence
f is a TRD-function of G, contradicting γtR(G + uv) < γtR(G). Therefore
{ f (u), f (v)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}.

Now, suppose in addition that deg(u)= deg(v)= 1, and let f be a γtR(G+uv)-
function such that |V 2

f | is as small as possible. Letw and x be the unique neighbours
of u and v, respectively, noting that possibly w = x . Suppose for a contradiction
that f (u)= 2 (without loss of generality). If f (v)= 0, then f (w) > 0, otherwise
u would be isolated in G[V+f ]. Thus, regardless of whether w = x or not, consider
the function f ′ : V (G)→{0, 1, 2} defined by f ′(u)= f ′(v)= 1 and f ′(y)= f (y)
for all other y ∈ V (G). Otherwise, if f (v) ≥ 1, then clearly f (w) = 0. Thus,
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regardless of whether w = x or not, consider the function f ′ : V (G)→ {0, 1, 2}
defined by f ′(u)= f ′(w)= 1 and f ′(y)= f (y) for all other y ∈ V (G). In either
case, f ′ is a γtR-function on G + uv. However, |V 2

f ′ | < |V
2
f |, contradicting |V 2

f |

being as small as possible. Hence f (u) 6= 2, and thus f (u)= f (v)= 1. �

Proposition 2.3. Given a graph G with no isolated vertices, if uv ∈ E(G), then
γtR(G)− 2≤ γtR(G+ uv)≤ γtR(G).

Proof. Let G be a graph with no isolated vertices. Clearly, adding an edge cannot
increase the total Roman domination number; hence the upper bound holds. Now,
let uv ∈ E(G). Note that when γtR(G + uv) = γtR(G), the lower bound clearly
holds. So assume γtR(G+ uv) < γtR(G) and let f be a γtR(G+uv)-function. By
Proposition 2.2, { f (u), f (v)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}.

First assume { f (u), f (v)} ∈ {{2, 2}, {2, 1}, {1, 1}}. Then f is an RD-function
of G, and the only possible isolated vertices in G[V+f ] are u and v. Consider
the function f ′ : V (G)→ {0, 1, 2} defined as follows: If u is isolated in G[V+f ],
choose u′ ∈ NG(u) and let f ′(u′)= 1. Similarly, if v is isolated in G[V+f ], choose
v′ ∈ NG(v) and let f ′(v′) = 1. Let f ′(x) = f (x) for all other x ∈ V (G). Now,
assume instead that f (u)= 2 and f (v)= 0 (without loss of generality). Since u
is not isolated in G[V+f ], f is a TRD-function of G − v. Consider the function
f ′ : V (G)→ {0, 1, 2} defined as follows: Let f ′(v) = 1. Then, if v is isolated
in G[V+f ′ ], choose v′ ∈ NG(v) and let f ′(v′) = 1. Let f ′(x) = f (x) for all other
x ∈ V (G). In either case, f ′ is a TRD-function of G and ω( f ′)≤ γtR(G+uv)+2.
Thus γtR(G)≤ γtR(G+ uv)+ 2, and hence the lower bound holds. �

3. γtR-edge-critical graphs with large TRD-numbers

We now investigate the γtR-edge-critical graphs G which have the largest TRD-
number, namely |V (G)|. A subdivided star is a tree obtained from a star on at
least three vertices by subdividing each edge exactly once. A double star is a
tree obtained from two disjoint nontrivial stars by joining the two central vertices
(choosing either central vertex in the case of K2). The corona cor(G) (sometimes
denoted by G ◦ K1) of G is obtained by joining each vertex of G to a new end-
vertex.

Connected graphs G for which γtR(G)= |V (G)| were characterized in [Ahangar,
Henning, Samodivkin, and Yero 2016]. There G was defined as the family of
connected graphs obtained from a 4-cycle v1, v2, v3, v4, v1 by adding k1+ k2 ≥ 1
vertex-disjoint paths P2, and joining vi to the end of ki such paths for i ∈ {1, 2}.
Note that possibly k1 = 0 or k2 = 0. Furthermore, they defined H to be the family
of graphs obtained from a double star by subdividing each pendant edge once and
the nonpendant edge r ≥ 0 times. For r ≥ 0, we define Hr ⊆H as the family of
graphs in H where the nonpendant edge was subdivided r times.
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Proposition 3.1 [Ahangar, Henning, Samodivkin, and Yero 2016]. If G is a con-
nected graph of order n ≥ 2, then γtR(G) = n if and only if one of the following
holds:

(i) G is a path or a cycle.

(ii) G is the corona of a graph.

(iii) G is a subdivided star.

(iv) G ∈ G ∪H.

Using Proposition 3.1, we characterize connected n-γtR-edge-critical graphs as
follows.

Theorem 3.2. A connected graph G of order n ≥ 4 is n-γtR-edge-critical if and
only if G is one of the following graphs:

(i) Cn , n ≥ 4.

(ii) cor(Kr ), r ≥ 3.

(iii) a subdivided star of order n ≥ 7.

(iv) G ∈ G.

(v) G ∈H−H0−H2.

Proof. Let G be a connected graph of order n ≥ 4 with γtR(G)= n. First, suppose
G is any of the graphs listed in (i)–(v) above. Then, for any e ∈ E(G), G + e is
not one of the graphs listed in Proposition 3.1. Therefore γtR(G + e) < n for all
e ∈ E(G), and thus G is γtR-edge-critical.

Otherwise, suppose G is not one of the graphs listed in (i)–(v) above. Note that
since γtR(G)= n, G is still listed in Proposition 3.1(i)–(iv). If G ∼= Pn : v1, . . . , vn ,
n ≥ 4, then G + v1vn ∼= Cn and γtR(G) = γtR(Cn) = n. If G ∼= cor(F), where F
is not a complete graph of order at least 3, then γtR(G) = γtR(G + uv) for any
uv ∈ E(F). If G is a subdivided star of order less than 7, then G = P5. In each of
these cases, G is clearly not γtR-edge-critical.

Now consider G ∈ H. Let w1, . . . , wk be the leaves of G, u1, . . . , uk be their
respective support vertices, and v1, . . . , vm be the path such that v1 and vm are the
two support vertices in the original double star S, labelled so that w1 is adjacent,
in S, to v1. Note that m = r + 2, and therefore m ≥ 2. If G ∈ H0, consider
the graph G + v2w1, and note that G + v2w1 ∈ G. Therefore, by Proposition 3.1,
γtR(G+v2w1)=n, and thus G is not γtR-edge-critical. Similarly, if G∈H2, consider
the graph G + v1v4, and note that G + v1v4 ∈ G. Therefore, by Proposition 3.1,
γtR(G+ v1v4)= n, and again G is not γtR-edge-critical. �
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4. 4-γt R-edge-critical graphs

Before we characterize the graphs G such that γtR(G)= 4 and γtR(G+ e)= 3 for
any e ∈ E(G) (that is, the graphs which are 4-γtR-edge-critical), we present the
following result from [Pushpam and Padmapriea 2017] which characterizes the
graphs with a total Roman domination number of 3, the smallest possible TRD-
number. Note that while the authors required that G has girth 3, the result actually
holds in general for any graph G on at least three vertices, as we now show. A
universal vertex of G is a vertex that is adjacent to all other vertices of G.

Proposition 4.1. For a graph G of order n≥ 3 with no isolated vertices, γtR(G)= 3
if and only if 1(G)= n− 1, that is, G has a universal vertex.

Proof. Suppose γtR(G) = 3 and let f = (V 0
f , V 1

f , V 2
f ) be a γtR(G)-function. If

V 2
f = ∅, then |V 1

f | = 3, and thus n = 3. Since G has no isolated vertices, this
implies that G = K3 or P3, both of which have a universal vertex. Otherwise,
assume |V 2

f | = 1 and |V 1
f | = 1. Pick u, v ∈ V (G) so that f (u)= 1 and f (v)= 2.

Since G[V+f ] has no isolated vertices, uv ∈ E(G). Furthermore, since γtR(G)= 3,
f (x)= 0 for all other x ∈V (G). Therefore NG[v]=V (G), and thus v is a universal
vertex.

Conversely, suppose G has a universal vertex v, and take any u∈NG(v). Consider
the TRD-function f :V (G)→{0, 1, 2} defined by f (v)=2, f (u)=1, and f (x)=0
for all other x ∈ V (G). Since G has at least three vertices, γtR(G) > 2. Therefore,
since ω( f )= 3, we conclude that γtR(G)= 3. �

A galaxy is defined as the disjoint union of two or more nontrivial stars. The
characterization of 4-γtR-edge-critical graphs follows; note that this class of graphs
is exactly the class of 2-γ -edge-critical graphs, as characterized in [Sumner and
Blitch 1983].

Theorem 4.2. A graph G with no isolated vertices is 4-γtR-edge-critical if and only
if G is a galaxy.

Proof. Let G be a graph of order n with no isolated vertices. Suppose first that G
is 4-γtR-edge-critical. Then for any e ∈ E(G), we have γtR(G + e)= 3, and thus
Proposition 4.1 implies that the addition of any edge to G creates a universal vertex.
Therefore, for each edge uv ∈ E(G), one of u and v has degree n− 2 in G; that
is, one of u and v is a leaf in G. Since each edge of G connects a leaf to either a
support vertex or another leaf, the components of G are nontrivial stars. Moreover,
G has at least two components, otherwise G has an isolated vertex.

Conversely, suppose G is a galaxy. Since G has no isolated vertices, G has no
universal vertices, and thus, by Proposition 4.1, γtR(G) > 3. Let u and v be vertices
in different components of G, and define f : V (G)→{0, 1, 2} by f (u)= f (v)= 2
and f (x)= 0 for all other x ∈ V (G). Clearly f is a TRD-function on G, and hence
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γtR(G)= 4. Since the deletion of any edge in G produces an isolated vertex, the
addition of any edge to G creates a universal vertex. Therefore, by Proposition 4.1,
γtR(G+ e)= 3 for all e ∈ E(G), and hence G is 4-γtR-edge-critical. �

Corollary 4.3. If G is a connected (n−2)-regular graph, then G is 4-γtR-edge-
critical.

Having characterized 4-γtR-edge-critical graphs, our next result demonstrates
the existence of stable graphs with total Roman domination number 4.

Proposition 4.4. If G is an (n−3)-regular graph of order n ≥ 6, then γtR(G)= 4.
Moreover, G is stable.

Proof. We prove that γ (G) = 2. Since G is (n−3)-regular, its complement G is
2-regular. If G is disconnected, let u and v be vertices in different components
of G. Otherwise, if G is connected, then G ∼= Cn , n ≥ 6, and thus we can choose
u, v ∈ V (G) such that dG(u, v) ≥ 3. In either case, NG[u] ∩ NG[v] = ∅. In G,
u dominates all vertices in G− NG(u) and v dominates all vertices in G− NG(v).
Therefore {u, v} dominates G, and thus, since G has no universal vertex, γ (G)= 2.

Now, define f : V (G)→ {0, 1, 2} by f (u) = f (v) = 2 and f (y) = 0 for all
other y ∈ V (G). Since uv ∈ E(G), f is a TRD-function on G and ω( f )= 4, so
γtR(G)≤4. Since G has no universal vertex, γtR(G)>3 by Proposition 4.1, and thus
γtR(G)= 4, as required. Furthermore, since the addition of any edge to G does not
create a universal vertex, it follows from Proposition 4.1 that γtR(G+ e)= γtR(G)
for all e ∈ E(G). Therefore G is stable. �

5. γt R-edge-supercritical graphs

We now consider the graphs G which attain the lower bound in Proposition 2.3
for all e ∈ E(G), that is, γtR-edge-supercritical graphs. An edge uv ∈ E(G) is
supercritical if γtR(G+ uv)= γtR(G)− 2. Van der Merwe, Mynhardt, and Haynes
[1998a] defined a graph G to be γt -edge-supercritical if γt(G+ e)= γt(G)− 2 for
all e ∈ E(G). We begin with their characterization of γt -edge-supercritical graphs.

Proposition 5.1 [Van der Merwe, Mynhardt, and Haynes 1998a]. A graph G is
γt -edge-supercritical if and only if G is the union of two or more nontrivial complete
graphs.

The proof of the previous result relies on the fact that, if u and v are vertices of
a graph G with d(u, v)= 2, then γt(G)−1≤ γt(G+uv). However, the analogous
result does not hold with respect to the total Roman domination number, as we now
show. Consider the graph G = cor(K3). By Proposition 3.1, γtR(G)= 6. Consider
any two nonadjacent vertices u and v in G such that deg(u) = 1 and deg(v) = 3.
Clearly uv is a supercritical edge with d(u, v)= 2, and thus d(u, v)= 2 does not
always imply that γtR(G)− 1≤ γtR(G+ uv).
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As a result, the classification of γtR-edge-supercritical graphs will be less straight-
forward than that of γt -edge-supercritical graphs. However, it is easy to see that
there are no 5-γtR-edge-supercritical graphs, where 5 is the smallest possible TRD-
number of a γtR-edge-supercritical graph, and that the disjoint union of two or more
complete graphs of order at least 3 is γtR-edge-supercritical.

Proposition 5.2. (i) There are no 5-γtR-edge-supercritical graphs.

(ii) If G is the disjoint union of k ≥ 2 complete graphs, each of order at least 3,
then G is 3k-γtR-edge-supercritical.

Proof. (i) Suppose for a contradiction that G is a 5-γtR-edge-supercritical graph.
Then γtR(G + uv) = 3 for any edge uv ∈ E(G). However, as in the proof of
Theorem 4.2, this implies that G is a galaxy, that is, G is 4-γtR-edge-critical, a
contradiction.

(ii) It follows from Proposition 4.1 that γtR(G)= 3k. Moreover, joining any two
vertices in different components of G results in a graph with TRD-number 3k−2. �

6. 5-γt R-edge-critical graphs

We now investigate the graphs which are 5-γtR-edge-critical. We begin with the
following results, which bound γtR(G) in terms of γt(G).

Proposition 6.1 [Ahangar, Henning, Samodivkin, and Yero 2016]. If G is a graph
with no isolated vertices, then γt(G)≤ γtR(G)≤ 2γt(G). Furthermore, γtR(G)=
γt(G) if and only if G is the disjoint union of copies of K2.

Note that Amjadi, Nazari-Moghaddam, Sheikholeslami, and Volkmann [2017]
characterized the trees which attain the upper bound in Proposition 6.1.

Proposition 6.2 [Ahangar, Henning, Samodivkin, and Yero 2016]. Let G be a
connected graph of order n≥3. Then γtR(G)=γt(G)+1 if and only if1(G)=n−1,
that is, G has a universal vertex.

By Proposition 4.1, Proposition 6.2 implies that, if G is a connected graph of
order n ≥ 3, then γtR(G)= γt(G)+ 1 if and only if γtR(G)= 3. These results lead
to the following observation.

Observation 6.3. If G is a connected graph of order n ≥ 3 such that 1(G)≤ n−2,
then γt(G)+ 2≤ γtR(G)≤ 2γt(G).

We now provide a result characterizing graphs with γtR ∈ {3, 4} in terms of
their domination and total domination numbers that will be useful in describing
5-γtR-edge-critical graphs.

Proposition 6.4. If G is a connected graph of order n ≥ 3, then γtR(G) ∈ {3, 4} if
and only if γt(G)= 2. Moreover, γ (G)= 1 when γtR(G)= 3, and γ (G)= 2 when
γtR(G)= 4.
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Proof. Suppose first that γt(G)= 2. By Proposition 6.1, 2≤ γtR(G)≤ 4. Clearly
γtR(G) 6= 2, since n ≥ 3. Therefore γtR(G) ∈ {3, 4}.

Conversely, suppose γtR(G) ∈ {3, 4}. First, if γtR(G)= 3, then Proposition 4.1
implies that G has a universal vertex. Therefore γt(G)=2 and γ (G)=1. Otherwise,
if γtR(G)=4, then Proposition 4.1 implies that G has no universal vertex. Therefore,
by Observation 6.3, γt(G) + 2 ≤ 4, and thus γt(G) = 2. Furthermore, since
γ (G)≤ γt(G) and G has no universal vertex, γ (G)= 2. �

Proposition 6.5. For any graph G, if G is 5-γtR-edge-critical, then G is either 3-γt -
edge-critical or G = K2 ∪ Kn for n ≥ 3, in which case G is 4-γt -edge-supercritical.

Proof. Suppose G is 5-γtR-edge-critical. By Proposition 6.4, γt(G) > 2 and
γt(G + e)= 2 for any e ∈ E(G). Therefore, by Proposition 2.1, G is either 3-γt -
edge-critical or 4-γt -edge-supercritical. If G is 4-γt -edge-supercritical, then by
Proposition 5.1, G is the union of two or more nontrivial complete graphs. Since
γtR(G)= 5, this implies that G = K2 ∪ Kn for n ≥ 3. �

Note that if we add the condition that G is not 6-γtR-edge-supercritical, then
the above becomes a necessary and sufficient condition. Clearly G = K2 ∪ Kn

is 5-γtR-edge-critical for any n ≥ 3. Otherwise, if G is 3-γt -edge-critical, then
by Proposition 6.4, γtR(G) > 4 and γtR(G + e) ∈ {3, 4} for any e ∈ E(G). By
Proposition 6.1, γtR(G) ≤ 6, and thus, since G is not 6-γtR-edge-supercritical,
γtR(G)= 5. Hence G is 5-γtR-edge-critical, as required.

7. γt R-edge-critical spiders

A (generalized) spider Sp(l1, . . . , lk), li ≥ 1, k ≥ 2, is a tree obtained from the
star K1,k with centre u and leaves v1, . . . , vk by subdividing the edge uvi exactly
li − 1 times, i = 1, . . . , k. Thus, a spider Sp(2, . . . , 2) is a subdivided star. The
u− vi paths (of length li ) are called the legs of the spider, while u is its head. We
now investigate the spiders which are γtR-edge-critical. Note that when k = 2,
Sp(l1, . . . , lk)∼= Pn for n ≥ 3, which, by Theorem 3.2, is not γtR-edge-critical. We
begin with two propositions restricting γtR-edge-criticality in general graphs, which
will be useful in classifying γtR-edge-critical spiders.

Proposition 7.1. For a graph G with no isolated vertices, if G has an end-vertex w
with support vertex x such that G[N (x) − {w}] is not complete, then G is not
γtR-edge-critical.

Proof. Suppose u, v ∈ NG(x)−{w} such that uv ∈ E(G). We claim γtR(G+uv)=
γtR(G). Suppose for a contradiction that γtR(G + uv) < γtR(G), and consider a
γtR-function f = (V 0

f , V 1
f , V 2

f ) on G + uv. Note that, since w is an end-vertex,
f (x) > 0. By Proposition 2.2, { f (u), f (v)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}. Since
ux, vx ∈ E(G) and at least one of f (u) and f (v) is positive, we can assume
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without loss of generality that f (x) = 2. In any case, f is also a TRD-function
on G, contradicting γtR(G+ uv) < γtR(G). Therefore γtR(G+ uv)= γtR(G) and
G is not γtR-edge-critical. �

In a tree, the support vertex of a leaf is called a stem. A stem is called weak if it
is adjacent to exactly one leaf, and strong if it is adjacent to two or more leaves. A
vertex b of a tree such that deg(b)≥ 3 is called a branch vertex. An endpath in a
tree is a path from a branch vertex to a leaf, where all of the internal vertices of the
path have degree 2. The next result follows immediately from Proposition 7.1.

Corollary 7.2. If T is a γtR-edge-critical tree, then T contains no stems of degree
at least 3, and hence no strong stems.

Proposition 7.3. For a graph G with no isolated vertices, if G has two endpaths
v0, v1, . . . , vk and u0, u1, . . . , um , where k,m ≥ 3 and vk and um are leaves, then
G is not γtR-edge-critical.

Proof. We claim that γtR(G + vkum) = γtR(G). Suppose for a contradiction that
γtR(G + vkum) < γtR(G), and let f be a γtR-function on G + vkum . Then, by
Proposition 2.2, we may assume f (um)= f (vk)= 1. Define f ′ : V (G)→{0, 1, 2}
as follows: If f (vk−1) = 0, then clearly f (vk−2) = 2 and f (vk−3) ≥ 1, so let
f ′(vk−1) = f ′(vk−2) = 1. Otherwise, let f ′(vk−1) = f (vk−1) and f ′(vk−2) =

f (vk−2). Similarly, if f (um−1)= 0, then clearly f (um−2)= 2 and f (um−3)≥ 1, so
let f ′(um−1)= f ′(um−2)= 1. Otherwise, let f ′(um−1)= f (um−1) and f ′(um−2)=

f (um−2). Finally, let f ′(y) = f (y) for all other y ∈ V (G). Clearly f ′ is a TRD-
function on G and ω( f ′)=ω( f ), contradicting γtR(G+vkum)<γtR(G). Therefore
γtR(G+ vkum)= γtR(G), and thus G is not γtR-edge-critical. �

Let S be a spider with k ≥ 3 legs. In what follows, let c be the head of S, and
let the k legs be labelled c, vi1, vi2, . . . , vimi , where i ∈ {1, 2, . . . , k}, in order of
increasing length. Let m = mk ; that is, m is the length of a longest leg of S. We
begin by determining the TRD-number of spiders.

Proposition 7.4. If S is a spider of order n with k ≥ 3 legs such that S has y legs
of length 2, then

γtR(S)=


n if y ≥ k− 1,
n− k+ y+ 1 if 1≤ y < k− 1,
n− k+ 2 if y = 0.

Proof. Suppose S has x legs of length 1, and consider a γtR-function f on S such
that |V 2

f | is as small as possible. First, suppose y ≥ k − 1. If y = k, then S is a
subdivided star. Otherwise, if y = k− 1, then S has exactly one leg that is not of
length 2, and thus either x = 1 or x = 0. If x = 1, then S is the corona of a graph
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(specifically, S = cor(K1,k−1)). Otherwise, if x = 0, then m = mk ≥ 3, and S ∈Hr ,
where r = m− 3. In any case, by Proposition 3.1, γtR(S)= n.

Assume therefore that y < k − 1. Then S has at least two legs that are not of
length 2. Therefore S is not one of the graphs listed in Proposition 3.1, and thus
γtR(S) < n. Hence there is some vertex u ∈ V (S) such that f (u)= 2 and f (w)= 0
for at least two vertices w adjacent to u. Furthermore, since f is a TRD-function,
such a vertex u is not isolated in S[V+f ], and thus deg(u)≥ 3. Since c is the only
vertex in S with degree at least 3, f (c)= 2. Therefore c Roman dominates each vi1,
and we need f (vi1) to be positive for at least one i to ensure that S[V+f ] has no
isolated vertices.

Consider an arbitrary leg c, vi1, vi2, . . . , vimi of S. If mi = 1, then f (vi1)∈ {0, 1}
in order for f to totally Roman dominate c and vi1. If mi = 2, a total weight of 2 on
vi1 and vi2 is required in order for f to total Roman dominate {vi1, vi2}. Since |V 2

f |

is as small as possible, f (vi1)= f (vi2)=1. Finally, if mi >2, by Proposition 3.1 and
since f (c)= 2, a total weight of at least mi −1 on vi1, . . . , vimi is required in order
for f to totally Roman dominate c and {vi1, . . . ,vimi }. Moreover, by the choice of f ,
f (vi1) ∈ {0, 1} and f (vi2)= · · · = f (vim)= 1. Therefore ω( f )≥ n− k+ y+ 1.

Now, if y > 0, where (say) m j = 2, then f (v j1)= 1. By minimality and since c
is adjacent to v j1, f (vi1)= 0 for each i such that mi 6= 2. Then γtR(S)= ω( f )=
n − k + y + 1, as required. Otherwise, if y = 0, then f (vi1) = 1 for some i to
ensure that c is not isolated in S[V+f ]. By minimality, f (v j1)= 0 for each j 6= i .
Therefore γtR(S)= ω( f )= n− k+ 2. �

The characterization of γtR-edge-critical spiders follows. Our result also shows
that a spider of order n is γtR-edge-critical if and only if it is n-γtR-edge-critical.

Theorem 7.5. A spider S = Sp(l1, . . . , lk), k ≥ 3, is γtR-edge-critical if and only if
li = 2 for each i , 1≤ i ≤ k− 1, and lk ∈ {2,m}, where m = 4 or m ≥ 6.

Proof. Suppose S has order n. If li = 2 for each i = 1, . . . , k, then S is a subdivided
star and, by Theorem 3.2, S is n-γtR-edge-critical. Now, suppose S has exactly one
leg of length m 6= 2. If m = 1, then by Proposition 7.1, S is not γtR-edge-critical. If
m= 3 or m= 5, then S ∈Hr with r = 0 or 2, respectively, and thus, by Theorem 3.2,
S is not γtR-edge-critical. If m = 4 or m ≥ 6, then S ∈ Hr with r = m − 3, and
therefore, by Theorem 3.2, S is n-γtR-edge-critical. Finally, suppose S has at least
two legs that are not of length 2. Again, by Proposition 7.1, if S has a leg of length 1,
S is not γtR-edge-critical. Otherwise, assume S has at least two legs of length at
least 3. Then, by Proposition 7.3, S is not γtR-edge-critical. �

8. k-γt R-edge-critical graphs with minimum diameter

We now consider the minimum diameter possible in a k-γtR-edge-critical graph for
k≥ 4. There are no γtR-edge-critical graphs with diameter 1, as the only graphs with
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diameter 1 are nontrivial complete graphs, which are clearly not γtR-edge-critical
since E(G)=∅. Therefore, the minimum possible diameter for a γtR-edge-critical
graph is 2. Asplund, Loizeaux and Van der Merwe [2018] constructed families
of 3-γt -edge-critical graphs with diameter 2. We will show that, for any k ≥ 4,
there exists a k-γtR-edge-critical graph of diameter 2. We first present the following
proposition which shows that every graph G without a dominating vertex is a
spanning subgraph of a γtR(G)-edge-critical graph with the same total Roman
domination number, which will be useful in proving our result.

Proposition 8.1. For a graph G with no isolated vertices, if γtR(G)= k ≥ 4, then
G is a spanning subgraph of a k-γtR(G)-edge-critical graph.

Proof. Suppose γtR(G)= k ≥ 4. If G is k-γtR(G)-edge-critical, then we are done.
Otherwise, there is, by definition, some edge e1 ∈ E(G) such that γtR(G+ e1)=

γtR(G). Let G1 = G + e1. If G1 is k-γtR(G)-edge-critical, then we are done.
Otherwise, there is some edge e2 ∈ E(G1) such that γtR(G1+ e2)= γtR(G1). Let
G2=G1+e2. Continuing in this way, we eventually obtain a graph Gi such that for
all e ∈ E(Gi ), γtR(Gi+e) < γtR(Gi ) and γtR(Gi )= γtR(Gi−1)= · · · = γtR(G1)=

γtR(G). Since k ≥ 4, Gi is not complete and thus E(Gi ) 6=∅. Therefore, Gi is a
k-γtR(G)-edge-critical graph, of which G is a spanning subgraph. �

Before demonstrating the existence of k-γtR-edge-critical graphs of diameter 2
for any k≥ 4, we determine the TRD-number of Kn �Km , where n,m≥ 2. Consider
the vertices of Kn �Km as an n×m matrix, where vertices vi j and vst are adjacent if
and only if i = s or j = t . The rows and columns of the matrix form disjoint copies
of Km and Kn , respectively. If vi j and vst are nonadjacent, then vs j is adjacent to
both vi j and vst , and hence diam(Kn � Km)= 2.

Proposition 8.2. If m and n are integers such that m ≥ n ≥ 2, then γtR(Kn � Km)=

2n.

Proof. Let G = Kn � Km . To see that γtR(G) ≤ 2n, consider the TRD-function
g = (V 0

g , V 1
g , V 2

g ) on G where V 1
g =∅ and V 2

g = {vi1 : 1≤ i ≤ n}.
Now, suppose for a contradiction that γtR(G) ≤ 2n − 1 and consider a TRD-

function f = (V 0
f , V 1

f , V 2
f ) on G with ω( f ) = 2n− 1. Each vertex v dominates

one row and one column of G, so if |V 2
f | = x (note that x ≤ n− 1), then at most

x rows and at most x columns are dominated by elements of V 2
f . Let S be the set

of vertices undominated by V 2
f . Then |S| ≥ (n− x)(m− x)≥ (n− x)2. Moreover,

|V 1
f | = (2n− 1)− 2x since ω( f )= 2n− 1 and |V 2

f | = x .
If x = n− 1, then |V 1

f | = 1. Since f is a TRD-function and |S| ≥ (n− x)2, we
have |S| = 1; say S = {w}. Hence V 1

f = {w}. However, V 2
f does not dominate w,

and thus w is isolated in G[V+f ], which is a contradiction. Therefore, there is no
TRD-function on G with weight 2n− 1 when x = n− 1.
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Otherwise, if x < n− 1, then

|S| − |V 1
f | ≥ (n− x)2− (2n− 1− 2x)

= x2
− 2(n− 1)x + (n− 1)2

= (n− 1− x)2 > 0.

Therefore, the number of vertices undominated by V 2
f is greater than |V 1

f |, con-
tradicting f being a TRD-function. Thus there is no TRD-function on G with
weight 2n− 1 when x < n− 1. We conclude that γtR(G)= 2n. �

Theorem 8.3. If k ≥ 4, then there exists a k-γtR-edge-critical graph of diameter 2.

Proof. First, assume that k is even; say k = 2l for some l ≥ 2. Let Gl = Kl � Kl . By
Proposition 8.2, γtR(Gl)= 2l, and, by Proposition 8.1, Gl is a spanning subgraph
of a k-γtR-edge-critical graph G ′l . Since k > 3, Proposition 4.1 implies that G ′l has
no dominating vertex, and hence 2≤ diam(G ′l)≤ diam(Gl)= 2.

Now, consider the case where k is odd; say k = 2l + 1 for some l ≥ 2. Let
Gd

l be the graph formed by taking Kl+1 � Kl+1 and deleting the vertices in the set{
v j1 :

⌊ l
2

⌋
+ 2≤ j ≤ l + 1

}
. Similarly to Gl , diam(Gd

l )= 2. See Figure 1.
We claim that γtR(Gd

l ) = 2l + 1. To see that γtR(Gd
l ) ≤ 2l + 1, consider the

following TRD-function on Gd
l : If l is even, place two 2’s in each of the first l

2 − 1
rows, and one 2 in each of rows l

2 and l
2+1, such that they span columns 2 through

l + 1. At this point, every vertex in Gd
l is dominated. However, the 2’s in rows l

2
and l

2 + 1 are isolated, so place a 1 in row l
2 such that it shares a column with the

2 in row l
2 + 1. Otherwise, if l is odd, place two 2’s in each of the first l−1

2 rows,
and one 2 in row l+1

2 , such that they span columns 2 through l + 1. Similarly to
the even case, every vertex in Gd

l is now dominated. However, the 2 in row l+1
2 is

isolated, so place a 1 in row l−1
2 such that it shares a column with that 2. In either

case, we have a TRD-function on Gd
l with weight 2l + 1; hence γtR(Gd

l )≤ 2l + 1.
Now, suppose for a contradiction that γtR(Gd

l ) < 2l + 1, and consider a TRD-
function f = (V 0

f , V 1
f , V 2

f ) on Gd
l with ω( f )= 2l. We claim that f (v j1)= 0 for

all 1≤ j ≤
⌊ l

2

⌋
+1. If f (v j1)= 2 for x ≥ 1 vertices in column 1, the undominated

vertices in columns 2 through l+1 form the graph Kl � Kl+1−x . By Proposition 8.2,
a TRD-function on Kl �Kl+1−x requires a weight of 2 min{l, l+1−x}=2(l+1−x).
However, since 2x+2(l+1− x) > 2l, this is impossible. Therefore f (v j1) 6= 2 for
all 1≤ j ≤

⌊ l
2

⌋
+1. If f (v j1)= 1 for x ≥ 1 vertices in column 1, the undominated

vertices in columns 2 through l+1 (that is, those for which f could be assigned a 2)
form the graph Kl � Kl+1. Again by Proposition 8.2, a TRD-function on Kl � Kl+1

requires a weight of 2 min{l, l+ 1} = 2l. However, x + 2l > 2l for x ≥ 1, so this is
also not possible. Therefore, f (v j1)= 0 for all 1≤ j ≤

⌊ l
2

⌋
+ 1.

As a result, in order to totally Roman dominate the first column, there must be a
2 in each of the first

⌊ l
2

⌋
+ 1 rows, none of which can be in the first column. That
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2 2 2

2 2 1

2

Figure 1. The graphs G3 and Gd
3 with a γtR-function.

is, for each 1≤ s ≤
⌊ l

2

⌋
+ 1, f (vst)= 2 for some 2≤ t ≤ l+ 1. Let S be the set of

these vertices. Note that, thus far, we have accounted for a total weight of

2
(⌊ l

2

⌋
+ 1

)
=

{
l + 2 if l is even,
l + 1 if l is odd,

which leaves a weight of l − 2 if l is even and l − 1 if l is odd to be assigned. That
is, a weight of 2

(⌈ l
2

⌉
− 1

)
remains to be accounted for. We now claim that no

two vertices in S can be in the same column. If the vertices in S span fewer than⌊ l
2

⌋
+ 1 columns, then the vertices which are undominated by S induce a graph

containing Kdl/2e� Kdl/2e as subgraph. If l = 2, then no weight remains to dominate
this vertex, as 2

(⌈ l
2

⌉
− 1

)
= 0. Otherwise, if l > 2, Proposition 8.2 implies that

γtR(Kdl/2e � Kdl/2e)= 2
(⌈ l

2

⌉)
. However, 2

(⌈ l
2

⌉)
> 2

(⌈ l
2

⌉
− 1

)
. In either case, this

contradicts f being a TRD-function, and thus no vertices of S share a column.
Therefore, the vertices left undominated by S induce a graph T ∼=Kdl/2e�Kdl/2e−1,

with
⌈ l

2

⌉
rows and

⌈ l
2

⌉
−1 columns. Moreover, the vertices in S are all isolated, as

none share a row or column. By Proposition 8.2, γtR(T )= 2
(⌈ l

2

⌉
− 1

)
. Thus the

entire remaining weight is required in order to dominate T ; necessarily, the vertices
in V+f − S belong to rows and columns that do not contain vertices in S. However,
this still leaves the vertices in S isolated, which contradicts f being a TRD-function
on Gd

l . Therefore γtR(Gd
l )≥ 2l + 1 and we conclude that γtR(Gd

l )= 2l + 1. As in
the case where k is even, Gd

l is a spanning subgraph of a k-γtR-edge-critical graph
with diameter 2. �

9. Future work

We showed in Section 5 that the disjoint union of two or more complete graphs,
each having order at least 3, is γtR-edge-supercritical. We also explained that a
proof similar to that of Proposition 5.1 does not work for total Roman domination.
Hence we pose the following question.
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Question 1. Are the disjoint unions of two or more complete graphs, each having
order at least 3, the only γtR-edge-supercritical graphs?

Note that if this is the case, Proposition 6.5 automatically becomes a necessary
and sufficient condition for a graph to be 5-γtR-edge-critical.

Now consider, for a moment, Roman dominating functions, and suppose a graph
G has nonadjacent vertices u and v such that f (u)= f (v)= 0 for every γR-function
f on G. We claim that γR(G+uv)= γR(G). Suppose γR(G+uv)<γR(G) and let
f be a γR-function on G+ uv. Similar to Proposition 2.2, we may assume without
loss of generality that f (u)= 2 and f (v)= 0, otherwise f is an RD-function on
G such that ω( f ) < γR(G). However, the function f ′ defined by f ′(v) = 1 and
f ′(y) = f (y) for all other y ∈ V (G) is a γR-function on G such that f ′(v) > 0,
contrary to our assumption. The situation for total Roman domination is different.

For a graph G, we define u ∈ V (G) to be a dead vertex if every γtR-function f
on G has f (u)= 0. Not only do there exist graphs G containing nonadjacent dead
vertices u and v such that γtR(G + uv) < γtR(G), but it is possible to find such
a graph G with γtR(G + uw) < γtR(G) for every edge uw ∈ E(G); that is, every
edge in E(G) incident with the dead vertex u is critical. We define the graph Dn

below and show that Dn is such a graph.
Let Dn be the graph composed of n ≥ 2 copies of K4−e sharing a single central

vertex as follows: let c be the central vertex,w1, . . . , wn be the degree-2 vertices, and
u1, . . . , un and v1, . . . , vn be the remaining vertices (where ui and vi are adjacent for
each i) such that c, ui , wi , vi , c is a 4-cycle in Dn for each 1≤ i ≤ n. See Figure 2.

Proposition 9.1. If n ≥ 2, then γtR(Dn)= 2n+ 1. Moreover, wi is a dead vertex
for each 1≤ i ≤ n.

Proof. To see that γtR(Dn) ≤ 2n + 1, consider the TRD-function g : V (Dn)→

{0, 1, 2} on Dn defined by g(c)= 1, g(ui )= 2 for 1≤ i ≤ n, and g(y)= 0 for all
other y ∈ V (Dn).

We claim that, if f is a TRD-function on Dn with ω( f )≤ 2n+1, then f (c)= 1.
If f (c) = 2, then the only vertices that remain undominated in Dn are wi for
1≤ i ≤ n. However, since d(wi , w j )= 4 for all i 6= j , a weight of 2n is required
in order to totally Roman dominate these vertices, contradicting ω( f ) ≤ 2n+ 1.
If f (c)= 0, then since Dn − c is the disjoint union of n triangles, Proposition 3.1
implies that a weight of 3n is required to totally Roman dominate the remaining
vertices, contradicting ω( f ) ≤ 2n + 1. Therefore f (c) = 1. Since a weight of
at least 2n is required to totally Roman dominate the remaining disjoint union of
n triangles, we conclude that γtR(Dn)= 2n+ 1.

Now, let f be any γtR-function on Dn . Then ω( f )= 2n+ 1 and f (c)= 1. To
dominate each triangle of Dn − c with a weight of 2, { f (ui ), f (vi )} = {0, 2} and
f (wi )= 0 for each 1≤ i ≤ n. Hence each wi is a dead vertex. �
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Figure 2. The graphs D3 and D4.

The following result shows that, for n ≥ 3, every edge in E(Dn) incident with
wi is critical.

Proposition 9.2. If n≥ 3, i ∈ {1, . . . , n}, and wiv ∈ E(Dn), then γtR(Dn+wiv)<

γtR(Dn).

Proof. Without loss of generality, consider an edge w1v ∈ E(Dn). Then (without
loss of generality) v ∈ {w2, u2, c}. If v = w2, define f : V (Dn +w1v)→ {0, 1, 2}
by f (w1) = f (w2) = 1, f (c) = f (u3) = · · · = f (un) = 2, and f (y) = 0 for all
other y ∈ V (Dn). Otherwise, if v ∈ {u2, c}, define f : V (Dn+w1v)→{0, 1, 2} by
f (c)= f (u2)= f (u3)= · · · = f (un)= 2 and f (y)= 0 for all other y ∈ V (Dn).
In either case, f is a TRD-function on Dn +w1v and ω( f ) = 2n. Therefore, by
Proposition 9.1, every edge wiv ∈ E(Dn) is critical. �

However, for n ≥ 3, the graph Dn is not γtR-edge-critical since (for example)
γtR(Dn + u1u2)= 2n+ 1. Furthermore, the graph D2 is not γtR-edge-critical since
(for example) γtR(D2+w1w2)= 5. However, adding edges to Dn until a (2n+1)-
γtR-edge-critical graph D′n is obtained results in D′n having no dead vertices. Hence
we pose the following question.

Question 2. Do there exist γtR-edge-critical graphs containing dead vertices?

We characterized γtR-edge-critical spiders in Theorem 7.5. Finding other classes
of γtR-edge-critical trees and, indeed, characterizing γtR-edge-critical trees, remain
open problems.
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