

a journal of mathematics

The monochromatic column problem with a prime number of colors

Loran Crowell and Steve Szabo

The monochromatic column problem with a prime number of colors

Loran Crowell and Steve Szabo

(Communicated by Kenneth S. Berenhaut)

Let p_1, \ldots, p_n be a sequence of n pairwise coprime positive integers, $P = p_1 \cdots p_n$, and $0, \ldots, m-1$ be a sequence of m different colors. Let A be an $n \times mP$ matrix of colors in which row i consists of blocks of p_i consecutive entries of the same color with colors 0 through m-1 repeated cyclically. The monochromatic column problem is to determine the number of columns of A in which every entry is the same color. The solution for a prime number of colors is provided.

1. Introduction

Let m be a positive integer. The colors for m are represented by the integers $0, 1, \ldots, m-1$. An $n \times s$ m-color matrix is an $n \times s$ matrix $A = (a_{ij})$ in which every entry is one of the m colors. Column j of A is monochromatic if $a_{ij} = a_{1j}$ for $1 \le i \le n$. For a positive integer p, row i of A is p-blocked with initial color p if $p \mid s$ and, for $1 \le j \le s$,

$$a_{ij} = \left(\left\lfloor \frac{j-1}{p} + \rho \right\rfloor \right) \bmod m.$$

For $D = \{(p_i, \rho_i)\}_{i=1}^n$, where p_1, \ldots, p_n are pairwise coprime positive integers and $\rho_i \in \{0, \ldots, m-1\}$, an $n \times mp_1 \cdots p_n$ m-color matrix A is the (m, D)-color matrix if for every i satisfying $1 \le i \le n$, row i of A is p_i -blocked with initial color ρ_i . For instance, the layout of the $(5, \{(2, 1), (3, 4)\})$ -color matrix is

$$\begin{pmatrix} 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \end{pmatrix}.$$

MSC2010: 05A15, 11A07.

Keywords: monochromatic column problem, Chinese remainder theorem, multiple sequence alignment problem.

The monochromatic column problem (MCP) is to determine the number of monochromatic columns in the (m, D)-color matrix, which is denoted by N(m, D). Note, $N(5, \{(2, 1), (3, 4)\}) = 6$.

The MCP was originally posed in [Nagpaul and Jain 2002]. Their stated motivation is captured in the following from their paper:

The motivation for studying this problem arose from a question asked by a biomathematician working on the multiple sequence problem that deals with finding, for given k sequences of characters from a fixed alphabet, an alignment with optimal score according to a given scoring scheme.

The multiple sequence alignment problem is a well-studied problem in molecular biology. It is of crucial importance according to [Jiang et al. 1999]. Independently of its tenuous connections to the multiple sequence alignment problem, the MCP is an interesting combinatorial problem in its own right.

The solution of the MCP for two colors is given in [Nagpaul and Jain 2002] and for three colors is given in [Srivastava and Szabo 2008]. The technique developed by Srivastava and Szabo for three colors is generalized here to give the solution for a prime number colors. A partial solution for the prime color case was the topic of [Crowell 2016].

Section 2 contains the complete solution to the prime color problem. In Section 3, the three color solution is restated, correcting a small issue in the solution in [Srivastava and Szabo 2008].

2. The monochromatic column problem: a prime number of colors

Throughout this section, let n be a positive integer, q a prime, $D = \{(p_i, \rho_i)\}_{i=1}^n$, where p_1, \ldots, p_n are pairwise coprime positive integers and $\rho_i \in \{0, \ldots, q-1\}$, and $A = (a_{ij})$ be the (q, D)-color matrix. To solve the prime color problem, three cases are considered which exhaust the possibilities. First, in Proposition 1, it is assumed that p_1, \ldots, p_n are congruent to one another modulo q. Then in Proposition 2, it is assumed that p_1, \ldots, p_n may not all be congruent to one another but none are divisible by q. Finally, in Proposition 3, it is assumed that $q \mid p_n$. In the statements of the propositions, an ordering of p_1, \ldots, p_n is assumed, but of course this ordering does not affect the number of monochromatic columns.

Proposition 1. Let $s \in \{1, ..., q-1\}$. Assume $p_i \equiv s \pmod{q}$ for $i \in \{1, ..., n\}$. Then

$$N(q, D) = q \sum_{\beta=1}^{\min\{p_1, q\}} \prod_{i=1}^{n} \frac{p_i - s}{q} + \left\lfloor \frac{s - (\beta + s(\rho_i - \rho_1) - 1) \mod q - 1}{q} \right\rfloor + 1.$$

Proof. Let $P = p_1 p_2 \cdots p_n$. Note

$$a_{ij} = \left(\left\lfloor \frac{j-1}{p_i} \right\rfloor + \rho_i \right) \bmod q$$

since $\lfloor (j-1)/p_i \rfloor$ calculates the number of complete blocks that the element is away from the beginning of the row. This number of blocks is added to the starting color of the row, ρ_i , and then taking this modulo q gives the color. We will first show that if column j is monochromatic, then a column some multiple of P away is also monochromatic.

Let $1 \le x, y \le n, \ 1 \le j \le P$, and $0 \le \alpha \le q - 1$. Since $p_x \equiv p_y \pmod{q}$,

$$\frac{\alpha P}{p_x} \equiv \frac{\alpha P}{p_y} \pmod{q}$$

$$\left\lfloor \frac{j-1}{p_x} \right\rfloor - \frac{\alpha P}{p_x} - \left\lfloor \frac{j-1}{p_x} \right\rfloor \equiv \left\lfloor \frac{j-1}{p_y} \right\rfloor - \frac{\alpha P}{p_y} - \left\lfloor \frac{j-1}{p_y} \right\rfloor \pmod{q}$$

$$\left\lfloor \frac{j-1}{p_x} \right\rfloor - \left\lfloor \frac{\alpha P + j - 1}{p_x} \right\rfloor \equiv \left\lfloor \frac{j-1}{p_y} \right\rfloor - \left\lfloor \frac{\alpha P + j - 1}{p_y} \right\rfloor \pmod{q}$$

$$a_{x,j} - a_{x,\alpha P + j} \equiv a_{y,j} - a_{y,\alpha P + j} \pmod{q}.$$
(1)

This shows that if column j is monochromatic, then so is column $\alpha P + j$. Hence, it suffices to count the number of monochromatic columns in the first P columns of A and multiply by q.

Let

$$k_{ij} = j - \left| \frac{j-1}{p_i} \right| p_i.$$

This is the count into the $\lfloor (j-1)/p_i \rfloor$ -th monocolored block in the *i*-th row.

Since p_1, \ldots, p_n are pairwise coprime integers and $1 \le k_{ij} \le p_i$, the Chinese remainder theorem guarantees that $|\{(k_{1j}, \ldots, k_{nj})\}_{j=1}^P| = P$. Therefore, by counting the *n*-tuples that map to a monochromatic column, the number of monochromatic columns in the first P columns of A can be determined. For $1 \le i \le n$ and $1 \le j \le P$,

$$a_{ij} = \left(\left\lfloor \frac{j-1}{p_i} \right\rfloor + \rho_i \right) \bmod q = \left(\frac{j-k_{ij}}{p_i} + \rho_i \right) \bmod q.$$

Since $p_i \equiv s \pmod{q}$, we have $a_{ij} = a_{1j}$ if and only if $k_{ij} \equiv k_{1j} + s(\rho_i - \rho_1) \pmod{q}$. So, column j is monochromatic if and only if $k_{ij} \equiv k_{1j} + \rho_i s \pmod{q}$ for all $i \in \{1, ..., n\}$. Hence, the number of monochromatic columns in the first P columns of A is the product of the number of integer solutions to

$$1 \le qx_i + (k_{1j} + s(\rho_i - \rho_1)) \mod q \le p_i$$

for each $i \in \{1, ..., n\}$; equivalently,

$$\frac{1 - (k_{1j} + s(\rho_i - \rho_1)) \mod q}{q} \le x_i \le \frac{p_i - (k_{1j} + s(\rho_i - \rho_1)) \mod q}{q}.$$

The number of integer solutions for a given i is

$$\left[\frac{p_{i} - (k_{1j} + s(\rho_{i} - \rho_{1})) \mod q}{q} \right] - \left[\frac{1 - (k_{1j} + s(\rho_{i} - \rho_{1})) \mod q}{q} \right] + 1$$

$$= \frac{p_{i} - s}{q} + \left[\frac{s - (k_{1j} + s(\rho_{i} - \rho_{1})) \mod q}{q} \right] + \left[\frac{(k_{1j} + s(\rho_{i} - \rho_{1})) \mod q - 1}{q} \right] + 1$$

$$= \frac{p_{i} - s}{q} + \left[\frac{s - (k_{1j} + s(\rho_{i} - \rho_{1}) - 1) \mod q - 1}{q} \right] + 1.$$

The possible values of $[(k_{1i} + s(\rho_i - \rho_1)) - 1] \mod q$ are given by

$$\{(\beta + s(\rho_i - \rho_1) - 1) \mod q \mid \beta \in \{1, \dots, \min\{p_1, q\}\}\}.$$

Summing over these possibilities for k_{1j} , multiplying the number of solutions for each row, and multiplying the sum by q, we find that the number of monochromatic columns in A is

$$N(q, D) = q \sum_{\beta=1}^{\min\{p_1, q\}} \prod_{i=1}^{n} \frac{p_i - s}{q} + \left\lfloor \frac{s - (\beta + s(\rho_i - \rho_1) - 1) \mod q - 1}{q} \right\rfloor + 1. \quad \Box$$

Proposition 2. Let $S = \{p_i \mod q \mid i \in I\}$, r = |S| and $s_1, \ldots, s_r \in S$ be the distinct elements of S. Assume $q \nmid p_i$ for $i \in I$ and r > 1. Let i_0, i_1, \ldots, i_r be such that $i_0 = 0$, $i_r = n$, and $p_i \equiv s_l$ for $i_{l-1} < i \leq i_l$. Let

$$B = \{ (\beta_1, \dots, \beta_r) \mid \beta_l \in \{1, \dots, \min\{p_{i_l}, q\}\} \},$$
 (2)

where

$$\beta_l = \frac{\beta_1(s_l - s_2) + \beta_2(s_l - s_1) + s_l(s_2 - s_1)(\rho_{i_l} - \rho_{i_1}) + s_2(s_l - s_1)(\rho_{i_1} - \rho_{i_2})}{s_2 - s_1}.$$

Then

$$N(q, D) = \sum_{\substack{(\beta_1, \dots, \beta_r) \in B \\ (\beta_1, \dots, \beta_r) \in A}} \prod_{l=1}^r \prod_{i=i_{l-1}+1}^{i_l} \frac{p_i - s_l}{q} + \left\lfloor \frac{s_l - (\beta_l + s_l(\rho_i - \rho_{i_l}) - 1) \mod q - 1}{q} \right\rfloor + 1.$$

Proof. Let $P = p_1 \cdots p_n$. From the proof of Proposition 1, the following can be deduced. The number of columns in the first P columns of A such that the color vector of the column, (c_1, \ldots, c_n) , has the property that $c_i = c_{i_l}$ for $i_{l-1} < i \le i_l$ (i.e.,

is a column where the colors are identical if the associated p_i 's are congruent) is

$$\sum_{(\beta_1, \dots, \beta_r) \in B'} \prod_{l=1}^r \prod_{i=i_{l-1}+1}^{i_l} \frac{p_i - s_l}{q} + \left\lfloor \frac{s_l - (\beta_l + s_l(\rho_i - \rho_{i_l}) - 1) \mod q - 1}{q} \right\rfloor + 1,$$

where

$$B' = \{(\beta_1, \dots, \beta_r) \mid \beta_l \in \{1, \dots, \min\{p_{i_l}, q\}\}\}.$$

Such columns will be called *r*-chromatic columns. First, it is shown that for $1 \le \alpha \le q-1$ and $1 \le j \le P$, column *j* is *r*-chromatic if and only if column $j+\alpha P$ is *r*-chromatic. Fix *l* and let $i_l-1 \le x, y \le i_l, 1 \le j \le P$, and $0 \le \alpha \le q-1$. Since $p_x \equiv p_y \pmod{q}$, the computations of (1) hold and we have

$$a_{x,j} - a_{x,\alpha P+j} \equiv a_{y,j} - a_{y,\alpha P+j} \pmod{q}$$
.

This shows that column j is r-chromatic if and only if column $\alpha P + j$ is r-chromatic. Next, the conditions on an r-chromatic column, j, that guarantee that one and only one of the set of columns $\{j, j + P, \ldots, (q-1)P\}$ is monochromatic is developed. Let $j \in \{1, \ldots, P\}$ and assume column j is r-chromatic. Denote by the r-tuple (c_1, \ldots, c_r) the entries of an r-chromatic column where $a_{ij} = c_l$ for all $i \in \{i_1, \ldots, i_l\}$. Of the noted columns, the only ones that may be monochromatic will have the property that

$$c_1 + \frac{\alpha P}{s_1} \equiv c_2 + \frac{\alpha P}{s_2} \pmod{q}$$

for some $\alpha \in \{0, \ldots, q-1\}$. So,

$$\alpha = (c_2 - c_1) \left(\frac{P}{s_1} - \frac{P}{s_2} \right)^{q-2} \mod q.$$

This then shows that the only possible column that may be monochromatic is $\alpha P + j$. Furthermore, for such a column to be monochromatic, working over \mathbb{Z}_p , for $l \in \{3, \ldots, q\}$,

$$\begin{split} \frac{c_{l}-c_{1}}{1/s_{1}-1/s_{l}} &= \frac{c_{2}-c_{1}}{1/s_{1}-1/s_{2}} \\ \frac{s_{1}s_{l}}{s_{l}-s_{1}}(c_{l}-c_{1}) &= \frac{s_{1}s_{2}}{s_{2}-s_{1}}(c_{2}-c_{1}) \\ \left(\frac{j-k_{i_{l}j}}{s_{l}} + \rho_{i_{l}} - \left(\frac{j-k_{i_{1}j}}{s_{1}} + \rho_{i_{1}}\right)\right) &= \frac{s_{2}(s_{l}-s_{1})}{s_{l}(s_{2}-s_{1})} \left(\frac{j-k_{i_{2}j}}{s_{2}} + \rho_{i_{2}} - \left(\frac{j-k_{i_{1}j}}{s_{1}} + \rho_{i_{1}}\right)\right) \end{split}$$

and thus

$$k_{i_l j} = \frac{k_{i_1 j} (s_l - s_2) + k_{i_2 j} (s_l - s_1)}{s_2 - s_1} + s_l (\rho_{i_l} - \rho_{i_1}) + \frac{s_2 (s_l - s_1)(\rho_{i_1} - \rho_{i_2})}{s_2 - s_1}.$$

This shows which elements of B' correspond to a monochromatic column. Recall the set B given in (2). Hence, the number of monochromatic columns is

$$N(q, D) = \sum_{(\beta_1, \dots, \beta_r) \in B} \prod_{l=1}^r \prod_{i=i_{l-1}+1}^{i_l} \frac{p_i - s_l}{q} + \left\lfloor \frac{s_l - (\beta_l + s_l(\rho_i - \rho_{i_l}) - 1) \mod q - 1}{q} \right\rfloor + 1. \square$$

Proposition 3. Assume n > 1 and $q \mid p_n$. Let $D' = D \setminus \{(p_n, \rho_n)\}$. Then

$$N(q, D) = \frac{p_n}{q} N(q, D').$$

Proof. Let $P = p_1 p_2 \cdots p_n$. Note,

$$a_{ij} = \left(\left\lfloor \frac{j-1}{p_i} \right\rfloor + \rho_i \right) \bmod q$$

since $\lfloor (j-1)/p_i \rfloor$ calculates the number of complete blocks that the element is away from the beginning of the row. This number of blocks is added to the starting color of the row, ρ_i , and then taking this modulo q gives the color.

Let $1 \le x, y \le n-1, \ 1 \le j \le P$, and $0 \le \alpha \le q-1$. Since $q \mid (P/p_x)$ and $q \mid (P/p_y)$, again the computations of (1) hold and we have

$$a_{x,j} - a_{x,\alpha P+j} \equiv a_{y,j} - a_{y,\alpha P+j} \pmod{q}$$
.

This shows that if the first n-1 entries of column j are the same color then the first n-1 entries of column $j+\alpha P$ are the same color. Next, it is shown that $|\{a_{nj}, a_{n,P+j}, \ldots, a_{n,(q-1)P+j}\}| = q$. Note that $(P/p_n) \not\equiv 0 \pmod{q}$. Now,

$$a_{nj} - a_{n,\alpha P + j} \equiv \left\lfloor \frac{j - 1}{p_n} \right\rfloor - \left\lfloor \frac{\alpha P + j - 1}{p_n} \right\rfloor \pmod{q}$$
$$\equiv \left\lfloor \frac{j - 1}{p_n} \right\rfloor - \left\lfloor \frac{j - 1}{p_n} \right\rfloor + \frac{\alpha P}{p_n} \pmod{q}$$
$$\equiv \frac{\alpha P}{p_n} \pmod{q}.$$

Since q is prime, every color is represented in the set

$$\{a_{nj}, a_{n,P+j}, \ldots, a_{n,(q-1)P+j}\}.$$

Therefore, $N(q, D) = (p_n/q)N(q, D')$.

3. Monochromatic column in three colors

In [Srivastava and Szabo 2008], there is a small issue in the results when 2 is one of the coprimes. The issue is that there is a possibility that β may only need to run up to 2 instead of 3. This can be seen in the general results of the previous

section. We make the corrections while also restating the results with our simplified notation. Throughout this section, let n be a positive integer, $D = \{(p_i, \rho_i)\}_{i=1}^n$, where p_1, \ldots, p_n are pairwise coprime positive integers and $\rho_i \in \{0, 1, 2\}$, and $A = (a_{ij})$ be the (3, D)-color matrix. The first result is a direct application of Proposition 1 for q = 3.

Proposition 4 [Srivastava and Szabo 2008, Lemma 1]. Let $s \in \{1, 2\}$. Assume $p_i \equiv s \pmod{3}$ for $i \in \{1, ..., n\}$. Then

$$N(3, D) = q \sum_{\beta=1}^{\min\{p_1, 3\}} \prod_{i=1}^{n} \frac{p_i - s}{3} + \left\lfloor \frac{s - (\beta + s(\rho_i - \rho_1) - 1) \mod 3 - 1}{3} \right\rfloor + 1.$$

Proposition 5 [Srivastava and Szabo 2008, Lemma 2]. Assume

$${p_i \mod 3 \mid i \in I} = {1, 2}.$$

Let $i_0 = 0$, $i_2 = n$, and $i_1 be$ such that, for $i \in I$, we have $p_i \equiv l$ for $i_{l-1} < i \le i_l$. Then

N(3, D)

$$= \sum_{\beta_1=1}^{3} \sum_{\beta_2=1}^{\min\{p_n,3\}} \prod_{l=1}^{2} \prod_{i=l_{l-1}+1}^{i_l} \frac{p_i-l}{q} + \left\lfloor \frac{l-(\beta_l+l(\rho_i-\rho_{i_l})-1) \bmod q-1}{q} \right\rfloor + 1.$$

Proof. In Proposition 2, if r=2 then B=B'. Furthermore, when $p_i\equiv 1\pmod 3$, we have $p_i>3$. This result then follows.

For completeness, the following result is included as well.

Proposition 6 [Srivastava and Szabo 2008, Lemma 3]. Assume n > 1 and $3 \mid p_n$. Let $D' = D \setminus \{(p_n, \rho_n)\}$ and A' = (3, D'). Then

$$N(3, D) = \frac{p_n}{3}N(3, D').$$

References

[Crowell 2016] L. Crowell, *The monochromatic column problem: the prime case*, master's thesis, Easter Kentucky University, 2016, available at https://encompass.eku.edu/etd/356/.

[Jiang et al. 1999] T. Jiang, P. Kearney, and M. Li, "Open problems in computational molecular biology", *ACM SIGACT News* **30**:3 (1999), 43–49.

[Nagpaul and Jain 2002] S. R. Nagpaul and S. K. Jain, "Columns of uniform color in a rectangular array with rows having cyclically repeated color patterns", *Discrete Math.* **254**:1-3 (2002), 371–392. MR Zbl

[Srivastava and Szabo 2008] A. K. Srivastava and S. Szabo, "The monochromatic column problem", *Discrete Math.* **308**:17 (2008), 3906–3916. MR Zbl

Received: 2019-07-05 Revised: 2019-08-06 Accepted: 2019-08-12

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, *Involve* provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Robert B. Lund	Clemson University, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Gaven J. Martin	Massey University, New Zealand
Martin Bohner	Missouri U of Science and Technology, U	SA Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Univ. of Virginia, Charlottesville
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	YF. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Virginia Commonwealth University, USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA
Chi-Kwong Li	College of William and Mary, USA		

PRODUCTION Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US \$195/year for the electronic version, and \$260/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2019 Mathematical Sciences Publishers

On the zero-sum group-magicness of cartesian products				
ADAM FONG, JOHN GEORGES, DAVID MAURO, DYLAN SPAGNUOLO, JOHN WALLACE, SHUFAN WANG AND KIRSTI WASH				
The variable exponent Bernoulli differential equation				
Karen R. Ríos-Soto, Carlos E. Seda-Damiani and Alejandro				
VÉLEZ-SANTIAGO				
The supersingularity of Hurwitz curves	1293			
ERIN DAWSON, HENRY FRAUENHOFF, MICHAEL LYNCH, AMETHYST				
PRICE, SEAMUS SOMERSTEP, ERIC WORK, DEAN BISOGNO AND RACHEL				
PRIES Multipart triangular comilattics naturally	1307			
Multicast triangular semilattice network ANGELINA GROSSO, FELICE MANGANIELLO, SHIWANI VARAL AND	1307			
EMILY ZHU				
Edge-transitive graphs and combinatorial designs	1329			
HEATHER A. NEWMAN, HECTOR MIRANDA, ADAM GREGORY AND				
Darren A. Narayan				
A logistic two-sex model with mate-finding Allee effect	1343			
ELIZABETH ANDERSON, DANIEL MAXIN, JARED OTT AND GWYNETH				
TERRETT				
Unoriented links and the Jones polynomial	1357			
SANDY GANZELL, JANET HUFFMAN, LESLIE MAVRAKIS, KAITLIN				
TADEMY AND GRIFFIN WALKER	1260			
Nonsplit module extensions over the one-sided inverse of $k[x]$	1369			
ZHEPING LU, LINHONG WANG AND XINGTING WANG	1270			
Split Grothendieck rings of rooted trees and skew shapes via monoid	1379			
representations DAVID BEERS AND MATT SZCZESNY				
	1200			
On the classification of Specht modules with one-dimensional summands AUBREY PIPER COLLINS AND CRAIG J. DODGE	1399			
The monochromatic column problem with a prime number of colors	1415			
LORAN CROWELL AND STEVE SZABO	1413			
Total Roman domination edge-critical graphs	1423			
CHI OF LAMBMAN KIEKA (C. M.) MYNHARDT AND SHANNON OGDEN	1743			

1944-4176(2019)12:8:1-Y