
inv lve
a journal of mathematics

msp

The monochromatic column problem
with a prime number of colors

Loran Crowell and Steve Szabo

2019 vol. 12, no. 8



msp
INVOLVE 12:8 (2019)

dx.doi.org/10.2140/involve.2019.12.1415

The monochromatic column problem
with a prime number of colors

Loran Crowell and Steve Szabo

(Communicated by Kenneth S. Berenhaut)

Let p1; : : : ;pn be a sequence of n pairwise coprime positive integers, P D

p1 � � �pn, and 0; : : : ;m� 1 be a sequence of m different colors. Let A be an
n �mP matrix of colors in which row i consists of blocks of pi consecutive
entries of the same color with colors 0 through m� 1 repeated cyclically. The
monochromatic column problem is to determine the number of columns of A in
which every entry is the same color. The solution for a prime number of colors is
provided.

1. Introduction

Let m be a positive integer. The colors for m are represented by the integers
0; 1; : : : ;m� 1. An n� s m-color matrix is an n� s matrix A D .aij / in which
every entry is one of the m colors. Column j of A is monochromatic if aij D a1j

for 1� i � n. For a positive integer p, row i of A is p-blocked with initial color �
if p j s and, for 1� j � s,

aij D

��
j � 1

p
C �

��
mod m:

For D D f.pi ; �i/g
n
iD1

, where p1; : : : ;pn are pairwise coprime positive integers
and �i 2 f0; : : : ;m� 1g, an n�mp1 � � �pn m-color matrix A is the .m;D/-color
matrix if for every i satisfying 1 � i � n, row i of A is pi-blocked with initial
color �i . For instance, the layout of the .5; f.2; 1/; .3; 4/g/-color matrix is�

1 1 2 2 3 3 4 4 0 0 1 1 2 2 3 3 4 4 0 0 1 1 2 2 3 3 4 4 0 0

4 4 4 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 0 0 0 1 1 1 2 2 2 3 3 3

�
:
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The monochromatic column problem (MCP) is to determine the number of monochro-
matic columns in the .m;D/-color matrix, which is denoted by N.m;D/. Note,
N.5; f.2; 1/; .3; 4/g/D 6.

The MCP was originally posed in [Nagpaul and Jain 2002]. Their stated motiva-
tion is captured in the following from their paper:

The motivation for studying this problem arose from a question asked by
a biomathematician working on the multiple sequence problem that deals
with finding, for given k sequences of characters from a fixed alphabet,
an alignment with optimal score according to a given scoring scheme.

The multiple sequence alignment problem is a well-studied problem in molecular
biology. It is of crucial importance according to [Jiang et al. 1999]. Independently
of its tenuous connections to the multiple sequence alignment problem, the MCP is
an interesting combinatorial problem in its own right.

The solution of the MCP for two colors is given in [Nagpaul and Jain 2002] and
for three colors is given in [Srivastava and Szabo 2008]. The technique developed
by Srivastava and Szabo for three colors is generalized here to give the solution for
a prime number colors. A partial solution for the prime color case was the topic of
[Crowell 2016].

Section 2 contains the complete solution to the prime color problem. In Section 3,
the three color solution is restated, correcting a small issue in the solution in
[Srivastava and Szabo 2008].

2. The monochromatic column problem: a prime number of colors

Throughout this section, let n be a positive integer, q a prime, D D f.pi ; �i/g
n
iD1

,
where p1; : : : ;pn are pairwise coprime positive integers and �i 2f0; : : : ; q�1g, and
AD .aij / be the .q;D/-color matrix. To solve the prime color problem, three cases
are considered which exhaust the possibilities. First, in Proposition 1, it is assumed
that p1; : : : ;pn are congruent to one another modulo q. Then in Proposition 2, it
is assumed that p1; : : : ;pn may not all be congruent to one another but none are
divisible by q. Finally, in Proposition 3, it is assumed that q jpn. In the statements
of the propositions, an ordering of p1; : : : ;pn is assumed, but of course this ordering
does not affect the number of monochromatic columns.

Proposition 1. Let s 2 f1; : : : ; q � 1g. Assume pi � s .mod q/ for i 2 f1; : : : ; ng.
Then

N.q;D/D q

minfp1;qgX
ˇD1

nY
iD1

pi � s

q
C

�
s� .ˇC s.�i � �1/� 1/ mod q� 1

q

�
C 1:
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Proof. Let P D p1p2 � � �pn. Note

aij D

��
j � 1

pi

�
C �i

�
mod q

since b.j � 1/=pic calculates the number of complete blocks that the element is
away from the beginning of the row. This number of blocks is added to the starting
color of the row, �i , and then taking this modulo q gives the color. We will first
show that if column j is monochromatic, then a column some multiple of P away
is also monochromatic.

Let 1� x;y � n, 1� j � P, and 0� ˛ � q� 1. Since px � py .mod q/,

˛P

px
�
˛P

py
.mod q/�

j � 1

px

�
�
˛P

px
�

�
j � 1

px

�
�

�
j � 1

py

�
�
˛P

py
�

�
j � 1

py

�
.mod q/�

j � 1

px

�
�

�
˛P C j � 1

px

�
�

�
j � 1

py

�
�

�
˛P C j � 1

py

�
.mod q/

ax;j � ax;˛PCj � ay;j � ay;˛PCj .mod q/:

(1)

This shows that if column j is monochromatic, then so is column ˛P C j . Hence,
it suffices to count the number of monochromatic columns in the first P columns
of A and multiply by q.

Let

kij D j �

�
j � 1

pi

�
pi :

This is the count into the b.j � 1/=pic-th monocolored block in the i -th row.
Since p1; : : : ;pn are pairwise coprime integers and 1� kij � pi , the Chinese

remainder theorem guarantees that jf.k1j ; : : : ; knj /g
P
jD1
j D P. Therefore, by count-

ing the n-tuples that map to a monochromatic column, the number of monochromatic
columns in the first P columns of A can be determined. For 1� i �n and 1� j �P,

aij D

��
j � 1

pi

�
C �i

�
mod q D

�
j � kij

pi
C �i

�
mod q:

Since pi � s .mod q/, we have aij D a1j if and only if kij � k1j C s.�i � �1/

.mod q/. So, column j is monochromatic if and only if kij � k1j C �is .mod q/

for all i 2 f1; : : : ; ng. Hence, the number of monochromatic columns in the first
P columns of A is the product of the number of integer solutions to

1� qxi C .k1j C s.�i � �1// mod q � pi
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for each i 2 f1; : : : ; ng; equivalently,

1� .k1j C s.�i � �1// mod q

q
� xi �

pi � .k1j C s.�i � �1// mod q

q
:

The number of integer solutions for a given i is�
pi�.k1jCs.�i��1// mod q

q

�
�

�
1�.k1jCs.�i��1// mod q

q

�
C1

D
pi�s

q
C

�
s�.k1jCs.�i��1// mod q

q

�
C

�
.k1jCs.�i��1// mod q�1

q

�
C1

D
pi�s

q
C

�
s�.k1jCs.�i��1/�1/ mod q�1

q

�
C1:

The possible values of Œ.k1j C s.�i � �1//� 1� mod q are given by

f.ˇC s.�i � �1/� 1/ mod q j ˇ 2 f1; : : : ;minfp1; qgg:

Summing over these possibilities for k1j , multiplying the number of solutions for
each row, and multiplying the sum by q, we find that the number of monochromatic
columns in A is

N.q;D/D q

minfp1;qgX
ˇD1

nY
iD1

pi�s

q
C

�
s�.ˇCs.�i��1/�1/ mod q�1

q

�
C1: �

Proposition 2. Let S D fpi mod q j i 2 Ig, r D jS j and s1; : : : ; sr 2 S be the
distinct elements of S . Assume q−pi for i 2 I and r > 1. Let i0; i1; : : : ; ir be such
that i0 D 0, ir D n, and pi � sl for il�1 < i � il . Let

B D
˚
.ˇ1; : : : ; ˇr / j ˇl 2 f1; : : : ;minfpil

; qgg
	
; (2)

where

ˇl D
ˇ1.sl � s2/Cˇ2.sl � s1/C sl.s2� s1/.�il

� �i1
/C s2.sl � s1/.�i1

� �i2
/

s2� s1

:

Then

N.q;D/

D

X
.ˇ1;:::;ˇr /2B

rY
lD1

ilY
iDil�1C1

pi�sl

q
C

�
sl�.ˇlCsl.�i��il

/�1/ mod q�1

q

�
C1:

Proof. Let P D p1 � � �pn. From the proof of Proposition 1, the following can be
deduced. The number of columns in the first P columns of A such that the color
vector of the column, .c1; : : : ; cn/, has the property that ciDcil

for il�1< i� il (i.e.,
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is a column where the colors are identical if the associated pi’s are congruent) isX
.ˇ1;:::;ˇr /2B0

rY
lD1

ilY
iDil�1C1

pi � sl

q
C

�
sl � .ˇl C sl.�i � �il

/� 1/ mod q� 1

q

�
C1;

where
B0 D

˚
.ˇ1; : : : ; ˇr / j ˇl 2 f1; : : : ;minfpil

; qgg
	
:

Such columns will be called r -chromatic columns. First, it is shown that for
1�˛� q�1 and 1� j �P, column j is r -chromatic if and only if column jC˛P

is r -chromatic. Fix l and let il � 1 � x;y � il , 1 � j � P , and 0 � ˛ � q � 1.
Since px � py .mod q/, the computations of (1) hold and we have

ax;j � ax;˛PCj � ay;j � ay;˛PCj .mod q/:

This shows that column j is r -chromatic if and only if column ˛PCj is r -chromatic.
Next, the conditions on an r -chromatic column, j , that guarantee that one and
only one of the set of columns fj ; j C P; : : : ; .q � 1/Pg is monochromatic is
developed. Let j 2 f1; : : : ;Pg and assume column j is r -chromatic. Denote by
the r -tuple .c1; : : : ; cr / the entries of an r -chromatic column where aij D cl for all
i 2 fi1; : : : ; ilg. Of the noted columns, the only ones that may be monochromatic
will have the property that

c1C
˛P

s1

� c2C
˛P

s2

.mod q/

for some ˛ 2 f0; : : : ; q� 1g. So,

˛ D .c2� c1/

�
P

s1

�
P

s2

�q�2

mod q:

This then shows that the only possible column that may be monochromatic is
˛P C j . Furthermore, for such a column to be monochromatic, working over Zp,
for l 2 f3; : : : ; qg,

cl�c1

1=s1�1=sl

D
c2�c1

1=s1�1=s2

s1sl

sl�s1

.cl�c1/D
s1s2

s2�s1

.c2�c1/�
j�kil j

sl

C�il
�

�
j�ki1j

s1

C�i1

��
D

s2.sl�s1/

sl.s2�s1/

�
j�ki2j

s2

C�i2
�

�
j�ki1j

s1

C�i1

��
and thus

kil j D
ki1j .sl � s2/C ki2j .sl � s1/

s2� s1

C sl.�il
� �i1

/C
s2.sl � s1/.�i1

� �i2
/

s2� s1

:
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This shows which elements of B0 correspond to a monochromatic column. Recall
the set B given in (2). Hence, the number of monochromatic columns is

N.q;D/

D

X
.ˇ1;:::;ˇr /2B

rY
lD1

ilY
iDil�1C1

pi�sl

q
C

�
sl�.ˇlCsl.�i��il

/�1/ mod q�1

q

�
C1: �

Proposition 3. Assume n> 1 and q jpn. Let D0 DD n f.pn; �n/g. Then

N.q;D/D
pn

q
N.q;D0/:

Proof. Let P D p1p2 � � �pn. Note,

aij D

��
j � 1

pi

�
C �i

�
mod q

since b.j � 1/=pic calculates the number of complete blocks that the element is
away from the beginning of the row. This number of blocks is added to the starting
color of the row, �i , and then taking this modulo q gives the color.

Let 1 � x;y � n� 1, 1 � j � P , and 0 � ˛ � q � 1. Since q j .P=px/ and
q j .P=py/, again the computations of (1) hold and we have

ax;j � ax;˛PCj � ay;j � ay;˛PCj .mod q/:

This shows that if the first n� 1 entries of column j are the same color then the
first n� 1 entries of column j C ˛P are the same color. Next, it is shown that
jfanj ; an;PCj ; : : : ; an;.q�1/PCj gj D q. Note that .P=pn/ 6� 0 .mod q/. Now,

anj � an;˛PCj �

�
j � 1

pn

�
�

�
˛P C j � 1

pn

�
.mod q/

�

�
j � 1

pn

�
�

�
j � 1

pn

�
C
˛P

pn
.mod q/

�
˛P

pn
.mod q/:

Since q is prime, every color is represented in the set

fanj ; an;PCj ; : : : ; an;.q�1/PCj g:

Therefore, N.q;D/D .pn=q/N.q;D
0/. �

3. Monochromatic column in three colors

In [Srivastava and Szabo 2008], there is a small issue in the results when 2 is one
of the coprimes. The issue is that there is a possibility that ˇ may only need to
run up to 2 instead of 3. This can be seen in the general results of the previous
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section. We make the corrections while also restating the results with our simplified
notation. Throughout this section, let n be a positive integer, D D f.pi ; �i/g

n
iD1

,
where p1; : : : ;pn are pairwise coprime positive integers and �i 2 f0; 1; 2g, and
A D .aij / be the .3;D/-color matrix. The first result is a direct application of
Proposition 1 for q D 3.

Proposition 4 [Srivastava and Szabo 2008, Lemma 1]. Let s 2 f1; 2g. Assume
pi � s .mod 3/ for i 2 f1; : : : ; ng. Then

N.3;D/D q

minfp1;3gX
ˇD1

nY
iD1

pi � s

3
C

�
s� .ˇC s.�i � �1/� 1/ mod 3� 1

3

�
C 1:

Proposition 5 [Srivastava and Szabo 2008, Lemma 2]. Assume

fpi mod 3 j i 2 Ig D f1; 2g:

Let i0 D 0, i2 D n, and i1be such that, for i 2 I, we have pi � l for il�1 < i � il .
Then

N.3;D/

D

3X
ˇ1D1

minfpn;3gX
ˇ2D1

2Y
lD1

ilY
iDil�1C1

pi � l

q
C

�
l � .ˇl C l.�i � �il

/� 1/ mod q� 1

q

�
C1:

Proof. In Proposition 2, if r D 2 then B D B0. Furthermore, when pi � 1 .mod 3/,
we have pi > 3. This result then follows. �

For completeness, the following result is included as well.

Proposition 6 [Srivastava and Szabo 2008, Lemma 3]. Assume n > 1 and 3 jpn.
Let D0 DD n f.pn; �n/g and A0 D .3;D0/. Then

N.3;D/D
pn

3
N.3;D0/:
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