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Let G = (V(G), E(G)) be a graph and let A = (A, +) be an abelian group with
identity 0. Then an A-magic labeling of G is a function ¢ from E(G) into A \ {0}
such that for some a € A, ZeeE(v) ¢ (e) = a for every v € V(G), where E(v)
is the set of edges incident to v. If ¢ exists such that a = 0, then G is zero-sum
A-magic. Let G be the cartesian product of two or more graphs. We establish
that G is zero-sum Z-magic and we introduce a graph invariant j*(G) to explore
the zero-sum integer-magic spectrum (or null space) of G. For certain G, we
establish A(G), the set of nontrivial abelian groups for which G is zero-sum
group-magic. Particular attention is given to A(G) for regular G, odd/even G,
and G isomorphic to a product of paths.

1. Introduction

Let G = (V(G), E(G)) be a graph. Let A be the set all nontrivial abelian groups
and let A = (A, +) € A, where 0 denotes the identity of A. Then an A-labeling
of G is a function ¢ from E(G) into A \ {0}. For fixed e € E(G), ¢(e) is called
the label of e under ¢, and for fixed v € V(G), the sum of the labels of the edges
incident to v is called the weight of v under ¢. The graph G is A-magic if and
only if there exists an A-labeling ¢ of G such that for some a € A, the weight of
every vertex in V (G) under ¢ is a. In such a case, ¢ is called an A-magic labeling
of G. Additionally, G is zero-sum A-magic if and only if there is an A-labeling ¢
of G such that the weight of every vertex in V(G) under ¢ is 0. In this case, ¢
is called a zero-sum A-magic labeling of G. Letting A(G) denote the set of all
A € A such that G is zero-sum A-magic, we observe that if Hy € A(G) and Hp
is isomorphic to a subgroup of an abelian group H, then H € A(G). Particularly,
if A € A(G), then for a positive integer k, we have A* € A(G). In Figure 1, we
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Figure 1. Zero-sum Z4 and Zi—magic labelings of G.

illustrate a zero-sum Z4-magic labeling and a zero-sum Z%—magic labeling of a
graph G. (The group Z4 is the cyclic group of integers under addition mod 4. In the
specification of elements of Z2, parentheses are omitted.) Note that an alternative
Zero-sum Zi—magio labeling can be formed by changing each label (a, 0) to (a, a).
Other obvious alternatives exist.

The zero-sum integer-magic spectrum of a graph G, denoted by zim(G), is the
set of positive integers k such that G is zero-sum Z;-magic, where Z; is the group Z
of integers under addition and, for k > 2, Z; is the cyclic group of integers under
addition mod k. Let NV denote the set of positive integers. By the fundamental
theorem of finite abelian groups, N\ {1} is a subset of zim(G) if and only if G is
zero-sum A-magic for all finite A in .A. Moreover, for any infinite abelian group
A = (A, +) with nonzero a € A, a generates a subgroup of A that is isomorphic
to either Z or Z;, for some k > 2. Thus zim(G) = N if and only if A(G) = A. We
note especially that if zim(G) = A\ {2}, then A\ {Z’g |k e N} € A(G).

Sedlacek [1964] first introduced magic labelings, motivated by magic squares
in number theory. Stanley [1973] later showed that the study of magic labelings is
related to the study of linear homogeneous diophantine equations. It was shown inde-
pendently in [Low and Lee 2006] and [Shiu et al. 2004] that if G and H are A-magic
graphs, then the cartesian product of G and H is also A-magic. More recently,
Akbari et al. [2014] proved that every r-regular graph G with r > 3, r # 5 has
zim(G) = N if r is even; otherwise zim(G) D M\ {2, 4}. And, Shiu and Low [2018]
have determined the zero-sum integer-magic spectrum of the cartesian product of
two trees. For a dynamic survey of results on magic labelings, see [Gallian 2018].

In this paper, we consider the zero-sum A-magicness of cartesian products. In
Section 2, we give definitions and preliminary results. In Section 3, we develop our
main results, with particular attention given to graph parity and regularity. And in
Section 4, we consider the cartesian products of paths, also known as grid graphs.

2. Definitions and preliminary results

Throughout this paper, graphs will be finite, nontrivial, simple, loopless, and
connected unless specified otherwise. An even graph (resp. odd graph) shall refer
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Figure 2. The cartesian product G| J G».

to a graph G of which each vertex v has even (resp. odd) degree, denoted by dg (v).
Abelian groups shall have identity element O and binary operator +.

Fori e{l,...,n}, let G, = (V(G;), E(G;)) be a graph. The cartesian product
of G1, Gy, ..., G,, denoted by D;’:lGi or GG, ---00G,, is the graph G
such that

(1) the vertex set of G is [[}_, V(G;), and

(2) vertices (uy, ua, ..., u,) and (wy, wy, ..., w,) of G are adjacent if and only
if (uy,uy,...,u,)and (wy, wy, ..., w,) differ in precisely one component iy,
and u;, is adjacent to w;, in G;,.

The following are well known. Note that the results in (b), (c), and (d) extend to
cartesian products of arbitrary finite length by part (a):

(a) As a binary operator on the set of graphs, [] is associative and commutative
with respect to isomorphism.

(b) If (4, w) is a vertex of G1 U Gy, then dg,06, (4, w)) =dg, (u) +dg,(w).
(¢) G, 0G; is regular if and only if each of G| and G, is regular.
(d) If G and G, are graphs with no isolated vertices, then G [] G is bridgeless.

In Figure 2, we demonstrate the cartesian product G| [ G, where G is isomor-
phic to the claw on four vertices and G is isomorphic to the cycle Cs.

Let G be a graph and let & be a positive integer. Then a factor of G is a spanning
subgraph of G, and an h-factor of G is an h-regular factor of G. (The term factor
may also refer to a factor of a cartesian product. Its usage will clarify its intended
meaning.)

For n > 2, let G be a cartesian product D;’zlGi. For fixed iy, 1 < ip < n,
suppose that H;, is an h; -factor of G;,. Then there exists a natural 4;,-factor of G,
comprising the union of C disjoint subgraphs of G, each isomorphic to H;,, where
C is the product of the orders of the graphs G;, 1 <i <n, except for i = iy. If, for
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Figure 3. An illustration of regular factors.

each i, E(G;) is partitioned by the edge sets of regular factors H; 1, H; 2, ..., H; n,
of G, then these n partitions of E(G), E(G»), ..., and E(G,) induce a natural
partition of E(G) by the edge sets of regular factors F; ;, 1 <i <n, 1< j <m;,
where the regularity of F; ; equals the regularity of H; ;. Note that each vertex
of G is a vertex of each F; ; as illustrated in Figure 3. Therein, graph G| = P,
has a 1-factor H;,; = G| whose edge set trivially partitions E(G1). And, G,
has a 1-factor H; | isomorphic to four vertex-disjoint copies of P, and a 2-factor
H, > isomorphic to two vertex-disjoint copies of C4, where E(H> 1) and E(H> )
together partition E(G,). These regular factors respectively induce Fj 1, F2,1, and
F5 », which together partition E(GG,). (Note that G, is itself a cartesian product
isomorphic to P, 1 Cy.)

Let G be a graph that has a zero-sum Z-magic labeling and let Z(G) represent
the (nonempty) set of all zero-sum Z-magic labelings of G. For each ¢ € Z(G),
let j(¢) equal max.cg(G) |¢(e)|. Then j*(G) shall denote mingez() j(¢). To
illustrate, we note that there exists a zero-sum Z-magic labeling ¢ of K4 such that
max.cg(k,) ¢ (e)| = 2. Yet, since K4 is an odd graph, there is no such labeling
¢ such that max.cgk,) |¢(e)] = 1. Thus j*(K4) = 2. On the other hand, some
graphs, including Cy,_;1 and P, for n > 2, are not zero-sum Z-magic. For such
graphs G, j*(G) does not exist.

Theorem 1. If G is zero-sum Z-magic, then G is zero-sum Zy-magic for all k >
J*(G). Additionally, if j*(G) = 1, then A(G) = A.

Proof. Let ¢ be any zero-sum Z-magic labeling of G such that j (¢) = j*(G), and fix
k > j*(G). We form a zero-sum Z;-magic labeling of G by assigning ¢ (e¢) (mod k)
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to e € E(G). Consequently, if j*(G) = 1, then zim(G) = N, implying that G is
zero-sum A-magic for all A € A. (|

We observe that Georges, Mauro, and Wash [Georges et al. 2017] established
necessary and sufficient conditions under which a graph G is zero-sum Z’z‘j-magic.
In particular, they showed that G has a bridge whose removal results in an isolate
or bipartite component if and only if G is not zero-sum Z’zc i -magic for any positive
integers j, k. Theorem 1 immediately implies that such G is not zero-sum Z-magic
for otherwise G would be zero-sum Z;;-magic for 2j > j*(G).

Theorems 2 through 8, useful in the sequel, can be found in the existing literature.

Theorem 2 [Petersen 1891]. Let G be a 2t-regular graph. Then there exist t
2-factors of G that partition E(G).

Theorem 3 [Ore 1957]. Let G be a bridgeless regular graph of odd degree k and
let h be an even integer,2 < h < %k. Then there exists an h-factor of G.

Theorem 4 [Georges et al. 2010]. Let G be a 3-regular graph. Then G is zero-sum
Z%-magic if and only if the chromatic index of G is 3.

Theorem 5 [Georges et al. 2010]. Let G be a graph with a bridge. Then for each
positive integer k, G is not zero-sum Zé-magic.

Theorem 6 [Choi et al. 2012]. Let G be a bridgeless graph. Then for each positive
integer k > 3, G is zero-sum Zé-magic.

Theorem 7 [Low and Lee 2006; Shiu et al. 2004]. If Gy, G, ..., G, are zero-sum
A-magic graphs, then [ ]!_, G; is zero-sum A-magic.

Theorem 8 [Akbari et al. 2014]. Let G be an r-regular graph,r >3, r #5. If r is
even, then zim(G) = N. Otherwise, N'\ {2, 4} C zim(G).

Corollary 9. Suppose that G is a graph with j*(G) < 2. Then the following hold.
(a) If G is bridgeless, then A\ {Z,, 73} € A(G).
(b) If G is bridgeless and even, then A(G) = A.
(c) If G is bridgeless with a vertex of odd degree, then
A\ (22, 73} € A(G) € A\ (Za).
(d) If G has a bridge, then A(G) = A\ {Zé | ke N}

Proof. (a) We note that 1 € zim(G) since j*(G) is assumed to exist. The result
follows by Theorems 1 and 6.

(b) Since G is even, G is zero-sum Z,-magic (assign 1 to each edge of G), and
hence zero-sum Z%—magic. The result follows by part (a).
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(c) Part (c) follows from part (a) and the fact that any Z,-labeling of G must assign
1 to each edge; hence, no graph with a vertex of odd degree can be zero-sum
Z,-magic.

(d) We again observe that 1 € zim(G) and, by Theorem 1, k € zim(G) for k > 3.
Thus N\ {2} C zim(G). The result now follows from Theorem 5. O

We note that j*(K4) = 2 and, by the upcoming Corollary 10 and Theorem 11,
j*(K7) = 2 as well. Yet zim(K4) = N\ {2} and, by Theorem 8, zim(K7) = N.
Moreover, the three graphs K4, the Petersen graph PG, and the (unique) 3-regular
graph G on 10 vertices with one bridge (see Figure 1) are each easily verified to
have zero-sum integer-magic spectrum N\ {2}. Yet, by Theorem 4 and Corollary 9,
A(K4) = A\ {22}, A(PG) = A\ {Z,, Z%}, and A(G) = A\ {Z’g | k e N}

In the following corollary, we utilize j*(G) to give an alternative proof of
Theorem 8 in the case r is even, r > 4.

Corollary 10. Let G be an even-regular graph with degree r = 2t such that t > 2.
Then the following hold:

(a) Ift is even, then j*(G) =1 and A(G) = A.
(b) If t is odd, then j*(G) <2 and A(G) = A.

Proof. By Theorem 2, E(G) partitions into ¢ 2-factors. If ¢ is even, we construct a
zero-sum Z-magic labeling ¢ of G by assigning the label 1 to each edge of precisely
% 2-factors, and —1 to each edge of the remaining % 2-factors. Since j(¢) =1,
we have j*(G) = 1, implying A(G) = A by Theorem 1 or (since even graphs are
bridgeless) Corollary 9(b). On the other hand, if ¢ is odd, we construct a zero-sum
Z-magic labeling ¢ of G by assigning the label 1 to each edge of precisely %(t +1)
2-factors, —1 to each edge of precisely %(t — 3) 2-factors, and —2 to each edge
of the one remaining 2-factor. Since j(¢) = 2, we have j*(G) < 2, implying
A(G) = A by Corollary 9(b). O

For illustration, Figure 4 displays vertex « of a 14-regular graph G whose edge
set is partitioned by the 2-factors H;, H», H3, Hs4, Hs, Hg, H;. Suppose that for
each i, the edge set of H; includes the edges au; and ow;. Since t =7, we assign
the label 1 to the edges of each of four 2-factors H;, Hy, Hz, and H4, we assign
the label —1 to the edges of each of two 2-factors Hs and Hg, and we assign the
label —2 to the edges of the remaining 2-factor H;. Since these labels bear upon
every vertex, the weight of every vertex is 0.

We observe that the graphs K¢ [ P, and K- illustrate the case ¢ odd, yet
J*(K¢d Py) =1 (see Theorem 11), while j*(K7) = 2.

Theorem 11. Let G be a (connected) graph. Then j*(G) =1 if and only if G is an
even graph with even size.
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Figure 4. An illustration of Corollary 10.
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Proof. Suppose j*(G) = 1. Then it is clear that G is even. To show that G has even
size, let ¢ be a zero-sum Z-magic labeling of G with j(¢) = 1. Also let x denote
the number of edges of G which receive the label 1 under ¢, and let y denote the
number of edges of G which receive the label —1 under ¢. Then

0= w(@=2) ¢@= ) o,

veV(G) ecE(G) ecE(G)

implying x = y. Thus G has even size.

Now suppose that G is even with even size. Since G is even (and connected),
there exists an Eulerian circuit in G with even length. We produce a zero-sum
Z-magic labeling ¢ of G with j(¢) = 1 by assigning alternating labels of 1 and —1

to the edges of the circuit. O
R N
Gy G, Gs
lig —1ys 14 —2
1 119
1 4 | | 1 1
_11 5 | 9 _113 1 ) 1
e | 3 lg 1 1
1, -1y ISP )

Figure 5. Zero-sum Z-magic labelings of G| J G, and G| U G3.
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Because this paper emphasizes cartesian products, Theorem 11 is illustrated
in Figure 5 with an even graph GG, with even size, and a noneven graph
G 10G3. We exhibit a zero-sum Z-magic labeling ¢ of G0JG, with j(¢) =1
along with indication (via subscripts) of a corresponding Eulerian circuit. And, we
show j*(G1JG3) = 2 by exhibiting a zero-sum Z-magic labeling of G1JG3 with
maximum absolute label 2.

If M and N are connected odd graphs, then each has even order and M LJ N is
an even graph with even size |V (M)||E(N)|+ |V(N)||E(M)|. As well, if M or N
is not connected, then each component of M [1 N is even with even size. Therefore
we have the following.

Corollary 12. Let M and N be odd graphs (not necessarily connected). Then
J*(MON) =1.

3. Main results

As noted in the preceding section, not all graphs are zero-sum Z-magic. On the
other hand, if G is the cartesian product of nontrivial graphs, we have the following
result.

Theorem 13. Let M and N be graphs with §(M),6(N) > 1. Then M O N is
zero-sum Z-magic with j*(M O N) < max{A(M), A(N)}.

Proof. Let VIM)={uy,...,up}and V(N)={wy, ..., w,}. Forfixedi, 1 <i <n,
let M (i) be the subgraph of M LIN induced by the vertices in {(u;, w;) | 1 < j <m}.
Similarly, for fixed i, 1 <i <m, let N (i) be the subgraph of M [JN induced by the
vertices in {(u;, w;) | 1 < j < n}. Form a Z-labeling of M LI N as follows: to each
edge of M(B), assign the label dy (wg) and to each edge of N(«), assign the label
—duy (uy). Then the weight of any vertex (uq, wg) € V(MUN) is dy (ue)dy (wg) —
dy (ug)dy(wg) = 0. Since the maximum absolute label is max{A (M), A(N)}, the
result follows. O

It is easy to show the following.

Theorem 14. Let M and N be zero-sum Z-magic graphs. Then M O N is zero-sum
Z-magic with j*(M O N) <max{j*(M), j*(N)}.

Theorem 15. Let G = D?:1Gi wheren > 2 and 5(G;) > 1 for each i. Then G is
zero-sum Z-magic. Moreover, for { = max{A(G;)} over i, we have j*(G) < ¢ ifn
is even, and j*(G) <2¢ ifn is odd.

Proof. By Theorem 13, G is zero-sum Z-magic.

If n =2t, let H; = Goj—_1 U Gy for 1 <i <t. Then by Theorem 13, each
H; is zero-sum Z-magic with j*(H;) < max{A(Gji—1), A(Gy;)} <¢. Since G is
isomorphic to [_]{_, H;, it follows from Theorem 14 that j*(G) < max{;*(H;)} <¢.
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Ifn=2t+1,let HH =G U(G,1UG3) and let H; = G; L1 Gy for 2 <i <t.
By Theorem 13, each H; is zero-sum Z-magic. Observing that A(G, 1 G3) =
A(G3) 4+ A(G3), we have from Theorem 13 that j*(H;) < max{¢, 2¢} =2¢. Since
J*(H;) < ¢ fori >2, we have j*(G) < 2¢ by Theorem 14. O

Lemma 16. Let G, Gy and G3 be odd graphs, and let M = D?:th" Then
J (M) =2 and A(M) = A\ {Z>}.

Proof. Since M is odd, we show j*(M) = 2 by developing a zero-sum Z-magic
labeling A of M with j(A) =2.

Let G1, G, and G3 have respective vertex sets {u; | 1 <i <ni}, {v; |1 <i <ny},
and {w; | 1 <i < n3}. Letting V(P,) = {1, 2}, we have j*(G; J P;) =1 by
Corollary 12. We thus let ¢;" denote a zero-sum Z-magic labeling of G; [J P, such
that j(¢) = 1. Let ¢; be the Z-labeling of G; such that for each edge af of G;,
¢ (@p) = ¢ ((a, 1)(B, 1)). Note that the weight of each vertex under ¢; is 1 or —1.

Now consider G| L1 G;,. We construct a Z-labeling ¥ of G U G, as follows.
To each edge (uy, v)(uy, v) of G G, assign the label ¢ (uxuy)w%(v). And, to
each edge (u, v,)(u, vy) of G 1G2, assign the label ¢>§(vx vy)w¢,i (). We observe
that under i, each edge of G| [JG> has label 1 or —1 and each vertex of G; [JG»
has weight 2 or —2.

Each edge e in E(M) has one of the following two forms:

e Type I: e = (zx, w)(zy, w), where z,z, € E(G1 UG2) and w € V(G3).
o Type II: e = (z, wy) (2, wy), where z € V(G O G3) and wyw, € E(G3).

Let A be a Z-labeling of M such that

ae) = { ¥ (zxzy)wg, (w)  if e is of type I,
~-wy ()@ (wywy) if e is of type 1L

Since ¥ (z,zy) € {—1, 1}, w¢§(w) e {—1, 1}, wy(2) € {=2,2}, and ¢} (w,wy) €
{—1, 1}, the edges of type 1 receive +1 under A and edges of type II receive labels
of +2 under A. It is easily checked that A is a zero-sum Z-magic labeling of M
and that j(A) = 2. Hence j*(M) = 2. (In Figure 6, the evolution of A is illustrated
via edges incident to (u, v, w) € V(G U G, L G3), where each of u, v, and w is
assumed to have degree 3 in G, G, and G35 respectively. Labels assigned to edges
under ¢, ¢, and ¢} are notional, from which labels under ¥ and A follow.)

By Corollary 9(c), it suffices to produce a zero-sum Z%—magic labeling of M. For
each edge e € E(M) of the form (u;, v, w)(uj, v, w), let p(e) = (0, 1). For each
edge e of the form (u, v;, w)(u, v;, w), let p(e) = (1, 0). And for each edge e of
the form (u, v, w;)(u, v, w;), let p(e) = (1, 1). It follows from the oddness of each
G that the weight of each vertex under p is 0. U
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Vk 1

Labels under ¢ Labels under ¢ Labels under ¢}
We! u) =1 Wey (v) =-1 W, (w) =—1

(w,v;))  (w,vj)  (u,vg)

(u,v,w)

Labels under Labels under A
Wy (u,v) = =2 wy (u,v,w) =0

Figure 6. An illustration of the labeling A of Lemma 16.

Theorem 17. For 1 <i <n, let G; be an odd graph, and let G = D?:1Gi- Then
(@) Ifniseven, j*(G) =1 and A(G) = A.
(b) Ifnisodd, j*(G) =2 and A(G) = A\ {Z»}.

Proof. (a) Let n=2t. Then G is isomorphic to [_J\_, H;, where H; = G2i—1 0 Go;.
By Corollary 12, j*(H;) = 1. The result now follows from Theorems 14 and 1.

(b) Letn =2t + 1, wheret > 1. Let Hi = GG, G3 and for2 <i <t,let
H; = G»; 1 Gy;y1. By Lemma 16, j*(H;) =2 and A(H)) = A\ {Z,}. And, by
Corollary 12, j*(H;) =1 for 2 <i <t, implying A(H;) = A. Thus, by Theorem 7,
Theorem 14 and the fact that G is odd, j*(G) =2 and A(G) = A\ {Z,}. O

We now consider graphs G = D?ZIG,- such that n > 2, G; is nontrivial, and
G is r-regular. Since the regularity of G coimplies the regularity of each G;, we
assume G; is rj-regular, r; > 1. Then the degree of G is r = Z;’:l Ti.

The next theorem follows from Theorem 8 or alternatively Corollary 10 with the
4-cycle handled as a trivial special case.

Theorem 18. Let n > 2 and let G = D?:1Gi be an even-regular graph. Then
A(G) = A.
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We turn to the case r is odd. For odd-regular graphs M except S5-regular,
Theorem 8 indicates that M is zero-sum A-magic for all A except possibly Z%, Z’j,
k > 1. (Certainly M is not zero-sum Z,-magic.) However, if M is a cartesian
product of at least two factors, then more definitive results can be given for any odd
regularity.

Lemma 19. Let G = G U G, be an odd-regular graph, where §(G;) > 1. Then
AN\ {25, Z%} C A(G) € A\ {Z,}. Moreover, if either G| or G, has degree 1, then
A(G) = A\ {2}

Proof. Since G is regular if and only if each G; is regular, we assume without loss
of generality G; is r;-regular for odd r; and even r,. Let rp = 2¢.

If r; > 3, then by Theorem 3, E(G) partitions into a %(rl + 1)-factor and a
%(rl — 1)-factor. By Petersen’s theorem, E(G;) partitions into ¢ 2-factors. Thus
E(G) naturally partitions into ¢ 2-factors Fy, F3, ..., Fy, a %(rl + 1)-factor F’, and
a %(rl — 1)-factor F”. We form a zero-sum Z-magic labeling ¢ of G with j(¢) =2
based on the parity of 7.

Ifr =2k+1,
1 ifeeF;, 1<ic<k,
)1 ifee Fj, k+1<i<2k+1,
PO=1 15 ifeer,
-2 ifeeF”".
If t =2k,
1 ifeeF;, 1<ic<k,
—1 ifeeF, k+1<i<2k-—1,
p(e) =12 ifeec Fy,
2 ifeeF’,
-2 ifeeF”".

Since j(¢) = 2 in each case, we have j*(G) < 2. The result follows by
Corollary 9(c).

Suppose r; = 1. Then the edge set E(G) partitions naturally into a 1-factor F’
(of which there are |V (G,)| components each isomorphic to P,) and, by Petersen’s
theorem, ¢ 2-factors Fi, F3, ..., F;. We form a zero-sum Z-magic labeling ¢ of G
with j(¢) =2 as above, accounting for the vacuous %(r] — 1)-factor.

If t =2k +1is odd,

1 ifeekF;, 1<i<k,
pe)=1—-1 ifeeF, k+1<1<2k+1,
2 ifeeF'.
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If t =2k is even,

1 ifeeF, 1<i<k,
ifeeF, k+1<i<2k—1,
p(e) = :
-2 ifee Fy,
2 ifeeF

Thus j*(G) < 2, implying A\ {Z;, Z%} C A(G) € A\ {Z,} by Corollary 9(c). It
remains to show that G is zero-sum Z%—magic.

Let H denote a 2-factor of G,. Then P, [ H is a 3-factor of G (not necessarily
connected) in which each component is a prism. Since each prism is hamiltonian
and hence 3-edge colorable, P, [1 H is zero-sum Z%—magic by Theorem 4. Letting
¢’ be a zero-sum Z%—magic labeling of P, L1 H, we form a zero-sum Z%-magic
labeling ¢ of G as follows:

¢'(e) ifec E(P,OH),

¢(6):{(1,1) ife e E(G—(P,OH)). 0

Lemma 20. Suppose G = G| G, U Gj is odd-regular, where G; is ri-regular,
ri > 1. Suppose also that either r; = 1 for some i or r; is odd for all i. Then

A(G) = A\ {Z2}.

Proof. If r; is odd for all i, then the result follows from Theorem 17. So, with no
loss of generality, suppose r; = 1 and ry, r3 are even. Since G is isomorphic to
GO H, where H = G, [ G3, the result follows from Lemma 19. O

Theorem 21. Suppose G = [_|!_,G; is odd-regular, where n > 3 and G; is r;-
regular, r; > 1. Let w denote the number of odd-regular G;. Then the following
hold:

(a) Ifw >3, then A(G) = A\ {Z).

®) If o=1, then A\{Z>, Z%} C A(G) CA\{Z,}. Moreover, if the sole odd-regular
G has degree 1, then A(G) = A\ {Z»}.

Proof. We observe that w must be odd since G is odd-regular with degree equal to
Doyt
(a) With no loss of generality, let G; and G5 be odd-regular. Then [ ]'_,G; is odd

regular as well, which implies that G is isomorphic to the cartesian product of three
odd-regular graphs G, G2, and [_]7_,G;. The result follows by Lemma 20.

(b) With no loss of generality, let G be odd-regular. Then [_]’_,G; is even-regular,
which implies that G is isomorphic to the cartesian product of one odd-regular graph
G and one even-regular graph [ J!_,G;. The result follows by Lemma 19. U
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4. Grid graphs

In this section we consider the cartesian product of paths G = [ ]'_, P,,, where
n > 2 and a; > 2. We denote the vertex set of P, by {1, 2, 3,4, ..., m}, where x is
adjacent to y if and only if |x — y| = 1. We note that if « is the number of a;’s equal
to 2, then A(G) =2n —«a, 6(G) =n, and for all integers j, n < j <2n — «, there
exists a vertex of G with degree j. We also note that G is regular (in particular,
n-regular) if and only if a; =2 for all i.

Lemma 22. Let M be a graph such that j*(M) <2 and j*(M O P,) < 2. Then
j*mMQaPr,) <2forn=>3.

Proof. Let H' denote the subgraph of M [J P, induced by the vertices in {(v, 1) |
v e V(M)} and let H” denote the subgraph of M [J P, induced by the vertices
in{(v,i)|[ve V(M),i=1,2}. Since H and H" are respectively isomorphic to
M and M O P,, we can find zero-sum Z-magic labelings ¢’ of H' and ¢" of H”
such that j(¢') and j(¢") are each at most 2. As follows, we construct a zero-sum
Z-magic labeling ¢ of M [ P, that draws its labels from the images of ¢’ and ¢”
(this labeling is illustrated in Figure 7 with n = 5 and a graph M that is seen by
inspection to satisfy the hypotheses of the lemma):

¢"(e) ife=(u, D(w, 1),
' ((u, H(w, 1)) ife=w,i)(w,i),2<i<n-—1,
" ((u, D(w,2)) ife=@w,d)w,i+1),1<i<n-—1,iodd,

o) =1 —¢"((u, )(u,2)) ife=(u,i)u,i+1), 1<i<n—1,ieven,
—¢"((u, 1)(w, 1)) ife=(u,n)(w,n), n odd,
¢"((u, D(w, 1)) ife= (u,n)(w,n),n even.
Thus j(¢) <2, giving the result. ([

Lemma 23. Let M be a graph and let A € A such that both M and M [ P, are
zero-sum A-magic. Then M U P, is zero-sum A-magic for n > 3.

Proof. Let H' and H” denote the subgraphs of M [J P, given in the proof of
Lemma 22, and let ¢’ and ¢” be zero-sum A-magic labelings of H' and H”,

respectively. Then the labeling ¢ of that proof is a zero-sum A-magic labeling of
MOP,. O

Theorem 24. Suppose G =[_|!_, P,,;, where n > 2. If n is even and a; =2 for all i,
then A(G) = A. Otherwise, A(G) = A\ {Z3}.

Proof. If n is even and a; = 2 for all i, the result follows from Theorem 18. If n is
odd and a; = 2 for all i, the result follows from Lemma 19 and the observation that
G is isomorphic to H; U H,, where H; = P, and H, = |:|l’.’:2P2. ‘We thus assume
a; > 3 for some i, which implies that G has a vertex of odd degree.
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k i ﬁ
b v u
/ /zx
a h q
m \y
c r v
nl )i z
M and ¢’ MOP; and ¢”
0 —0 0 —0
i b b b —i
k » d —p d » d _p k
, ! q / ¢ —q / ¢ q / ¢ —q /_l
a a a —h| _
DDA
al 7 gl [ gl [ c al =7
S —s S -
MUOPs and ¢

Figure 7. An illustration of the labeling ¢ of Lemma 22.

Express G as follows:

o If n =2k, then G = Df'{:]Hi’ where H; = P,,, , 0 P,,,.

e If n=2k-+1, then G = |:|if:1Hi, where H, = P,, 0 P,, O P,, and H; =
P, 0P for2 <i <k.

azi+1

2i—

Each H; must be isomorphic to one of the following:
e Class 1: P, Ps.
Class2: P,OP;, r >2, s > 2.
Class 3: L, O P, O Ps.
Class4: P, P, P, s > 3.
Class 5: p,OP,LIP, 5,1 > 3.
e Class6: P, OP, P, s,t,r>3.
We first show that for each H;, we have j*(H;) < 2.
By Theorem 15, the graphs H; of classes 1, 2, and 3 have j*(H;) < 2.
Consider graphs of class 4. Since j*(P, [ P;) <2 and j*((P,O P) 0T Py) <2,
graphs H; of class 4 have j*(H;) <2 by Lemma 22.

Consider graphs of class 5. Since j*(P, 0 Py) <2 and j*((P,O P) 0 Py) <2,
graphs H; of class 5 have j*(H;) <2 by Lemma 22.
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0,1 1,0 0,1 1,0

0,1 1 141 11 141 11 141 11 1,0

1,0 1 1)1 11 141 11 141 11 0,1

0,1 1)1 1J1 11 1,0

0,1 1,0 0,1 1,0
Figure 8. A zero-sum Z%—magic labeling of P, [ Ps.

Consider graphs of class 6. Since j*(P; 1 P;) <2 and j*((P; O P) T P) <2,
graphs H; of class 6 have j*(H;) <2 by Lemma 22.
Thus, by Theorem 14, j*(G) < 2, which implies by Corollary 9(c) that

A\{Z,, 73} € A(G) C A\ {Z,}.

It now suffices to show that G is zero-sum Z%—magic. To that end, we next show
that each H; is zero-sum Z%—magic.

By inspection, the graph H; of class 1 has A(H;) = A.

By Corollary 9(c), the graphs H; of class 2 are zero-sum A-magic for all A except
Z, and possibly Z%. But it is an easy matter to construct a zero-sum Z%—magic
labeling of H;, thereby establishing that A(H;) = A\ {Z,}. Particularly, consider
the following sequence of vertices that specifies a cycle:

aQ,n,...,,s),2,8),....(rs),Fxs=1,....,r, 1), ¢r—=1,1),...,(, 1).

Moving around the cycle, assign each edge a label from {(0, 1), (1, 0)} according
to the following algorithm and as illustrated in Figure 8 (where parentheses are
omitted): assign (0, 1) to the edge (1, 1)(1, 2). For every two distinct edges ¢’ and
¢’ of the cycle, assign distinct labels if ¢’ and e” are incident to a common vertex of
degree 3 in G; otherwise, assign equal labels if ¢’ and e” are incident to a common
vertex of degree 2 in G. To each other edge of G, assign (1, 1).

By Theorem 21(a), the graph H; of class 3 has A(H;) = A\ {Z3}.

Consider graphs of class 4. Since P, [ P; is of class 1, it is zero-sum A-magic
for all A. And since (P, [ P,) I P, is of class 3, it is zero-sum A-magic for all A
except Z,. Thus, by Lemma 23 and the fact that graphs H; of class 4 have vertices
of odd degree, A(H;) = A\ {Z»}.

Consider graphs of class 5. Since P, [] P; is of class 2, it is zero-sum A-magic
for all A except Z,. And since (P, P;) 1 P, is of class 4, it is zero-sum A-magic
for all A except Z,. Thus, by Lemma 23 and the fact that graphs H; of class 5 have
vertices of odd degree, A(H;) = A\ {Z,}.

Consider graphs of class 6. Since P [J P; is of class 2, it is zero-sum A-magic
for all A except Z,. And since (P; L1 P;) L1 P; is of class 5, it is zero-sum A-magic
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for all A except Z,. Thus, by Lemma 23 and the fact that graphs H; of class 6 have
vertices of odd degree, A(H;) = A\ {Z,}.
We therefore see by Theorem 7 that A\ {Z;} € A(G). But since G has a vertex
of odd degree, G is not zero-sum Z-magic. Thus A(G) = A\ {Z,}. O
We close this section with a theorem that utilizes Corollary 12.
Theorem 25. Let n > 3 and let G be an odd graph. Then A(G U P,) = A\ {Z3}.
Proof. Let H' be the subgraph of G [J P, induced by {(v,i) |ve V(G), i =1,2}.
Since H’ is isomorphic to G [J P,, Corollary 12 implies the existence of a zero-sum

Z-magic labeling ¢’ of H' such that j(¢’) = 1. We establish a zero-sum Z-magic
labeling ¢ of G U0 P, with j(¢) = 2, thereby establishing j*(G O P,) < 2:

¢'((u, D(w, 1) ife=(u, H(w, 1) or (u, n)(w,n),
p(e) =12¢'((u, D(w, D) ife=(u,)(w,i), 2<i<n-—1,
&' (w, )(w,2)) ife=@u,i)u,i+1),1<i<n-—1.
By Corollary 9(c), it now suffices to establish a zero-sum Z%—magic labeling ¢ of

GQaPr,:
0,1 ife=(u, )(w,1),

1,1 ife=(u,i)(w,i),2<i<n-—1,

0,1) ife=(u,n)(w,n), neven,

(1,0) ife=(u,n)(w,n), nodd,

0,1) ife=(u,i)(u,i+1),iodd,

(1,0) ife=(u,i)(u,i+1), ieven. O

¢(e) =

5. Closing remarks

We close this paper with suggestions for further study.

If G is the cartesian product of two odd graphs, then j*(G) = 1. What can be
said of j*(G) if one or each factor is even?

If Ty, Ty, ..., T, is a collection of nontrivial trees and G = D:’: 1 T;, we are able
to show that j*(G) < 4. Is this a sharp upper bound?

What can be said of j*(G) if G is an odd cartesian product?

We have seen that the graphs G under study have j*(G) < 2, with j*(G) =1 if
and only if G is an even graph with even size. We have also seen that j*(G) =11isa
sufficient but not necessary condition for A(G) = .A. Are there cartesian products G
such that j*(G) > 3? Are there necessary and sufficient conditions for j*(G) = 2?
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