Vol. 12, No. 8, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 5, 723–899
Issue 4, 543–722
Issue 3, 363–541
Issue 2, 183–362
Issue 1, 1–182

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 8 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 5 issues

Volume 7, 6 issues

Volume 6, 4 issues

Volume 5, 4 issues

Volume 4, 4 issues

Volume 3, 4 issues

Volume 2, 5 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-4184 (online)
ISSN 1944-4176 (print)
 
Author index
To appear
 
Other MSP journals
The monochromatic column problem with a prime number of colors

Loran Crowell and Steve Szabo

Vol. 12 (2019), No. 8, 1415–1422
Abstract

Let p1,,pn be a sequence of n pairwise coprime positive integers, P = p1pn, and 0,,m 1 be a sequence of m different colors. Let A be an n × mP matrix of colors in which row i consists of blocks of pi consecutive entries of the same color with colors 0 through m 1 repeated cyclically. The monochromatic column problem is to determine the number of columns of A in which every entry is the same color. The solution for a prime number of colors is provided.

Keywords
monochromatic column problem, Chinese remainder theorem, multiple sequence alignment problem
Mathematical Subject Classification 2010
Primary: 05A15, 11A07
Milestones
Received: 5 July 2019
Revised: 6 August 2019
Accepted: 12 August 2019
Published: 25 October 2019

Communicated by Kenneth S. Berenhaut
Authors
Loran Crowell
Eastern Kentucky University
Richmond, KY
United States
Steve Szabo
Eastern Kentucky University
Richmond, KY
United States